
SIAM J. NUMER. ANAL. c⃝ XXXX Society for Industrial and Applied Mathematics1
Vol. 0, No. 0, pp. 000–0002

ENTROPY SATISFYING SCHEMES FOR COMPUTING SELECTION3
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Abstract. In this paper, we present entropy satisfying schemes for solving an integro-differential6

equation that describes the evolution of a population structured with respect to a continuous trait.7

In [P.-E. Jabin and G. Raoul, J. Math. Biol., 63 (2011), pp. 493–517] solutions are shown to converge8

toward the so-called evolutionary stable distribution (ESD) as time becomes large, using the relative9

entropy. At the discrete level, the ESD is shown to be the solution to a quadratic programming10

problem and can be computed by any well-established nonlinear programing algorithm. The schemes11

are then shown to satisfy the entropy dissipation inequality on the set where initial data are positive12

and the numerical solutions tend toward the discrete ESD in time. An alternative algorithm is13

presented to capture the global ESD for nonnegative initial data, which is made possible due to the14

mutation mechanism built into the modified scheme. A series of numerical tests are given to confirm15

both accuracy and the entropy satisfying property and to underline the efficiency of capturing the16

large time asymptotic behavior of numerical solutions in various settings.17
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1. Introduction. This paper is motivated by the work of Jabin and Raoul [20],21

in which a direct competitive selection model was investigated. The model for x ∈22

X ⊆ Rd is given by23

∂tf(t, x) =

(
a(x)−

∫

X
b(x, y)f(t, y)dy

)
f(t, x) for t > 0, x ∈ X,(1.1a)24

f(0, x) = f0(x), x ∈ X.(1.1b)25
26

This is an integro-differential equation that describes the evolution of a population of27

density f(t, x) structured with respect to a continuous trait x, and X is a subset of28

Rd. In this model, the reproduction rate of each individual is determined by its trait29

and the environment, therefore leading to selection. Existence of regular or measure30

valued solutions is known, provided that the coefficients have enough regularity (see31

[13]). We refer the reader to [6] for a theory of well-posedness in measures for some32

structured population models including (1.1).33

The model (1.1a) has been derived from random stochastic models of finite pop-34

ulations (see [7, 8]), with an additional mutation term. And such a model or its35
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variation arises not only in evolution theory but also in ecology for nonlocal resources36

(and x denotes the location there; see, e.g., [3, 17]).37

The model without mutation is interesting from the point of view of large time38

behavior; one expects that the dynamics will concentrate on large time, and sev-39

eral related results can be found in the literature; see [1, 5, 13, 20, 29], for in-40

stance. The singular steady-state solutions of the selection model correspond to41

highly concentrated population densities of the form of well-separated Dirac masses,42

which have been shown to happen only asymptotically in the model with mutation43

[2, 10, 23, 25, 26, 28, 30]. More complex models are certainly more realistic, such as44

random environments, spatial effects, and noncompetitive interactions, which should45

lead to quite different asymptotic behavior.46

It is believed that competition will induce a convergence to the repartition of47

traits, which corresponds to one of many steady-state solutions for model (1.1). Such48

a special steady-state solution features a particular sign property characterized by the49

so-called evolutionary stable distribution (ESD), a notion introduced in [20] that we50

will follow: the measure f̃ is called an ESD of model (1.1) if51

∀x ∈ suppf̃ , 0 = a(x)−
∫

X
b(x, y)f̃(y)dy,(1.2a)52

∀x ∈ X, 0 ≥ a(x)−
∫

X
b(x, y)f̃(y)dy.(1.2b)53

54

The proof of global convergence to the ESD in [20] relies on a Lyapunov functional55

which has been proved to exist under the condition of positivity of a certain operator.56

The functional has the following form:57

(1.3) F (t) =

∫

X

[
f̃(x) log

f̃(x)

f(t, x)
+ f(t, x)− f̃(x)

]
dx,58

which is dissipating in time and serves as a relative entropy.59

For different combinations of model parameters, one can expect to see a uniform60

trait distribution or patterns produced from the selection dynamics. It is usually dif-61

ficult to predict between these two alternatives. Hence numerical methods are useful62

tools to evaluate the model prediction. Indeed, numerical illustration has become an63

important way to confirm or complement the analytical study; see [13, 25]. Desvil-64

lettes et al. [13] show speciation processes for system (1.1) by numerical simulations65

with the spectral method. Mirrahimi et al. [25] provide two numerical approximations66

to simulate solutions of the Lotka–Volterra model.67

The aim of the present study is to give reliable numerical schemes for (1.1) from68

the perspective of providing numerical solutions with satisfying long time behavior.69

A key fact is that it admits a certain entropy structure, and we demand our numerical70

schemes to satisfy the entropy dissipation property in discrete settings. In addition,71

positivity for (1.1) is required to be preserved as well. These two requirements together72

are important for system (1.1), yet they add levels of difficulty to the design of a73

numerical method of high accuracy. As a preliminary attempt, only simple time-74

space discretization is discussed in the present paper.75

In this work, we shall introduce finite volume schemes for approximating the so-76

lution of (1.1) so that numerical solutions provide a satisfying long time selection77

dynamics. We first present the one-dimensional case and then extend to multidimen-78

sional cases. Our task is to construct a proper discretization so that the numerical79

solution80
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fn
α ∼ 1

hd

∫

Iα

f(n∆t, x)dx81

approximates f(n∆t, x) over the cell Iα indexed by α ∈ Zd with ∪Iα = X, where ∆t82

is the time step and h the spatial mesh size; and the discrete relative entropy83

(1.4) Fn =
∑

α

(
f̃α log

(
f̃α
fn
α

)
+ fn

α − f̃α

)
hd

84

satisfies the entropy dissipation inequality (see (3.4))85

Fn+1 − Fn ≤ −1

2
∆t∥fn − f̃∥2b ,86

where the notation ∥ · ∥b is defined later in (4.8).87

Another task of this work is to provide an independent algorithm to compute the88

discrete ESD so that (1.4) is well defined.89

Under reasonable assumptions we are able to prove that the problem of finding90

the discrete ESD is equivalent to solving a quadratic programming problem:91

min
f∈RNd

H92

subject to f ∈ {f ≥ 0},93
94

where H is a convex function determined by discrete data obtained from a and b.95

For initial data not necessarily positive, the scheme leads only to the ESD re-96

stricted on a set of computational cells and zero in the complementary set. To capture97

the global ESD for general nonnegative initial data we propose a two-step algorithm:98

the modified scheme for the first step is of the form99

fn+1
α − f∗

α

∆t
= fn+1

α

⎛

⎝āα − hd
∑

β∈Λ

b̄αβf
n
β

⎞

⎠ ,100

where101

f∗
α =

1

2d

d∑

i=1

(
fn
α+ei + fn

α−ei

)
,102

together with proper corrections near boundary cells. We remark that since any103

strictly positive initial condition implies the convergence of the solution to the global104

