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Abstract

Here we consider a game-theoretic model of multilevel selection in which individuals compete
based on their payoff and groups also compete based on the average payoff of group members.
Our focus is on multilevel social dilemmas: games in which individuals are best off cheating, while
groups of individuals do best when composed of many cooperators. We analyze the dynamics
of the two-level replicator dynamics, a nonlocal hyperbolic PDE describing deterministic birth-
death dynamics for both individuals and groups. While past work on such multilevel dynamics has
restricted attention to scenarios with exactly solvable within-group dynamics, we use comparison
principles and an invariant property of the tail of the population distribution to extend our analysis
to all possible two-player, two-strategy social dilemmas. In the Stag-Hunt and similar games with
coordination thresholds, we show that any amount of between-group competition allows for fixation
of cooperation in the population. For the Prisoners’ Dilemma and Hawk-Dove game, we characterize
the threshold level of between-group selection dividing a regime in which the population converges to
a delta function at the equilibrium of the within-group dynamics from a regime in which between-
group competition facilitates the existence of steady-state densities supporting greater levels of
cooperation. In particular, we see that the threshold selection strength and average payoff at
steady state depend on a tug-of-war between the individual-level incentive to be a defector in a
many-cooperator group and the group-level incentive to have many cooperators over many defectors.
We also find that lower-level selection casts a long shadow: if groups are best off with a mix of
cooperators and defectors, then there will always be fewer cooperators than optimal at steady state,
even in the limit of infinitely strong competition between groups.
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1 Introduction

Across a variety of natural systems, a common theme of study is the conflict of selective pressures
acting at mutliple oraganizational levels. Multilevel selection has been used as a framework to study
problems of plasmid loss and plasmid segregation [1], the evolution of RNA viruses [2], the evolution of
virulence [3–5], and the cooperative founding of ant colonies [6]. Forms of complex life exist as nested
hierarchies of self-replicating units, and, throughout the course of evolution, individual entities have
joined together to create higher-level self-replicating units corresponding to an evolutionary transition
in biological complexity [7]. In the process of that transition, and even in the coexistence of two levels
of selection thereafter, there can be a conflict between the incentives of individuals at the lower level
and the incentives of groups of individuals at the higher level.

As a mathematical framework to compare the incentives of the individual and the incentives
of the group, we look to evolutionary game theory [8, 9]. In the classical setting of the Prisoners’
Dilemma, individuals can either cooperate by paying a cost to confer a benefit to their coplayers, or
they can defect by paying no cost and conferring no benefit. The “dilemma” faced by the two players is
that each is individually better off defecting regardless of their opponent’s action, but the individuals
would receive a greater payoff by both cooperating than they would by both defecting. Scaling up to
questions about the interplay of individuals and groups, groups tend to have high average or total payoff
when there are many cooperators, so what is benefecial to the group runs against what is beneficial to
the individual. Multilevel selection was studied as a mechanism to promote cooperation by Traulsen
and Nowak [10–12], showing that group-level reproduction or fission events could help to promote the
fixation probability of a single cooperator in a group-structured population otherwise composed of
defectors. Further work in this area has included extensions describibg the role of spatial structure in
between-group competition [13], allowing for more general payoff matrices and frequency-dependence,
and including mechanisms like a group extinction inversely proportional to collective payoff [14].

Luo introduced a stochastic framework for multilevel selection [15], in which a group-structured
population contained two types of individuals: one that had a selective advantage for individual-level
replication and another that conferred an advantage to the group during group-level replication events.
Taking the limit as group size and number of groups to infinity, Luo derived a nonlocal PDE describing
the changing probability density of the composition of groups. This model was then applied to discuss
the debate about individual selection, group selection, and kin selection [16] and to discuss fixation

2



probabilities in a multilevel model of Hawk-Dove games [17]. Luo and Mattingly further analyzed the
long-time behavior of the frequency-independent multilevel selection model [18], showing that there
was a threshold level of relative selection intensity below which the individually-advantageous type
fixed in all groups, and above which a density of all compositions of groups survived in steady state.

Simon and coauthors have also studied two-level selection models derived from underlying stochas-
tic descriptions, exploring a variety of group-level evolutionary mechanisms including fission and fusion
events, as well as allowing for heterogeneous distributions of group sizes and changing number of groups
[19–23]. A similar model was introduced to study host-parasite evolution in the microbiome [24], in-
corporating within-host replication of microbes, between-host horizontal transmission, and vertical
transmission via host reproduction. Velleret has further explored quasi-stationary distributions in
an alternate stochastic Fleming-Viot scaling limit of Luo and Mattingly’s model [25]. Pokalyuk and
coauthors have used Luo’s ball-and-urn framework to describe a multilevel host-pathogen system, and
derived limiting ODE descriptions of the multilevel dynamics which show the long-time persistence
of pathogen diversity in the presence of stabilizing selection [26] and in a case of neutral competition
between pathogens [27].

