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Abstract We review some classical and more recent results for the derivation of
mean field equations from systems of many particles, focusing on the stochastic
case where a large system of SDE’s leads to a McKean-Vlasov PDE as the number
N of particles goes to infinity. Classical mean field limit results require that the inter-
action kernel be essentially Lipschitz. To handle more singular interaction kernels is
a longstanding and challenging question but which has had some recent successes.

1 Introduction

Large systems of interacting particles are now fairly ubiquitous. The corresponding
microscopic models are usually conceptually simple, based for instance on New-
ton’s 2nd law. However they are analytically and computationally complicated since
the number N of particles is very large (with N in the range of 1020−1025 for typical
physical settings).

Understanding how this complexity can be reduced is a challenging but critical
question with potentially deep impact in various fields and a wide range of appli-
cations: in Physics where particles can represent ions and electrons in plasmas, or
molecules in a fluid and even galaxies in some cosmological models; in the Bio-
sciences where they typically model micro-organisms (cells or bacteria); in Eco-
nomics or Social Sciences where particles are individual “agents”.
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The classical strategy to reduce this complexity is to derive a mesoscopic or
macroscopic system, i.e. a continuous description of the dynamics where the infor-
mation is embedded in densities typically solving non-linear PDE’s.

The idea of such a kinetic description of large systems of particles goes back to
the original derivation of statistical mechanics and the works of Maxwell and Boltz-
mann on what is now called the Boltzmann equation which describes the evolution
of dilute gases.

We consider here a different (and in several respects easier) setting: The mean
field scaling is in a collisionless regime meaning that collisions seldom occur and
particles interact with each other at long range.

The first such mean field equation was introduced in galactic dynamics by Jeans
in 1915 [49]. The Vlasov equation was introduced in plasma physics by Vlasov in
[75, 76] as the mean field equation for large particle systems of ions or electrons
interacting through the Coulomb force, ignoring the effect of collisions.

The rigorous derivation of the Vlasov equation with the Coulomb or Newtonian
potential from Newton dynamics is still a major open question in the topic. For some
recent progress in that direction, we refer to [42, 54, 55]. However we focus here
on the stochastic case and refer to [35, 46] for a review of the mean field limit for
deterministic systems.

In the rest of this introduction, we present some of the classical models that one
typically considers.

1.1 Classical 2nd Order dynamics

The most classical model is the Newton dynamics for N indistinguishable point
particles driven by 2-body interaction forces and Brownian motions. Denote by Xi ∈
Γ and Vi ∈ Rd the position and velocity of particle number i. The evolution of the
system is given by the following SDE’s,

dXi =Vi dt, dVi =
1
N ∑

j 6=i
K(Xi−X j)dt +

√
2σ dW i

t , (1)

where i = 1,2, · · · ,N. The W i are N independent Brownian motions or Wiener pro-
cesses, which may model various types of random phenomena: For instance random
collisions against a given background. If σ = 0, the system (1) reduces to the clas-
sical deterministic Newton dynamics. We always assume here that σ > 0 but we
may consider cases where σ scales with N. We then denote the coefficient σN and
assume that σN → σ ≥ 0.

Observe that the Wiener processes are only present in the velocity equations
which will have several important consequences.

The space domain Γ may be the whole space Rd , the flat torus Td or some
bounded domain. The analysis of a bounded, smooth domain Γ is strongly depen-
dent on the type of boundary conditions but can sometimes be handled in a manner
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similar to the other cases with some adjustments. Thus for simplicity we typically
limit ourselves to Γ =Rd , Td . Even if Γ is bounded, there is no hard cap on veloci-
ties so that the actual domain in position and velocity, Γ ×Rd is always unbounded.

The critical scaling in (1) (and later in (3)) is the factor 1
N in front of the inter-

action terms. This is the mean field scaling and it keeps, at least formally, the total
strength of the interaction of order 1.

At least formally, one expects that as the number N of particles goes to infinity,
(1) will be replaced by a continuous PDE. In the present case, the candidate is the so-
called McKean-Vlasov equation (or sometimes Vlasov-Fokker-Planck) which reads

∂t f + v ·∇x f +(K ?ρ) ·∇v f = σ∆v f , (2)

where the unknown f = f (t,x,v) is the phase space density or 1-particle distribution
and ρ = ρ(t,x) is the spatial (macroscopic) density obtained through

ρ(t,x) =
∫
Rd

f (t,x,v)dv.

This type convergence is what we call mean field limit and it is connected to the
important property of propagation of chaos.

We point out that Eq. (2) is of degenerate parabolic type as the diffusion ∆v f only
acts on the velocity variable.

1.2 First Order Systems

As the companion of (1), we also consider the 1st order stochastic system

dXi =
1
N ∑

j 6=i
K(Xi−X j)dt +

√
2σ dW i

t , i = 1, · · · ,N, (3)

with the same assumptions as for the system (1). As before, one expects that as the
number N of particles goes to infinity the system (3) will converge to the following
PDE

∂t f +divx( f (K ? f )) = σ∆x f , (4)

where the unknown f = f (t,x) is now the spatial density.
The model (3) can be regarded as the small mass limit (Smoluchowski-Kramers

approximation) of Langevin equations in statistical physics. However, the model (3)
has its own important applications.

The best known classical application is in Fluid dynamics with the Biot-Savart
kernel

K(x) =
1

2π
(
−x2

|x|2
,

x1

|x|2
).
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This leads to the well-know vortex model which is widely used to approximate the
2D Navier-Stokes equation written in vorticity form. See for instance [14, 15, 29,
59, 67].

