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Abstract

In this paper, we develop a generalized polynomial chaos approach based stochastic

Galerkin (gPC-SG) method for the linear semi-conductor Boltzmann equation with random

inputs and diffusive scalings. The random inputs are due to uncertainties in the collision

kernel or initial data. We study the regularity of the solution in the random space, and

prove the spectral accuracy of the gPC-SG method. We then use the asymptotic-preserving

framework for the deterministic counterpart developed in [8] to come up with the stochas-

tic asymptotic-preserving gPC-SG method for the problem under study which is efficient

in the diffusive regime. Numerical experiments are conducted to validate the accuracy and

asymptotic properties of the method.
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1 Introduction

We consider the linear semiconductor Boltzmann equation with random inputs. Here the

random inputs arise in the collision kernel or initial data due to modeling or measurement

errors, which are typical for kinetic equations that are often derived via mean-field limits from

particle systems [2, 15]. In recent years there have been significant interests in uncertainty

quantification for physical models that contain uncertain coefficients, but few works have been

concentrated on kinetic equations which are of practical importance in mesoscopic modeling

of physical, biological to social sciences. Here we mention the stochastic Galerkin method

employed for neutron transport equation with random scattering coefficients [1] and more

recently, for the nonlinear Boltzmann equation [5].
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Another challenge in numerical approximations of kinetic and transport equations arise

from varying magnitude of the Knudsen number, which is the dimensionless mean free

path measuring the ratio between the particle mean free path and a typical length scale.

When the Knudsen number is small the equation becomes numerically stiff thus demand

prohibitive, Knudsen number dependent mesh sizes and time steps. To overcome this dif-

ficulty, asymptotic-preserving (AP) schemes, which mimic the asymptotic transition from

the kinetic equations to the hydrodynamic or diffusion limit, combined with efficient time

integrators, have proved to be very efficient to handle small or multiple scales in kinetic or

hyperbolic problems, see [6, 7]. For AP schemes for linear (deterministic) kinetic equations

similar to the equation under study, see [12, 9, 8, 11]. For linear transport equations with

diffusive scales and random inputs, stochastic asymptotic-preserving (s-AP) schemes were

recently introduced in [10]. A s-AP scheme allows the use of mesh sizes, time steps and

the number of terms in the orthogonal polynomial expansions independent of the Knudsen

number, yet can still capture the solution of the limiting, macroscopic equations.

In this paper, we aim to develop a s-AP scheme for the linear semiconductor Boltzmann

equation with random inputs and diffusive scalings. Our method is based on the generalized

polynomial chaos approach in the stochastic Galerkin (hereafter referred to as the gPC-SG)

framework [4, 13, 18]. The advantage of the gPC-SG method over the classical Monte-Carlo

method is that the former enjoys a spectral accuracy in the random space–provided sufficient

regularity of the solution– while the latter converges with only half-th order accuracy.

It was realized in [10] that for random transport equations with diffusive scalings, upon

adopting the gPC-SG formulation, the underlying system is a vector analogy of its determin-

istic counterpart, thus the deterministic AP machineries can be easily employed to give rise

to s-AP schemes. It is also the case here. Once we use the standard gPC-SG approximation,

the resulting system, which is deterministic, has the same form as the original Boltzmann

equation except that it is vectorized. Indeed we will use the deterministic AP scheme devel-

oped in [8] for the gPC-SG system which induces a s-AP scheme, in the sense that its solution

will approach, in the zero Knudsen number limit, to that of the corresponding drift diffusion

equation with random inputs. Here the physical equation is different from those studied in

[8], arising in different areas. In addition to the development of the gPC-SG scheme, we

also study the regularity of the solution, proving that the regularity of the initial data in the

random space is preserved at later time. Further, we also establish the spectral convergence

of the method in the random space.

The paper is organized as follows. In section 2, we introduce the semiconductor Boltz-

mann equation with random inputs, and show its drift-diffusion limit. The regularity of

the distribution function in the random space will also be studied. Section 3 describes the

gPC-SG method for the Boltzmann equation. Section 4 focuses on the spectral convergence

analysis in the random space, which also motivates the need for an AP method when the

Knudsen number is small. In section 5, we adopt a fully-discretized AP scheme under the

diffusive scalings. A formal proof of the stochastic AP property is also given. In Section 6,

extensive numerical examples are presented to show the validity, spectral convergence and

asymptotic property of the proposed scheme.
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2 The Semiconductor Boltzmann equation with ran-

dom inputs

2.1 The model

We are interested in the linear Boltzmann equation for semiconductor devices [15] under

the diffusive scaling with random inputs:




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
















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
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

ǫ∂tf + v · ∇xf +
q

m
∇xφ(t,x, z) · ∇vf =

1

ǫ
Q(f)(t,x,v, z) + ǫG(t,x,v, z),

t > 0,x ∈ Ω ⊆ R
N ,v ∈ R

d, z ∈ Iz,

f(0,x,v, z) = fI(x,v, z),

f(t,x,v, z) = g(t,x,v, z), x ∈ ∂Ω, v · n ≤ 0.

(2.1)

Here f(t,x,v, z) is the probability density distribution for particles at x ∈ Ω, with velocity

v ∈ R
d. n is the unit outer normal vector to the boundary ∂Ω of the spatial domain, ǫ is

the Knudsen number, φ(t,x, z) is the electric potential and E(t,x, z) = −∇xφ(t,x, z) is the

electric field. Here we consider the electric field given a priori for analytical study, though

it is usually coupled with a Poisson equation [15] (the scheme can be easily extended to

include the Poisson equation, and will be tested in section 6). The constants q and m are

respectively the elementary charge and the effective mass of the electron. In this paper, we

set q = m = 1.

The anisotropic collision operator Q describes a linear approximation of the electron-

phonon interaction. It is given by

Q(f)(v, z) =

∫

Rd

σ(v,w, z) {M(v)f(w, z)−M(w)f(v, z)} dw, (2.2)

where M is the normalized Maxwellian at temperature θ,

M(v) =
1

(2πθ)d/2
exp−

|v|2

2θ .

We assume the anisotropic scattering kernel σ to be symmetric and bounded,

∃ σ0, σ1 > 0, σ0 ≤ σ(v,w, z) = σ(w,v, z) ≤ σ1, (2.3)

and the collision frequency

λ(v, z) =

∫

Rd

σ(v,w, z)M(w)dw ≤ λ0. (2.4)

The uncertainties may come from the collision kernel, the electric potential, initial data or

boundary data. The random variable z is an n-dimensional random vector with support Iz

characterizing the random inputs of the system, so essentially all functions in (2.1) depend

on z.