In a recent paper, Luo’s framework was extended by Cooney to describe multilevel selection in
which the underlying birth rates at the within-group and between-group levels depends on payoffs
from an underlying game [28]. In the large population limit, within-group dynamics favor defectors in
the Prisoners’ Dilemma and an equilibrium mix of cooperators and defectors in the Hawk-Dove game.
Competition between groups was based on the average payoff of group members, and, depending on the
game’s payoff matrix, it was possible for a group’s payoff to be maximized by a full-cooperator group or
by a group featuring a mix of cooperators and defectors. For games in which average group payoff was
maximized by full-cooperator groups, arbitrary levels of cooperation could be achieved at steady state
in the presence of sufficiently strong between-group competition. For games in which average payoff was
maximized by a mix of cooperators and defectors, no level of between-group selection intensity could
result in an optimal level of cooperation. In such games, within-group competition cast a long shadow:
the individual incentives promoting defection remain evident even in the limit in which between-group
competition is infinitely stronger than within-group competition.

In that paper, the analysis of long-time behavior of multilevel dynamics was restricted to a
family of games for which the within-group replicator dynamics were exactly solvable. While this
assumption was convenient to allow for direct use of the method of characteristics, it did not provide
the possibility of characterizing the long-time behavior of all multilevel two-strategy games and to
determine if the shadow of lower-level selection is a generic feature of mulitlevel replicator dynamics.
In this paper, we make use of comparison principles to extend our analysis to games without solvable
within-group dynamics, which allows for the analysis all two-strategy social dilemmas and introduces
an approach for exploring more general deterministic models of multilevel selection across a variety of
biological settings. By considering more general two-strategy social dillemas, we are able to analytically
characterize how the conflict between individual incentive to defect and the group incentive to have
many cooperatorsdetermines the average payoff of steady state population and the threshold level of
selection intensity required to sustain cooperation at steady state.

The rest of the paper is structured as follows. In Section 2, we define our evolutionary game,
describe the two-level Moran process governing individual and group birth and deaths events, and
then discuss the PDE description of the multilevel system in the limit of many groups and large group
size. In Section 3, we discuss strategies for studying the multilevel dynamics for cases in which the
within-group dynamics are not exactly solvable. In Section 4, we focus on the Prisoners’ Dilemma,
proving that there is a threshold strength of between-group competition separating a regime in which
the population converges to a delta concentration at the equilibrium of the within-group dynamics from
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a regime in which there exist steady-state densities that can support greater levels of cooperation. In
Section 5, we perform a similar analysis for the Hawk-Dove game, and in Section 6, we consider the
multilevel dynamics for the Stag Hunt game and the other two-strategy two-player social dilemmas.
We discuss the results and implications for future research in Section 7, and in the Appendix we address
well-posedness of solutions to our measure-valued PDE in Section A and include detailed calculations
of integrals along characteristic curves in Section B.

2 Baseline Model

We consider a two-player game with two strategies: cooperate (C) and defect (D). Individuals receive
payoff according to the following payoff matrix

C D( )
C R S
D T P

, (2.1)

where a cooperator receives a reward R for cooperating with a cooperator and receives a sucker pay-
off S for cooperating with a defector, while a defector receives a temptation payoff T for defecting
against a cooperation and receives a punishment P for defecting against another defector. The Pris-
oners’ Dilemma (PD), Hawk-Dove (HD) game, and Stag-Hunt (SH) are characterized by the following
rankings of payoffs

PD : T > R > P > S (2.2a)
HD : T > R > S > P (2.2b)
SH :R > T > P > S (2.2c)

We assume that individuals play a game with the payoff matrix of Equation 2.1 against each other
member of their group. In a group with a fraction x of cooperators, a cooperator and defector receive
average payoffs of

πC(x) = Rx+ S(1− x) (2.3a)
πD(x) = Tx+ P (1− x) (2.3b)

The average payoff in a group with fraction x cooperators is

(2.4)G(x) ..= xπC(x) + (1− x)πD(x)

= P + (S + T − 2P )x+ (R− S − T + P )x2

To describe the simultaneous competition between individuals and competition between groups, one
can introduce a nested birth-death process with reproduction events occuring both for individuals and
for groups [15, 28]. Individuals birth-death dynamics follow a continuous-time Moran process, in which
individual cooperators and defectors in an x-cooperator group give birth and replace a randomly chosen
individual at rate 1 +wIπC(x) and 1 +wIπD(x), where wI is the selection strength of individual-level
competition relative to the neutral birth rate 1. Group-level reproduction events follow a Moran-type
process as well, with x-cooperator groups reproducing and replacing a randomly chosen group with
rate Λ (1 + wGG(x)), where wG denotes the selection strength of between-group competition and Λ
describes a relative timescale of within-group and between-group replication events.
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In the limit of infinitely many groups and of infinite group size, one can use the approach of Luo [15]
or Cooney [28] to derive a determinisitc PDE description of the two-level population dynamics, which
is given by

