LOCAL SENSITIVITY ANALYSIS FOR THE KURAMOTO MODEL
WITH RANDOM INPUTS IN A LARGE COUPLING REGIME

SEUNG-YEAL HA, SHI JIN, AND JINWOOK JUNG

ABSTRACT. Synchronization phenomenon is ubiquitous in strongly correlated oscillatory
systems, and the Kuramoto model serves as a prototype synchronization model for phase-
coupled oscillators. In this paper, we provide local sensitivity analysis for the Kuramoto
model with random inputs in initial data, distributed natural frequencies and coupling
strengths, which exhibits the interplay between random effects and synchronization non-
linearity. Our local sensitivity analysis provides some understanding of the robustness of
emergent dynamics of the random Kuramoto model in a large coupling regime, including
“propagation and vanishment of uncertainties” and “continuous dependence” of phase and
frequency variations in random parameter space with respect to the variations in initial
data.

1. INTRODUCTION

Complex oscillatory systems often exhibit collective coherent behaviors, e.g., flashing
of fireflies, chorusing of crickets, synchronous firing of cardiac pacemaker and metabolic
synchrony in yeast cell suspension etc [1, 8, 32, 41]. The rigorous mathematical treatment
of such problems began from the pioneering works [29, 41] by Kuramoto and Winfree about
half century ago. They introduced simple phase models for weakly coupled limit-cycle
oscillators, and showed how collective coherent behavior can emerge from the interplay
between intrinsic randomness in natural frequency and nonlinear attractive phase couplings.
This coherent motion is often called ” synchronziation” which means the adjustment of
rhythms in an ensemble of weakly coupled oscillators. Recently, the synchronization of
oscillators on networks became an emerging research area in different disciplines such as
biology, control theory, statistical physics and sociology. After Kuramoto and Winfree’s
seminal works, several phase models have been used in the phenomenological study of
synchronization. Among them, our main interest in this paper lies on the Kuramoto model.
We first briefly introduce the Kuramoto model (see Section 2 for its basic mathematical
structures).

Let 0; = 0;(t) be the phase of the i-th limit-cycle oscillator, and we assume that the
Kuramoto oscillators are located on a symmetric network whose interaction(connection)
topology is denoted by the coupling matrix K = (k;;). In this setting, the evolution of
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phases is governed by the first-order system of ordinary differential equations [28, 29]:

N
. 1
(1.1) 0; = v; + N Z Kij Sin(ej — 91), t >0,
j=1

where v; is the random natural frequency and ;; is the symmetric coupling strength between
j and i-th oscillators. In previous literature in applied mathematics, control theory, say|1,
15, 23] and references therein, system (1.1) has been studied after the randomness in the
natural frequencies is quenched, i.e., v; is treated as a time-independent parameter (see
4, 5,6, 7,9, 13, 14, 15, 16, 17, 21, 22, 23, 24, 35, 38, 39, 40]) for deterministic data and
coupling strengths. However, as one can easily imagine, initial data, natural frequencies
and mutual coupling strengths can be uncertain due to incomplete measurement of data
and ignorance of exact interaction mechanism between oscillators.

In this paper, in order to address this uncertainty, we employ a UQ (uncertainty quantifi-
cation) formalism in [25, 26, 30] (and references therein) in the context of synchronization.
Recently, UQ analysis has been applied in the collective models in the context of flocking in
[2, 10, 18, 20]. In previous studies, most analytical works for (1.1) were restricted to situa-
tion where the randomness in natural frequency v; is quenched and the coupling strengths
are the same constant. Throughout the paper, we consider a more realistic case where the
natural frequencies and mutual coupling strengths contain a kind of random component.
For this, we introduce random parameters z whose probability density function is given by
g = g(2). In this setting, the random phase process 6;(t, z) satisfies a random dynamical
system:

N
(1.2) 0¢0;(t, 2) = vi(2) + %Z kij(2)sin(8;(t, z) — 6;(t,2)), 1<i<N.
j=1

Note that if randomness in natural frequency and coupling strengths are quenched, then
system (1.2) reduces to the deterministic Kuramoto model (1.1) on a symmetric network.
Since the R.H.S. of (1.2) is 2m-periodic, the system (1.2) can be regarded as a dynamical
system on N-tori TV. However, if necessary, by lifting the system (1.2) in its covering space
RY, we will regard (1.2) as a dynamical system on RY. For the proposed random dynamical
system (1.2), we are mainly interested in the following questions:

e (Q1): How do the randomness in natural frequencies and coupling strength
affect synchronization process?

e (Q2): Are phase-locked states for (1.1) robust in the presence of ran-
domness?

While the mathematical and computational study for self-organization has received tremen-
dous interests in the last decade (see for examples review articles [31, 36]), as far as the
authors know, the study of uncertainty quantification for such problems has not been fully
addressed in literature until several recent works [2, 10, 18, 20] for the Cucker-Smale model
of flocking. The type of analysis conducted here is similar to the ones done in [18], in which
the flocking conditions, as well as local sensitivity analysis were studied from the viewpoint
of random initial data and communication weights between particles. Such a study not only
helps to understand the impact of uncertainty in the dynamic behavior of system under in-
vestigation, but it also helps to understand the behavior of numerical approximations for
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such random systems, since indeed the sensitivity results imply the regularity of the solu-
tion in the Sobolev norms which is important to understand the convergence of stochastic
algorithms [42]. For notational simplicity, we set

z€QCR, w;:=040;, ©:= (91,"' ,91\[), V.= (wl,--- ,wN), V.= (1/1,'-- ,Z/N).

To see the random effect in (1.2), we expand the phase and frequency processes 0;(t, z +dz)
and via Taylor’s expnasion:

1
0:(t, z + dz) = 0;(t, z) + 8.0;(t, 2)dz + 56301»@, 2)(dz)? +-- -,
(1.3)
1
wi(t, z + dz) = wi(t, 2) + d.w;(t, z)dz + §8§wi(t, 2)(dz)? +---

Thus, the local sensitivity estimates [33, 34] deal with the dynamic behaviors of the sensi-
tivity vectors 070 and 0LV consisting of coefficients in the R.H.S. of (1.3).

The main results of this papers are two-fold: First, we provide a sufficient framework
(F) leading to the uniform bound estimate for the diameter and ¢'-stability property of
070. Under the framework (F) formulated in terms of initial data, natural frequencies
and coupling strengths which are computable from given data and parameters, our results
provide the following local sensitivity estimates for 9.0©:

e (Uniform bound for the diameter of 970): Our first estimate provides the estimate
like

(1'4) D(ai@(t, Z)) < D(@i@O(z))e—Hm(z)cosD(@O(z))t + Cl(z)(l _ e—nm(z)cosD(@o(z))t),

where the random function Cj(z) depends only on given random data and param-
eters D(01V(2)), 0%kij(2) and D(070°(2)) for r = 0, 1, ---,l (see Theorem 3.1
and (4.1)). In particular, for the ensemble of identical Kuramoto oscillators, we will
show a more refined estimate than (1.4):

_ km/(z) cos D(@O(z))t

D(0.0(t,2)) < Di(z)e 2 , forevery t>0,

where the random function D;(z) depends only on given random data and parame-
ters Lk;j(z) and D(970%(z)) for r =0, 1, --- 1 (see Corollary 3.3 for details).

e (f1-stability): For two solutions © and © to (1.2) with initial data ©° and ©° in
random space, respectively: for every | € N, there exists a nonnegative random
variable & = &(z) independent of ¢ and a non-negative functional A; := Ay(¢, z)
such that

-1
gtHai(@ = O)(t, 2)ll + Ai(t,2) < E(2) Y 1102(0 — ©)(t, 2)|n,

p=0

for every ¢t > 0. In addition, if we further assume that 6.(0,z) = 6.(0, z)(for the
definition of 6., see (2.1)), we can find the exponential decay of ¢! —difference between
two solutions as follows: for every [ € N, there exists a nonnegative random variable
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& := &(z) such that

l
10L(8 — ©)(t, 2) |1 < &(2)e rm 1 eos DIOPENEN™ 1 ap(00 — ©0)(2)]1.

p=0

In general, the aforementioned local sensitivity estimates for 070 do not hold in a low
coupling regime (see the discussion right after the framework (F) in Section 3). Second, we
provide a synchronizing property of the frequency variations 9LV (see Theorem 5.1) under
the same framework (F):

_ km(2) cos D(©%(2))¢
2

D(dLV (t,z)) < Fi(z)e , forevery t>0,

where the random function D;(z) depends only on given random data and parameters
0%k;j(z) and D(910°%(2)) forr =0, 1, --- 1.

The rest of this paper is organized as follows. In Section 2, we provide conservation laws,
relative equilibria, gradient flow formulation and pathwise emergent dynamics for the ran-
dom Kuramoto model (1.2). In Section 3, a uniform bound for the diameter for the phase
variation is present, and a uniform ¢;-stability of 970 is given in Section 4. In Section 5, we
present a synchronizing property of 07V. Finally Section 6 is devoted to a brief summary
of our main results and future directions.