We now introduce some spaces, inner product and norms that will be used throughout

this paper.

H = L2(Iz;π(z)dz), < f, g >H=

∫

Iz

fgπ(z)dz, ‖f‖H =

(
∫

Iz

f2π(z)dz

)1/2

.(2.5)

‖f(t, ·, ·, ·)‖2Γ(t) :=

∫

Rd

∫

Ω

||f(t,x,v, z)||2H e−2φ(x,t)/M(v)dxdv, t ≥ 0. (2.6)
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An important property of the collision operator Q is the symmetry property [16]

∫

Rd

Q(f)(v)g(v)/M(v)dv = −1

2

∫

Rd

∫

Rd

σ(v,w, z)M(v)M(w)

·
(

f(v)

M(v)
− f(w)

M(w)

)(

g(v)

M(v)
− g(w)

M(w)

)

dwdv,

from which one can deduce
∫

Rd

Q(f)(v)f(v)/M(v)dv

= −1

2

∫

Rd

∫

Rd

σ(v,w, z)M(v)M(w)

(

f(v)

M(v)
− f(w)

M(w)

)2

dwdv ≤ 0, (2.7)

where the positivity σ(v,w, z) ≥ σ0(z) > 0 is used.

For each z, (2.1) is a deterministic equation. As ǫ → 0, Q(f) = 0, then f(x,v, t) =

ρ(x, t)M(v), where ρ satisfies the drift-diffusion equation [16, 15]

∂tρ = ∇x(D(∇xρ+ 2ρE(x))), (2.8)

where the diffusion matrix D is defined by

D =

∫

Rd

v ⊗ vM(v)

λ
dv.

The limit ǫ→ 0 is known as the drift-diffusion limit.

2.2 Regularity of the solution in z

We first study the regularity of f in the random variable z. To this aim, we assume σ

depends on z linearly. This is mostly the case when one approximates a random field, for

example by the Karhunen-Loeve expansion [14],

σ(v,w, z) ≈ σ̄0(v,w) +
n
∑

i=1

σ̃i(v,w)zi, (2.9)

with z1, z2, · · · , zn independent random variables with probability density function π(z).

In this section, we assume Iz to be a bounded domain. Several distributions, such as the

uniform or Beta distributions. Then the boundedness of σ in z, as a linear function of z,

can be assumed. For simplicity we also assume φ = φ(x, t) independent of z. The l-th order

formal differentiation of the Boltzmann equation with respect to z gives

ǫ2∂t(∂
l
zf) + ǫv · ∇x(∂

l
zf) + ǫ∇xφ · ∇v(∂

l
zf) = ∂l

zQ(f), (2.10)

with

∂l
zQ(f) =M(v)

∫

Rd

∂l
z [σ(v,w, z)f(w, z)] dw − ∂l

z [λ(v, z)f(v, z)]

=M(v)

∫

Rd

σ(v,w, z)∂l
zf(w, z)dw + lM(v)

∫

Rd

∂zσ(v,w, z)∂
l−1
z f(w, z)dw

− λ(v, z)λl
zf(v, z)− l∂zλ(v, z)∂

l−1
z f(v, z), for 0 ≤ l ≤ m. (2.11)

We have the following theorem about the regularity of the solution in z.
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Theorem 2.1 Assume σ depends on z linearly, and

max
z

|σ| ≤ γ0, max
z

|∂zσ| ≤ γ1, max
z

|∂zλ| ≤ γ1.

We also assume that ǫ <
√

2γ1 and m > 0 is an integer. If for some integer m ≥ 0,

||∂l
zfI ||Γ(0) ≤ β, for all l = 0, · · · ,m, then

||∂l
zf ||2Γ(t) ≤ β

1

1− ǫ2

2γ1

e
2γ1l

ǫ2
t
, l = 0, · · · ,m. (2.12)

Proof. Multiplying (∂l
zf)e

−2φ(x,t)π(z)/M(v) to both sides of (2.10) and integrating on

Ω× R
d × Iz, one gets

ǫ2

2
∂t

∣

∣

∣

∣

∣

∣
∂l
zf
∣

∣

∣

∣

∣

∣

2

Γ(t)
=

∫

Iz

∫

Ω

∫

Rd

∫

Rd

σ(v,w, z)∂l
zf(w, z)∂

l
zf(v, z)e

−2φdwdvdxπ(z)dz

+ l

∫

Iz

∫

Ω

∫

Rd

∫

Rd

∂zσ(v,w, z)∂
l−1
z f(w, z)∂l

zf(v, z)e
−2φdwdvdxπ(z)dz

−
∫

Iz

∫

Ω

∫

Rd

λ(v, z)
(

∂l
zf(v, z)

)2

e−2φ/M(v)dvdxπ(z)dz

− l

∫

Iz

∫

Ω

∫

Rd

∂zλ(v, z)∂
l−1
z f(v, z)∂l

zf(v, z)e
−2φ/M(v)dvdxπ(z)dz

≤
∫

Iz

∫

Ω

∫

Rd

∫

Rd

(

√

σ(v,w, z)
√

M(v)∂l
zf(w, z)/

√

M(w)
)

·
(

√

σ(v,w, z)
√

M(w)∂l
zf(v, z)/

√

M(v)
)

dwdve−2φdxπ(z)dz

+ lγ1

∫

Iz

∫

Ω

∣

∣

∣

∣

∫

Rd

∂l−1
z f(w, z)dw

∣

∣

∣

∣

·
∣

∣

∣

∣

∫

Rd

∂l
zf(v, z)dv

∣

∣

∣

∣

e−2φdxπ(z)dz

−
∫

Iz

∫

Ω

∫

Rd

λ(v, z)
(

∂l
zf(v, z)

)2

e−2φ/M(v)dvdxπ(z)dz

+ lγ1

∫

Iz

∫

Ω

∫

Rd

∣

∣

∣
∂l−1
z f(v, z)

∣

∣

∣
·
∣

∣

∣
∂l
zf(v, z)

∣

∣

∣
e−2φ/M(v)dvdxπ(z)dz

≤
(
∫

Iz

∫

Ω

∫

Rd

λ(w, z)
(

∂l
zf(w, z)

)2

/M(w)dwe−2φdxπ(z)dz

) 1
2

·
(
∫

Iz

∫

Ω

∫

Rd

λ(v, z)
(

∂l
zf(v, z)