∂f(t, x)

∂t
= − ∂

∂x
[x(1− x) (πC(x)− πD(x)) f(t, x)] + λf(t, x)

[
G(x)−

∫ 1

0
G(y)f(t, y)dy

]
, (2.5)

where f(t, x) is the probability density of groups with fraction x cooperators at time t and λ := wGΛ
wI

describes the relative effects of competition between individuals and competition between groups. This
equation can be thought of as the two-level version of the replicator equation, and can be used to
describe multilevel selection for a broad range of models for the payoffs of cooperators πC(x) and
defectors πD(x) and on the average payoff of group members G(x). It is a first-order PDE with a linear
advection term ∂

∂x [x(1− x) (πC(x)− πD(x))], describing the effect of individual birth and death due

to within-group competition, and a nonlocal and nonlinear term λf(t, x)
[
G(x)−

∫ 1
0 G(y)f(t, y)dy

]
describing group-level birth and death due to between-group competition. To further illustrate the
role of within-group competition, we can rewrite Equation 2.5 in the suggestive form

∂f(t, x)

∂t
+
[
x(1− x)

(
πC(x)− πD(x)

)] ∂f(t, x)

∂x
= −f(t, x)

∂

∂x

[
x(1− x)

(
πC(x)− πD(x)

)]
+ λf(t, x)

[
G(x)−

∫ 1

0
G(y)f(t, y)dy

]
(2.6)

In this form, we see that the characteristic curves of Equation 2.5 are given by the replicator dynamics
for individual-level competition in a single group

dx(t)

dt
= x(1− x) (πC(x)− πD(x)) (2.7)

Introduced by Taylor and Jonker, the replicator equation is a classic tool to describe determinis-
tic strategic dynamics in evolutionary game theory [29–31]. For two-strategy games with the payoff
matrix of Equation 2.1, there are four generic behaviors of the within-group replicator equation: dom-
inance of defectors and global convergence to the all-defector equilibrium (Prisoners’ Dilemma), stable
coexistence of cooperators and defectors at equilibrium xeq such that πC(xeq) = πD(xeq) (Hawk-Dove),
bistability of all-defector equilibrium and all-cooperator equilibrium (Stag-Hunt), or dominance of co-
operators and global convergence to all-cooperator equilibrium (Prisoners’ Delight). In the presence of
between-group selection, we expect the multilevel dynamics of Equation 2.5 to cause tension between
individual-level dynamics favoring stable equilibrium compositions of Equation 2.7 and between-group
dynamics favoring compositions with high average payoff.

In the scenario we study with payoff matrix given by Equation 2.1, we can use the shorthand from [28]
α = R − S − T + P , β = S − P , and γ = S + T − 2P to describe the key quantities characterizing
within-group and between-group competition. For within-group dynamics where it will be useful for
us to note that

πC(x)− πD(x) = β + αx (2.8)

represents the relative advantage (or disadvantage) of a cooperator’s payoff relative to a defector in
a group with a fraction of x cooperators. In this notation, the average payoff of members in a group
composed of fraction x cooperators can be written as

G(x) = P + γx+ αx2, (2.9)
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while the average payoff of the whole population can be found by integrating G(x) against the proba-
bility density of group compositions f(t, x) in the population, yielding

〈G(·)〉f(t,x) :=

∫ 1

0
G(y)f(t, y)dy = P + γ

∫ 1

0
yf(t, y)dy + α

∫ 1

0
y2f(t, y)dy (2.10)

Denoting the jth moments of f(t, x) byMf
j (t) =

∫ 1
0 y

jf(t, y)dy, we can use our expressions for πC(x)−
πD(x), G(x), and

∫ 1
0 G(y)f(t, y)dy from Equations 2.8, 2.9, and 2.10 to describe the dynamics of our

multilevel system by the equation

∂f(t, x)

∂t
= − ∂

∂x
[x(1− x) (β + αx) f(t, x)] + λf(t, x)

[
γx+ αx2 −

(
γMf

1 (t) + αMf
2 (t)

)]
, (2.11)

Because the constant term P has no effect on the maximizer x∗ of G(x) and cancels out from the
expression G(x)−

∫ 1
0 G(y)f(t, y)dy in the righthand side of Equation 2.11, we can choose to understand

the dynamics of between-group competition through the simplified group average payoff function

G(x) = γx+ αx2. (2.12)

This will allow us to more succintly characterize the effect of between-group competition along the
characteristic curves of Equation 2.11, so we will use this as our expression for G(x) in all subsequent
analysis.
In the absence of between-group competition, the densities are expected to cocentrate at the equilibria
of the within-group replicator dynamics of Equation 2.7. To further study the possibility that the
distribution of group types can concetrate as delta-functions at a given composition of cooperators,
we can introduce, as in [18, 28], a weak, measure-valued formulation of the multilevel dynamics.
Introducing µt(dx), the measure of group compositions x at time t, and a C1 test function ψ(x), we
can recharacterize the dynamics of our multilevel system as follows