Systems (1) or (3) can be written in the more general form of

dZi =
1
N

N

∑
j=1

H(Zi,Z j)dt +
√

2σ dW̃ i
t , i = 1,2, · · · ,N, (5)

where we denote W̃ i
t =W i

t in the case of 1st order models and W̃ i
t = (0, W i

t ) for 2nd
order models where there is only diffusion in velocity.

It is easy to check that taking

H(Zi,Z j) = K(Zi−Z j)

with the convention that K(0) = 0, the system of SDE’s (5) becomes (3). Further-
more, if we replace Zi by the pair (Xi,Vi) as in (1), and set H as

H((Xi,Vi),(X j,Vj)) = (Vi, K(Xi−X j))

and again with convention that K(0) = 0, then the SDE’s (5) can also represent the
Newton like systems (1). We write particles systems in the forms as (1) and (3)
simply because that is enough for most interesting applications.

1.3 Examples of Applications

As mentioned above, the best know example of interaction kernel is the Poisson
kernel, that is

K(x) =±Cd
x
|x|d

, d = 2,3, · · · ,

where Cd > 0 is a constant depending on the dimension and the physical parameters
of the particles (mass, charges...). This corresponds to particles under gravitational
interactions for the case with a minus sign and electrostatic interactions (ions in a
plasma for instance) for the case with a positive sign.

The description by McKean-Vlasov PDE’s goes far beyond plasma physics and
astrophysics. Large systems of interacting particles are now widely used in the Bio-
sciences and social sciences. Since, many individual based particle models are for-
mulated to model collective behaviors of self-organizing particles or agents. Given
the considerable literature, we only give a few limited examples and the references
that are cited have no pretension to be exhaustive.

• Biological systems modeling the collective motion of micro-organisms (bacteria,
cells...). The canonical example is again the case of the Poisson kernel for K
where System (3) coincides with the particle models to approximate the Keller-
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Segel equation of chemotaxis. We refer mainly to [30] for the mean field limit,
together with [34, 56] (see also [68, 69, 72] for general modeling discussions).

• Aggregation models correspond to System (3), typically with K =−∇W and an
extra potential term −∇V (Xi),

dXi =−
1
N ∑

j 6=i
∇W (Xi−X j)dt−∇V (Xi)dt +

√
2σ dW i

t , i = 1, · · · ,N. (6)

They are used in many settings (in biology, ecology, for space homogeneous
granular media as in [3]...). See for instance [9, 10, 13, 57, 58] for the mathemat-
ical analysis of the particle system (6), [19, 20, 25] for the analysis of the limiting
PDE.

• Since the pioneering works in [74] and [24], 2nd order systems like (1) have
been used to model flocks of birds, schools of fishes, swarms of insects, ... One
can see [17, 18, 40] and the references therein for a more detailed discussion of
flocking or swarming models in the literature. We emphasize that presence of the
noise in the models is important since we cannot expect animals to interact with
each other or the environment in a completely deterministic way. We in particular
refer to [39] for stochastic Cucker-Smale model with additive white noise as in
(1) and to [1] for multiplicative white noise in velocity variables respectively.
The rigorous proof of the mean field limit was given in [7] for systems similar to
(1) with locally Lipschitz vector fields; the mean-field limit for stochastic Vicsek
model where the speed is fixed is given in [8].

• First order models are quite popular to model opinion dynamics among a popu-
lation (such as the emergence of a common belief in a pricing system). We refer
for instance to [43, 52, 65, 77]. Individual-based models are even used for coor-
dination or consensus algorithm in control engineering for robots and unmanned
vehicles, see [21].

There are many other interesting questions that are related to mean field limit for
stochastic systems but that are out of the scope of the present article. For instance

• The derivation of collisional models and Kac’s Program in kinetic theory. Af-
ter the seminal in [53] and later [23], the rigorous derivation of the Boltzmann
equation was finally achieved in [31] but only for short times (of the order of the
average time between collisions). The derivation for longer times is still widely
open in spite of some critical progress when close to equilibrium in [4, 5]. Many
tools and concepts that are used for mean field limits were initially introduced for
collisional models, such as the ideas in the now famous Kac’s program. Kac first
introduced a probabilistic approach to simulate the spatially homogeneous Boltz-
mann equation in [50] and formulated several related conjecture. After some ma-
jor contributions in the 90’s, see in particular [26, 37, 38], significant progress
was again achieved recently in solving these conjectures, see [41, 63, 64], and
the earlier [16].

• Stochastic vortex dynamics with multiplicative (instead of additive) noise leading
to Stochastic 2D Euler equation. In [28], the authors showed that the point vortex
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dynamics becomes fully well-posed for every initial configuration when a generic
stochastic perturbation (in the form of multiplicative noises) compatible with the
Euler description is introduced. The SDE systems in [28] will converge to the
stochastic Euler equation, rather than Navier-Stokes equation as the number N of
point vortices goes to infinity. However, the rigorous proof of the convergence is
difficult and still open.

• Scaling limit (hydrodynamic limit) of random walks on discrete spaces, for in-
stance on lattice Zd for which we refer to [51]. In this setting, one also tries to
obtain a continuum model, usually a deterministic PDE, from a discrete particle
model on a lattice, as N → ∞ and of course the mesh size h converges to 0. An
interesting observation is that we can use a stochastic PDE as a correction to the
limit deterministic PDE, see [27].