)2

/M(v)dve−2φdxπ(z)dz

) 1
2

+ lγ1

(

∫

Iz

∫

Ω

(
∫

Rd

∂l−1
z f(w, z)dw

)2

e−2φdxπ(z)dz

) 1
2

·
(

∫

Iz

∫

Ω

(
∫

Rd

∂l
zf(v, z)dv

)2

e−2φdxπ(z)dz

) 1
2

−
∫

Iz

∫

Ω

∫

Rd

λ(v, z)
(

∂l
zf(v, z)

)2

e−2φ/M(v)dvdxπ(z)dz

+ lγ1

(
∫

Iz

∫

Ω

∫

Rd

(∂l−1
z f(v, z))2/M(v)dve−2φdxπ(z)dz

) 1
2
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·
(
∫

Iz

∫

Ω

∫

Rd

(∂l
zf(v, z))

2/M(v)dve−2φdxπ(z)dz

) 1
2

= lγ1||∂l−1
z f ||Γ(t) · ||∂l

zf ||Γ(t) + lγ1||∂l−1
z f ||Γ(t) · ||∂l

zf ||Γ(t)

≤ lγ1(||∂l−1
z f ||2Γ(t) + ||∂l

zf ||2Γ(t)).

Here in the first inequality we used the assumption max
z

|∂zσ| ≤ γ1, and max
z

|∂zλ| ≤ γ1.

In the second inequality, we used the Cauchy-Schwartz inequality. In the second equality,

the first and third term cancels. The last equality is a result of 2ab ≤ a2 + b2 for any a, b.

Therefore,

ǫ2∂t||∂l
zf ||2Γ(t) ≤ 2γ1l(||∂l

zf ||2Γ(t) + ||∂l−1
z f ||2Γ(t)). (2.13)

We now use mathematical induction to prove (2.12). It clearly holds for l = 0. Assume

that

||∂l
zf ||2Γ(t) ≤ β

1

1− ǫ2

2γ1

e
2γ1l

ǫ2
t
.

Then by Gronwall’s inequality for (2.13),

||∂l+1
z f ||2Γ(t) ≤ e

2γ1(l+1)

ǫ2
t ||∂l+1

z fI ||2Γ(t) +

∫ t

0

e
2γ1(l+1)

ǫ2
(t−s) ||∂l

zf ||2Γ(s) ds

≤ β e
2γ1(l+1)

ǫ2
t
+ β

1

1− ǫ2

2γ1

e
2γ1(l+1)

ǫ2
t

∫ t

0

e
−

2γ1
ǫ2

s
ds

= β e
2γ1(l+1)

ǫ2
t
+ β

1

1− ǫ2

2γ1

e
2γ1(l+1)

ǫ2
t · ǫ

2

2γ1

(

1− e
−

2γ1
ǫ2

t

)

≤ β

(

1 +

ǫ2

2γ1

1− ǫ2

2γ1

)

e
2γ1(l+1)

ǫ2
t
= β

1

1− ǫ2

2γ1

e
2γ1(l+1)

ǫ2
t
.

Therefore,

||∂l
zf ||2Γ(t) ≤ β

1

1− ǫ2

2γ1

e
2γ1l

ǫ2
t
, l = 0, · · · ,m. �

This Theorem shows that the regularity of the initial data is preserved by the solution at

later times.

3 A gPC stochastic Galerkin method

By the stochastic Galerkin method, one seeks for an orthogonal polynomial expansion for

the solution of problem (2.1). That is, for random variable z ∈ Iz,

f(t,x,v, z) ≈ fK(t,x,v, z) =
K
∑

|k|=0

αk(t,x,v)ψk(z) = α ·ψ, M =

(

n+K

n

)

. (3.1)

Here k = (k1, . . . , kn) is a multi-index with |k| = k1 + · · · + kn, and the coefficient vectors

are given by

α = (α0, α2, · · · , αK), ψ = (ψ0, ψ1, · · · , ψK).

{Ψk(z)} are the orthonormal basis functions that form P
n
K (the set of n-variate orthonormal

polynomials of degree K ≥ 1) and satisfy
∫

Iz

ψk(z)ψl(z)π(z)dz = δkl, 0 ≤ |k|, |l| ≤ K = dim(Pn
K),
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where δkl the Kronecker Delta function. The commonly used pairs of {ψk(z)} and π(z) in-

clude Hermite-Gaussian, Legendre-uniform, Laguerre-Gamma, etc. If the random dimension

n > 1, one can re-order the multi-dimensional polynomials {ψk(z)} of z into a single index k.

One can refer to Section 5.2 of [18], where the graded lexicographic ordering is introduced.

The initial values of each component of α are the gPC coefficients of the initial datum

for f which is denoted by fI(x,v, z),

αk(0,x,v) =< fI(x,v, ·), ψk >H , |k| = 0, · · · ,K. (3.2)

We apply fK into (2.1) and take an inner product with ψk(z) (0 ≤ |k| ≤ K) to get

ǫ
∂α

∂t
+ v · ∇xα+∇xφ · ∇vα

=< Q(fK),ψ >H=
1

ǫ
M(v)

∫

Rd

B(v,w)α(w)dw − 1

ǫ
F (v)α+ ǫG̃(v)

=
1

ǫ
Q(α) + ǫG̃, (3.3)

where we denote

Q(α) =M(v)

∫

Rd

B(v,w)α(w)dw − F (v)α, (3.4)

and matrices B(v,w) = (Bij)K×K , F (v) = (Fij)K×K as well as the vector G̃ = (G̃k)K×1 are

given by

Bij(v,w) =

∫

Iz

σ(v,w, z)ψi(z)ψj(z)π(z)dz,

Fij(v) =

∫

Iz

λ(v, z)ψi(z)ψj(z)π(z)dz, (3.5)

G̃k(t,x,v) =

∫

Iz

G(t,x,v, z)ψk(z)π(z)dz.

Since σ, λ > 0, both matrices B, F are symmetric and positive definite [19]. Note

F (v) =

∫

Rd

B(v,w)M(w)dw. (3.6)

Similar to the property that kerQ = span{M(v)}, we have the following result which

will be used when we prove the stochastic AP property of our scheme. The proof is similar

to that in [16] for the collision operator Q defined in (2.2).

Lemma 3.1 r(v) = M(v)
∫

Rd r(w)dw is the unique solution of the system of equations

Q(r) = 0.