∂

∂t

∫ 1

0
ψ(x)µt(dx) =

∫ 1

0

{
∂ψ(x)

∂x
[x(1− x) (β + αx)] + λ

[
γx+ αx2 − (γMµ

1 (t) + αMµ
2 (t))

]}
µt(dx)

(2.13)
where Mµ

j (t) =
∫ 1

0 x
jµt(dx) denotes the jth moment with respect to µt(dx). As shown in [28], delta-

functions at the within-group equilibria (δ(x), δ(1 − x), and δ (β − αx)) are fixed points of Equation
2.13. By choosing the test function ψ(x) ≡ 1, we see that a measure µt(dx) solving Equation 2.13 will
satisfy d

dt

∫ 1
0 µt(dx) = 0 if

∫ 1
0 µt(dx), and therefore the measure µt(dx) will remain normalized if the

initial measure satisfies
∫ 1

0 µ0(dx) = 1.
To explore solutions of Equation 2.13, we can use the idea of the method of characteristics to solve
between-group dynamics along the solution curves of the within-group dynamics. We can describe the
effect of between-group competition on solutions along characteristic curves φt(x) as

wt(φt(x)) = exp

(
λ

∫ t

0
[G(φt(x))− 〈G(·)〉µs ] ds

)
, (2.14)

which can also be written more explicitly by writing G(x) = P + γx+ αx2 as

wt(φt(x)) = exp

(
λ

∫ t

0

[
γφt(x) + αφt(x)2 − (γMµs

1 + αMµs
2 )
]
ds

)
. (2.15)

We can use the idea of a push-forward measure to describe the effect of within-group dynamics on
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the change from the initial distribution µ0(dx) along characteristic curves φt(x) [18, 32, 33]. We
characterize the push-forward measure of µ0(dx) under the dynamics of φt(x) using the equivalent
notations of

Ptµ0(dx) =
[
µ0 ◦ φ−1

t

]
(dx)

In the weak, measure-valued formulation, we can characterize the effect of the push-forward measure
by its effect on a test function ψ(x), which takes the form∫ 1

0
ψ(x)Ptµ0(dx) =

∫ 1

0
ψ(x)

[
µ0 ◦ φ−1

t

]
(dx) =

∫ 1

0
ψ(φt(x))µ0(dx)

Combining the effects of the within-group and between-group dynamics, we can arrive at the following
implicit representation formula for the population distribution at time t

µt(dx) = wt(x)
[
µ0 ◦ φ−1

t

]
(dx). (2.16)

In the weak formulation, this relation can be expressed as∫ 1

0
ψ(x)µt(dx) =

∫ 1

0
ψ(x)wt(x)

[
µ0 ◦ φ−1

t

]
(dx) =

∫ 1

0
ψ(φt(x))wt(φt(x))µ0(dx) (2.17)

The representation formula in Equation 2.17 is particularly helpful in describing the long-time behavior
of the two-level dynamics. Because it is an implicit expression, we would like to prove that their exists
such a µt(dx) satisfying Equation 2.17, and that this µt(dx) is the unique solution of Equation 2.13. We
address the well-posedness of Equation 2.13 in Section A, making use of the method of characteristics
and the Banach fixed-point theorem.

2.1 Possible Group-Level Reproduction Functions

A relevant property of the underlying game for solutions of Equation 2.5 is whether the group-level
reproduction rate G(x) = γx+αx2 is maximized by full-cooperator groups or by a group composition
with a mix of cooperators and defectors. If x∗ = argmaxx∈[0,1] (G(x)) = 1, then all-cooperator groups
are most favored at the between-group level and between-group selection pushes for as much cooperation
as possible. When x∗ < 1, between-group selection instead most favors groups composed of x∗ fraction
cooperators and 1 − x∗ fraction defectors, pushing most strongly for a groups with an intermediate
level of cooperation x∗.
For the Prisoners’ Dilemma, our classification of the composition x∗ maximizing collective payoff de-
pends on the signs of γ and α. Here we list the four possible cases of γ and α and the impact of payoff
maximizer x∗.

Case I: If γ > 0, α < 0, then G′′(x) = α < 0 and G(x) has a local maximum at − γ
2α > 0, so either

G(x) has an interior maximum or G(x) is increasing for every x ∈ [0, 1]. We can characterize the
group type x∗ with maximal average payoff in terms of either its dependence on γ and α or the
values of the payoff matrix, yielding

x∗ =

{
− γ

2α
: γ < −2α

1 : γ ≥ −2α
=⇒ x∗ =


S + T − 2P

2(−R+ S + T − P )
: 2R < T + S

1 : 2R ≥ T + S

In particular, we notice that x∗ = 1 when 2R ≥ T +S, so between-group competition best favors
full-cooperator groups when the total payoff from the interaction of two cooperators contributes

7



more to the collective payoff than the total payoff generated by the interaction of a cooperator and
a defector. When 2R < T + S and a cooperator-defector pair can outcontribute two cooperators
at the group level, we instead have that the most favored group composition x∗ feaures a nonzero
level of defection. To highlight these two possible optimal compositions, we can further subdivide
Case I into Case Ia in which there is intermediate collective payoff optimum x∗ < 1 and Case Ib
in which full cooperator groups x∗ = 1 maximized collective payoff.