This article is organized as follows: In section 2 we introduce the basic concepts
and tools in this subject. We define the classical notion of mean field limit and
propagation of chaos as well as more recent notions of chaos. Then in section 3 we
review some classical results under the assumptions that K is globally Lipschitz and
more recent results for singular kernels K. Both qualitative and quantitative results
will be presented. Finally, in section 4 we briefly review the authors’ recent results
[47] and [48] for very rough interaction kernels K with the relative entropy method.

2 The basic concepts and main tools

In order to compare the particle systems (1) and (3) with the expected mean field
equations (2) and (4) respectively, we need to introduce several concepts and tools
to capture the information on both levels of descriptions.

Those tools have often been introduced in different contexts (and in particular
for the derivation of collisional models such as the Boltzmann equation). The main
classical references here are [6, 36, 50, 71] and [45] for the stochastic aspects.

2.1 The empirical measure

In the following, to make the presentation simple, we sometimes use the unified,
one variable formulation (5). Therefore, for the 2nd order model,

Zi = (Xi,Vi) ∈ E := Γ ×Rd

and for the 1st order model,

Zi = Xi ∈ E := Γ .

One defines the empirical measure as
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µN(t,z) =
1
N

N

∑
i=1

δ (z−Zi(t)), (7)

where z = (x,v) ∈ E = Γ ×Rd or z = x ∈ Γ .
The empirical measure is a random probability measure, i.e. µN(t) ∈P(E),

whose law lies in the space P(P(E)). Recall that P(E) represents the set of all
Borel probability measures on E. Since all particles Zi are assumed to be indistin-
guishable, µN(t,z) gives the full information of the solution

ZN(t) = (Z1(t), · · · ,ZN(t)),

to the particle system (1) or (3).
One uses a slight variant in the case of 2D stochastic vortex model for approxi-

mating Navier-Stokes equation where for convenience one usually defines

µN(t,x) =
1
N

N

∑
i=1

αiδ (x−Xi(t)), (8)

see for instance [29]. In that case, αi models the strength of the circulation which
can be positive or negative and hence the empirical measure is a signed measure and
not a probability measure.

In the deterministic setting, that is provided σ = 0 in (1) or (3) (and therefore
in (2) and (4)), the empirical measure µN is also deterministic. Furthermore in this
special case it actually solves exactly the limiting PDE (2) or (4) in the sense of
distribution. However, this cannot be true anymore for the stochastic setting: the
stochastic behavior can only vanish when the number N of particles goes to infinity.

Systems (1) and (3) need to be supplemented with initial conditions. A first pos-
sibility is to choose a deterministic sequence of initial data ZN(t = 0).

It is considered more realistic though to use random initial conditions in which
case ZN(t = 0) is taken according to a certain law

Law(Z0
1 , · · · ,Z0

N) = FN(0) ∈P(EN).

One often assumes some sort of independence (or almost independence) in the law
FN(0). A typical example is chaotic law for which FN(0,z1, . . . ,zN) = Π N

i=1 f 0(zi)
for a given function f 0.

No matter which type of initial condition is chosen, µN(t,z) is always random
for any t > 0.

The concept of mean field limit is defined for a particular choice of sequence of
initial data

Definition 1 (Mean field limit). Consider a sequence of deterministic initial data
(Z0

1 , · · · ,Z0
N) as N→ ∞ or equivalently a sequence of deterministic initial empirical

measures µ0
N , such that

µ
0
N → f0
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in the tight topology of measures. Then the mean field limit holds for this particular
sequence iff for a.e. t

µN(t)→ ft

with convergence in law, where ft denotes the solution to (2) or (4) with initial data
f0.

Here the convergence in law of µN means that for any φ bounded continuous
function from the set of probability measures on E, P(E) to R, one has that

φ(µN(t, .))−→ φ( ft(.)), (9)

as N → ∞, where t ≥ 0. This in particular implies the convergence of the first mo-
ment (the case where φ is linear in µN) s.t. for any ϕ ∈Cb(E)

E
∫

E
ϕ(z)dµN(t,z) := E

1
N

N

∑
i=1

ϕ(Zi(t))→
∫

E
ϕ(z) ft(z)dz, (10)

A few important points follow from this definition:

• The mean field limit may hold for one particular choice of sequence and not
hold for another. In fact for many singular kernels, this is very likely as it is easy
to build counterexamples where the particles are initially already concentrated.
This means that the right questions are for which sequence of initial data the
mean field limit holds and whether this set of initial data is somehow generic.

• If one chooses random initial data for instance according to some chaotic law
FN(0) = ( f 0)⊗N then the question of the mean field limit can be asked for each
instance of the initial data. Hence the mean field limit could a priori holds with a
certain probability that one would hope to prove equal to 1. This will lead to the
important notion of Propagation of chaos.

• Because the limit f is deterministic (as a solution to a PDE), the mean field
limit obviously only holds if µN becomes deterministic at the limit. This hints at
possible connection with some sort of law of large numbers.