Notation: Throughout the paper, we use the following simplified notation: for Z :=
(21, ,2n) and coupling matrix K = (k;;), we set

N 1
D(Z) = g =5l 2= (1), pelLoo)
1=

2]l := max |zi[, mm(2) == minkij(2), [|076(2)]lc0 := max |0 ki ;(2)]-
1<i<N 2,7 2,7

Let m: 2 — R U{0} be a nonnegative p.d.f. function, and let y = y(z) be a scalar-valued

random function defined on 2. Then, we define the expected value as

Elg] = /Q o(2)m(2)dz,

2. PRELIMINARIES

In this section, we study conservation laws and pathwise asymptotic dynamics for the
random Kuramoto model (1.2). These estimates are crucial in the local sensitivity analysis
in the following three sections.

2.1. Conservation laws. First, we consider conservation laws associated with random
dynamical system (1.2). In general, for a given dynamical system, it is important to look
for conserved quantities which govern overall dynamics of a system. For example, if a
Hamiltonian system has enough conserved quantities, then it can be integrable. So far, it is
known that the Kuramoto model (1.1) admits two conservation laws, namely the number
of oscillators and total sum of phases. Thus, once the complete synchronization happens,
where all oscillators rotate with the common frequency, then that constant is given by the



LOCAL SENSITIVITY ANALYSIS FOR THE KURAMOTO MODELS WITH RANDOM INPUTS 5

average natural frequencies. For given © and V, consider a time-dependent random function

C(O,V,1):

C(O,V,1) Ze —tZyl

Next, we show that the quantity C(O, V,t) is conserved along (1.2).

Lemma 2.1. Let © = O(t, z) be a random phase vector whose dynamics is governed by the
random Kuramoto model (1.2). Then, the quantity C(©,V,t) is constant along the path of
(1.2): for z€Q, t >0,

0C(O(t,2),V(2),t) = 0.
Proof. We use the symmetry of x;; = £;; and (1.2) to obtain

N N N N
BC(O(t, ), V(2),t) = 8,:(292-(7; -ty Vi(z)) =3 06it.2) - Y wilz) =0,
=1 ;

i=1 i=1 i=1
which yields the desired estimate. O

Remark 2.1. Note that Lemma 2.1 implies

N N N
S 0i(t,z)=t> vi+ Y 0)z), t>0, z€Q.
=1 =1 =1

Hence, unless Zfil v; 1s zero, the total phase Zf\il 0; itself is not a conserved quantity.

Due to the translation invariant property of (1.2), the dynamics for averages and fluctu-
ations around them are completely decoupled in the sense that if one sets

1 Y 1
0. .= — 0;, V.= — vi,
1) p3 Py
éi::@i—907 ﬁi::l/i_yc, i:lj...’N7

then 6. and 6, satisfy
OO (t, 2) = ve(2),

(22) D0;i(t,2) = 7i(2) + — Zf% sin(6;(t, 2) — 0;(t, 2)).

Note that the fluctuations satisfy the same equation (1.2). Thus, without loss of generality,
we will assume zero sum conditions:

N N
Z Vv, = 0, Z 92 =0
i=1 =1

instead of the system (2.2),.
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2.2. Relative equilibria. Note that the equilibrium solution © = (61,--- ,0xy) to (1.2) is
a solution to the following random system: for each z € ,

N
(2.3) vi() + %Z iy (2) sin(0(t, 2) — 0,(6,2)) = 0, 1<i<N.
=1

Due to Remark 2.1, if Zf\il v; # 0, then system (2.3) does not have a solution. This forces
us to consider relaxed equilibria.

Definition 2.1. [1, 15, 22] Let ©(t, z) = (01(t, 2),--- ,0n(t, 2)) be a time-dependent random
phase vector.
(1) © is a random phase-locked state if all relative phase differences are constant over
time along the sample path: for z € §Q,
Hi(t,z)—ﬁj(t,z) :92'(0,2)—9]'(0,2), tZO, 1 S’L,] SN
(2) © exhibits asymptotic phase-locking (complete synchronization) if the relative fre-
quencies tend to zero asymptotically: for z € €,

lim |0:0;(t, z) — 0:0;(t,z)| =0, 1<i,j <N.
t—o00

Note that the random Kuramoto model (1.2) can also be recast as a gradient flow along
the sample path. We define a random potential in [22, 24, 37]: for a given random phase
vector O(t, z) = (01(t,2),--- ,0n(t, 2)),

N N
(2.4) V(O(t, 2)) = — Z vi(2)0k(t, 2) + 3 Z Kik(2) (1 — cos(bk(t, z) — 0i(t, 2))).
k=1 =1
Then, it is easy to see that the random Kuramoto model (1.2) can be rewritten as a gradient
flow: for each z € Q,
(2.5) 0,0 =-VeV(0), t>0.

For the deterministic case, the gradient flow formulation (2.4) and (2.5) is useful to derive
the complete synchronization estimates for generic initial phase configuration in [22] without
decay rate. Since the following analysis requires a detailed exponential decay, we will not
employ the gradient flow and instead, we will use the framework in [12] where the explicit
relaxation rate toward the phase-locked states and uniform ¢;-stability have been studied.

2.3. Pathwise emergent dynamics. In this subsection, we provide pathwise emergent
dynamics of (1.2) which are useful in the following two sections.

Proposition 2.1. Let © = O(t,z) be a phase vector whose dynamics is governed by the
random Kuramoto model (1.2). Then, for a given z € Q, the following assertions hold.

(1) (Identical oscillators) Suppose that the coupling strength, natural frequencies and
initial phases satisfy

D(V(2)) =0, km(z)>0, 0< DO%2)) <.
Then, there exists kK, > 0 such that
D(0°%(2))e (&)t < D(O(t, 2)) < D(O°(2))e "=t ¢ >,

in 0
where y(z) == % €(0,1).
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(2) (Nonidentical oscillators) Suppose that the coupling strength, natural frequencies
and initial phases satisfy

D(V(2))
fnlz) > D0 (2))
Then, we have

D(O(t,2)) < D(©°(2)), D(V(t 2)) < D(VO(z))e rm(2)cos DO )t

>0, 0<D(O%2)) < g

Proof. The proof is almost the same as in [19] with a slight modification. Thus, we refer to
[19] for details.
O

Remark 2.2. Note that the uniform boundedness of D(V (t, z)) can be derived directly from
(1.2): fori=1,---,N,

wilt, 2)| =

N
vi(z) + % > rij(t,2)sin(89(2) = 67(t,2))| < [w(2)lloo + [14(2) |0,
j=1

where ||[V(2)|oo = max; [v;(2)|, ||k(2)|lc = max;j|kij(2)|. Thus, we have a uniform
boundedness for D(V). Similarly, we can also deduce the boundedness of D(V') from (3.7).

As a direct application of Proposition 2.1, we obtain statistical estimate for expectation
of random phase and frequency configurations.

Corollary 2.1. Suppose that initial data, natural frequencies and coupling strength satisfy

N N
™
0 <supD(O°2)) < = —¢, >0, 500:0, § =0,
21618 ( (z))_2 g, for some & 2 ; i:1uz

D(V(»)) .
ilelgD(V(z)) <00, Km(z)> W and ere1sf2 km(2) >1n >0,

and let © = O(t, z) be a solution to system (1.2). Then, we have
E[D(O(1))] < E[D(©°)] and E[D(V(t))] < E[D(V)]e """,
Proof. The estimates directly follow from Proposition 2.1. O

2.4. Elementary key tools. In this subsection, we study two elementary facts to be
crucially used in the later sections. First, for reader’s convenience, we quote the formula for
the chain rules for higher derivatives of a composition function from [27]. It proof can be
made using the mathematical induction. We first introduce an index set: for given positive
integer n,

A(n) :={(k1,--- ko) € (Z4 U{O})™ : k1 + 2k +--- + nk, =n}.

Note that (0,---,0,1) is an element of A(n). Then, n-th derivative of f(g(z)) is given by
the following formula:

dn

——f(g(x))

dz™

o - (G (L5 ()"
(k1 kn) EA(n)
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where k:= k1 + - + k.

Next, we state a Gronwall type lemma without a proof.
Lemma 2.2. Let y: Ry U{0} — Ry U{0} be a differentiable function satisfying
(2.7) y <—ay+Ce™, >0,  y(0) =,

where a > B and C are non-negative constants. Then y satisfies

C
y(t) < goe o+ ——— (e - e )
[0

- B
Proof. Multiplying (2.7) by e®* and integrating it over (0,] gives

y(t)e™ <yo+

C
a—ﬁ(e( At _ ).

Dividing the above equation by e®' yields the desired result.

3. A UNIFORM DIAMETER BOUND FOR PHASE PROCESS

In this section, we present a uniform bound for sensitivity vectors 9.0 with [ > 1.
Note that the diameter D(9.0)) is given by the relation:

D(9L©)) = max 8'0; — min 9L6;.
K3 (3
For | = 0, we have already studied the decay and uniform bound estimates of D(©) in

Proposition 2.1. For [ > 1, we will use mathematical induction together with modified
Gronwall’s lemma to derive the bound and decay estimates of D(9.0).