Case II: If γ > 0, α = 0, we have G(x) = γx and we obtain a rescaled version of the Luo-Mattingly model
[15, 18]. For this case, group payoff is maximized by the full-cooperator group with x∗ = 1,
∀γ > 0.

Case III: If γ, α > 0, then G(x) is increasing on [0, 1] and is maximized at x∗ = 1.

Case IV: If γ < 0, then α > 0, as α = (R − P ) − (S + T − 2P ) > 0. We again have x∗ = 1, because
G(1) = γ+α = R−P > 0 = G(0) and G′′(x) = 2α > 0, so − γ

2α would be a local minimum even
if it were in (0, 1).

In Figure 1, we illustrate example group payoff functions for Cases Ia-IV (left) and display the regions in
(γ, α) parameter space which constitute different cases of the PD. The gray region below the dotted line
corresponds to games which are not PDs, while the vertical dashed line corresponds to the measure-zero
region describe the Case II PD with γ > 0, α = 0.

Figure 1: Illustration of different cases of the Prisoners’ Dilemma. (Left) Example group payoff functions G(x)
for each case. For Cases Ia-III, we chose γ = 2.5, and γ = −1 for Case IV. Case Ia (dash-dotted line, α = −2),
group payoff is maximized at x∗ = 5/8 ; Case Ib (dashed line, α = −1.0), group payoff increases sublinearily
and is maximized at x∗ = 1; Case II (solid line, α = 0), group payoff increases linearly to maximum at x∗ = 1;
Case III (plus signs, α = 1), group payoff increases superlinearly to maxomum at x∗ = 1; Case IV (green dots,
α = 2.5), group payoff is minimized at x = 0.2 and maximized at x∗ = 1. (Right) Different cases of the PD
illustrated for different values of γ and α. Below the dashed line γ = −α, games are not PDs, and the boundary
between Case Ia with interior group payoff optima x∗ ∈ (0, 1) and Case Ib with edge optimum x∗ = 1 is given
by the dashed line γ = −2α. The arrow indicates that Case II corresponds to the line segment on which γ > 0
and α = 0.

For the Hawk-Dove game, the possible scenarios are simpler because we know that γ = (S−P ) + (T −
P ) > 0 and α = (R−T ) + (P −S) < 0. As for the Case I PD, we find that G(x) has a local maximum
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at x∗ = γ
2|α| when G

′(x) = γ−2|α|= 0, and we can find that the group type maximizing average payoff
is given by

x∗ =

{
− γ

2α
: γ < −2α

1 : γ ≥ −2α

Because α < 0 for the HD game, we can rewrite our expression for the most fit group type as x∗ =

min
(

γ
2|α| , 1

)
. In addition, we note that G′′(x) = 2α < 0, and therefore the critical point x∗ is a

maximum and we know that G(x) is increasing ∀x < x∗. The within-group dynamics of the HD game
have a stable fixed point at xeq = β

|α| . Because T > S for the HD game, we have that γ > 2β (as

γ = S + T − 2P > 2(S − P ) = 2β), and therefore we have that x∗ = γ
2|α| >

2β
2|α| = xeq. Because the

average payof G(x) is increasing for x < x∗, we know that G(x) is increasing for all x ∈ [0, xeq], and
therefore average group payoff is better at xeq than for any group composition with fewer cooperators
that the within-group equilibrium.

For the SH game, we know from the defining payoff rankings that α = (R− T ) + (P − S) > 0, that
β = S−P < 0, and that the sign of γ = (S − P )︸ ︷︷ ︸

<0

+ (T − P )︸ ︷︷ ︸
>0

is inconclusive. Therefore we must consider

separately the cases in which γ > 0 and γ < 0. When γ > 0, we see that G(x) = γx+αx2 is increasing
for all x ∈ [0, 1], and therefore x∗ = 1. When γ < 0, we see from computing G′(x) = −|γ|+2αx that
G(x) is decreasing for x = 0, and, recalling the within-group equilibrium xeq = |β|

α , that

G′(xeq) = G′
(
|β|
α

)
= −|γ|+2|β|= (S + T − 2P ) + 2 (P − S) = T − S > 0

so we know that G(x) is increasing for x ∈ [xeq, 1]. Furthermore, by checking the value of G(x) at xeq,
we see that

G(xeq) = −|γ|
(
|β|
α

)
+ α

(
|β|
α

)2
=

(
|β|
α

)
︸ ︷︷ ︸
>0

[|β|−|γ|]︸ ︷︷ ︸
=T−P>0

> 0 = G(0),

and we have for y > xeq that the group payoff at a given level of cooperation y exceeds all of group
payoffs for group compositions with fewer cooperators. As a consequence, group average payoff G(x)
is maximized by full-cooperator groups (x∗ = 1) in the γ < 0 case as well.