ESD, one may adopt an alternative way to make the initial condition strictly positive,105

say with a small lift f0
j +ϵ. However, in structured population dynamics, the spreading106

of an initial density is often realized through mutations, which motivated the above107

two-step algorithm.108

We finally test the efficiency of numerical schemes proposed and analyzed herein109

for positive initial data and initial data not strictly positive, respectively. Numerical110

results include not only the case that the fittest traits are selected while the others111

become extinct but also the continuous distribution of traits. For the first case,112

random initial data, if used, represent all traits appearing in the initial populations in113

the sense that populations do not possess well-separated traits, but a finite number114

of subpopulations with well-separated traits will emerge with the evolution of time,115

namely the appearance of clusters. The results we have obtained are in excellent116
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agreement with the analysis of the schemes proposed and display various patterns117

produced from the selection dynamics of the model.118

The rest of this paper is organized as follows. In section 2, we first recall the known119

theoretical results for model (1.1) and then present the one-dimensional semidiscrete120

finite volume scheme and the associated steady states. Section 2.3 is devoted to both121

existence and uniqueness of the discrete ESD, through the equivalence between the122

problem of finding the ESD and the associated quadratic programming problem. The123

efficient computation of the ESD can then be carried out by any well-established124

quadratic programming solver. With the ESD well defined and efficiently computed,125

we use the discrete relative entropy to prove that the semidiscrete scheme satisfies126

the entropy dissipation inequality under some relaxed conditions on the discrete co-127

efficients. Section 3 is devoted to a fully discrete scheme, which derives from a semi-128

implicit time discretization of the semidiscrete scheme. The scheme is easy to compute129

and has desired features under an appropriate restriction on the time step. Section 4130

consists of a natural extension to multiple dimensions. Moreover, the time-asymptotic131

trend towards the ESD is rigorously justified for any nonnegative initial data. In this132

respect, the ESD is restricted to cells in which a initial data are positive. In section 5133

we discuss how to obtain the global ESD even when the initial data are not strictly134

positive. The idea is to use a two-step algorithm: in the first step we process the given135

data by a modified scheme, in which a certain mutation mechanism plays a role of136

spreading the data. After all solution values become positive, we return to the original137

scheme to continue the simulation. Section 6 is devoted to extensive numerical tests138

of the proposed schemes. Finally, some concluding remarks are presented in section 7.139

2. The numerical scheme. We first review the known theoretical results about140

problem (1.1) and then present a semidiscrete numerical scheme to solve it.141

2.1. Existence and time-asymptotic convergence. We first recall a general142

existence result obtained in [13] for problem (1.1): for any nonnegative initial data143

f0 ∈ L1(X), there exists a unique nonnegative f ∈ C([0,∞);L1(X)), provided that144

X is a compact subset of Rd, and both a and b satisfy145

a ∈ L∞(X), |{x; a(x) > 0}| ̸= 0;(2.1a)146

b ∈ L∞(X ×X), essinf
x,x′∈X

b(x, x′) > 0.(2.1b)147

148

However, the main result in [13] is stated with the stronger assumption that a and b149

are in W 1,∞. As shown by Desvillettes et al. [13], under assumption (2.1) the total150

population
∫
X fdx remains bounded from below and above. The assumption (2.1)151

can be somewhat relaxed (in particular if X is not compact, for example X = Rd).152

In order to investigate the long time dynamics, the authors in [20] impose an153

additional assumption on b,154

∀g ∈ M(X)\{0},
∫ ∫

b(x, y)g(x)g(y)dxdy > 0,(2.2)155

156

whereM(X) denotes the set of Radon measures inX. Note that (2.2) is automatically157

satisfied for g ≥ 0 because of assumption (2.1b). However, since there is no sign158

condition on g in (2.2), it is stronger than (2.1b). Assumption (2.2) together with the159

boundedness of b in (2.1b) is also justified for a weighted norm160

∥g∥b =
(∫ ∫

b(x, y)g(x)g(y)dxdy

)1/2

161
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in L1(X) (see [20, page 498]). With this norm and the assumption that F (0) < ∞,162

the solution is shown to converge to an ESD in the above weighted norm as time tends163

to infinity. However, even for bounded and positive initial data f0, F (0) < ∞ holds164

only when
∫
X f̃ logf̃dx < ∞, which essentially means that f̃ has to be a continuous165

equilibrium. On the other hand, it has been shown by Gyllenberg and Meszéna [18]166

that the steady states are generically finite sums of Dirac masses—hence singular167

ESD. Convergence toward a singular ESD is more complex and has been shown in168

[20] when some additional symmetry is available on b; for example,169

∀x, y ∈ X, b(x, y) = b(y, x).(2.3)170
171

2.2. The scheme formulation. We begin with the one-dimensional setting for172

X = [−1, 1] to illustrate the main ideas and steps. Partitioning X into subcells173

Ij = (xj−1/2, xj+1/2)(j = 1, . . . , N) of uniform mesh h = 2/N satisfies that xj−1/2 =174

x1/2 + (j − 1)h with x1/2 = −1, xN+1/2 = 1. In order to capture the concentration175

of the distribution, we consider a finite volume–type approximation. Let fj(t) denote176

the approximation of177

f̄j(t) =
1

h

∫

Ij

f (t, x) dx;178

then taking the interval average of (1.1a) over x ∈ Ij gives the following semidiscrete179

scheme:180

(2.4)
d

dt
fj = fj

(
āj − h

N∑

i=1

b̄jifi

)
, j = 1, . . . , N,181

where182

(2.5) āj =
1

h

∫

Ij

a(x)dx, b̄ji =
1

h2

∫

Ii

∫

Ij

b(x, y)dxdy.183

For a fixed N , one can think of (2.4) as a Lotka–Volterra ODE system, which has been184

well studied in the literature. We refer the reader to [9, 19, 31] and the references185

therein for more details about such systems. As a nonlinear dynamical system, the186

large time behavior of solutions to (2.4) is closely related to the stationary states f̃187

satisfying188

f̃j

(
āj − h

N∑

i=1

b̄jif̃i

)
= 0, j = 1, . . . , N.189

Clearly, there are many steady states as such. We are interested in the discrete ESD190

and the long time behavior of the numerical solution under assumptions (2.1), (2.2),191

and (2.3). These assumptions with a simple verification lead to the following:192

|āj | ≤ ∥a∥L∞ , {1 ≤ j ≤ N, āj > 0} ̸= ∅;(2.6a)193

0 ≤ b̄ji ≤ ∥b∥L∞ and b̄ji = b̄ij for 1 ≤ i, j ≤ N ;(2.6b)194

N∑

j=1

N∑

i=1

b̄jigigj > 0 for any gj such that
N∑

j=1

|gj |2 ̸= 0.(2.6c)195

196

197



6 HAILIANG LIU, WENLI CAI, AND NING SU

Remark 2.1. Assumption (2.6c) is implied by (2.2). Indeed, for g(x)|Ij = gj we198