Consider the equation for 9'6; by differentiating (1.2) with respect to z:

1 l
I _aly¢,,. - l—r( . . L . _h.
(3.1) 8, (8391(75, z)) = L(wi(2) + 2 : <T> oL (/i@](z))az (sm(ej (t,2) — 6;(t, z))).
1<j<N
0<r<l
Note that for each z € Q and I € NU{0}, we have a real-analytic solution 0.6;(-, z) to (3.1).

3.0.1. Nonidentical oscillators. Now, we state a sufficient framework (F) for the local sen-
sitivity analysis for phase process:
e (F1): Initial phase processes are confined in a quarter arc and have zero mean:

0 < D(O°(2)) < g Os<u}<)lD(8§@0(z)) <oo, Y 60(z)=0.

e (F2): Natural frequencies satisfy uniform bound and have zero mean:

D(IV(2)) < oo, i(2) =0,
S (02V(2)) < o0 Zi:V(Z)

e (F3): Mutual coupling strengths are sufficiently large such that

om(2) Iﬁg‘;ggg)) s [925(2)] e < i < .
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Note that the large coupling condition (F3) is necessary for the uniform boundedness of
diameters. For example, in a low coupling regime which is close to zero, the uniform bound
for diameter does not hold. Consider the random Kuramoto model (1.2) x;; = 0:

00;(t,z) =vi(z), 1<i<N.
Thus, 6; is completely integrable:
0:(t,z) = 09(2) + tvi(z), t>0.
For a pair of oscillators with v; # v,
10:(t, 2) — 0;(t,2)| > tlvi(2) — vi(2)] — 69(2) — 0?(2)| — 00, ast— 00,

which means the unboundedness of D(0). The same argument can be applied for 970 to
derive unboundedness for x;; = 0. By the structural stability of (1.2), this unboundedness
of diameter also works for low coupling regime x;; < 1.

We now return to the uniform bound estimate for D(0.0). As the first step of the
induction, we study the estimate for D(9}0) in the following lemma.

Lemma 3.1. (Uniform bound for D(0,0)) Suppose that the framework (F) with | = 1
holds, and let © = ©O(t, z) be a solution to system (1.2). Then, for z € Q, we have

D(az@(t, Z)) < D(azQO(z))e—nm(z) cos D(@°(2))t + O (Z)(l o e—rim(z) cosD(@o(z))t) Vt>0,
where the random variable C1(z) is given by the following relation:

z . 5(2) |00 SIN 0(%
(32) Ci(z) == zlid )/)i:;(iyiosg)zgo(Z))D(@ : ))

Proof. Let © = O(t, z) be a solution to system (1.2) with zero sum conditions in (F1) and
(F2). Then, it follows from (3.1) that for any [ € N,

D 0:0i(t,2) =0, t>0, z€Q,

and 0,0;(t, z) satisfies
(3.3)
8:0.0; = D.vi(2) + % y [(aznij(z)) sin(0; — 0;) + ki (2) cos(0; — 0;)(.0; — azei)].

1<j<N
We choose extremal indices My = M (¢, z), m1 = mi(t, z) such that

0.0, (1, 2) == max 0,0;(t,z), 0,0m,(t,z) := min0,0;(t, z).

Note that for every z € Q, 0,0, (-, 2) and 0,0, (-, 2) are piecewise differentiable and
Lipschitz with respect to t. Then, we have

(3.4) D(0,0(t,2)) := 0.0, (t,2) — 0:0m,(t,2), t>0, z€ Q.

For the estimate of D(0,0), we estimate time-evolution of 0,0, and 9,0,,, as follows.
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o (Upper bound estimate of 0,0y, ): For a.e. t > 0, we have
(3.5)

1
N 4
J

WE

010,00, < Oxvnr, (2) + ||026(2)]| 0o sin D(O) K, (2) cos(0; — O, )(0:0; — 0-0u1,)

Il
—

Km(2) cos D(@O(z))(azﬁj — 0.0,)

2=

< O, (2) + ||026(2)]| 0o sin D(O) +

<
Il
-

= 0,1, (2) + [|025(2)] 00 5i0 D(O) — Ky (2) cos D(0°(2))0.0hs,
where we used D(0(t, z)) < D(0°(2)) from Proposition 2.1.

e (Lower bound estimate of 0,0,,,): Similarly for a.e. ¢ > 0, we have
(3.6)

=

1

010,0m, > 02Vm, (2) — ||02(2)]|co sin D(O) + N

Koy 5 (%) €08(0; — O, )(9:0; — 0:0m,)

<
Il
-

Km(2) cos D(G)O(z))(&z@j — 0:0m,)

=z~
WE

> 0y, (2) — [|026(2)||oo sin D(O) +
i=1

z)cos D(0°(2)).0m,, for a.e. t>0.
t

<
Il

= 03U, (2) — ||0:6(2) |00 Sin D(O) — Ky
We use the relations (3.4), (3.5) and (3.6) to yiel
for a.e. t >0,

0,D(0,0) < —k
(3.7)
< —K

o

he following Gronwall type inequality:

m(2) cos D(O)D(9,0) 4+ D(9,V(2)) + 2||0.k(2)]| 00 sin D(O)
m(2) cos D(OY(2))D(0,0) + D(8.V) + 2(|0.5(2)] 00 sin D(Q°(2)).

where we used (2) of Proposition 2.1. Then, Gronwall’s lemma in Lemma 2.2 and continuity
of D(9.0(-, z)) with respect to t, can be used to obtain the following desired estimate: for
z €9,

D((?z@(t, Z)) < D(azgo(z))efﬁm(z)cosD(@O(z))t

D(9:V(2)) + 2[10::(2)lloo sin D(O%(2)) (1 —ix,u(2)cos D(©O ()t
* km(2) cos D(O9(2)) (1 ) '

O

Next, we use induction and provide a local sensitivity analysis for the diameter of higher-
order z-derivatives of phases.

Theorem 3.1. Suppose that the framework (F) holds, and let © = O(t, z) be a solution to
the system (1.2). Then, for z € Q, we have

(3.8)

D(@i@(t, 2)) < D(ai@()(z))e—mm(z) cosD(@O(z))t+Cl(Z)(l_e—nm(z) cosD(@O(z))t) for all t>0,

where the random variable Cj(z) (I > 2) is inductively given by the following relation:

2
Km(z) cos D(O09(2))

Cl<2) =
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. {D@;‘” 0L (2) 0 D(O°(2))

! - ép(z) o
+ [15(2) o > Mg (1);)

1-
(k1, -, k)eA(l)
kl:()

~ k
l 7! . S (C(2)\ "
D DR (4 Pt m<z>|rooH< pﬂ>> }

1<r<i—1 p=1
(k1, =, kr)EA(r)

where Cy(2) := max{D(020°(2)), Cp(2)} and A(r) follows from Section 2.4.

Proof. We use the mathematical induction together with initial step in Lemma 3.1.

e (Initial step): For [ = 1, the estimate (3.8) is already established in Lemma 3.1.

e (Inductive step): For [ > 2, assume that the estimate (3.8) for D(9¥O(t, z)) with k <
I — 1 hold, and we will show that the estimate (3.8) holds for D(9'O(t,z)) below. For

(ki, -+, k) € (NU{0})", 1 <4, j < N and r € N, we set M(r, k1, ---, kr,0,4,7j) as
follows: )
;g : s age — 8597, P
M(T‘, klu Tty k’m@,l,]) = Sln(k)(aj — 91) H (]p‘> ,
p=1 ’
where sin®(0; — 6;) := di;k (sm(x))‘z:ej_ei and k =k + - k,.

We use the chain rule for higher order derivatives at the end of Section 2, and deduce
that (3.1) becomes as follows:

:(00,)(t, =)

= 8l vi(z Z Kij(z) cos( )((9l alzei)

)l

z 7M(l_17k17 Ty kl*heaiaj)
1 k!

1 l l—r 7! L
AP ()8 rig () MO R s ke ©44)
1<j<N
l§r§l—l
(k’h oy kr)EA(T)

Z OLkij(2) sin(0; — 6;).