2.2 The Liouville equation

While the empirical measure follows the trajectories of the system, it can be useful
to have statistical informations as given by the joint law

FN(t,z1, · · · ,zN) = Law(Z1(t), · · · ,ZN(t))

of the particle systems (1) or (3). FN is not experimentally measurable for prac-
tical purposes and instead the observable statistical information of the system is
contained in its marginals. One hence defines k−marginal distribution as
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FN
k (t,z1, · · · ,zk) =

∫
EN−k

FN(t,z1, · · · ,zN)dzk+1 · · ·dzN . (11)

The 1-marginal is also known as the 1 particle distribution while the 2-marginal
contains the information about pairwise correlations between particles.

It is possible to write a closed equation, usually called the Liouville equation,
governing the evolution of the law FN . For 2nd order systems, it reads

∂tFN +
N

∑
i=1

vi ·∇xiF
N +

1
N

N

∑
i=1

∑
j 6=i

K(xi− x j) ·∇viF
N = σ

N

∑
i=1

∆viF
N . (12)

Similarly, for the 1st order systems (3), one has

∂tFN +
1
N

N

∑
i=1

∑
j 6=i

K(xi− x j) ·∇xiF
N = σ

N

∑
i=1

∆xiF
N . (13)

In the deterministic case, those equations had been derived by Gibbs, see [32, 33].
In the present stochastic setting, they follow from Itô’s formula, see [45], applied to
φ(ZN(t)) for any test function.

The fact that particles are indistinguishable implies that FN is a symmetric prob-
ability measure on the space EN , that is for any permutation of indices τ ∈ SN ,

FN(t,z1, · · · ,zN) = FN(t,zτ(1), · · · ,zτ(N)).

We write it as FN ∈PSym(EN). Similarly, it is easy to check that the k−marginal
distribution is also symmetric FN

k ∈PSym(Ek) for 2≤ k ≤ N.

2.3 The BBGKY hierarchy

For simplicity we only focus on the 1st order system (1) as the 2nd order dynamics
(1) case can be dealt with similarly by adding the corresponding free transport terms.

From the Liouville equation (13), it is possible to deduce equations on each
marginal FN

k . Noticing the fact that particles are indistinguishable and using the
appropriate permutation, one obtains

∂tFN
k +

1
N

k

∑
i=1

k

∑
j=1, j 6=i

K(Xi−X j) ·∇xiF
N
k

+
N− k

N

k

∑
i=1

∫
Γ

divxi

(
K(xi− y)FN

k+1(t,x1, · · · ,xk,y)
)

dy = σ

k

∑
i=1

∆xiF
N
k .

(14)

The equation (14) is not closed as it involves the next marginal FN
k+1; thus the de-

nomination of hierarchy.
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On the other hand, each marginal FN
k is defined on a fixed space Ek contrary to

FN which is defined on a space depending on N. Therefore one may easily consider
the limit of FN

k as N→ ∞ for a fixed k. Formally one obtains the limiting hierarchy

∂tF∞
k +

k

∑
i=1

∫
Γ

divxi

(
K(xi− y)F∞

k+1(t,x1, · · · ,xk,y)
)

dy = σ

k

∑
i=1

∆xiF
∞
k .

Each equation is still not closed and a priori the hierarchy would have to be consid-
ered for all k up to infinity.

However if F∞
k (t) is tensorized, F∞

k (t) = f⊗k
t , then each equation is closed and

they all reduce to the limiting mean field equation (4). This leads us to the important
notion of propagation of chaos.

2.4 Various notions of chaos

The original notion of propagation of chaos goes as far back as Maxwell and Boltz-
mann. The classical notion of propagation of chaos was formalized by Kac in [50],
see also the famous [71]. The other, stronger notions of chaos presented here were
investigated more recently in particular in [41], [63] and [64] (see also [16]).

Let us begin with the the simplest definition that we already saw

Definition 2. A law FN is tensorized/factorized/chaotic if

FN(z1, · · · ,zN) = Π
N
i=1FN

1 (zi).

Unfortunately for N fixed the law FN(t) solving the Liouville Eq. (12) or (13) cannot
be chaotic. Indeed for a fixed N some measure of dependence necessarily exists
between particles and strict independence is only possible asymptotically. This leads
to Kac’s chaos.

Definition 3. Let E be a measurable metric space (here E = Γ ×Rd or Γ ). A se-
quence (FN)N∈N of symmetric probability measures on EN is said to be f−chaotic
for a probability measure f on E, if one of the following equivalent properties holds:
i) For any k∈N, the k−marginal FN

k of FN converges weakly towards f⊗k as N goes
to infinity, i.e. FN

k ⇀ f⊗k ;
ii) The second marginal FN

2 converges weakly towards f⊗2 as N goes to infinity:
FN

2 ⇀ f⊗2;
iii) The empirical measure associate to FN , that is µN(z) ∈P(E) as in (7) with
FN = Law(Z1, · · · ,ZN), converges in law to the deterministic measure f as N goes
to infinity.

Here the weak convergence FN
k ⇀ f⊗k simply means that for any test functions

φ1, · · · ,φk ∈Cb(E),

lim
N→0

∫
Ek

φ1(z1) · · ·φk(zk)FN
k (z1, · · · ,zk)dz1 · · ·dzk = Π

k
i=1

∫
E

f (zi)φ1(zi)dzi,
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and µN converges in law to f is as before in the sense of (9).
We refer to [71] for the classical proof of equivalence between the three proper-

ties. A version of the equivalence has recently been obtained in [41], quantified by
the 1 Monge-Kantorovich-Wasserstein (MKW) distance between the laws.

We now can define the corresponding notion of propagation of chaos.