Proof, Use the symmetry of B and F , we have

∫

Rd

Q(r)T r(v)

M(v)
dv

=

∫

Rd

∫

Rd

r(w)TBT (v,w)r(v)dwdv −
∫

Rd

r(v)TFT (v)r(v)

M(v)
dv

=
1

2

(
∫

Rd

∫

Rd

r(w)T

M(w)
B(v,w)M(v)M(w)

r(v)

M(v)
dwdv

+

∫

Rd

∫

Rd

r(v)T

M(v)
B(w,v)M(w)M(v)

r(w)

M(w)
dvdw

7



−
∫

Rd

r(v)TF (v)r(v)

M(v)
dv −

∫

Rd

r(w)TF (w)r(w)

M(w)
dw

)

=
1

2

(
∫

Rd

∫

Rd

r(w)T

M(w)
B(v,w)M(v)M(w)

r(v)

M(v)
dwdv

+

∫

Rd

∫

Rd

r(v)T

M(v)
B(w,v)M(w)M(v)

r(w)

M(w)
dvdw

−
∫

Rd

∫

Rd

r(v)T

M(v)
B(v,w)M(w)M(v)

r(v)

M(v)
dwdv

−
∫

Rd

∫

Rd

r(w)T

M(w)
B(w,v)M(v)M(w)

r(w)

M(w)
dvdw

)

= −1

2

∫

Rd

∫

Rd

(

r(w)

M(w)
− r(v)

M(v)

)T

B(v,w)M(v)M(w)

(

r(w)

M(w)
− r(v)

M(v)

)

dvdw ≤ 0,

since B is positive definite. The second equality is due to symmetry of matrices B and F .

We use (3.6) in the third equality and use B(v,w) = B(w,v) in the fourth equality. Clearly

if Q(α) = 0, the above inequality becomes equality. Since B is positive definite, the term

in the last line implies
r(w)

M(w)
=

r(v)

M(v)
for any v and w. This implies r(v) = cM(v) for c

independent of v. Integrating over v gives c =
∫

Rd r(v)dv.

4 Spectral convergence analysis

We now prove that the gPC-SG method is convergent and stable under suitably defined

energy norm given in (2.6). An error estimate and spectral convergence rate in the probability

space will also be presented. The proofs are similar to the convergence analysis of the moment

method for linear kinetic model [20].

Let f be the solution to the Boltzmann equation (2.1). We define the projection operator

PKf =

K
∑

|k|=0

< f, ψk >H ψk.

The error arisen from the gPC-SG can be split into two parts RK and eK ,

f − fK = f − PKf + PKf − fK := RK + eK , (4.1)

where RK = f − PKf is the projection error, and

eK = PKf − fK =
K
∑

|k|=0

(

< f, ψk >H −fk
)

ψk = ê ·ψ,

where ê =
(

< f, ψ0 >H −f0, · · · , < f, ψk >H −fk
)

is the numerical error.

We first give the projection error. By standard error estimate for orthogonal polynomial

approximations, and (2.12), for 0 ≤ t ≤ T ,

||RK ||Γ(t) ≤ C1K
−m||∂m

z f ||Γ(t) ≤ C1
β

1− ǫ2

2γ1

e
2γ1mT

ǫ2

Km
, (4.2)

with C1 independent of m.
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It remains to estimate eK . Define the operator

L = ǫ2∂t + ǫv · ∇x + ǫ∇xφ · ∇v −Q. (4.3)

We first prove two results.

Lemma 4.1 < L(RK),ψ >H= − < Q(RK),ψ >H .

Proof. Since RK = f − PKf = f −
K
∑

|k|=0

< f, ψk >H ψk,

< ∂tRK ,ψ >H =< ∂tf,ψ >H − <
K
∑

|k|=0

∂t < f, ψk >H ψk,ψ >H

=< ∂tf,ψ >H −
K
∑

|k|=0

< ∂tf, ψk >H< ψk,ψ >H

=< ∂tf,ψ >H − < ∂tf,ψ >H= 0. (4.4)

The second and third terms of < L(RK),ψ >H are also zero by similar arguments. There-

fore, < L(RK),ψ >H= − < Q(RK),ψ >H .

Lemma 4.2 ||Q(RK)||Γ(t) ≤ C1
β

1− ǫ2

2γ1

e
2γ1mT

ǫ2

Km
, for 0 ≤ t ≤ T .

Since Q(RK)(v, z) = M(v)

∫

Rd

σ(v,w, z)RK(w, z)dw − λ(v, z)RK(v, z) := I + II, then

||Q(RK)||2Γ(t) ≤ 2
(

||I||2Γ(t) + ||II||2Γ(t)

)

. It is easy to see that ||II||2Γ(t) ≤ λ2
0||RK ||2Γ(t). We

now estimate I.

‖I‖2Γ(t) =

∣

∣

∣

∣

∣

∣

∣

∣

M(v)

∫

Rd

σ(v,w, z)RK(w, z)dw

∣

∣

∣

∣

∣

∣

∣

∣

2

Γ(t)

=

∫

Iz

∫

Rd

M(v)

∫

Ω

(
∫

Rd

σ(v,w, z)RK(w, z)dw

)2

e−2φdxdvπ(z)dz

≤
∫

Iz

∫

Rd

M(v)

∫

Ω

(
∫

Rd

σ2(v,w, z)M(w)dw

)(
∫

Rd

R2
K(w, z)/M(w)dw

)

· e−2φ dxdvπ(z)dz ≤ σ2
1 ||RK ||2Γ(t),

where we used
∫

Rd

∫

Rd

σ2(v,w, z)M(v)M(w)dwdv ≤ σ2
1

∫

Rd

∫

Rd

M(v)M(w) dvdw = σ2
1 .

Therefore, ||Q(RK)||2Γ(t) ≤ 2
(

σ2
1 ||RK ||2Γ(t) + λ2

0||RK ||2Γ(t)

)

, so ||Q(RK)||Γ(t) . ||RK ||Γ(t) ≤

C1
β

1− ǫ2

2γ1

e
2γ1mT

ǫ2

Km
, for 0 ≤ t ≤ T .