1<]<N

For the [-th phase variations {0.0;(t, )}, we choose extremal indices M; = M(t,z), m; =
my(t, z) such that

0.0, (t, 2) := max@i@i(t, z), 0:0m,(t,z) == min 8i9¢(t,z),
D(8LO(t, 2)) := 8L 0n, (t, 2) — 80, (t,2), t>0, z€ Q.
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We note that for z € 2, 910, (-, 2) and 00,,, (-, 2) are piecewise differentiable and Lipschitz
with respect to t. Now, we estimate 829% and Giﬁml separately as follows.

e Case A (Estimate for 9;0'0,y,): For a.e. t > 0, we have

815(8,5;91\41 ) (t7 Z)

N
< | vy (2 ZnM” cos(0; — O1,)(0L0; — DL0hr))
! & M -1,k k O, M, j
+N Z FdMl,j(Z)m ( — L k1, oy RI-1,9, l,J)
1<G<N
(k1, -, kp)eA()
k=0
(3.9) 1 I\ ey 7! i
+ N Z <T’>az RM[,]’(Z)WM(T? k17 Ty kr7®)Ml7j)
1<j<N

1<r<l—1
(k1, -, kr)EA(r)

> Okan(2)sin(6; — Our,)

1<j<N

o Case A.1 (Estimate of Z17): By direct estimate, we have

T = alzI/Ml Z K,; cos(6 HMZ)(8l9 ﬁiQMZ)
< 8 vy, — K cos D(©)040)y,.
o Case A.2 (Estimate of Z12 and Z;3): for » <1 — 1, use the induction hypothesis to get
D(956(t,2)) < D(970°(2))e "™ cos D(O)¢ 4 Cr(z)(1 —efim COSD(@O)t), for each z€Q,
which can be changed to
D(050(t, 2)) < max {D(9.0°(2)), Cr(2)} =: Cy(2), foreach z€Q,

Hence we obtain

r kp T ~ . kp
Mk, -y k0, 5)) < [ (W> < <Cp( ))

p=1
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forr=1,---,1—1. Thus,

~ kp
Zl2 S HR(Z)HOO Z 1."' l ' H ( > ’
p=1

(k1, -, k)EA(l)
k=0

T = kp
I3 < Z <i>MH6§‘%(z)Hm H <CZ)(,Z)>

1<r<i-1 p=1
(klz ] kT‘)GA(T)

o Case A.3 (Estimate of Z14): We deduce from Proposition 2.1 that

0L i(2) oo
Ty < V=Gl S~ pier,2)) < 0Ln(2) 0 D(O0(2)).
N 1<j<N

In (3.9), we combine all results in Case A.1 - Case A.3 to get the following: for a.e. ¢ > 0,
9 0L 0, (t, 2) < 8 vag, — K cos D(0©°)0L0, + H@ln(z)HooD(G)O(z))

@l D ,le< )’%

(k1, -, k)EA() !
(3.10) " k=0
l ! = Co(2) &
r. 1—p pZ
f X (el H( . ) .
1<r<i—1 p=1

(k1, -, kr)EA(r)

e Case B (Estimate for 8tf)iéml): Next, we estimate 8158297”1 as follows: for a.e. t > 0,

615 (8/{;0"” ) (ta z)

N
> | v, (2) anl (2) cos(8; — O0m,) (80 — L0,
1 A .
_N Z Nm,,j(Z)m|M(l—1,k1, Tty kl—lag’kh]”
1<j<N
(k1, -, ki)eA(l)
;=0
(3.11) 1 l 7! - .
_N Z <'I")M|al K/ml]( )M(T7k17 Ty k?“7@7ml7j)|
1<j<N

1<j<N
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¢ Case B.1 (Estimate of Zy;): In this case, we have
To1 > 8il/ml — Ky, COS D(@O)ﬁiﬁml.
o Case B.2 (Estimate of Zos and Zs3): As in Case A.2, we have

-1 = kp
I Cp(2)
Too > —||k(2) o > [] ( - ) :
CIERTE L A

(k1, -, kp)eA()
k=0

T = kp
Iz > — > <i>M|’8i_T“(Z)||w 11 (Cﬁz)) :

1<r<i-1 p=1
(b1, =, kr)EA(r)

¢ Case B.3 (Estimate of Zo4): By direct estimate, we have
O k(2
Tz AEE= 57 D6t 2)) 2 ~0tn(:)]l D).
1<j<N
In (3.11), we combine all results in Case B.1 - Case B.3 to get the following: for a.e. ¢ > 0,
0400, (t,2) > O, — ki cos D(O°)0L0,,, — [|0LK(2) |00 D(0°(2))

I - ép(z) g
—slle > k,,ﬂ.f:[< o )

(K1, =, k1)EA(D)

(3.12)

k=0
N C (G
. l—r p\Z
- T (Dol 11 ( L ) .
1<r<i-1 p=1
(k1, -, kr)eA(r)
Next, we combine (3.10) and (3.12) to obtain
8 D(8LO(t, 2)) < —km(2) cos D(O°(2)) (D(&i@(t, 2)) — Cl(z)) :
and we set
y:=D(0.0), a=rkncosD(@°), B=0, C=kycosD(OC(2).
Finally, we use Lemma 2.2 to derive the desired estimate. O

As a direct application of Theorem 3.1, we have the local sensitivity estimate for the
phase diameter of 9.6;.

Corollary 3.1. Suppose that the framework (F) holds, and let © = O(t, z) be a solution to
system (1.2). Then, for z € Q, we have

(3.13) E[D(8'0(t,-))] < Emax{D(d.0°%),Ci(2)} t>0.
Proof. The result of Theorem 3.1 implies
D(0LO(t, 2)) < max{D(d.0°(2)), Ci(2)}.
Note that the R.H.S. depend only on given data and parameters, i.e., ©°,V, k;;(2). O
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3.1. Identical oscillators. In this subsection, we consider an ensemble of identical oscil-
lators, and provide more refined local sensitivity estimates than those in Theorem 3.1. For
this, we improve estimates in Lemma 3.1 and Theorem 3.1.

Corollary 3.2. (First-order estimate) Suppose that the framework (F) with l =1 and
ViZO, izl,"‘,N
hold, and let © = ©O(t, z) be a solution to system (1.2). Then, for z € Q,

_ km(z)cos D(@O(z))t
2

(3.14) D(0,0(t,z)) < Di(z)e
where the random variable D1 (z) is given by
_ 10:5(2) | D(O"(2))
km(z) cos D(O(z))
Proof. We use (3.7) with D(0,V) = 0 and Proposition 2.1 that for every ¢ > 0 and z € 2,
0, D(0,0(t, 2))
(3.15) < —#m(2)cos D(O°(2)) D(9:0(t, 2)) + 2[0:5(2) | D(Ot, 2))

Di(z) : + D(9,0°%(2)).

0 0 _ rm(2) cos D(OY())t
< —km(2) cos D(©7(2))D(0,0(t, 2)) + 2[|0:6(2) ||cc D(O°(2))e 2 .

We set
y=D(.0), a=#kmcosD(@"), J= % and O = 2]|0,x]D(0°),

and apply Lemma 2.2 in (3.15) to derive the exponential decay estimate:

40:4(2) [ D(O0(2)) _ muteresspiePions
Km(2) cos D(G9(z))

This implies our desired result. O

D(az@(t, Z)) < + D(@Z@O(Z))e_nm(z) cos D(@o(z))t‘

Remark 3.1. For the constant couplings and initial data that are strictly confined in a
quarter arc, there exists a small positive constant € € (0,5) such that
T
Kkm = constant, 0,k =0, 09(2) < 5 &
the estimate in (3.14) implies
_Em cos(%fs)t

D(8.0(t, 2)) < D(9,0°(2))e 2

Hence, we have
Km cos(%fs)t

ED(0,0(t,-)) <ED(9,0°(-))e” 2

Next, we provide local sensitivity analysis for the identical case with higher order z-
derivatives.

Corollary 3.3. (Higher-order estimates) Suppose that the framework (F) with
vi=0, i=1,---,N
hold, and let © = O(t, z) be a solution to system (1.2). Then, for z € Q,

_ km(z)cos D(@O(z))t

D(@i@(t, 2)) <Di(z)e” 2 |
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where the random variable Dy(z) (I > 2) is inductively defined by

Di(z) = D(2-0°(2))

. 1
km(2) cos D(©9(2))
- I (DN
><{D<@ M bl 5 k'k‘H< )
! l—r rl DP(Z) &
fX (e (%) }

(K1, -, kr)EA(r)

Proof. We will proceed by induction. Note that we have already proved [ = 1 case in
Corollary 3.2. Then for the induction step, we estimate 9;0L0y7, and 0;0'0,,, as we did in
Theorem 3.1.

e Case C (Estimate for 0;0L0,): For 0,00,
(02011, (t, 2)

N
Zan j(2)cos(8; — Onr,)(0L0; — L0,
=1

!
+ Z HMZ,](Z)WM(Z =1, k1, - kl*lagaMlvj)
1<j<N L=
(kv, - k)EA()
k=0

l
N

(3.16) 1 N rl ‘
+N Z r az K:Mz,j(z)m/\/l(r,kla R kT7®7MlaJ)

1<j<N
1<r<i—-1
(k1, -, kr)EA(r)

Z O kg, ;(2) sin(0; — Oar,)

1<j<N

Tag.

l
M» 2‘>~

i
L

o Case C.1 (Estimate of Z3;): for Zs3,
I3 = Z kg, j cos(0; — Oar,)(0L0; — 0L0ar,) < —tim cos D(Q°)DL0xy,.

o Case C.2 (Estimate of Z35 and Z33): By induction hypothesis, for each z € €,

_ K COS D(@O(z))t
2

D(0.0(t,z)) < Dy(z)e
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Thus,
(3.17)
a D g t kp Kin, COS 0, r D kp
Mk, - ke, ©,My5) < T (W) o (- imeenel: H( ,,('z)> |
p=1 p: p=1 p:

where we used k1 + - -+ + k, > 1. Thus, (3.17) yields

1

I Dy(2)\* | _rmeosn@®ee
o< {InGlle X o IL(PA7) pe ™,

l_
(k1, -, ki)eA(l) p=1

l . rl D,(2) Fo | cos D@02t
I33 < Z <r>||ai K(Z)Hook1!---kr!< 2 > e 2 .

p!

o Case C.3 (Estimate of Z34): In this case,

l
Iy < ”a’z;'w Z D(O(t, 2)) < D(O%(2))]|0 k(2)]|oce™ "™ cos D(©°(2))t
1<j<N

In (3.16), we combine all estimates in Case C.1 - Case C.3 to get

9,0L0, (t, 2)
< i c0s D(0%)8 0y + D(0°(2))]|0L k(2) [|ocem s PO (D)

¢

-1
Il D,(2)
+alE@lee D 11l ( .
kl!n.kl_l!p:l p!