have199

∫

X

∫

X
b(x, y)g(x)g(y)dxdy =

N∑

j=1

N∑

i=1

gjgi

∫

Ii

∫

Ij

b(x, y)dxdy = h2
N∑

j=1

N∑

i=1

b̄jigjgi.200

Note that we do not need b̄ji to be strictly positive at the discrete level.201

Remark 2.2. The strong competition assumption (2.2) is directly connected to202

the stability of the ESD. There is no evidence that (2.2) should be satisfied for any203

particular biological system. Nevertheless, in section 6 we will use both a Gaussian204

competition kernel b(x, y) = e−α|x−y|2 and b(x, y) = 1
1+|x−y|2 in our numerical simu-205

lations since the positivity condition applies to these two cases.206

With assumptions (2.6b)–(2.6c), B = (b̄ij)N×N is a symmetric, positive definite207

matrix. Let ∥ · ∥ denote the usual Euclidean norm of a vector; then208

√
λmin∥g∥h ≤ ∥g∥b ≤

√
λmax∥g∥h,(2.7)209

210

where λmin(λmax) denotes the smallest (largest) eigenvalue of B and ∥B∥2 = λmax.211

Also we define the l1 norm by212

∥g∥1 =
N∑

j=1

|gj |h213

and the discrete b-norm by214

∥g∥b =

⎛

⎝
N∑

i,j=1

b̄ijgigjh
2

⎞

⎠
1/2

.(2.8)215

216

Note that we still use ∥ · ∥b to denote the discrete norm (2.8) since they are same for217

any piecewise constant function g(x)|x∈Ij = gj . These relations and notation will be218

used in what follows.219

We first investigate the existence and uniqueness of the ESD under assumption220

(2.6).221

2.3. ESD. If initial data fj(0) > 0 for j = 1, 2, . . . , N , the corresponding discrete222

ESD f̃ = {f̃j} may be defined as223

∀j ∈ {1 ≤ i ≤ N, f̃i ̸= 0}, 0 = āj − h
N∑

i=1

b̄jif̃i;(2.9a)224

∀j ∈ {1 ≤ i ≤ N, f̃i = 0}, 0 ≥ āj − h
N∑

i=1

b̄jif̃i.(2.9b)225

226

Introduce the nonlinear function227

H(f) =
fTBf

2
− aTf,228

with f = (f1, f2, . . . , fN )T and a = (ā1, ā2, . . . , āN )T/h, and the feasible set229

S = {f, f ≥ 0};230
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then an ESD can be expressed as a solution to the following problem:231

∂fiH(f) = 0 for fi > 0 and ∇fH ≥ 0(2.10a)232

subject to f ∈ S = {f ≥ 0}.(2.10b)233
234

We can show that this problem is equivalent to the following nonlinear programming235

problem:236

min
f∈RN

H(2.11a)237

subject to f ∈ S = {f ≥ 0}.(2.11b)238
239

Lemma 2.1. If (2.6) holds, then problem (2.10) is equivalent to the nonlinear240

programming problem (2.11).241

Proof. (=⇒) First, if f∗ ∈ S satisfies (2.10), we prove f∗ is the solution to (2.11),242

that is,243

H(f∗ + α) ≥ H(f∗)244

for all α ∈ RN such that f∗ + α ∈ S. The Taylor expansion of the form245

(2.12) H(f∗ + α) = H(f∗) + α ·∇fH(f∗) +
1

2
αTD2Hα246

ensures that we need only prove247

(2.13) α ·∇fH(f∗) +
1

2
αTBα ≥ 0.248

Note that if f∗ + α ≥ 0, then α ≥ −f∗; this together with ∇fH(f∗) ≥ 0 yields249

α ·∇fH(f∗) ≥ −f∗ ·∇fH(f∗) = 0.250

The positivity of the second term in (2.13), i.e., 1
2α

TBα ≥ 0, is guaranteed by the251

fact that B is a positive definite matrix. Putting this together we prove (2.13).252

(⇐=) We next prove that f∗ ∈ S satisfies (2.10) if f∗ is a solution of (2.11). As253

argued above, f∗ being a minimizer of H(f) in S implies that (2.13) holds true for254

all f∗ + α ∈ S. We claim that this yields255

(2.14) α ·∇fH(f∗) ≥ 0.256

Using this claim we can prove (2.10). If f∗
i > 0, we take αi = ±f∗

i and αj = 0 for257

j ̸= i so that ∂fiH(f∗) = 0 must hold; if f∗
i = 0, we take αi = 1 and αj = 0 for j ̸= i258

so that ∂fiH(f∗) ≥ 0. Hence (2.10) is proved.259

Finally we prove claim (2.14) by the contradiction argument. Suppose α·∇fH(f∗) <260

0 then K = − α
|α| · ∇fH(f∗) > 0 is a fixed number. Define eα = α

|α| , and let ρ(B)261

denote the maximum eigenvalue of B, which has to be positive because of (2.13) and262

K > 0. If we choose |α| < 2K
ρ(B) , then (2.13) yields263

0 ≤ |α|[−K + |α|
2 eαTBeα]

≤ |α|[−K + |α|
2 ρ(B)] < 0.

264
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This contradiction verifies the desired claim (2.14). The proof of the equivalence of265

the two problems is thus complete.266

Remark 2.3. The above proof shows that the minimization problem (2.11) may267

also be replaced by268

min
f∈RN

H(2.15a)269

subject to f ∈ {f ≥ 0 and ∇H(f) ≥ 0}.(2.15b)270
271

Hence, we can easily establish the solvability of (2.11) (see [12]) and therefore of272

(2.15).273

Lemma 2.2. If (2.6) is satisfied, then there exists at least one nontrivial vector274

g ∈ S such that275

H(g) = min
f∈S

H(f).276

We next show the existence and uniqueness of the ESD.277

Theorem 2.1. If (2.6) is satisfied, then there exists a unique ESD as defined in278

(2.9).279

Proof. The existence of an ESD follows from the equivalence result in Lemma280

2.1 and the existence result in Lemma 2.2. Here we present a direct proof of the281

uniqueness by mimicking the proof for the continuous case in [20]. We argue by282

the contradiction argument. Assume that there are two nonnegative ESDs, f̃ and g̃,283

satisfying (2.9). Then284

(2.16) I :=
N∑

j=1

g̃j

(
āj − h

N∑

i=1

b̄jif̃i

)
+

N∑

j=1

f̃j

(
āj − h

N∑

i=1

b̄jig̃i

)
≤ 0.285

Meanwhile, according to the definition of ESD,286

I :=
∑

{j,g̃j ̸=0}

g̃j

(
h

N∑

i=1

b̄jig̃i − h
N∑

i=1

b̄jif̃i

)
+

∑

{j,f̃j ̸=0}

f̃j

(
h

N∑

i=1

b̄jif̃i − h
N∑

i=1

b̄jig̃i

)