Since L(f) = 0 and PKL(fK) = 0, from (4.1), < L(eK), ψk >H= − < L(RK), ψk >H ,

for |k| = 0, · · ·K, that is,

< L(eK),ψ >H= − < L(RK),ψ >H . (4.5)

9



Taking the scalar product of (4.5) with e−2φ(x,t) · ê/M(v) and integrating on Ω×R
d give

ǫ2

2

(

∂t

∫

Rd

∫

Ω

e−2φ e2K/M(v) dxdv +

∫

Rd

∫

Ω

∂tφe
−2φ e2K/M(v) dxdv

)

−
∫

Rd

∫

Ω

< Q(eK),ψ >H ·ê e−2φ/M(v) dxdv

= −
∫

Rd

∫

Ω

< L(RK),ψ >H ·ê e−2φ/M(v) dxdv

=

∫

Rd

∫

Ω

< Q(RK),ψ >H ·ê e−2φ/M(v) dxdv

=

∫

Rd

∫

Ω

< Q(RK), eK >H e−2φ/M(v) dxdv

≤
∫

Rd

∫

Ω

||Q(RK)||H · ||eK ||H e−2φ/M(v) dxdv

≤
(
∫

Rd

∫

Ω

||Q(RK)||2H e−2φ/M(v) dxdv

) 1
2
(
∫

Rd

∫

Ω

||eK ||2H e−2φ/M(v) dxdv

) 1
2

= ||Q(RK)||Γ(t) · ||eK ||Γ(t),

where the second equality uses Lemma 4.1 and the inequality is by the Cauchy-Schwartz

inequality.

From (2.7), we get

ǫ2

2
∂t
(

||eK ||2Γ(t)

)

≤ ǫ2

2
φ̂||eK ||2Γ(t) + ||Q(RK)||Γ(t) · ||eK ||Γ(t),

with φ̂ = ‖∂tφ‖L∞(Ω;(0,T )).

Cancelling one ‖eK‖Γ(t) term on both sides from the above inequality and using Lemma

4.2, we have

d

dt
||eK ||Γ(t) ≤

φ̂

2
||eK ||Γ(t) +

C1

ǫ2
β

1− ǫ2

2γ1

e
2γ1mt

ǫ2

Km
.

Apply Gronwall’s Lemma,

||eK ||Γ(t) ≤ exp(φ̂t/2)||eK ||Γ(0) +
C1

ǫ2
β

1− ǫ2

2γ1

e
2γ1mt

ǫ2

Km

∫ t

0

exp
(

φ̂(t− τ)/2
)

dτ. (4.6)

We are now ready to state the main convergence theorem:

Theorem 4.3 Assume σ depends on z linearly,

max
z

|σ| ≤ γ0, max
z

|∂zσ| ≤ γ1, max
z

|∂zλ| ≤ γ1.

and ǫ <
√

2γ1. Assume φ̂ bounded, and for some integer m ≥ 0, ||∂l
zfI ||Γ(0) ≤ β, for

l = 0, · · · ,m. Then

||f − fK ||Γ(t) ≤ C
e

2γ1mT

ǫ2

Km
, (4.7)

where C > 0 depends on the initial data, φ̂ and T .
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Proof. From (4.1), one has

‖f − fK‖Γ(t) ≤ ‖RK‖Γ(t) + ‖eK‖Γ(t) .

Note eK(0) = Pkf − fk|t=0 = 0. Now combining (4.2) with (4.6) gives the desired inequality

(4.7).

Remark 4.4 When ǫ→ 0, the right-hand-side of (4.7) requires K > e
2γ1mT

ǫ2 , so the error is

not good for small ǫ unless K is very large. This is exactly the motivation for the development

of s-AP scheme which allows the choice of K independent of ǫ.

5 A fully discrete stochastic AP Scheme

For clarify, we consider v ∈ R. The space, time and velocity discretization here follow

that of the deterministic case in [9], using the even- and odd- parities formulation in velocity,

Wild sum approximation to handle the stiffness in time, center and upwind approximations

in space, and spectral approximation in velocity.

First, (2.1) can be split into two equations, one for v > 0 and one for −v < 0,















ǫ∂tf + v∂xf − E∂vf =
1

ǫ
Q(f) + ǫG,

ǫ∂tf − v∂xf + E∂vf =
1

ǫ
Q(f) + ǫG.

(5.1)

Introduce the even and odd parities r and j for v > 0,

r(t, x, v, z) =
1

2
(f(t, x, v, z) + f(t, x,−v, z)) ,

j(t, x, v, z) =
1

2ǫ
(f(t, x, v, z)− f(t, x,−v, z)), (5.2)

adding and subtracting the two equations in (5.1), one has















∂tr + v∂xj − E∂vj =
1

ǫ2
Q(r) +G,

∂tj +
1

ǫ2
(v∂xr − E∂vr) = − 1

ǫ2
λj.

(5.3)

From now on we will only consider the case of v > 0.

By the gPC-SG approach, one inserts the approximate solutions rK , jK ,

rK(t, x, v, z) =

K
∑

|k|=0

r̂k(t, x, v)ψk(z), jK(t, x, v, z) =

K
∑

|k|=0

ĵk(t, x, v)ψk(z),

into (5.3) and enforces the residual to be orthogonal to the polynomial space spanned by

ψ(z) = (ψ0(z), ψ1(z), ψ2(z), · · · , ψK(z))T . Let

r̂(t, x, v) = (r̂0(t, x, v), · · · , r̂K(t, x, v))T , ĵ(t, x, v) = (ĵ0(t, x, v), · · · , ĵK(t, x, v))T .

A system of equations for vectors r̂ and ĵ can then be obtained as















∂tr̂+ v∂x ĵ− E∂v ĵ =
1

ǫ2
Q(r̂) +

∫

Iz

G(t, x, v, z)ψ(z)π(z)dz,

∂t ĵ+
1

ǫ2
(v∂xr̂− E∂v r̂) = − 1

ǫ2
F (v)̂j,

(5.4)
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where matrices B, F are defined in (3.6). As was done in [8], we rewrite (5.4) into a diffusive

relaxation system,














∂tr̂+ v∂x ĵ− E∂v ĵ =
1

ǫ2
Q(r̂) +

∫

Iz

G(t, x, v, z)ψ(z)π(z)dz,

∂t ĵ+ φ (v∂xr̂− E∂v r̂) = − 1

ǫ2

[

F (v)̂j+ (1− ǫ2φ)(v∂xr̂− E∂v r̂)
]

,

(5.5)

where φ = φ(ǫ) is a control parameter satisfying 0 ≤ φ ≤ 1/ǫ2. A simple choice of φ is

φ(ǫ) = min

{

1,
1

ǫ2

}

.