)kp _ rmcos D(©%(2)t
e 2

(3.18) (k1, - k)eA()
\ k;=0
)
l I 7! Dp(2) Fo | cos D@02t
+ > <r)||az “(z)"wklx---kr!( o e :
1<r<l—1

\ (klv Tty k"‘)eA(T)
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e Case D (Estimate for 6t8i9ml): Now we evaluate 8t820ml as follows.

(020, (. 2)

N
1
> — Z Kmy,j cos(0j — Gml)(&lﬂj — (9i9ml)
j=1

1 il
- my i l_17k7...,k‘7’®’k7.
N 1<]Z<N ) ZJ]‘?1!"'7{71—1!”\4( ! =1 1J)l
(K1, -, k)eA(l)
k=0
(3.19) 1 N |
v —— 10 "R, k1, oo, ke, ©,my,
N 1<ZQN r )it 110 o M Ry mi, J)|
1{79{1—1
(k1, -, kr)EA(T)
1 .
-~ D 10k sin(0; — O]
1<j<N

4
= ZI4k
k=1

o Case D.1 (Estimate of Z41): In this case,
T41 > —Kum cos D(©2)0L0,,,.

o Case D.2 (Estimate of Zy9 and Z43): Similar to estimates Z3y and Z3s,

-1 k
! Dy(2)\™ _ rmcos D(O%(2))t
Tiz = = 4 lIK(2)llo0 > eyl k 1|1_[( Z)l ) € : 7

(k1, -, k)eAd) U p=1
k=0
l r! D,(z) kp rm cos D(00(2))t
Ty > — O k(2 P e .,
szoy 0 2 (e (B0)
<r<l-1

(k1, =, kr)EA(T)

o Case D.3 (Estimate of Zy4): We have

!
Tyy > _Ha;,«]/:[bo Z D(O(t,z)) > —D(@O(z))Haiﬁ(z)||Ooe*nmcosD(@°(Z))t.
1<j<N
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In (3.19), we combine all esitmates in Case D.1 - Case D.3 to get
0,0.0m, (£, 2)
> —#i 08 D(O°)0L 0, — D(O°(2))]|0L(2) | sce ™ m s DO (N1

-1 k
l' Dp(2> P _mmcosD(@O(z))t
@l Y kl'mkzﬂH( )T o ememgetian

(3.20) (k1, s k)EAD) T p=1

l Iy r! Dp(2) Fo | smcos D@0t
O (e (P e

1<r<l—1
(k1, -, kr)EA(r)

Finally, we combine (3.18) and (3.20) to obtain

__ Km cos D(@O(z))t
2

(3.21) 8, D(8.0(t, 2)) < —km cos D(O°)D(8-O(t, 2)) + E(2)e

where the random variable E(z) is given by

-1
E(z) ;=2{D(@°(z))llaiﬂ(z)\oo R D l'kl_l. 11 (Dp(gz)

kp
)
(k1, =, k)EA(l) ! Tpm1 N\ P

k;=0

T Oeta ()}

1<r<i—1
(k1, -, kr)EA(r)

Then, we apply Gronwall’s lemma in Lemma 2.2 to (3.21), to yield

2 o _ rmcos DOt
S 2
Km cos D(©0) 2)e ’
which implies the desired result. O

D(9LO(t, 2)) < D(LO°(z))ermcos DON

4. UNIFORM /¢'-STABILITY ESTIMATE FOR THE PHASE PROCESS

In this subsection, we provide £!-stability estimates for phase variations 9'© with respect
to initial phase variations in random space. Let © and O be solutions to (1.2) with suffi-
ciently regular initial data ©% and ©° in random space, respectively. In the sequel, we will
derive an estimate like

-1
0\ A ~ » ~
7192(0 = O)(t, )l + Ault, 2) < &(2) > l9z© = 8)(t 2)|h,

p=0

where [ € N, the positive random variable &/(z) is independent of ¢ and A;(¢,z) is a non-
negative functional.



20 HA, JIN, AND JUNG

Let © and © be two random Kuramoto flows whose dynamics are governed by (1.2).
Then, for r € NU {0} and z € Q, we set

(4.22)

First, we provide pathwise ¢!- stability for (1.2) following the arguments line by line in [12]

Proposition 4.1. (Pathwise (1-stability) Suppose that the framework (F) with I = 0 hold,
and let © = O(t,z) and © = O(t, z) be two solutions to system (1.2) with initial data e
and ©°, respectively. Then, for z € Q, the following assertions hold:

(1) If 6.(0) # 0.(0), then

2 1© =0t )l + At ) <0,
for all t >0 and each z € Q, where the non-negative functional A(s, z) is defined
by
At z) := Km(j\;;?ézggj(z)) cos D(0°(2))
x| (IO +217@)) D 10 = 0@+ (PO + 2117 @)) D 1(6: - éi)(t”}
eI+ () iel—(t)

(2) If 0,(0, z) = 0.(0, 2) for every z € Q, then
1(0° — 8%)(2)[lre~ "Dt < (@ — O)(t, 2)|ly < [[(B° — @) (2)[]ye () cos DO (=),

sin D(0°(2))

for allt > 0 and each z € Q, where v(z) := D) -

Proof. The proof is almost the same as in the deterministic case in [12]. So we omit the
proof. O

For A(t, 2) = {a(t,2)}}¥; € RN, and define J°, J* and A;; as in (4.22): fort >0, z € €,
JO(t,2) ;== {1 <i <N | o4(t,2) =0},
Jt(t,2) ={1<i< N | aft,z) >0},
J(t,2):={1 <i <N | a(t,z) <0},
Aij(t, z) := (sgn(ei(t, 2)) — sgn(a;(t, 2))) (o (t, 2) — a(t, 2)).-
Lemma 4.1. The following assertions hold.
(1) We have

N
S Ay ==28 (1T +21771) D el + (17 +21TH) D e

3,j=1 i€Jt i€J—
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N
(2) Moreover, z'fZai =0, then
i=1

N N
Z Aij = —QNZ |O£Z‘
1,7=1 =1

Proof. (i) Note that if cja; > 0, then A;; = 0. So we consider the other cases for evaluating
A;; as follows:

a; >0, a=0 — Aij:_|05i|; @ <0, a;j=0 = Aij:_‘ai|’
=0 a;>0 = Aj=—lol; =0, ;<0 = Ay=—l|a,
>0, a; <0 = Ay=-2(ai|+|eyl),
o; <0, a;>0 = Aij :_2(‘ai|+‘aj‘)'

These imply

o Dy =—1 ) fadl, S Ay ==Y al,

(i,5)eJtxJO ieJ+ (i,5)eJ—xJO ieJ—
Yo Ay ==Y lail, Yo A== e,
(4.23) (i,5)€JOxJ+ ieJt (i,j)€JOX T~ ieJ—
Yoo Ay==27 Y fal =207 Y Jal,
(t,5)eJtxJ~ ieJt eJ-
Do Ay ==207 ) Jail = 21 ) il
(i,5)€J T xJO eJt ieJ—

We combine all estimates in (4.23) to derive the estimate (i).

(i) Now, assume that 3N | «; = 0. Then

Z|O‘i|:—zai:zai22|ai|.

ieJ— i€J— ieJ+ ieJt
Thus,

N
S fail = 3 faul = 5 ol

ieJ— ieJt =1
This yields

N

> Ay ==28 (11 +2170) D Jeul + (1 +21771) D el

3,j=1 icJ+ icJ—
N N

= -2 {(|J°| T+ T |az-|} = 2N ) il

=1 =1

Now we ready to prove the ¢!-stability result. First we provide [ = 1 case.
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Proposition 4.2. Suppose that the framework (F) with | =1 for initial data 0° and @°
hold, and let © := O(L, 2) and © = O(t,z) be two solutions (1.2) with initial data 0% and
OV, respectively satisfying

D(070°2)) < D(950°(2)), for =0, 1, andeach z¢€ .
Then for allt > 0 and each z € €1,
0 ~ -
719:(0 = O)(t, 2)[l1 + Aa(t, 2) < &1(2)[[(© = ©) (¢, 2) |1,

where the non-negative functional A1(s,z) is defined by

K Z) COS 0 ya ~
Ma(s,2) = S EE DO ool ) E (0.0, 0.5
iEIfr(s)
LRI L) Y (0.6 - azén(s)r],

iel=(s)
and the random variable £ (z) is given by

E1(2) := 2]|0.6(2) ||oo cos D(O°(2)) + 2||K(2)||oo sin D(O°(2))C4 (2).
Proof. For each z € Q, it follows from (3.11) that

0 -
En > 1(0:6: — 0:0,)(t)]
=1

N
1 _ . o
=~ Z sgn(0.0; — 0,0;)0.ki;(2)(sin(0; — 6;) — sin(0; — 6;))