Having studied the possible cases for x∗ for the PD, HD, and SH games, we will see in subsequent
sections that whether x∗ = 1 or x∗ ∈ (0, 1) gives a qualitative change in steady state behavior in
the limit when λ → ∞. In the case x∗ ∈ (0, 1), the level of cooperation at steady state can never
achieve optimal levels of cooperation in this limit, as the multilevel system cannot avoid the shadow
of lower-level selection.

3 Dynamics of Multilevel System

In this section, we characterize properties of the multilevel dynamics of Equation 2.13 that will be
useful for analyzing the long-time behavior of both the PD and HD games. In particular, we explore
tools which allow us to study the multilevel dynamics for cases in which the within-group replicator
dynamics are not necessarily exactly solvable. These include comparison principles relating the exact
within-group dynamics with simpler logistic ODEs with explicit solutions (Section 3.1), integrating
solutions along the simpler solution curves (Section 3.2), and shows the preservation of the tail behavior
of the population distribution near the full-cooperator equilibrium (Section 3.3).
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3.1 Comparison Principles for Characteristic Curves

Because we aim to analyze Prisoners’ Dilemmas and Hawk-Dove games without solvable within-group
replicator dynamics, we will make use of ODE comparision principles to compare solutions of within-
group dynamics to solutions of ODEs for which we have exact solutions. For the Prisoners’ Dilemma,
we denote by Ψt(x0; k) the solution to the logistic equation given by

dx(t)

dt
= −kx(1− x) , x(0) = x0 (3.1)

We can solve this ODE to find that

Ψt(x0; k) =
x0

x0 + (1− x0)ekt
(3.2)

We further denote by Ψ−1
t (x; k) as the solution of Equation 3.1 backwards in time given t and x(t),

which is found to be
Ψ−1
t (x; k) =

x

x+ (1− x)e−kt
(3.3)

For the Prisoners’ Dilemma, it is convenient to highlight the stable fixed point at 0 and unstable fixed
point at 1 by rewriting the replicator dynamics as

dx

dt
= −x(1− x) (|β|−αx) (3.4)

Note that we choose to write |β| because β < 0 for all Prisoners’ Dilemmas, while the sign of α varies
by case. We can examine the third term |β|−αx to understand how solutions of the within-group
replicator dynamics can be compared to solutions of logistic ODEs for given k.

3.1.1 Case I PD

For Case I, we have that α < 0, and we can rewrite Equation 3.4 as

dx

dt
= −x(1− x) (|β|+|α|x) (3.5)

We now observe that the following inequalities are satisfied for all x ∈ [0, 1],

− (|β|+|α|)x(1− x) ≤ −x(1− x) (|β|+|α|x) ≤ −|β|x(1− x) ≤ 0

This inequality can be rewritten in terms of φt(·) and Ψt(k; ·) as

d

dt
[Ψt (|β|+|α|; ·)] ≤ d

dt
[Ψt(·)] ≤

d

dt
[Ψt (|β|; ·)] ≤ 0

Because all of the within-group dynamics for φt(·) and Ψt(k; ·) result in decreasing fractions of coop-
eration, we see that solution for Ψt(|β|+|α|; ·) moves faster than and Ψt(·) and Ψt(|β|+|α|; ·). From a
shared initial condition x0, it then follows that

0 ≤ Ψt (|β|+|α|;x0) ≤ Ψt(x0) ≤ Ψt (|β|;x0) ≤ 1 (3.6)
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Correspondingly, for a given group located x at time t, we see that the backward-in-time solutions of
the above equations satisfy

0 ≤ Ψ−1
t (|β|;x) ≤ Ψ−1

t (x) ≤ Ψ−1
t (|β|+|α|;x) ≤ 1 (3.7)

In Figure 2(left), we illustrate the ranking of trajectories from Equation 3.6 with an example nu-
merical solution to the forward characteristic curves φt(x0) for the PD and exactly solvable faster
(Φt(|β|+|α|;x0)) and slower trajectories (Φt(|β|;x0)). In Figure 2(right), we illustrate the equivalent
ranking of backwards trajectories from Equation 3.7.

Figure 2: Illustration of comparison principle for solutions of within-group replicator dynamics with logistic
ODEs. (Left) Dotted lines correspond to numerical solution for exact characteristic curve φt(x0) (left) and
backwards characteristic φ−1t (x) (right), blue lines correspond to faster logistic solutions Ψt(|β|+|α|;x0) and
Ψ−1t (|β|+|α|;x0), and green lines correspond to slower logistic solutions Ψt(|β|;x) and Ψ−1t (|β|;x). Solutions
correspond to parameters β = α = −1 and initial conditions x0 = 0.95 and x = 0.1.