5.1 A Stochastic AP Time-splitting

Here the main difficulty is to handle the stiff collision operator in an efficient way. We

employ the conventional time-splitting procedure [9, 8] for the diffusive relaxation system

(5.5), which is composed of a relaxation step















∂tr̂ =
1

ǫ2
Q(r̂) +

∫

Iz

G(t, x, v, z)ψ(z)π(z)dz,

∂t ĵ = − 1

ǫ2

(

F (v)̂j+ (1− ǫ2φ)d(r̂)
)

,

(5.6)

where the vector d(r̂) = v∂xr̂− E∂v r̂, followed by a convection step







∂tr̂+ v∂x ĵ− E∂v ĵ = 0,

∂t ĵ+ φ(v∂xr̂− E∂v r̂) = 0.
(5.7)

The AP property of the splitting can be shown as follows. Under the diffusive scaling, as

ǫ→ 0, (5.6) becomes Q(r̂) = 0. By Lemma 3.1, the solution is given by

r̂k(v) = ρ̂kM(v), (5.8)

where ρ̂k =
∫

R
r̂k(w)dw. The second equation of (5.6) gives

ĵk = −
∑

l

(F−1)kl(v∂xr̂l − E∂v r̂l). (5.9)

Applying (5.8) and (5.9) to the first equation of (5.7) and integrating over v, one gets

∂tρ̂k = ∂x

(

T
∑

l

(F−1)kl(∂xρ̂l + 2ρ̂lE)

)

, (5.10)

where

T =

∫

R

v2M(v)dv = θ.

On the other hand, applying the ansatz ρ(t, x, z) =
K
∑

|k|=0

ρ̂k(t, x)ψk(z) and conducting the

Galerkin projection for the limiting drift-diffusion equation (2.8), we obtain

∂tρ̂k = ∂x

(

T
∑

l

Skl(∂xρ̂l + 2ρ̂lE)

)

, (5.11)

where the matrix S = (Skl)K×K are given by

Skl =

∫

Iz

1

λ(z)
ψk(z)ψl(z)π(z)dz.

We will demonstrate in the numerical test that (5.10) is a good approximation of (5.11),

namely S = (Skl)K×K ∼ F−1 = (Fkl)
−1
K×K with spectral accuracy.
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5.2 The fully discretized systems

The relaxation step (5.6) is stiff, thus we adopt the Wild sum approximation as in [3].

Denote P(r̂) = Q(r̂) + λ0r̂ and rewrite (5.6) as

∂tr̂ =
1

ǫ2
(P(r̂)− λ0r̂) (5.12)

∂t ĵ = − 1

ǫ2

(

F (v)̂j+ (1− ǫ2φ)d(r̂)
)

. (5.13)

We discretize time using a uniform time step ∆t = tn+1 − tn, where n is the temporal index.

Denote by the index (∗) the intermediate numerical values obtained after one relaxation step

from tn. Introduce the new variables [8]

τ = 1− e−λ0t/ǫ
2

, R̂ = r̂eλ0t/ǫ
2

,

(5.12) becomes

∂τ R̂ =
1

λ0(1− τ)
P(R̂).

By Taylor expansion,

R̂(v, τ) =
∞
∑

k=0

τkr̂(k)(v),

with

r̂
(k+1)(v) =

1

k + 1

k
∑

n=0

1

λ0
P (r̂(n)), k ≥ 1.

We revert to the old notations and truncate the expansion r̂(v, t) = (1 − τ)

∞
∑

k=0

τkr̂(k)(v)

by replacing the higher order terms with the corresponding local equilibrium state r̂
(∞) =

ρ̂
∗M = ρ̂nM , which leads to

r̂
∗ = (1− τ)

m
∑

k=0

τkr̂(k) + τm+1
r̂
(∞).

Plug in (5.2), the first-order time relaxed (TR) scheme for r̂ is given by

r̂
∗ = (1− τ)r̂n + τ(1− τ)

P(r̂n)

λ0
+ τ2ρ̂nM,

with ρ̂n =

∫

R

r̂
n(v)dv.

To update the values for ĵ, we solve (5.13) by the backward Euler method to get ĵ⋆,

ĵ
⋆ =

(

I + F (v)
∆t

ǫ2

)−1 [

ĵ
n − ∆t(1− ǫ2φ)

ǫ2
d(r̂⋆)

]

,

where the matrix I + F (v)
∆t

ǫ2
is invertible, thanks to the positive definite F .

For notation clarity, we describe the spatial discretization in one space dimension. Con-

sider the spatial domain Ω = [xL, xR] which is partitioned into N grid cells with a uniform

mesh size ∆x = 1/N . Define the left boundary xL as x1/2, right boundary xR as xN+1/2,

choose the spatial grid points xj−1/2 = x1/2 + (j − 1)∆x, for j = 1, · · · , N + 1. The j-th

interior cell is [xj−1/2, xj+1/2], for j = 1, · · · , N , with the cell average at time level tn given

by

Û
n
j =

1

∆x

∫ xj+1/2

xj−1/2

Û(tn, x, v, z)dx.
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In the relaxation step, the second order center difference is used for the spatial derivative.

In the transport step, since it is not stiff, we solve it by using an explicit second-order

upwind scheme with slope limiters, which need to be implemented on the diagonal form on

the Riemann invariants:

Û = (r̂+ φ− 1
2 ĵ)/2, V̂ = (r̂− φ− 1

2 ĵ)/2, (5.14)

which solve






∂tÛ+
√

φ(v∂xÛ− E∂vÛ) = 0,

∂tV̂ −
√
φ(v∂xV̂ − E∂vV̂) = 0,

The scheme is given by, for j = 1, · · · , N ,



















Û
n+1
j = Û

∗
j − λ

[

Û
∗
j − Û

∗
j−1 +

∆x

4
(σ+

j − σ+
j−1)

]

+ (∂vÛ
∗
j )Ei∆t,

V̂
n+1
j = V̂

∗
j + λ

[

V̂
∗
j+1 − V̂

∗
j − ∆x

4
(σ−

j+1 − σ−
j )

]

− (∂vV̂
∗
j )Ei∆t,

For λ < 0, the upwind stencil has to be changed. Here σ±
i is the slope of r̂ ± φ− 1

2 ĵ on the

i-th cell at (∗)-th time step, with l-th component denoted by (σ±
i )(l) and given by

(σ±
i )(l) =

1

∆x

[

±r(l)i±1 − φ− 1
2 j

(l)
i ∓ r

(l)
i + φ− 1

2 j
(l)
i±1

]

ψ((θ±i )(l)), (0 ≤ m ≤M)

where r(l), j(l) are the l-th component of r̂ and ĵ respectively. (θ±i )(l) is defined by

(θ±i )(l) =

(

r
(l)
i ± φ− 1

2 j
(l)
i − r

(l)
i−1 ∓ φ− 1

2 j
(l)
i−1

r
(l)
i+1 ± φ− 1

2 j
(l)
i+1 − r

(l)
i ∓ φ− 1

2 j
(m)
i

)±

.

A simple minmod slope limiter function is chosen,

ψ(θ) = max{0,min{1, θ}}.

one can then update the values for r̂n+1
j and ĵn+1

j by using (5.14).