= h
∑

{j,g̃j ̸=0}

g̃j

N∑

i=1

b̄ji(g̃i − f̃i) + h
∑

{j,f̃j ̸=0}

f̃j

N∑

i=1

b̄ji(f̃i − g̃i)

= h
N∑

j=1

g̃j

N∑

i=1

b̄ji(g̃i − f̃i) + h
N∑

j=1

f̃j

N∑

i=1

b̄ji(f̃i − g̃i)

= h
N∑

j=1

N∑

i=1

b̄ji
(
f̃i − g̃i

)(
f̃j − g̃j

)
≥ 0;

287

this says that I is both nonnegative and nonpositive according to (2.16). Therefore288

I = 0, which indicates f̄j = ḡj for j = 1, 2, . . . , N .289

Remark 2.4. If positivity of b is not assumed, i.e., B does not satisfy (2.6c), we290

can still prove the existence of an ESD using the above approach since any solution291

to (2.11) is necessarily an ESD even if B does not satisfy (2.6c) (see the second part292

of the proof of Lemma 2.1). Unfortunately, the nonlinear programming point of view293

is not helpful for finding one among several possible ESD(s).294
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2.4. Properties of the semidiscrete scheme. With the obtained ESD f̃ , we295

define the discrete entropy functional as follows:296

(2.17) F (t) =
N∑

j=1

(
f̃j log

(
f̃j

fj(t)

)
+ fj(t)− f̃j

)
h.297

Theorem 2.2. Assume (2.6) holds, and let fj(t) be the numerical solution to the298

semidiscrete scheme (2.4). Then the following hold:299

(i) If fj(0) > 0 for every 1 ≤ j ≤ N , then fj(t) > 0 for any t > 0.300

(ii) F is nonincreasing in time. Moreover,301

(2.18)
dF

dt
≤ −∥f − f̃∥2b .302

Proof. (i) For scheme (2.4), positivity preserving is a direct consequence from the303

solution formula304

(2.19) fj (t) = fj (0) e
∫ t
0 (āj−h

∑N
i=1 b̄jifi(s))ds > 0.305

Here the equality fj(t) = 0 does not hold due to the upper bound fj(t) ≤ fj(0)e∥a∥L∞ t.306

(ii) A direct calculation using (2.4) yields307

dF

dt
=

N∑

j=1

(
−f̃j ×

(fj)t
fj

+ (fj)t

)
h =

N∑

j=1

(
fj − f̃j

)(
āj − h

N∑

i=1

b̄jifi

)
h.308

309

Dictated by the definition of the ESD in (2.9) we divide the summation over two310

subsets J = {1 ≤ i ≤ N, f̃i > 0} and Jc = {1 ≤ i ≤ N, f̃i = 0}; then we have311

dF

dt
=

⎛

⎝
∑

j∈J

+
∑

j∈Jc

⎞

⎠
(
fj − f̃j

)(
āj − h

N∑

i=1

b̄jifi

)
h312

≤
∑

j∈J

(
fj − f̃j

)(
h

N∑

i=1

b̄jif̃i − h
N∑

i=1

b̄jifi

)
h313

+
∑

j∈Jc

(
fj − f̃j

)(
h

N∑

i=1

b̄jif̃i − h
N∑

i=1

b̄jifi

)
h314

=−
N∑

j=1

N∑

i=1

b̄ji
(
fi − f̃i

)(
fj − f̃j

)
h2 ≤ 0,315

316

where we have used the fact that fj − f̃j = fj ≥ 0 and āj ≤ h
∑N

i=1 b̄jif̃i for j ∈ Jc
317

together with (2.6c). The entropy dissipation property is proved.318

3. Time discretization. Positivity and entropy properties are both also desired319

for the fully discrete scheme. We consider the following scheme:320

(3.1)
fn+1
j − fn

j

∆t
= fn+1

j

(
āj − h

N∑

i=1

b̄jif
n
i

)
.321
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This scheme is semi-implicit and linear in fn+1 and hence easy to implement. In322

addition, the two desired properties still hold under certain conditions on the time323

step. To proceed, we set the discrete entropy as324

(3.2) Fn =
N∑

j=1

(
f̃j log

(
f̃j
fn
j

)
+ fn

j − f̃j

)
h.325

Theorem 3.1. Assume (2.6) is satisfied and F 0 < ∞, and let fn
j be the numerical326

solution to the fullydiscrete scheme (3.1) with time step satisfying327

(3.3) ∆t ≤ λmin

4λmax

[
∥a∥L∞ + ∥b∥L∞∥f̃∥1 + λmaxS(F 0)

] ,328

where S is a monotone, positive function defined in (3.11). Then the following hold:329

(i) fn+1
j = 0 for fn

j = 0, and fn+1
j > 0 for fn

j > 0 for any n ∈ N.330

(ii) Fn is a decreasing sequence in n. Moreover,331

(3.4) Fn+1 − Fn ≤ −1

2
∆t∥fn − f̃∥2b .332

Remark 3.1. Note that in the continuous case F (0) < ∞ would exclude the333

singular ESD. In contrast, in the discrete case, F 0 < ∞ does include the case when334

the ESD is singular, though in such cases F 0 ∼ |logh|.335

Proof. (i) From (3.3) it follows that336

∆t ≤ 1

2∥a∥L∞
,337

which together with fn
j ≥ 0 and b̄ji ≥ 0 gives338

(3.5) µn
j := 1−∆tāj + h∆t(Bfn)j ≥ 1−∆t∥a∥L∞ ≥ 1

2
.339

Hence (3.1) gives340

(3.6) 0 ≤
fn
j

µn
j

= fn+1
j ≤ 2fn

j ,341

so we have fn+1
j = 0 for fn

j = 0, and fn+1
j > 0 for fn

j > 0.342

(ii) Using the inequality log x ≤ x − 1 for any x > 0, and the definition of the343
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ESD, we proceed to estimate Fn+1 − Fn as follows:344

Fn+1 − Fn = h
N∑

j=1

(
f̃j log

fn
j

fn+1
j

+ fn+1
j − fn

j

)

≤ h
N∑

j=1

(
f̃j

fn
j − fn+1

j

fn+1
j

+ fn+1
j − fn

j

)

= h
N∑

j=1

(
fn+1
j − fn

j

fn+1
j

)(
fn+1
j − f̃j

)

= ∆th
N∑

j=1

(
āj − h

N∑

i=1

b̄jif
n
i

)
(fn+1

j − f̃j)

≤ ∆th

⎡

⎣
∑

{j, f̃j=0}

(
h

N∑

i=1

b̄jif̃i − h
N∑

i=1

b̄jif
n
i

)
(fn+1

j − f̃j)

+
∑

{j, f̃j>0}

(
h

N∑

i=1

b̄jif̃i − h
N∑

i=1

b̄jif
n
i

)
(fn+1

j − f̃j)

⎤

⎦

= −∆th2
N∑

j=1

N∑

i=1

b̄ji(f
n+1
j − f̃j)(f

n
i − f̃i).