Definition 4 (Propagation of chaos). Assume that the sequence of the initial joint
distribution (FN(0))N≥2 is f0−chaotic. Then propagation of chaos holds for systems
(1) or (3) up to time T > 0 iff for any t ∈ [0,T ], the sequence of the joint distribution
at time t (FN(t))N≥2 is also ft−chaotic, where ft is the solutions to the mean field
PDE (2) or (4) respectively with initial data f0.

If initially (Z0
1 , · · · ,Z0

N) was chosen according to the law FN(0) with the sequence
FN(0) to be f0−chaotic, then by property iii) of Definition 3 propagation of chaos
implies that the mean field limit holds with probability one.

Kac’s chaos and propagation of chaos is rather weak and thus does not allow a
very precise control on the initial data. For this reason, it can be useful to consider
stronger notions of chaos.

There are two natural physical quantities that can help quantify such stronger
notions of chaos: the (Boltzmann) entropy and the Fisher information. The scaled
entropy of the law FN is defined as

HN(FN) =
1
N

∫
EN

FN logFNdz1 · · ·dzN ,

where we recall that E = Γ ×Rd for the 2nd order system and E = Γ for the 1st
order system. The Fisher information is

IN(FN) =
1
N

∫
EN

|∇FN |2

FN dz1 · · ·dzN .

We normalized both quantities by factor 1
N such that for any f ∈P(E),

HN( f⊗N) = H1( f ), IN( f⊗N) = I1( f ).

The use of those quantities leads to alternative and stronger definitions of a
f−chaotic sequence, entropy chaos and Fisher information chaos.

Definition 5 (Definition 1.3 in [41]). Consider f ∈P(E) and a sequence (FN)N≥2
of PSym(EN) such that for some k > 0 the k−th moment Mk(FN

1 ) =
∫
|z|k dFN

1 of
FN

1 is uniformly bounded in N. We say that
i) the sequence (FN) is f−Fisher information chaotic if

FN
1 ⇀ f , IN(FN)→ I1( f ), I1( f )< ∞

ii) the sequence (FN) is f−entropy chaotic if

FN
1 ⇀ f , HN(FN)→ H1( f ), H1( f )< ∞.
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There are even intermediary notions that we omit for simplicity. There exists a strict
hierarchy between these two definitions as per

Theorem 1 (Theorem 1.4 in [41]). Consider f ∈P(E) and (FN)N≥2 a sequence
of PSym(EN) such that the k−th moment Mk(FN

1 ) is bounded, for some k > 2. In the
list of assertions below, each one implies the assertion which follows:
i) (FN) is f−Fisher information chaotic;
ii) (FN) is f−Kac’s chaotic (as in Definition 3 ) and IN(FN) is bounded;
iii) (FN) is f−entropy chaotic;
iv) (FN) is f−Kac’s chaotic.

For some recent results on propagation of chaos in strong sense, we refer to [29]
where the convergence is in the sense of entropy as in ii) in Definition 5 and to [34]
for a similar argument for the sub-critical Keller-Segel model.

We will finish this section by considering the relation between the entropy of the
full joint law and the entropy of the marginals

Proposition 1. For any FN ∈PSym(EN) and f ∈P(E), one has

Hk(FN
k )≤ HN(FN), Hk(FN

k | f⊗k)≤ HN(FN | f⊗N). (15)

The scaled relative entropy is defined by

HN(FN | f⊗N) =
1
N

∫
EN

FN log
FN

f⊗N .

By Proposition 1 and the Liouville equation (12) or (13), we can control the en-
tropy of any marginal at any time t > 0 given the uniform bound supN≥2 HN(FN(0))
initially. This is really surprising since for instance the free bound

sup
N≥2

Hk(FN
k (t, ·))< ∞

will a priori ensure that the weak limit f1 of FN
1 belongs to L1(E) at any time t > 0

by Theorem 3.4 in [41], without having to know or prove anything about the mean
field limit.

3 Some of the main results on mean field limits

In this section, we review some main results on mean field limits for stochastic
particle systems. The classical results, such as the famous [60] or [71] (see also the
very nice presentation in [61]), will normally require that the interaction kernel K
be Lipschitz; we also refer to [70]. For singular (not locally Lipschitz) kernels, only
a few results are available, mostly in the context of 2D stochastic vortex model, see
for instance [29, 59, 62, 67]. We also refer to [14, 15, 22] and [30, 34, 56] for the
singular kernel cases.
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3.1 The classical approach: Control on the trajectories

The results we present here are taken mainly from [71] and [61]. Note though that
the diffusion processes considered in [61] are much more general than what we use
here

dXi =
1
N

N

∑
i=1

b(Xi,X j)dt +
1
N

N

∑
i=1

σ(Xi,X j)dW i
t

where i = 1,2, · · · ,N, and the vector field b and matrix field σ are Lipschitz con-
tinuous with respect to both variables. As before the W i

t are mutually independent
d−dimensional Brownian motions.

However, to make the presentation simple, we only focus on the 1st order sys-
tem (3) assuming that the kernel K is Lipschitz. 2nd order systems with the same
Lipschitz assumption can be treated in a similar manner.

If the interaction kernel K is globally Lipschitz, a standard method to show the
mean field limit was popularized by Sznitman [71] (see also the more recent [58]).
We also refer to [7, 9, 12] and the reference therein for recent developments and to
[64] for the quantitative Grunbaum’s duality method.