We can generalize this comparison principle to within-group dynamics taking the form

dx(t)

dt
= x (1− x)F [πC(x)− πD(x)] (3.8)

for an odd, increasing function F (·). An example of such an equation is the Fermi dynamics [34]
used to model decision making based on pairwise payoff comparisons, for which F (w) = tanh (sw/2).
Within-group dynamics often take the form of Equation 3.8 because the product x(1− x) corresponds
to the probability of finding a cooperator and defector needed for an imitative change of strategy, and
the properties of F (·) mean that greater payoff differences result in faster strategy changes and that
reversing the payoff differences should reverse the direction of strategy imitation.
Using Equation 2.8 and the oddness of F (·), we see that solutions φ̃t(x0) to Equation 3.8 with initial
condition x0 satisfy

d

dt
φ̃t(x0) = x (1− x)F (−|β|−|α|x) = −x (1− x)F (|β|+|α|x)

Because F (·) is increasing, we further see that

−x (1− x)F (|β|+|α|) ≤ −x (1− x)F (|β|+|α|x) ≤ −x (1− x)F (|β|) .
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Then we are able to find the ranking of characteristic curves

Ψt (F (|β|+|α|) ;x0) ≤ φ̃t(x0) ≤ Ψt (F (|β|) ;x0) (3.9)

and a similiar ranking of characteristics backwards in time

Ψ−1
t (F (|β|) ;x) ≤ φ̃−1

t (x) ≤ Ψ−1
t (F (|β|+|α|) ;x) . (3.10)

Because we can prove these comparison principles for more general within-group dynamics, many of the
results we prove in the following sections can be extended to a much broader class of two-level replicator
equations. This approach can provide a strategy for studying how robust the resulting phenomena like
the shadow of lower-level selection are to different assumptions about the rules for birth and death
rates for individuals and groups.

3.1.2 Cases III-IV PD

For Case III and Case IV PD’s, α > 0, and we can use Equation 3.4 to find the following inequality
for x ∈ [0, 1]

−|β|x(1− x) ≤ −x(1− x) (|β|−αx) ≤ −x(1− x) (|β|−α) ≤ 0

Using the definitions of φt(x0) and Ψt(k;x0), we can deduce the following inequality for the character-
istic curves with shared initial condition x

Ψt(|β|;x0) ≤ φt(x0) ≤ Ψt(|β|−α;x0) (3.11)

and find the corresponding inequality for backward-in-time characteristic curves

Ψ−1
t (|β|−α;x) ≤ φ−1

t (x) ≤ Ψ−1
t (|β|;x) (3.12)

In these cases of the PD, we can again generalize these comparison results to the class of within-group
dynamics given by Equation 3.8.

3.1.3 Hawk-Dove Game

For the Hawk-Dove game, β > 0 and α < 0, so we can rewrite the within-group dynamics as

dx(t)

dt
= x (1− x) (β − |α|x) , x(0) = x0, (3.13)

which has a stable interior equilibrium at xeq = β
|α| and untable equilibria at 0 and 1. When x ∈

[
β
|α| , 1

]
,

we can try to describe solutions φt(x0) to Equation 3.13 by comparison to the function Ξt (k;x0) which
is defined as the solution to

dx(t)

dt
= k (1− x) (β − |α|x) , x(0) = x0, (3.14)

Solving this ODE yields the following formula for Ξt(k;x0)

Ξt(k;x0) =
(1− x0)β + (|α|x0 − β) e(β−|α|)kt

(1− x0) |α|+ (|α|x0 − β) e(β−|α|)kt (3.15)
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and we can also solve this ODE backwards in time to see that

Ξ−1
t (k;x) =

(1− x)β + (|α|x− β) e−(β−|α|)kt

(1− x) |α|+ (|α|x− β) e−(β−|α|)kt (3.16)

Then we note that (1− x) (β − |α|x) ≤ 0 for x ∈ [ β|α| , 1], so, for this range of x-values, we have that

(1− x) (β − |α|x) ≤ x (1− x) (β − |α|x) ≤ β

|α|
(1− x) (β − |α|x) ≤ 0

In terms of our named solutions φt(k; ·) and Ξt(k; ·), we can rewrite these inequalities as

d

dt
Ξt(1; ·) ≤ d

dt
φt(·) ≤

d

dt
Ξt

(
β

|α|
; ·
)
≤ 0

so we can deduce that
Ξt(1;x) ≤ φt(x) ≤ Ξt

(
β
|α| ;x

)
(3.17)

for x ∈
[
β
|α| , 1

]
. Similarly, we have a corresponding inequality for the characteristic curves backwards

in time
Ξ−1
t ( β
|α| ;x) ≤ φ−1

t (x) ≤ Ξ−1
t (1;x) (3.18)

We can also study simpler solutions for within-group dynamics below the Hawk-Dove equalibrium β
|α| .