+ = Y sgn(0:6; — 0:0)ki5(2)(cos(8; — 0;) — cos(8; — 6))(0:0; — 0.065)

1 ~ - - - -
+ > sgn(9:0; — 0.0,)k45(2) cos(6; — 0:)(.0; — 0.0; — 0.0, + 9.6;)

Now we estimate Zs (k =1, 2, 3) separately.

e Case E.1 (Estimate for Z51) : In this case,

N ~ ~ ~ ~
2 _ 0,—0, 6,—0;\  (0,-6, 0,0
Is1 = N Z sgn(@z«% — 8z9i)az/iij CcOos ( 5 + ) sin ( —

ij=1

6; — 6;
2

N
2 0
< N Z |0. k4| cos D(©7) (

,j=1

< 2[4l cos D(O)]|(© = ©)(t, 2) 1.
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e Case E.2 (Estimate for Zs3): Similarly, we have

00, 6;—0i| . 16;—6; 6~

9 N
152 < N Z Kij sin

2 B B S11 9 - 9 \83@ - 8292’
4,7=1
N ~ ~
2|00 sin D(O°)D(9.0(t, 2)) . |0, —6; 6;,—0;
< —
= N 2 sin |y 2
i,j=1
2|||oc sin D(O°)D(0.0(t, 2)) ~= (|6; — 8;| |6; —6;
<

< 2|]|oo sin D(O°)C1(2)[|(© — ©)(t, 2) 1.
e Case E.3 (Estimate for Z53) : We get

N
I53 = % Z sgn(&zﬁi — 82671)&” COS(QNJ‘ - GNZ)(BZGJ — 8z91 - 8Z§J + 83671)

ij=1
1 N ~ ~ ~ ~ ~ ~
= 5N Z (sgn(0,0; — 0.6;) — sgn(0,0; — 0.0;))ki; cos(8; — 6;)(0.6; — 0,0; — 0.0, + 0.6;)
ij=1
Km cos D(O°) N ~ ~ ~ ~
<N ”z:l(sgn(azﬂi — 80,0;) — sgn(0,0; — 0.0;))(0.0; — 0.0; — 9.0; + 9,0;),
where we used
(4.24) (sgn(a) —sgn(B))(B—a) <0, «,8€R.
Now we let o = 9,0; — 8.6;. Then applying Lemma 4.1 completes the proof. Note that J°,
J* and J~ become I, I}" and I; respectively. O

For the case 0,(0,z) = 6.(0, z), we have the exponential decay estimate.

Corollary 4.1. Suppose that the framework (F) with I = 1 for indtial data 0° and @°
hold, and further assume that 0.(0, z) := 0.(0, 2). Let © := O(t,z) and © := O(t, 2) be two
solutions (1.2) with initial data ©° and O°, respectively satisfying

D(070%(2)) < D(950%(2)), for r=0,1, andeach =z €.
Then for allt > 0 and each z € (1,

10:(6 ~0)(1,2) 1 < &x(2)()e (> POENEL(|j(©0 ~ 6)(2)] +0:(8° - 6) ()] ).

where y(z) := % € (0,1) and the random variable £ (z) is given by

:= max &iz)
&1(z) = {1’ Km(2) cos D(O9(2))(1 — v(z)) } '

Proof. We set
o; = azﬂz — azéz
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Since 6,(0, z) = 6.(0, z),

N
Z o = 0.
i=1
On the other hand, in the course of proof of Proposition 4.1,
Ts3 < —kim cos D(O9)]|0.(© — ©)(t, 2)|1.
Hence
0 ~
—l0-(0 = 8)(t. )
(425) < —#m cos D(O)[0:(6 = ©) (¢, 2) 1 + E1(2)(© — O) (¢, 2)
< —tim c0s D(0°)[0-(6 — ©)(t, 2)||1 + £1(2)[(O° — 6°)(2) |~y s PO,

where we used the estimate (ii) of Proposition 4.1:
[(© = 6)(t,2)|h < [|(6° = 6°)(z)||re~m7eos PO,
We now apply Gronwall’s lemma in Lemma 2.2 to (4.25) to obtain
10-(© = ©)(t, 2)ll1 < [10:(6° — O°) ()| e PO
& (Z)einm cos D(©%)~t
Km cos D(©0)(1 — ~)

which yields our desired result. g

a —Km COS 0)(1—
1(©° = %) (2)[1(1 —e DED-—,

Finally, we provide the stability result for higher-order derivatives.

Theorem 4.1. (Higher-order estimates) Suppose that the framework (F) for initial data
0°% and ©° hold, and let © := ©(t,z) and © := O(t, z) be two solutions (1.2) with initial
data ©° and O°, respectively satisfying

D(070%(2)) < D(950°%(2)), forany r=0,1, ---, 1 andeach z€Q.
Then for allt > 0 and each z € €1,

-1
gtHai(@ = O)(t, 2)ll + Ai(t,2) < &(2) Y 1192(0 = ©)(t, 2)|n,

p=0

where the non-negative functional Ai(s, z) is defined by

Em(z)cos O(z
oy 2) = DO
< [P +201 () Y 10261 - 80:)(s)
Z'EIZ"'(S)
+ () +2AL ) D 104 - 840 (s)]]
i€l (s)

and the random variable £ (z) is given by

E1(2) = 2||(2)]| o sin D(O°(2)) Ci(2)
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!
+ 2[|[loo > mp(l =Lk, ki)
(K1, -, k)eA(l)

kl:O

l I—r 7!
20— % <T> 10 (Dl P R+ )
1<r<i-1
(k1, =, kr)eA(r)

+ 2H8ir<;(z)|]oo cos D(0°(2)),

where the random variable P(r,ky,--- k., z) is given by
lée | by =) )™
L p\Z ~ P u\Z
Pt ke = T2 o | Sk (600) { 1 ( A ) H
p=1 1<p<r 0<p<r+1
kp#0 H#Ep

Proof. 1t follows from (2.6) that

D (9L6;)(t, 2)

N
1
= OLlui(z) + N > kij(2) cos(0; — 6:;)(9.0; — 9.0)
j=1
1 ! M -1,k k 0,1,]
+N Z /‘ng(«z)m (— y K1,y Rl—1, 72,])
1<j<N
(k1, -, kp)eA()
k=0
L > o i )LM( k kr, ©,i,§)
N : r 2 Rig\Z kl'kr' T, K1, y Rry 951,
1<j<N
1<r<l-1

(k1, -, kr)eA(r)

1 .
+ N Z A kij(2)sin(0; — 6;),
1<j<N

where M(r, k1, ,ky,©,1,7) is defined in the proof of Theorem 3.1. Recall that the func-
tional M(r,ky,--- ,kr,©O,14,7) has the following form:

r . apg .\ Fp
M(r7k17“' 7k7‘7®7i7j) = Sln(k)(HJ—HZ)H (M) ,
p!

p=1

where (k1, -+, k) € (NU{0})",1 <4, j<N,reNand k=k; +---+ k.. And also for
more simplicity, we let

M’r = M(T,kl,"' 7k7"7@7i7j>7 MT = M(Tv k17"' 7k7‘7éaia.j)'
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Now we proceed by induction on [
relation:

By using above notations, we can get the following

5111050 = 0)(t, 2)|h

1 o
N 0.0;) ki (2)(cos(6; — 0;) — cos(8; — 6;))(.0; — 9.6;)

n Gl 9 )/{Z-j(z) COS(ONJ' — éz)(ﬁiej - OLQZ

N
=1
N _ ~
- l!
+ ~ Z sgn(9L0; — 80, ki;(2)

1<ij<N m(MH — M_1)
(426) (k1, —, k)eA()
k‘l:O
1 ! TArE 7! -
— 0; — 80, L VI v
i 1<iZ‘<N (00 =0 )<r>az H”(Z)klv .-kr!(M M)
15#%[771

(lﬂ7 oy kr)EA(r)

Z sgn(9'0; — 9L0,)0L ki (2)(sin(0; — 6;) — sin(0; — 6))

I
Mm 2\

T

B
Il
—

As we did in Proposition 4.2, we estimate each Zgy, (k =1, 2, 3, 4, 5) separately
e Case F.1 (Estimate for Zg; ):

2 & 0
1-61 < N Z Rij sin

L _p. 0. — 0. 0: — 6, 0: — 6
J 1 J 1 : J 1 J __alp.