345

Let gn = fn − f̃ ; then346

(3.7)
Fn+1 − Fn ≤ −∆th2gn+1 ·Bgn

= −∆th2(gn ·Bgn + (gn+1 − gn) ·Bgn)
≤ −∆th2gn ·Bgn +∆th2∥B∥2∥gn∥∥gn+1 − gn∥.

347

Next, we estimate ∥gn+1 − gn∥. Note that348

(gn+1 − gn)j = ∆tfn+1
j

[
āj − h

N∑

i=1

b̄ji(g
n
i + f̃i)

]

= ∆t

[
fn
j

µn
j

(
āj − h

N∑

i=1

b̄jif̃i

)
− h

fn
j

µn
j

N∑

i=1

b̄jig
n
i

]

= ∆t

[
fn
j −f̃j
µn
j

(
āj − h

N∑

i=1

b̄jif̃i

)
− h

fn
j

µn
j

N∑

i=1

b̄jig
n
i

]
,

349

where we have used the definition of the ESD in the last equality. Thus,350

∥gn+1 − gn∥ ≤ 2∆t∥gn∥ (C1 + h∥fn∥∞∥B∥2) ,351

where352

C1 = ∥a∥L∞ + ∥b∥L∞∥f̃∥1,353

and we have used (3.5).354

We claim that there exists a nondecreasing, positive function S such that355

(3.8) h∥fn∥∞ ≤ S(Fn).356
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Substitution of this into (3.7) gives357

(3.9) Fn+1 − Fn ≤ −∆th2gn ·Bgn
[
1− 2∆t∥B∥2[C1 + ∥B∥2S(Fn)]

∥gn∥2

gn ·Bgn

]
.358

For ∆t satisfying (3.3), and noticing that gn ·Bgn ≥ λmin∥gn∥2 and ∥B∥2 = λmax, we359

have360

F 1 ≤ F 0 − 1

2
∆th2g0 ·Bg0361

according to (3.9) with for n = 0. Hence S(F 1) ≤ S(F 0) so that362

4∥B∥2[C1 + ∥B∥2S(F 1)]∆t ≤ λmin,363

which ensures364

F 2 ≤ F 1 − 1

2
∆th2g1 ·Bg1.365

By induction, with 4∥B∥2[C1 + ∥B∥2S(Fn)]∆t ≤ λmin, we have366

Fn+1 − Fn ≤ −1

2
∆th2gn ·Bgn = −1

2
∆t∥fn − f̃∥2b .367

Finally, we discuss the form of S claimed in (3.8). Set368

(3.10) G(ξ, η) = ξ log

(
ξ

η

)
+ η − ξ,369

defined on R+ × R+; then G ≥ 0, and G is convex and increasing in η for η ≥ ξ and370

convex and decreasing in ξ for ξ ≤ η. Note that371

N∑

j=1

G(hf̃j , hf
n
j ) = Fn;372

hence, for ∥fn∥∞ = fn
j0 we have373

G(hf̃j0 , hf
n
j0) ≤ Fn.374

From this we see that either fn
j0 ≤ ∥f̃∥∞ or fn

j0 ≥ ∥f̃∥∞; in the latter case the375

monotonicity of G in ξ(≤ η) leads to376

G1(h∥fn∥∞) := G(h∥f̃∥∞, hfn
j0) ≤ G(hf̃j0 , hf

n
j0) ≤ Fn.377

Hence, we obtain h∥fn∥∞ ≤ G−1
1 (Fn), with the inverse taken in the domain of378

[h∥f̃∥∞,+∞). We therefore have (3.8) with379

(3.11) S(Fn) := G−1
1 (Fn).380

The established entropy dissipation property (3.4) ensures the following time-381

asymptotic result.382

Corollary 3.1. Assume (2.6) holds. Let fn
j be the numerical solution generated383

from scheme (3.1) with positive initial data f0
j > 0 for all j = 1, . . . , N . Then384

lim
n→∞

∥fn − f̃∥b = 0.385
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Remark 3.2. The above results indicate that the positivity assumption in (2.6c)386

is crucial to guarantee entropy dissipation properties (2.18) and (3.4), as well as the387

uniqueness of the ESD as stated in Theorem 2.1. One may imagine that the absence388

of this positivity property of b should not have much impact on the concentration389

dynamics of the population density. However, due to nonuniqueness of ESD(s), it is390

an open question whether the concentration appears as oscillations between different391

ESDs.392

4. Extension to multidimensions and restricted ESD.393

4.1. Multidimensional schemes. Let X = [−1, 1]d, with a structured parti-394

tion by Iα = Iα1 × Iα2 × · · ·× Iαd , where the definition of every Iαi(i = 1, 2, . . . , d) is395

the same as the one-dimensional case, and α denotes the multiple index which runs396

over the following index set:397

(4.1) Λ := {α = (α1,α2, . . . ,αd), 1 ≤ αi ≤ N, i = 1, . . . , d}.398

Let fα(t) denote the approximation of the cell average 1
hd

∫
Iα

f(t, x)dx. We then399

obtain the following semidiscrete scheme:400

(4.2)
d

dt
fα = fα

⎛

⎝āα − hd
∑

β

b̄αβfβ

⎞

⎠ , α ∈ Λ,401

where402

āα =
1

hd

∫

Iα

a(x)dx, b̄αβ =
1

h2d

∫

Iβ

∫

Iα

b(x, y)dxdy, α,β ∈ Λ.403

In a similar manner, the ESD in the multidimensional case is defined as follows:404

∀α ∈ {β ∈ Λ, f̃β ̸= 0}, 0 = āα − hd
∑

β

b̄αβ f̃β ;(4.3a)405

∀α ∈ {β ∈ Λ, f̃β = 0}, 0 ≥ āα − hd
∑

β

b̄αβ f̃β .(4.3b)406

407

Choose a way to reorder the index set Λ into the natural order from 1 to Nd; then this408

order will give the vectors f and ā from fΛ and āΛ, respectively. Correspondingly, this409

order also generates an Nd×Nd matrix B = (b̄αβ)Nd×Nd from b̄ΛΛ. The assumptions410

(2.1), (2.2), and (2.3) in the multidimensional case also lead to a set of conditions on411

the discrete coefficients.412

|āα| ≤ ∥a∥L∞ , {α ∈ Λ, āα > 0} ̸= ∅,(4.4a)413

0 ≤ b̄αβ ≤ ∥b∥L∞ for α,β ∈ Λ, and B is symmetric,(4.4b)414

∑

α

∑

β

b̄αβgαgβ > 0 for any gα such that
∑

α

|gα|2 ̸= 0.(4.4c)415

416

In an entirely same way, we can prove the existence and uniqueness of the ESD, as417

summarized below.418

Theorem 4.1. If (4.4) is satisfied, then there exists a unique solution to (4.3).419