Now combine the AP-property of the time splitting shown in section 5.1, with the AP

property of the deterministic scheme given in [8], easily imply that the fully discrete time

and space approximations are s-AP, in the sense that its ǫ → 0 limit, with ∆t,∆x fixed,

approaches to the fully-discrete gPC-SG approximation of the drift-diffusion equation (2.8).

We omit the details.

The velocity discretization is performed using spectral approximation based on the Her-

mite polynomials, which is equivalent to the moment method. We refer the reader to [17, 8].

5.3 Boundary conditions

Consider the inflow boundary conditions f(t, x, v)|xL = FL(v, z), f(t, x,−v)|xR = FR(v, z)

for v > 0. Then

fk(t, x, v)|xL = (
#»

F 1(v))k, fk(t, x,−v)|xR = (
#»

F 2(v))k, (0 ≤ l ≤M)

where

(
#»

F 1(v))k =

∫

Iz

FL(v, z)ψk(z)π(z)dz, (
#»

F 2(v))k =

∫

Iz

FR(v, z)ψk(z)π(z)dz.
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By gPC Galerkin approach (for v > 0 only),

r̂l + ǫĵl|xL = (
#»

F 1(v))l, r̂l − ǫĵl|xR = (
#»

F 2(v))l, (5.15)

where rl, jl are the k-th component (0 ≤ m ≤M) of r̂ and ĵ respectively.

As ǫ→ 0, (5.6) leads to

ĵ = −F−1(v)d(r̂), (5.16)

which is plugging into (5.15) to form the numerical boundary conditions.

To obtain a second order numerical boundary conditions, we use two ghost cells outside

xL, namely [x−3/2, x−1/2] and [x−1/2, x1/2], with average cell values Û−1, Û0 defined respec-

tively. Two ghost cells outside xR are [xN+1/2, xN+3/2] and [xN+3/2, xN+5/2] with ÛN+1,

ÛN+2 are similarly defined. Using the second-order central difference for spatial derivative

of r̂ in (5.15) and (5.16), we define the ghost cells values r̂−1, r̂0 by the following equations

r̂−1 + r̂2

2
− ǫ
[

F−1(v)
( v

3∆x
(r̂2 − r̂−1)− E(x1/2)∇v r̂(x1/2)

)]

=
#»

F 1,

r̂0 + r̂1

2
− ǫ
[

F−1(v)
( v

∆x
(r̂1 − r̂0)− E(x1/2)∇v r̂(x1/2)

)]

=
#»

F 1, (5.17)

where ∇v r̂ is approximated by

∇v r̂(x1/2) ≈
∫

Iz

(∇vFL)ψ(z)π(z)dz.

Notice that the matrix
1

2
I +

ǫv

∆x
F−1 is positive definite, so the above equations are

solvable. For ǫ≪ 1, (5.17) is an O(ǫ2) approximation to (5.15) and (5.16). Boundary values

for ĵ can be obtained by using approximation to (5.16)

ĵ−1 = −2F−1(v)
( v

3∆x
(r̂2 − r̂−1)− E(x1/2)∇v r̂(x1/2)

)

− ĵ2,

ĵ0 = −2F−1(v)
( v

∆x
(r̂1 − r̂0)− E(x1/2)∇v r̂(x1/2)

)

− ĵ1.

The boundary condition at xR is treated similarly.

5.4 The stochastic collocation method

For numerical comparison, the stochastic collocation (SC) method will be employed.

Let {z(j)}Ns
j=1 ⊂ Iz be the set of collocation nodes, Ns the number of samples. For each

fixed individual sample z(j), j = 1, . . . , Ns, one applies the AP scheme to the deterministic

equations as in [8], obtains the solution ensemble uj(t, x, v) = u(t, x, v, z(j)), then adopts an

interpolation approach to construct a gPC approximation, such as

u(t, x, v, z) =

Ns
∑

j=1

uj(t, x, v)lj(z),

where lj(z) depends on the construction method. The Lagrange interpolation method is

used here by choosing lj(z
(i)) = δij . This is straightforward and brings no coding difficulty.

An overview of such stochastic collocation method can be found in [18]. In contrary to the

collocation method which is not guaranteed to be AP, especially in high dimensional random

space, the proposed gPC-SG method delivers a stochastic AP property in the whole random

domain for any ǫ, regardless of the order of polynomial expansions.
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6 Numerical Examples

In this section, several numerical tests are shown to illustrate the validity and effectiveness

of our stochastic AP scheme. Randomness will be risen from collision kernel, initial data or

boundary data. For simplicity, we will always assume the random variable z obeys a uniform

distribution, defined on [−1, 1]n with n up to 2, so the Legendre polynomial gPC basis are

used.

Often one is only interested in the solution statistics, such as the mean and standard

deviation of the macroscopic physical quantities. The macroscopic quantities ρ, u that

stands for density and bulk velocity are defined by

ρ =

∫

R

f(v)dv, u =
1

ρ

∫

R

f(v)vdv.

Given the gPC coefficients fk of f , the statistical mean, variance and standard deviation are

[f ] ≈ f0, Var[f ] ≈
M
∑

|k|=1

f2
k, S[f ] =

√

√

√

√

M
∑

|k|=1

f2
k.

To measure the difference in the solutions, we use the difference in mean and in standard

deviation, with L2 norm in x,

Emean(t) =
∣

∣

∣

∣

∣

∣
E[uh]− E[u]

∣

∣

∣

∣

∣

∣

L2
,

Estd(t) =
∣

∣

∣

∣

∣

∣
σ[uh]− σ[u]

∣

∣

∣

∣

∣

∣

L2
,

where uh and u are respectively numerical solutions of gPC-SG and the reference solution

obtained by the high-order collocation method.

For the collocation method, with samples {z(j)} and corresponding weights {w(j)} chosen

from a quadrature rule, the integrals are approximated by

∫

Iz

f(t, x, v, z)π(z)dz ≈
Ns
∑

j=1

f(t, x, v, z(j))w(j).

6.1 Test I: A random collision kernel

x ∈ [0, 1], FL(v) =M(v), FR(−v) =M(v), G = 0,

φ = exp (−50 exp(1)(1/4− x)2), ǫ = 0.5 or ǫ = 0.002.

The initial distribution is f(x, v, t = 0) = M(v). Let σ(v, w, z) = 2 + z ≥ 0 and σ(v, w, z) =

2 + 0.3z1 + 0.7z2 for the one and two-dimensional tests, respectively.