2 5 + 5 |sin | = 0; — 0.0
4,7=1

_ 2|5l sin D(O°)D(S i . 9] ;6 — 0;

= N = 2

_ 2|l sin D(O”) D(&, ZN: ( 0; — 0 e —0; >

= N = 2

< 2[|r[|o sin D(O°)C1(2)[[(© = O)(¢, 2)]|1.
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e Case F.2 (Estimate for Zgg) :

N
Teo = Z L)k cos(8; — 0;)(0L0; — 9L0; — 9L0; + 0'6;)
N
=3 N ;1 sgn(0L0; — 0L6;) — sgn(9L0; — 840,))ks; cos(8; — 6,)(8 0, — 0L6; — DL0; + 9L0;)
K cos D(O0) al ~ ~ ~ ~
< T Y " (sgn(0L0; — 0L6;) — sen(0.0; — 0L6;)) (0105 — 0L6; — 96, + 0.6,),
2N i,7=1

where we used (4.24). Now we set o; := 8.6; — d.6;, and apply Lemma 4.1 to get
182 S *Al(t Z)7
and note that J°, J* and J~ become Ilo, IlJr and I, respectively.
e Case F.3 (Estimates for Zg3 and Zg4) : Here, it suffices to estimate M, — M,:
Mr - ./\;lr

~ ~ T Po. _ 9Pp.\ kr
= (sin(k)(ej —0;) — sln(k)( ;- 91)) H (W)

p=1
T p—1 A 5\ B r+1 k
~ ~ alM@A _ 8#16, 8“29‘ _ aliz@, 1o
k z 7 z ) z 7 z (3
e[ (5 (7))
p=1 pu1=0 ’ po=p+1 ’
~ ~\ k
659] - 859, kp (91;9] - 8501 ’
AT ) U
=: K1 + Ko,

where we set kg = k11 = 0. For K1, note that

0; —0; 0, —0;

)sin(k) ((9] — (91) — sin(k) (GJ — él) < 2sin B)
Hence, for Ky,
10, =0, 6;—6;| {4 |0%0; — 0%, |
K1 < 2sin 5 T 3 H _
p=1
- ~ ~ k
0;,—0;| |6:—6;]\ 1 | D(@FO) | - N\ 1 | Co(2) |
< J ? ? < 0. .. P
2( 2 2 )H‘ —(‘93 QJ‘JFQZ QZ)H !
For the term KCo,
(ape ( 826; — %0, ) ’



28 HA, JIN, AND JUNG
0 it k,=0,
< ~ kp—1 - -
=\ & (cp(z)) |00, — 8°0; — 02 + P0;| if K, >0,
where we used the relation: for n € Nand 0 <p <1

n—1
a" =" =(a—b) )y dv"F D026t 2)), D(9EO(t, 2)) < Cp(2).
k=0

Note that the second relation follows from the assumption D(970°) < D(970°) for r =
0, 1, ---,l. Now this yields

mo(ee)” (2o _ (628 .
op<ren \ M p! p!

/Czéz

T

p=1
B
~ ky
C,(z ~ kp—1 ~ ~
<2 H 11 (’;f, )> }kp( o(2)) (|a§9j—a§9j\+rafei—aﬁeir)]
1<p<r 0<p<r+1 ’
kp7#0 HFEP
~ k
- kp—1 C (z) "
1<p<r 0<p<r+1 K-
kp7#0 pH#p

x3 (|a§9j — 9P6;| + |9P0; — agé,-\) .
p=1

We combine estimates for ; and Ko to get

My = M| < Pk ke 2) Y (1020 — 92051+ |020, — 07611
p=0
Now, the terms Zg3 and Zg4 can be estimated as follows.

1 1! -
L3 < N Z Fiz‘jWM/ll—l - Ml—l‘
1<ij<N e

(K1, -, kp)eA(l)
k=0

- il
< 1] Z %kP(l—l,lﬂ,--- vki-1,2)

N
(k1, -, kp)eA()
k=0

x> (10285 — 06| + 026, - 0261

1<i,j<N
0<p<i-1
) -
§2|‘/€Hoo Z WP(Z_L]@L'“ ;kl—lvz) Z Hag@_age)nl
(k1, -, k)eA() 1: =1 0<p<i-1

k=0
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and

l . r!
S 2(l— 1) Z ( >Hai K/HOOWP(T’ klu"' ’k‘r,Z)

r
1<r<i-1
(K1, =, kr)EA(r)

-1

x D l1o2(© = ©)(t, 2).

p=0

e Case F.4 (Estimate for Zgs) : Finally, we can estimate

~

N ~ ~ ~ ~
I R 0, — 0, G-\ . [(0,-0, 630
Tes = N Z sgn(BZGZ- — 8291)621% CcOos ( 5 + sin 5

ij=1

!

0; —0;
2

N
2 I 0
< N Z |0’ k4| cos D(©°) (

,j=1

< 2|8 ]|oo cos D(O)]|(© — ©)(t, 2) 1.

In (4.26), we combine all estimates for Zg to obtain

-1
0 ~ ~
allai(@ —0)(t,2)h < —Milt,2) + &(2) D [92(© = ©)(¢t, 2)r-
p=0
Then, Gronwall’s lemma yields the desired estimate. ([l

(}orollary 4.2. Suppose that the fmmew~o7’k: (F) with r = 1 € N for initial data ©° and
@0 hold, and further assume 0.(0,2) = 0c(0,2) for every z € Q. Let © := O(t,2) and
O := O(t, 2) be two solutions (1.2) with initial data O° and O°, respectively satisfying

D(070°%2)) < D(90°(2)), forany r=0,1, ---, 1 andeach z¢€ .
Then for all t > 0 and each z € €,

l
1050 — ©)(t, 2) |1 < & (z)e rmEN(cos DIOPEMER™ |192(00 — 6°)(2)]1,
p=0
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where the random variable &(z) (I > 2) is inductively given by

i {1 (16(2) Sy &) } |

&(z) »= max { 1, Km cos D(G9)(1 —~)

Proof. The proof will be done inductively on I.
e (Initial step): In this case, we have already proved this case in Corollary 4.1.

e (Inductive step): Set
a; = 82,91 — 8201

Then, we have Ef\; Lo = 0, since we assumed 6,(0,2) = 0.(0,2). Thus, it follows from
Proposition 4.2 that

Ay(t,2) = —kp cos D(Q°)[|0L(© — ©)(t, 2) 1.

On the other hand, it follows from Theorem 4.1 that

o -
S l0© = ©)(t, )l

(4.27) -1
< —#im cos D(O)]|0L(© — O)(t, 2) |11 + &(2) D 192(O — ©)(t, 2)||1.
p=0

Note that from (ii) of Proposition 4.2 and induction hypothesis,

P
102(6 — ©)(t, 2) |1 < Epz)e < PO ™ 19300 — €°)(2)Ix
s=0

for each p € NU{0}. We apply this to (4.27) and for every [ > 1, to get

0 ~
Slk© — &)t )l

< —kim cos D(©)]101(© — O)(t, 2|1
-1

+ g[(Z)(B_Rm cos D(©%)~t Zg Z ”85 ( )Hl

p=0
< —fkm cos D(@Y)[|0L(© — ©)(t, 2) |1

-1
(za DILIE )Zap 6°)(2) 1 e DOt

(4.28)
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For (4.28), we use Gronwall’s inquality in Lemma 2.2 to yield
18L(© — ) (t, 2)|h
< (916 — @0)(z)| e e PO

(164(2) S &y (2) ) emrmeos DOt 11

+ Ko cos D(09)(1 — 7) Z |02 (O ( )1 — e—fim cos D(© )t)’

l
< gl(z)e—nm(Z)'ycos D(©%)¢ Z |I0§(@O _ éO)(z) [
p=0
This yields our desired result. O

5. LOCAL SENSITIVITY ANALYSIS FOR FREQUENCY PROCESS

In this section, we present a synchronizing property of frequency variations in a random
space in a large coupling regime. As noticed in Proposition 2.1, under some conditions on
natural frequencies, coupling strengths and initial data, we can find a positively invariant set
and ”vanishing of uncertainty” for frequency processes which are consistent with emergent
dynamics of the deterministic Kuramoto model. Below, we will show that the variations
oLV = (0w, - -+, 0 wy) will also enjoy a synchronizing property in a large coupling regime,
which clearly exhibits vanishing of uncertainty.

Lemma 5.1. Suppose that the framework (F) in Section 8 with | = 1 hold, and let © =
O(t, z) be a solution to system (1.2). Then, for z € Q,

tom (2)(cos D(©9)¢

D(0,V(t,z)) < Fi(z)e” 2 ,
where C(z) is a nonnegative random variable given by
4 (10:8(=) o DVO(2)) + [|8(2)2cC1 () D(VO(2)))
km(z) cos D(O09(2)) ’
Proof. First, we differentiate (1.2) with respect to t to obtain

Fi(z) := D((?ZVO(Z)) +

(5.1) Oww;(t, 2) ZHU cos(8;(t, z) — 0;(t, 2))(w;(t, 2) — wi(t, 2)).