Again, (4.4b)–(4.4c) imply that B is a symmetric, positive definite matrix; hence420

the problem of finding the ESD is equivalent to solving the nonlinear programming421

problem422
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min
f∈RNd

H(4.5a)423

subject to f ∈ S = {f ≥ 0},(4.5b)424
425

where426

H(f) =
fTBf

2
− aTf,427

with (a)Nd×1 = (āΛ/hd)Nd×1. As in the one-dimensional case, we define the semidis-428

crete relative entropy by429

F (t) =
∑

α∈Λ

(
f̃α log

(
f̃α
fα

)
+ fα − f̃α

)
hd,430

which is shown to be nonincreasing in time, following the same argument as in the431

one-dimensional case. For the fully discrete scheme we take432

(4.6)
fn+1
α − fn

α

∆t
= fn+1

α (āα − hd
∑

β

b̄αβf
n
β ), α ∈ Λ.433

The entropy satisfying property of the scheme is quantified by the discrete relative434

entropy of the form435

(4.7) Fn =
∑

α∈Λ

(
f̃α log

(
f̃α
fn
α

)
+ fn

α − f̃α

)
hd.436

In order to present a similar multidimensional entropy property, we use the notation437

Gd(η) := G(hd∥f̃∥∞, η), η > 0,438

where G is given in (3.10) and increasing in η for η ≥ hd∥f̃∥∞; also Gd(hd∥fn∥∞) ≤439

Fn as implied by (4.7). Hence the same iterative argument applies with S(Fn) defined440

by441

S(Fn) = G−1
d (Fn),442

where the inverse is taken in the range of [hd∥f̃∥∞,∞). In the multidimensional case,443

we define444

∥g∥b =
(
h2d

∑

α∈Λ

b̄βαgαgβ

) 1
2

, ∥g∥1 = hd
∑

α∈Λ

|gα|,(4.8)445

446

with which we present the following result.447

Theorem 4.2. Assume (4.4) holds and F 0 < ∞. Let fn
α be the numerical448

solution to (4.2) with the time step satisfying449

(4.9) ∆t ≤ λmin

4λmax

[
∥a∥L∞ + ∥b∥L∞∥f̃∥1 + λmaxS(F 0)

] .450

Then the following hold:451

(i) fn+1
α = 0 for fn

α = 0, and fn+1
α > 0 for fn

α > 0 for any n ∈ N.452

(ii) Fn is a decreasing sequence in n. Moreover,453

(4.10) Fn+1 − Fn ≤ −1

2
∆t∥fn − f̃∥2b .454
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4.2. Restricted ESD. From fully discrete scheme (4.6) it follows that if f0
α = 0455

for some α, then fn
α = 0 for all n > 0. This suggests that the time-asymptotic trend456

to the global ESD is not guaranteed for initial data not strictly positive. In order457

to extend the previous results to the case with nonnegative initial data, we specify a458

subset Λs ⊆ Λ. We can define the usual ESD f̃α for α ∈ Λs,459

∀α ∈ {β ∈ Λs, f̃β ̸= 0}, 0 = āα − hd
∑

β∈Λs

b̄αβ f̃β ;(4.11a)460

∀α ∈ {β ∈ Λs, f̃β = 0}, 0 ≥ āα − hd
∑

β∈Λs

b̄αβ f̃β .(4.11b)461

462

This allows for a discrete entropy over Λs,463

(4.12) Fn
s =

∑

α∈Λs

(
f̃α log

(
f̃α
fn
α

)
+ fn

α − f̃α

)
hd.464

For all α ∈ Λ, we denote465

(4.13) f̃R
α =

{
0 for α ̸∈ Λs,
f̃α for α ∈ Λs.

466

Clearly, when Λs = Λ, the ESD is nothing but the global ESD.467

Theorem 4.3. Assume (4.4) is satisfied on Λs and F 0
s < ∞. If f0

α > 0 for468

α ∈ Λs and f0
α = 0 for α ̸∈ Λs, then the numerical solution to (4.6) converges to f̃R

469

as n → ∞ in the sense that470

(4.14) lim
n→∞

∥fn − f̃R∥b = 0.471

Proof. For α ̸∈ Λs, f0
α = 0, then fn

α = 0 for all n > 0 since472

(4.15) fn+1
α =

fn
α

1−∆tāα +∆thd
∑

β∈Λ b̄αβfn
β

,473

as derived from scheme (4.6). For α ∈ Λs, f0
α > 0, then fn

α > 0 for all n > 0 as long474

as the time step is suitably small. Restricted on the set Λs, all the results in Theorem475

3.1 hold true; hence we have476

(4.16) Fn+1
s − Fn

s ≤ −1

2
∆t∥fn − f̃R∥2b .477

From this inequality we see that Fn
s is a decreasing sequence in n and also bounded478

from below by (4.12); hence the limit of Fn
s exists when n tends to ∞. Fixed ∆t and479

h > 0, when passing to the limit n → ∞, the right-hand side of (4.16) must converge480

to zero, that is, (4.14). This finishes the proof.481

5. A numerical scheme with mutation mechanism. The restricted ESD482

introduced in the previous section is not necessarily globally stable. The natural483

question is, How can one capture the asymptotic dynamics towards the global ESD484

from initial data not strictly positive? Motivated by the effect of mutations, our idea485

is to process the initial data with another scheme defined by486

(5.1)
fn+1
j − f∗

j

∆t
= fn+1

j

(
āj − h

N∑

i=1

b̄jif
n
i

)
,487
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where488

(5.2) f∗
j =

fn
j−1 + fn

j+1

2
, 2 ≤ j ≤ N − 1,489

and490

(5.3) f∗
1 =

fn
1 + fn

2

2
, f∗

N =
fn
N−1 + fn

N

2
.491

Scheme (5.1), when put in the form492

(5.4)
fn+1
j − fn

j

∆t
= fn+1

j

(
āj − h

N∑

i=1

b̄jif
n
i

)
+

h2

2∆t

fn
j+1 + 2fn

j + fn
j−1

h2
,493

serves to better approximate the following selection-mutation model:494

(5.5) ∂tf(t, x) =

(
a(x)−

∫
b(x, y)f(t, y)dy

)
f(t, x) + ϵ2∂xxf(t, x),495

where ϵ = h√
2∆t

. Note that the choices in (5.3) correspond to the natural flux ∂xf = 0496

on the boundary for the reaction-diffusion equation (5.5). Our hope is that we use497

(5.1) to spread the data, as the usual mutation does; then we return to (3.1).498

In summary, for initial data not strictly positive, we follow a two-step algorithm:499

Step 1. Run (5.1) up to n = n0 so that fn0
j > 0 for all j.500

Step 2. Return to (3.1) to continue the simulation.501

In the multidimensional case, we follow the same strategy. That is, we replace fn
α502

on the left-hand side of (4.6) by503

(5.6) f∗
α =

1

2d

d∑

i=1

(
fn
α+ei + fn

α−ei

)
,504

together with proper corrections near boundary cells, in the way of incorporating the505

zero flux condition on the boundary, i.e., ∂νf = 0, where ν is the unit outward normal506

vector to the boundary.507

Numerical validation of this two-step algorithm will be presented in sections 6.4–508