The basic idea of the method is as follows: For system (3) endowed with initial
data

Xi(0) = X0
i , i.i.d. with LawX0

i = f0,

we construct a symmetric particle system coupled to (3), that is

dX̄i = K ? ft(X̄i)+
√

2σ dW i
t , X̄i(0) = X0

i , i = 1,2, · · · ,N, (16)

where the W i
t are the same Brownian motions as in (3) and ft = Law(X̄i(t)). The

coupling between (3) and (16) is only due to the fact that they have the same initial
data and share the same Brownian motions.

Observe that Eq. (16) is not anymore an SDE system: The dynamics between
particles is now coupled through the law ft . That law is the same for each X̄i and in
that sense one only considers N independent copies of the same system given by

dXt = K ? ft(Xt)+
√

2σ dWt , Law(Xt) = ft . (17)

It is straightforward to check that ft is just the (weak) solution to the mean field
PDE (4) by Itô’s formula. Therefore the law of large numbers in the right function
space will give us that the system (16) is close to the mean field PDE (4).

Under some stability estimates that follow the traditional Gronwall type of
bounds for SDE’s, it can be shown that the symmetric system (16) is close to the
original one (3).

On the other hand, (17) and (4) are well-posed with existence and uniqueness,
which finally implies the mean field limit. We summarize the results of the above
discussion with the following two theorems

Theorem 2 (Theorem 1.1 in [71] and Theorem 2.2 in [61]). Assume that K is
globally Lipschitz and f0 is a Borel probability measure on Rd with finite second
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moment. Then there is existence and uniqueness of the solutions to (17) as well as
to (4).

We refer to [71] for a detailed proof in the case where K is also bounded and to [61]
for a proof in the general case. We remark that the existence and uniqueness hold
both trajectory-wise and in law for (17).

With Theorem 2 in mind, as long as we can show that the systems (3) and (16)
are close, we will obtain the mean field limit. This is provided by

Theorem 3 (Theorem 2.3 in [61] and Theorem 1.4 in [71]). Assume that K is
globally Lipschitz and f0 is a Borel probability measure on Rd with finite second
moment. Then for any i = 1, · · · ,N, one has

E
(

sup
0≤t≤T

|Xi(t)− X̄i(t)|2
)
≤ C

N
, (18)

where C is independent of N, but depends on the time interval T and the Lipschitz
constant ‖K‖Lip.

We omit the proof and instead remark that Theorem 2 obviously implies the mean
field limit or propagation of chaos. Recall that the p−MKW distance between two
probability measures µ and ν with finite p−th moments is defined by

Wp(µ,ν) = inf
(X ,Y )

(E|X−Y |p)
1
p ,

where the infimum runs over all all couples of random variables (X ,Y ) with LawX =
µ and LawY = ν (see for instance [73]).

From Theorem 3, one obtains an estimate on the distance between the 1−marginal
FN

1 and ft as N→ ∞,

W 2
2 (F

N
1 , ft)≤ E|Xi(t)− X̄i(t)|2 ≤

C
N
.

More generally, one has a quantitative version of propagation of chaos. For any fixed
k, the k−marginal distribution FN

k converges to f⊗k as N goes to infinity

W 2
2 (F

N
k (t),( ft)⊗k)≤ E |(X1(t), · · · ,Xk(t))− (X̄1(t), · · · , X̄k(t))|2 ≤

kC
N

.

Similarly, we can obtain the convergence in law of the empirical measure towards
the limit ft . Indeed, for a test function φ ∈C1

b(Rd), one has

E

∣∣∣∣∣ 1
N

N

∑
i=1

φ(Xi(t))−
∫
Rd

φ(x) ft(x)dx

∣∣∣∣∣
2

≤ 2E|φ(X1(t))−φ(X̄1(t))|2 +2E

∣∣∣∣∣ 1
N

N

∑
i=1

φ(X̄i(t))−
∫
Rd

φ(x) ft(x)dx

∣∣∣∣∣
2

≤ C
N
‖φ‖C1 .

(19)
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3.2 Large Deviation and time uniform estimates

The results referred to here were mostly obtained in [9, 10, 13, 57, 58]. The average
estimates for instance (18) and (19) guarantee that the particle system (1) or (3) is an
approximation to the mean field PDE (2) or (4) respectively for a fixed time interval.

However, uniform in time estimates are sometimes necessary: To make sure that
the equilibrium for the discrete system is close to the equilibrium of the continuous
model for instance.

Furthermore, it can be critical to be able to estimate precisely how likely any
given instance of the discrete system is to be far from the limit. When large stochas-
tic particle systems are used to do numerical simulations, one may want to make
sure that the numerical method has a very small probability to give wrong results.
Those are usually called concentration estimates.