Lacking the analytic solutions, we use the high-order stochastic collocation method with

16 Legendre-Gauss quadrature points to compute a reference solution. In Fig. 1 and Fig.

2, we show the results by gPC-SG with K = 4, both small and large ǫ are chosen. In

Fig. 3, we give the results of two dimensional random variables and K = 4. We compare

our solutions with the reference solutions. The gPC solutions are represented by stars and

reference solutions by solid lines with fine meshes, namely ∆x = 0.005, ∆t = 2× 10−5. One

can clearly observe a satisfactory agreement between the solution of our gPC-SG scheme and

the reference ones.
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Figure 1: Test I with one-dimensional random variable. First row: mean and standard deviation

of density ρ. Second row: mean and standard deviation of momentum density ρu (denoted by

u1), at t = 0.03, ∆x = 0.01, ∆t = 5 × 10−5, ǫ = 0.002. Star: gPC-SG with K = 4. Solid line:

reference solutions using collocation with Nz = 16.
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Figure 2: Test I with one-dimensional random variable. First row: mean and standard deviation

of ρ. Second row: mean and standard deviation of ρu, at t = 0.03, ∆x = 0.01, ∆t = 5 × 10−5,

ǫ = 0.5. Star: gPC-SG with K = 4. Solid line: reference solutions using collocation with Nz = 16.
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Figure 3: Test I with 2 dimensional random variables. First row: mean and standard deviation

of ρ. Second row: mean and standard deviation of ρu, at t = 0.03, ∆x = 0.01, ∆t = 5 × 10−5,

ǫ = 0.5. Star: gPC-SG with K = 4. Solid line: reference solutions using collocation with Nz = 16.
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Figure 4: Test II. First row: mean and standard deviation of ρ. Second row: mean and standard

deviation of ρu, at t = 0.03, ∆x = 0.01, ∆t = 5 × 10−5, ǫ = 0.002. Star: gPC-SG with K = 4.

Solid line: reference solutions using collocation with Nz = 16.

6.2 Test II: Random initial data

x ∈ [0, 1], φ = exp (−50 exp(1)(1/4− x)2), σ(v, w) = 1, G = 0,

f0(x, v, z) =
ρ0(x, z)√

π
e−v2

, ρ0(x, z) =
2 + z sin(2πx)

3
, ǫ = 0.002.

ρ0 is chosen to mimic the Karhunen-Loeve expansion. Periodic boundary condition is as-

sumed in x. We show the 4-th order gPC solutions and reference solutions in Fig. 4. The

two solutions are in good agreement.

6.3 Test III: Random boundary data

x ∈ [0, 1], FL(v) = (1 + 0.5z)M(v), FR(−v) = (1 + 0.5z)M(v),

σ(v,w) = 1, G = 0, φ = exp (−50 exp(1)(1/4− x)2), ǫ = 0.002.

20



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Erho

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Srho

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3
Eu1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Su1

Figure 5: Test III. First row: mean and standard deviation of ρ. Second row: mean and standard

deviation of ρu, at t = 0.01, ∆x = 0.01, ∆t = 5 × 10−5, ǫ = 0.002. Star: gPC-SG with K = 4.

Solid line: reference solutions using collocation with Nz = 16.

In this numerical test, we assume the inflow boundary conditions involved with random

inputs, that is, a random fluctuation around the equilibrium at both boundaries. The 4-th

order gPC solutions and reference solutions are shown in Fig. 5.

6.4 Test IV: The Boltzmann-Poisson equation with random

parameters

x ∈ [0, 1], FL(v) =M(v), FR(−v) =M(v),

f(x, v, t = 0) =M(v), G = 0, ǫ = 0.001.

We consider the case where the electric potential is given by the solution of a Poisson equation.

The numerical data is chosen from [8].

β(z)∂xxφ = ρ− c(x, z), φ(0) = 0, φ(1) = V,

where β(z) is the scaled Debye length, V the applied bias voltage, and c(x, z) is the doping

profile. The electric field E = −∂xφ is obtained by central difference approximation. In this
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Figure 6: Test IV. First row: mean and standard deviation of ρ. Second row: mean and standard

deviation of the potential φ, at t = 0.05, ∆x = 0.01, ∆t = 0.0001, ǫ = 0.001. Star: gPC-SG with

K = 4. Solid line: reference solutions using collocation with Nz = 16.

numerical test, we involve random perturbations on the parameters β(z) and c(x, z), namely

β(z) = 0.002(1 + 0.2z), and

c(x, z) =

(

1− (1−M)ρ(0, t = 0)
[

tanh(
x− x1
s

)− tanh(
x− x2
s

)
]

)

(1 + 0.5z),

with s = 0.02, M = (1 − 0.001)/2, x1 = 0.3, x2 = 0.7 and V = 5. The 4-th order gPC

solutions and reference solutions are shown in Fig. 6, and are in good agreement.

6.5 Numerical tests for the AP property

In the following Fig. 7, 8 and 9, we use Test I with one-dimensional random variable,

σ(v, w, z) = 2 + z. Fig. 7 compares the numerical solutions of the gPC-SG system for the

limit diffusion equation given in (5.11) and that of the limit equation for the gPC system

given in (5.10), both use the gPC approximations with K = 4. The analytic solution of two

equations are unknown, so we use the forward Euler in time and central difference in space to

obtain the approximated solutions. We can see the two sets of solutions in good agreement.

In Fig. 8, we compare mean and standard deviation of ρ between the 4-th order gPC

solutions of our proposed scheme and that of the limit diffusion equation (5.10) as reference

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Erho

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25
Srho

Figure 7: Test I with one-dimensional random variable. Mean and standard deviation of numerical

solution ρ of the limiting diffusion equations, at t = 0.025. ∆x = 0.01, ∆t = 5× 10−5. Solid line:

numerical solution of the system (5.11). Circle: numerical solution of the system (5.10), both use

gPC order K = 4.

solutions. One can observe a satisfactory agreement between the two solutions when ǫ is

really small, which indicates that our proposed gPC scheme is stochastic AP.

In Fig. 9, the semilog plot of the errors of mean and standard deviation of physical

quantities at ǫ = 10−5, T = 0.03, ∆t = 5× 10−5, with respect to increasing gPC orders are

shown at different levels of grid resolutions, ∆x = 0.02 (squares) and ∆x = 0.01 (circles). We

demonstrate a fast exponential convergence with respect to increasing K. The errors quickly

saturate at modest gPC orders when K = 4, which implies that the errors arisen from the

temporal and spatial discretization contribute more than that from the gPC expansion.
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