6.5.509

6. Numerical implementation and examples.510

6.1. Computing the discrete ESD. It has been shown previously that com-511

puting the ESD could be reduced to solving a quadratic programming (QP) problem,512

which is the problem of minimizing a quadratic function of several variables subject513

to linear constraints on these variables. For general QP problems a variety of methods514

have been proposed in the literature, including the interior-point algorithm, the trust-515

region algorithm, the conjugate gradient method, and the active-set algorithm (see516

[4, 11, 14, 15, 16, 24, 27]). We shall use the MATLAB code quadprog.m to implement517

the interior-point-convex algorithm.518

We now test the case with519

(6.1) a(x) = G(x,σ1), b(x, y) = G(x− y,σ2),520
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Fig. 1. ESD profiles for data (6.1) on uniform meshes with N = 80.536

where521

G(x,σ) =
1√
2πσ

e−
x2

2σ .522

This corresponds to widely used standard forms of the input parameters because of523

their statistical meaning. Kimura [21] was probably the first to derive a Gaussian524

function as an equilibrium for a structured population model. It is proved by Mir-525

rahimi et al. [25] that for σ1 > σ2 there is a smooth steady state which is given by526

feq = G(x,σ), σ = σ1 − σ2.527

For σ1 < σ2, the Dirac mass is a stable steady state. This implies that the ESD is528

either a Gaussian of form G(x,σ) or a Dirac mass of form ρ̄δ(x). This is numerically529

confirmed by using the quadratic programming algorithm as stated above.530

We use a 3-point Gaussian quadrature rule to generate the discrete data āj and b̄ji.531

The numerical results are shown in Figure 1, which indicates that the ESD is a532

Gaussian function for σ1 = 0.05 > σ2 = 0.01 but a Dirac mass concentrating on 0 for533

σ1 = 0.01 < σ2 = 0.05. These are in excellent agreement with the theoretical results534

in [25, Proposition 3.1].535

6.2. One-dimensional tests with positive initial data. This section presents537

several numerical tests to illustrate both the accuracy and the capability of the scheme538

(3.1).539

Recall that the positivity of b in (2.2) when b(x, y) = K(x − y) is equivalent to540

the positivity of the Fourier transform of K; see [20, page 502]. In addition to the541

Gaussian kernel, we also use K = 1
1+x2 . In fact, with a simple calculation using the542

Cauchy integral formula in the complex plane, one obtains543

1√
2π

∫ ∞

−∞

e−ixξ

1 + x2
dx =

√
π

2
e−|ξ| > 0.544

Therefore, the b used in (6.2), (6.5), and (6.7) satisfies the positivity condition (2.2)545

as required.546

Example 1 (accuracy and entropy test). Following the setting used in [22], we547

consider548

(6.2) a(x) = 10(x− 1)2(x− 0.1005)2(x+ 1)2, b(x, y) =
1

1 + (40(x− y))2
,549
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Table 1567

Errors and the convergence orders of the numerical solution on uniform meshes of N cells.568

f0(x) = 0.5(sin(100x) + 2)
N L∞ error order L1 error order
40 3.8705 - 1.4926 -
80 3.2206 0.2652 0.9241 0.6917
160 1.7710 0.8627 0.4799 0.9453
320 0.8569 1.0475 0.2422 0.9868
640 0.3685 1.2173 0.1205 1.0073

Table 2569

The change of the relative entropy (3.2) with N = 80 and ∆t = 0.01.570

T 0 5 10 50 200 400
Fn 41.2743379 0.9227154 0.3781511 0.0493885 0.0048953 9.0692435e-004

which when combined with the 3-point Gaussian quadrature rule gives the needed550

discrete data, āj and b̄ji. For initial data given by551

(6.3) f0(x) = 0.5(sin(100x) + 2),552

the initialization is by its cell average,553

f0
j =

1

h

∫

Ij

f0(x)dx, j = 1, . . . , N.554

This evaluation is also carried out by the 3-point Gaussian quadrature rule. Let fn
j555

denote the numerical solution with N cells, and let f̃n
i denote the reference solution556

with mN cells. The L∞ error and the L1 error are defined as557

max
1≤j≤N

max
1≤l≤m

| fn
j − f̃n

m(j−1)+l |,
N∑

j=1

m∑

l=1

| fn
j − f̃n

m(j−1)+l |
h

m
,558

respectively. In our simulation, the numerical solution of 2560 cells is taken as the559

reference solution. Let the final time T = n∆t; the accuracy of numerical scheme560

(3.1) at T = 1.0 with time step ∆t = 0.01 is given in Table 1, which confirms first-561

order accuracy. Here the choice of ∆t may be determined according to the bound in562

Theorem 3.1. Actually, ∆t can be taken slightly larger as long as time-asymptotic563

convergence is obtained. Table 2 gives the temporal change of the relative entropy564

(3.2). This entropy dissipation illustrates that numerical solutions with data (6.2)565

and initial data (6.3) converge to the ESD as time becomes large.566

Example 2 (large time behavior with positive a(x)). In addition to initial data571

(6.3), we also test with another positive initial data of the form572

(6.4) f0(x) =

{
2(cos(2π(x− 0.1)) + 1) + 0.5, |x− 0.1| ≤ 0.03,
0.5 else.

573

The comparison of the time-asymptotic trend to the ESD is shown in Figure 2. Clearly,574

the asymptotic convergence is faster with initial data (6.4), which is less oscillatory.575

Example 3 (large time behavior with Gaussian data (6.1)). For a, b given in (6.1),578

we test the time-asymptotic convergence to equilibrium with random initial data. The579

results given in Figure 3 are as expected, modulo a rather slow convergence for the580
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Fig. 2. Numerical solutions to (3.1) converge to the ESD for data (6.2) with N = 80 and
∆t = 0.01, the first row: for initial data (6.3); the second row: for initial data (6.4).
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Fig. 3. Numerical solutions to (3.1) converge to the ESD, N = 80, and ∆t = 0.01, the first
row: σ1 = 0.01 < σ2 = 0.05; the second row: σ1 = 0.05 > σ2 = 0.01.

583

584

case of σ1 > σ2. Indeed, in [20, Proposition 1.7] the authors proved the convergence581

rate of logt
t for some a, b including (6.1) with σ1 > σ2.582

Example 4 (large time behavior with data (6.5)). We consider a, b of the form585

(6.5) a(x) = A− x2, b(x, y) =
1

1 + (x− y)2
.586

This choice was investigated in [13] to illustrate both the speciation process and the587

branching phenomena, depending on the range of A.588
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Fig. 4. Numerical solutions to (3.1) tend to the ESD, N = 80, and ∆t = 0.05. The first row:
for A = 1.5, T ∈ [0, 6000] (left); T = 60000 (middle); ESD (right). The second row: for A = 2.5,
T ∈ [0, 6000] (left); T = 100000 (middle); ESD (right).