Unfortunately the bound (18) can only give very weak concentration estimates
by Chebyshev’s inequality, for instance

P

{
|Xi(t)− X̄i(t)| ≥

√
C L√
N

}
≤ 1

L2 . (20)

Uniform in time estimates in particular cannot hold for any system. For this rea-
son we consider here a particular variant of 1st order particle system (3), namely
System (6) with σ = 1 and with V and W convex. In that case the mean field equa-
tion corresponding to system (6) is

∂t f = ∆x f + divx( f ∇x(V +W ? f )). (21)

One similarly constructs a symmetric coupling system

dX̄i =−∇W ? ft(X̄i)−∇V (X̄i)+
√

2dW i
t , X̄i(0) = X0

i , (22)

where ft = Law(X̄i(t)) and is hence the solution to (21) with initial data f0. Then
one can obtain the following theorem

Theorem 4 (Theorem 1.2, Theorem 1.3 and Proposition 3.22 in [57]). Assume
that the interaction potential W is convex, even and with polynomial growth and
V is uniformly convex i.e. D2V (x) ≥ β I for some β > 0. Assume in addition that
initially,

Xi(0) = X0
i , i.i.d., LawX0

i = f0,

where f0 is smooth. Then there exists a constant C such that for any N ≥ 2,

sup
t>0

E
(
|Xi(t)− X̄i(t)|2

)
≤ C

N
, (23)

and for any ε > 0,
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sup
‖φ‖Lip≤1

P

[∣∣∣∣∣ 1
N

N

∑
i=1

φ(Xi(t))−
∫

φ(x) ft(x)dx

∣∣∣∣∣> C√
N
+ ε

]
≤ 2exp(−β

2
Nε

2). (24)

Compare the exponential control on the tail in (24) to the polynomial estimate in
(20). This large deviation type estimate (24) for the empirical measure is obtained
by the use of logarithmic Sobolev inequalities.

Under the above convexity assumptions on the potentials V and W , the solution ft
to the granular media equation (21) converges to a unique equilibrium exponentially
fast. It is in this context that a uniform in time estimate can be expected.

In [10], a stronger version of (24) was achieved but at the same time more re-
strictions were imposed on V and W and the initial law f0. At least if W and V do
not grow too fast, the following theorem holds

Theorem 5 (Theorem 2.9 in [10]). Assume that V and W are both uniformly convex
and have appropriate growth at infinity. Assume that initially,

Xi(0) = X0
i , i.i.d., LawX0

i = f0,

for a smooth f0 with a finite square exponential moment, i.e. there exists α0 > 0,
such that ∫

exp(α0|x|2) f0(x)dx < ∞.

One has for any T > 0 , there exists a constant C = C(T ) such that for any
d′ > d, there exist some constants N0 and C′ such that for all ε > 0, if N ≥
N0 max(ε−(d

′+2),1), then

P
[

sup
0≤t≤T

W1(µN(t), ft)> ε

]
≤C′(1+T ε

−2)exp(−C Nε
2). (25)

In the above theorem W1 denotes the 1 MKW distance. While the constants are
now time dependent, the result is more precise. It is even possible to estimate the
deviation on the empirical measure on pairs of particles, so that

µ
2
N(t) =

1
N(N−1) ∑

i6= j
δ(Xi(t),X j(t))

is close to f⊗2
t in the sense of (25). See Theorem 2.10 in [10] and also Theorem

2.12 there for uniform in time estimates in the spirit of (25).

3.3 Singular kernels: Stochastic vortex model leading to 2D
Navier-Stokes equation

In this subsection, we review some results on the mean field limit for stochastic
systems with singular kernels K: K is smooth on Rd \{0}, but in general |K(x)|→∞
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when x→ 0. Therefore when two particles are close the interaction between them
becomes extremely large.

As mentioned in the introduction, the 2nd order systems are generally harder, as
diffusion is now degenerate. For the Poisson kernel and particles interacting under
gravitational force or Coulomb force, both the deterministic case (leading to Vlasov
equation) and the stochastic case (leading to McKean-Vlasov equation ) are still
open.

However the 1st order systems are usually easier. There are several mean field
limit results for 1st order systems with

K(x)∼ 1
|x|α

, when x∼ 0

for some α > 0. We refer for instance [30, 34] for Keller-Segel equation and [56]
for random particle blob method also for Keller-Segel equation. For other singu-
lar kernels, one can also see [22] about the Coulomb gas model in 1D, where the
singularity is repulsive and strong, behaving like 1

|x| .

We focus in the rest of this subsection on the Biot-Savart kernel K which leads
to the vortex model in Fluid Mechanics in dimension 2. This case is now better
understood, thanks for instance to [59, 62, 67] and more recently [29]. The results
presented here are mainly based on [67] and [29].

In general, the stochastic or viscous vortex model is written as

dXi =
1
N ∑

j 6=i
α jK(Xi−X j)dt +

√
2σ dW i

t , (26)

and the empirical measure is defined as in (8) to more easily allow for a negative
vorticity. However, for simplicity we here assume that all αi ≡ 1 and hence (26)
reduces to our classical 1st order system (3) with

K(x) =
1

2π
(
−x2

|x|2
,

x1

|x|2
).

The expected mean field PDE given by (4) is now the 2D Navier-Stokes equation in
vorticity formulation with positive viscosity σ .

It is not initially obvious that there even exists solutions for a fixed N because
of the singularity in K. In [66] (see also Theorem 2.10 in [29]), it was showed that
almost surely for all t ≥ 0, and all i 6= j, Xi(t) 6= X j(t). Hence the system (26) is
well-posed since the singularity of K is almost surely never visited.

The main result from [67] is the propagation of chaos

Theorem 6. Assume that (FN(0))N≥2 is f0−chaotic and

limsup
N→∞

∥∥∥∥∫
(R2)N−i

FN(0)dxi+1 · · · dxN

∥∥∥∥
L∞((R)i)

< ∞, for i = 1,2. (27)
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Then there exists σ0 > 0 such that (FN(t))N≥2 is ft−chaotic for any σ > σ0. In an
equivalent way, we have µN(t)→ f (t) in law as N→ ∞ for σ > σ0.