We again differentiate the above relation with respect to z to get
010 wi(t, 2)

N
= % Z D2ki5(2) cos(0;(t, 2) — 0;(t, 2)) (wj(t, 2) — wi(t, 2))
j—l

(5:2) - — Z kij(2)sin(0;(t, 2) — 0;(t, 2))(0.0;(t, z) — 0:0;(t, 2))(w;(t, z) — wi(t, 2))

+ = ZF.;U cos(0;(t, 2) — 0;(t, 2))(D.w;(t, 2) — Dwi(t, 2)).
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We choose indices M| and m/ such that for ¢ > 0 and z € Q,
Dowpy (8, 2) = max O,w;(t, 2),  Oswyy (t,2) 1= min dow;(t, 2).
(2 2

Note that for every z € 2, d.w, (-, 2) and d,w, (-, z) are piecewise differentiable and Lip-
1 1
schitz continuous with respect to t.

e Case F (Estimate for d,w,,/): We use (5.2) to obtain, for a.e. ¢ >0,
1
00w M (t)

Za Ry (2) cos(0(t) = 0,0 (8))(w;(t) = wypr (1))
j 1

1

)sin(0;(t) — 6,/ ())(0:0;(t) — 020, (1)) (w;(t) — wy, (1))

1

Z\H

™= an

17

(5.3)

K“M{,j (z) COS(Qj (t) — GM{ (t))(azwj (t) - aszi (t))

l
N

3
= Z I7k.
k=1
We use the result and same arguments in Proposition 2.1 and Lemma 3.1 to obtain

Tr < |06l D(V(t, 2)) < ||82Kf”ooD(V0(Z))€_HmCOSD(@O)t’

N
15 ]lo
Iz < N Z |329j(t7 Z) - aZHM{ (tv Z)ij(tv Z) - WM{ (tv Z)|
=1

< [[lloe D(8:0(¢, 2)) D(V (£, 2))

5.4) -
( < ||H;||Oocl(Z)D(VO(Z))efnmcosD(@())t’

N
1
Trs < Z; fim c0s D(0°)(8:wj (t, 2) — By (1, 2))
]:
< — K COS D(@O)asz/ (t,2).
1
In (5.3), we combine all estimates in (5.4) to obtain

8t82wM1 (t,2) < —fpm cos D(O))0,w,

Ml
(5.5) - _
+ (10:1llo DV(2)) + [[]locCr () D(VO(2)) ) o= PO,
Similarly,
010w, 1 (t,2) > —FKp COS D(@O)ﬁzwm/
(5.6) ' '

— (10:110o DVO(2)) + [llacCr(2) D(VO(2)) ) e o= DO,
Now, we combine (5.5) and (5.6) to get
DD,V (t,2)) < —kmcos D(0°(2))D(8.V (t,2))
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+2 <||8z/<¢||ooD(V0(z)) + HﬁHooél(Z)D(VO(Z))) o—m cos D(°(2))t

Then, set
y:=D(,V(t,2)), a:=*kpncosD(@"2)) B:= % and
C =2 (|0:A]l20 D(VO(2)) + 6]l cCr () D(V(2)))
and apply Lemma 2.2, one gets the desired estimate. [l

Next, we provide synchronizing property of (%V as follows.
Theorem 5.1. Suppose that the framework (F) in Section 3 hold, and let © = O(t, z) be a
solution to system (1.2). Then, for allt > 0 and each z € €,

_ K cos D(@O)t

D8V (t,2)) < Fi(2)e T,
where the random variable Fi(z) is inductively given by

4
Km cos D(09(z))

Fi(z) = D(0.V°(2)) +

X | 15(2) oo Ci(2) D(VO(2)) + [|8L5(2) ]| DV (2))
l (1—1)!
v Z H"”v(Z)HoomQ(l—laklf“ vki-1,2)
1<j<N
(k1, -, kp)eA()
k=0
fx Y (D@l Qb e 2)
N ' r . K2 Ookllkr' T, K1, s Rry Z2) |
1<j<N
1<r<i-1
(k1, -, kr)EA(r)
where the random variable Q(r, k1, - , ky, z) is given by
- k N ks -
T (Co(x)) Cs(2) (2)
— 0 p p
Q(r k- ke, 2) == D(VO(2) ] <p,> + ) kp{]‘[< - Fol@) | =2
p=1 1<p<r S#p
fep 70

Proof. We apply 0. to (5.1) to obtain
at (8iwl)(t7 Z)

N
= D ki) cos(0; — 03) (Dl — D)
j=1

N
1 .
= D rig(2) sin(0; — (0465 — 001)(w; — i)
j=1

g I-1) @ -
+ 5 Z /sij(z)m&/\/l(l — Lk, oo, ki—1,0,4,5)
1<j<N
(k1, -, kp)eA(l)
k=0
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AN r! 0 .
Z (T)az Hij(z)ma/\/l(ﬁkla T, kr,@,l,j)

1<j<N
1<r<i-1
(k1, -, kr)EA(r)

1
N Z OLkij(2) cos(0; — 0;)(wj — w;).

1<j<N

2=

As in the proof of Theorem 3.1, we will proceed by induction. First we choose indices M/
and mj such that for ¢t > 0 and z € ,

Ginl/(t,z) = max dLw;(t, 2), (%wm; (t,z) := min dLw;(t, z).
7 7

Note that for every z € Q, Oin/(~,z) and alzwm/(',z) are piecewise differentiable and
! l

Lipschitz continuous with respect to t. Now we consider the estimate 8iw ' as follows: for
l
a.e. t >0,

N
1
=% Z KMZIJ(Z) cos(6; — HM{)(ﬁiwj - 8in/)

1
l
j=1
l (-1 2 ;-
o 2 RO R e bR e e 0.0)
1<G<N
(k1, -, k1)EA(l)
k=0
1 I\ r! 0 .
+N Z <7">az HM{vj(Z)maM(r’kh T kW@aMb])
1<G<N
1<r<i-1
(klv ] Ky )GA( )
Z z)cos(0; —0,, )( j—le/)
1<]<N

5
== Zzgk
k=1

Next, we estimate the terms Zg;. as follows.

e Case G.1 (Estimate of Zg; and Zgy): In this case,

0\ 4
Zs1 < —KmpmeosD(OY)0w Wyl

Ty < |6llwD(8:0(t,2))D(V (L, 2)) < [|KllcCil=

— K COS 0
(VO(Z))G D(© )t‘

)D
e Case G.2 (Estimate of Zg3 and Zg4): We first estimate BQ (./\/l(r, ki, -+ ,k, 0, Ml,,j)) as
follows:
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gt (Moo h 0, )

k

o r 8§9j —8§9M/ P
_ 9 (g g, z
ot <Sm (6 GMZ)) ;;1;[1 < p!

930, — 020, \ ™ 920; — %0, \ !
+ 3 kI <7Ml> (02; — Oy ) (Ml>
SFp

52 s! p!
fep#£0
r C kp
< D(V(t,2)) ( p@)
p=1 P
=)\ @)\
s\Z 4
£ ( . ) D<a§v<t,z>>( 2 )
1<p<r S#p
fep#£0
0 - ép(z) " —km cos D(O0)t
< D(V'(2)) , "
=1 p:
p
Col2) | G2\ :
s\Z z _ rmcos D(O7)t
+ ka (3‘) fp(z)<];'> e 2
1<p<r s#P ’ )
fep 70

_ K COS D(@O)t

SQ(Taklv"' 7kT)e 2
This yields

l (l — 1)' __Km cosD(@O)t
IS?) < N Z ||H||OomQ(l_lvklv 7kl—1) € 2 5
1<G<N
(K1, -, k)eA()
L kl:o m

__ Km cos D(@O)t
2

1 l I—p T!
1-84 S N Z <T>||az K/HOOWQ(T7 kl;"' 7k7”) (&

1<j<N
1<r<i—1
(k1, -, kr)EA(T)

e Case G.3 (Estimate of Zgs): In this case,
Tgs < ||0Lsll s D(V (2, 2)) < |01kl s D(VO(2))em o8 DO,
Now we combine all results in Case G.1 - Case G.3 to obtain

_ Km COs D(@O)t

(5.7) Gt(ainl/)(t, 2) < —Kyp COS D(@O)a;lef (t,z) + G(2)e 2 )

35
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where the random variable G(z) is given by
)

(
G&) = [l Ci(2)D(VO(2) + Lo DVO(2)
D D e e T R

N ' ok,
1<G<N
(k1, =, k)eA(l)
k=0
1 l I—r T'!
N Z <T>Haz H\\oom@(ﬁ ki, o ky).
1<j<N
1<r<i-1

(k1, -, kr)eA(r)
Similarly, we have

__ kmcos D(@O)t
2

(5.8) 8t(8iwm;)(t, Z) > —Kpy COS D(@O)aiwmz (t,z) —G(2)e
Finally, it follows from (5.7) and (5.8) that we have

__ Km cos D(@O)t

XDV (t,2) < —kmcos D(O)D(ALV (t, 2)) + 2G(2)e 2

Then, Gronwall’s lemma yields the desired result. ([l

6. CONCLUSION

In this paper, we studied local sensitivity analysis for the random Kuramoto model with
pairwise symmetric coupling strengths. More precisely, we provided a sufficient framework
leading to the uniform bound for diameter and uniform stability estimate for phase vari-
ations and synchronization property of frequency variations. Our framework is explicitly
expressed in terms of initial data, distributed natural frequencies and coupling strengths.
Our results reveal the stochastic robustness of synchronizing property of the Kuramoto
ensemble in a large coupling regime. Of course, there are several unresolved problems to
be explored. For example, in a small coupling regime and intermediate coupling regime,
the dynamics of the Kuramoto model in a deterministic setting is itself not clearly under-
stood at present, not to mention of uncertainty quantification. More precisely, the phase
transition like phenomena from the disordered state to ordered state occurs at a critical
coupling strength in a mean-field setting. Thus, how does the uncertainty affects in this
phase-transition like process? Another interesting project is to understand the interplay
between the mean-field limit and uncertainty, which will be be pursued in the near future.
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