596

597

598

The numerical results with initial data (6.4) show that the initial data branch589

into two subspecies for A = 1.5. When A = 2.5, the initial data first branch into590

two subspecies, and subsequently a new trait appears in the middle which is not591

induced from any branching. We can also see from Figure 4 that numerical solutions592

tend to the ESD after sufficiently long time simulation. These results, which may be593

interpreted as a “speciation process,” are in excellent agreement with the theoretical594

and numerical results obtained in [13].595

Example 5 (large time behavior with a general fitness). In this example we599

consider a general a of changing sign and Gaussian function b as follows:600

(6.6) a(x) = 20(x− 1)2(x− 0.1005)2(x+ 1)2 − 1, b(x, y) = G(x− y, 0.05).601

The time-asymptotic behavior with random initial data is illustrated in Figure 5, from602

which we see that the ESD is always zero at points where a(x) ≤ 0, and the numerical603

solutions asymptotically tend to the ESD, which is the sum of the finite Dirac masses.604

This indicates the concentration of subpopulations.605

6.3. Two-dimensional tests with positive initial data. For 1 ≤ αi ≤ N608

and 1 ≤ βi ≤ N (i = 1, 2), we relabel the index α = (α1,α2) and β = (β1,β2) as609

j = (α1 − 1)N + α2 and i = (β1 − 1)N + β2 so that the coefficients are calculated by610

āj =
1

22

3∑

l=1

3∑

p=1

ωlωpa(xα1 + 0.5hcl, xα2 + 0.5hcp),611

b̄ji =
1

24

3∑

l1,l2,l3,l4=1

ωl1ωl2ωl3ωl4b(xα1 + 0.5hcl1 , xα2 + 0.5hcl2 , yβ1612

+0.5hcl3 , yβ2 + 0.5hcl4),613
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Fig. 5. Random initial data (left); the ESD and numerical solutions to (3.1) at T = 10 and
T = 7000, with N = 80 and ∆t = 0.01.

606

607

and the initial data is similarly generated from the cell average,614

f0
j =

1

22

3∑

l=1

3∑

p=1

ωlωpf0(xα1 + 0.5hcl, xα2 + 0.5hcp),615

such that (ā)Nd×1 and (f0)Nd×1 are column vectors, and (b̄)Nd×Nd is a matrix. Here616

ωl and cl (l = 1, 2, 3) are the weights and abscissae of 3-point Gaussian quadrature617

rule, respectively.618

For b(x, y) of the form619

(6.7) b(x, y) =
1

1 + (x1 − y1)2 + (x2 − y2)2
,620

we test the time-asymptotic convergence to the ESD for different a(x), which is shown621

in Figures 6–7.622

We first consider623

(6.8) a(x) = 2.5− ((x1)
2 + (x2)

2),624

which is positive for all x ∈ [−1, 1]2. For random initial data, we compute numerical625

solutions to scheme (4.6) and observe the time-asymptotic trend to the ESD, which626

is the sum of finite Dirac masses.627

We then consider630

(6.9) a(x) = (x1)
2 − (x2)

2,631

which is a saddle surface, and a(x) < 0 for some x ∈ [−1, 1]2. For coefficients (6.7) and632

(6.9), we test numerical solutions with random initial data and the ESD in Figure 7,633

which shows time-asymptotic trend to the ESD, which concentrates on (1, 0) and634

(−1, 0) where a is peaked.635

6.4. One-dimensional tests with nonnegative initial data. For data (6.2)637

and nonnegative δ-like initial data,638

(6.10) f0(x) =

{
2(cos(2π(x− 0.1)) + 1), |x− 0.1| ≤ 0.03,
0 else.

639

If we use only scheme (3.1), numerical solutions will tend to the restricted ESD,640

instead of the global ESD; see Figure 8.641

In order to observe the time-asymptotic convergence to the global ESD with initial642

data which is not strictly positive, we first use scheme (5.1) and then use scheme (3.1)643

to simulate this process. It can be seen from Figure 9 that numerical solutions with644

initial data (6.10) tend to the ESD. Here we choose n0 = 400.645
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Fig. 6. Numerical solutions to (4.6) with random initial data at T = 1000 and T = 190000, as
well as the ESD, N = 40, and ∆t = 0.05.
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Fig. 7. Numerical solutions to (4.6) until T = 8000 and the ESD, N = 40, and ∆t = 0.05.636
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Fig. 9. Numerical solutions and ESD with N = 80 and ∆t = 0.01, for data (6.1) with σ1 =
0.01 < σ2 = 0.05 (left); for data (6.1) with σ1 = 0.05 > σ2 = 0.01 (middle); for data (6.6)(right).
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Fig. 10. Numerical solutions at T = 0, 20 and T = 180000, N = 40, and ∆t = 0.05.650

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

10

20

30

40

50

60

x2

T = 100

x1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

50

100

150

200

x2

T = 7000

x1

Fig. 11. Numerical solutions at T = 100 and T = 7000, N = 40, and ∆t = 0.05.651

6.5. Two-dimensional tests with nonnegative initial data. We consider652

the δ-like initial data concentrating at four points:653

(6.11)

f0(x) =

{
25g(x1)g(x2) in four squares centered at (±0.5,±0.5) of area 0.01;
0 elsewhere,

654

where g(s) = − cos(10πs)+1. We test by using scheme (5.6) until n0 = 200, followed655

by (4.6) for two cases. First, for coefficients (6.7) and (6.8), the asymptotic trend to656

the ESD is shown in Figure 10.657

The test for coefficients (6.7) and (6.9) is given in Figure 11.658

7. Summary. In this work, we have developed entropy satisfying numerical659

schemes for solving a nonlocal competition model that describes the evolution of660

a population structured with respect to a continuous trait. The schemes are easy661
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to implement and feature two desired properties: positivity preserving and entropy662

satisfying. Some highlights are the following are the following:663

• It is shown that finding the discrete ESD is equivalent to solving a QP664

problem.665

• With the ESD on the restricted set of computational cells where the initial666

data are positive, the relative entropy is well defined and further used to prove667

that numerical solutions to the fully discrete scheme asymptotically converge668

to the ESD as n becomes large.669

• In order to capture the global ESD for general nonnegative initial data, we670

adopt a two-step algorithm, which in the first step the initial data is processed671

by a modified scheme, which contains a certain mutation mechanism.672

A series of numerical results have confirmed both the accuracy and the entropy satisfy-673

ing property of the numerical schemes. The obtained numerical results are compatible674

either in the case when a uniform trait distribution is produced by the model or when675

concentrations are obtained. It is usually difficult to predict between these two alter-676

natives. The simple numerical schemes presented in this work may be useful in the677

model prediction.678
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