More recently, the above result was improved in [29]: No assumption is required
on the viscosity and the initial vorticity f0 belongs to L1(R2) while in [67] it is
essentially required that f0 ∈ L∞. We state a simplified version of the main theorem
from [29]

Theorem 7 (Theorem 2.12 and Theorem 2.13 in [29]). Consider any f0 ≥ 0, an
initial data for (4) with∫

R2
f0

(
1+ |x|k + | log f0|

)
dx < ∞, for some k ∈ (0,2).

Assume that for N ≥ 2, the law FN(0) of the initial distribution of particles is
f0−chaotic and

sup
N≥2

1
N

∫
(R2)N

(
1+ |X |2

) k
2 FN(0,X)dX < ∞,

sup
N≥2

HN(FN(0))< ∞.

Then both the particle system (26) and the 2D Navier-Stokes Eq. (4) are globally
well-posed and (FN(t))N≥2 is ft−chaotic.

If we assume furthermore that initially (FN(0)) is f0− entropy chaotic as in
Definition 5, then (FN(t))N≥2 is also ft− entropy chaotic and FN

k → f⊗k
t strongly

in L1((R2)k).

The proof of Theorem 7 follows the classical tightness/consistency/uniqueness ar-
guments. The dissipation of the entropy

HN(FN)+σ

∫ t

0
IN(FN(s))ds = HN(FN(0)),

and a control on a moment of FN(t) will give us a bound on∫ T

0
IN(FN(t))dt.

This will in turn essentially bound several quantities for instance

E
[

sup
0<s<t<T

|Xi(t)−Xi(s)|
|t− s|α

]
,

which finally helps to complete the tightness/consistency argument. The uniqueness
argument is based on [2].



Mean Field Limit for Stochastic Particle Systems 19

3.4 Other extensions

We only very briefly mention some other recent extensions to the classical theory.
The first such case concerns kernels which are only locally Lipschitz. Such mod-

els have been studied in the context of flocking models, in [7] for example, and
models of neuron dynamics, see [11] for instance where the model is even more
general with the diffusion coefficients possibly depending on the law.

Those models include interaction terms that are all locally Lipschitz but with a
Lipschitz constant which grows to infinity when the region considered grows to the
whole Rd .

The classical method has to be adapted with typically a faster decay assumed on
the limit law ft . One key ingredient in the proof is then to show that trajectories
cannot escape to infinity, typically because the model includes confining forces. In
the absence of such assumptions, the problem can become ill-posed as shown in
[70].

Finally we mention that in the coming article [44], a new coupling strategy and
a Glivenko-Cantelli theorem are used to show the mean field limits for systems (1)
or (3) with global Hölder continuous interaction kernels K ∈ C0,α . For 1st order
system, α > 0 is enough. But it requires α > 1

3 for 2nd systems in order to ensure
the existence of a differentiable stochastic flow.

4 A new statistical approach

In the authors’ recent articles [47] and [48], we proposed a new relative entropy
method to deal with mean field limit for very rough interaction kernels K.

The idea is to directly compare the distance between the joint distribution FN(t)
solving the Liouville equation (12) and the tensor product of the limit law f⊗N

t
through the relative entropy

HN(FN | f⊗N) =
1
N

∫
EN

FN log
FN

f⊗N dz1 · · · dzN .

The main theorem for the 2nd order systems with σ > 0 in [47] can be stated simply
as follows

Theorem 8 (Main Theorem in [47]). Assume that K ∈ L∞ and that there exists
ft ∈ L∞([0,T ], L1(E)∩W 1,p(E)) for every 1 ≤ p ≤ ∞ which solves the limiting
equation (2) with in addition

θ f = sup
t∈[0, T ]

∫
Γ×Rd

eλ f |∇v log ft | ft dxdv < ∞,

for some λ f > 0. Furthermore assume initially that
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sup
N≥2

HN(FN(0))< ∞, HN(FN(0)| f⊗N
0 )→ 0, as N→ ∞.

and

sup
N≥2

1
N

∫
EN

N

∑
i=1

(
1+ |zi|2

)
FN(0,z1, · · · ,zN)dz1 · · · dzN < ∞.

Then there exists a universal constant C > 0 s.t. for any t ∈ [0,T ],

HN(FN(t)| f⊗N
t )≤ eC‖K‖L∞ θ f t/λ f

(
HN(FN(0)| f⊗N

0 )+
C
N

)
.

This results implies a strong form of propagation of chaos as the k−marginal con-
verges to f⊗k in L1. Indeed if for instance HN(FN(0)| f⊗N

0 ). N−1 then the classical
Csiszár-Kullback-Pinsker inequality (see chapter 22 in [73] for instance) implies
that

‖FN
k (t)− f⊗k

t ‖L1 ≤
√

2kHk(FN
k (t)| f⊗k

t ).
1√
N
.

The argument is in essence a weak-strong estimate comparing a very smooth solu-
tion to the limiting equation with a weak solution FN

t to the Liouville equation (12).
The heart of the proof consists of precise combinatorics estimates which lead to a
new type of law of large numbers.

In a coming article [48], we extend the result to the 1st order system (3) with
K ∈W−1,∞, i.e. K is the derivative of a bounded function but with the restriction
that divxK ∈ L∞. By a careful truncation of the Biot-Savart kernel K and repeating
our procedure, we can also provide an explicit convergence rate for stochastic vortex
model (26) approximating 2D Navier-Stokes equation.
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