We denote by Πt(k : x0) the solution of the quadratic ODE

dx(t)

dt
= kx (β − |α|x) , x(0) = x0 (3.19)

Solving this ODE forward in time, we can write Πt(k;x0) as

Πt(k;x0) =
βx0

|α|x0 + (β − |α|x0) e−βkt
(3.20)

and we can solve the ODE backward in time from a given t and x(t) to get

Π−1
t (k;x) =

βx

|α|x+ (β − |α|x) eβkt
(3.21)

We know that x (β − |α|x) ≥ 0 for x ∈
[
0, β|α|

]
, so for x in this range we have the following inequalities

0 ≤
(

1− β

|α|

)
x (β − |α|x) ≤ (1− x)x (β − |α|x) ≤ x (β − |α|x) ,

which can be expressed in terms of our named solutions as

0 ≤ d

dt
Πt

(
1− β

|α| ; ·
)
≤ d

dt
φt(·) ≤

d

dt
Πt (1;x0)

This gives us the following ordering of the solutions to the characteristic curves

Πt

(
1− β

|α| ;x0

)
≤ φt(x0) ≤ Πt (1;x0) (3.22)
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We can get an analogous ranking of characteristic curves solved backwards in time from x(t) as

Π−1
t (1;x) ≤ φ−1

t (x) ≤ Π−1
t

(
1− β

|α| ;x
)

(3.23)

Now we illustrate the rankings of characteristics for the HD game. In Figure 3, we represent the
dynamics above the within-group HD equilibrium, using the rankings forward in time from Equation
3.17 with the simplified Ξt(k;x) curves (left) and the rankings backward in time from Equation 3.18
with the backward curves Ξ−1

t (k;x) (right). In Figure 4, we illustrate the dynamics below the within-
group HD equilibrium, using the rankings forward in time from Equation 3.22 with the Πt(k;x) curves
(left) and the rankings backward in time from Equation 3.23 with the backward curves Ξ−1

t (k;x)
(right).

Figure 3: Illustration of comparison principle for solutions of within-group replicator equation for HD game for
initial conditions above the within-group equilibrium at β

|α| . (Left) Solutions forward in time: dashed black line
describes numerical solution of exact characteristic curves φt(x0), while blue and green lines correspond to faster
curve Ξt

(
β
|α| ;x0

)
and slower curve Ξt (1;x0), respectively. (Right) Solutions backward in time: dashed black

line corresponds to numerical solution of characteristic curves φ−1t (x), while blue and green lines correspond to
faster and slower solutions exactly solvable logistic curves Ξ−1t (1;x) and Ξ−1t

(
β
|α| ;x

)
, respectively.
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Figure 4: Illustration of comparison principle for solutions of within-group replicator equation for HD game for
initial conditions below the within-group equilibrium at β

|α| . (Left) Solutions forward in time: dashed black line
describes numerical solution of exact characteristic curves φt(x0), while blue and green lines correspond to faster
curve Πt (1;x0) and slower curve Ξt

(
1− β

|α| ;x0

)
, respectively. (Right) Solutions backward in time: dashed black

line corresponds to numerical solution of characteristic curves φ−1t (x), while blue and green lines correspond to
faster and slower solutions exactly solvable logistic curves Ξ−1t (1;x) and Ξ−1t

(
1− β

|α| ;x
)
, respectively.

3.2 Solutions Along Characteristics

An advantage of using our comparison principles is that we can make use of the solvability of solutions
along the simiplified characteristics Ψt(k, x) for the PD and along Ξt(k;x) and Πt(k;x) for the HD game.
From the formula describing between-group competiton for solutions along the exact characteristics
φt(x) given by Equation 2.14, we know that we would like to use our comparison principles to estimate
G(φt(x0)), the average group payoff along characteristics. For the various cases of the PD, we use the
signs of γ and α and the rankings of characteristic curves given by Equations 3.6 and 3.11 to find the
following bounds for G(φt(x0)) along our known simpler solution curves

γΨt (|β|+|α|;x0)− |α|Ψt(|β|;x0)2 ≤ G(φt(x0)) ≤ γΨt (|β|;x0)− |α|Ψt(|β|+|α|;x0)2: (Case I PD)

γΨt (|β|;x0) + αΨt(|β|;x0)2 ≤ G(φt(x0)) ≤ γΨt (|β|−α;x0) + αΨt(|β|−α;x0)2: (Case III PD)

−|γ|Ψt (|β|−α;x0) + αΨt(|β|;x0)2 ≤ G(φt(x0)) ≤ −|γ|Ψt (|β|;x0) + αΨt(|β|−α;x0)2: (Case IV PD)

In Figure 5, we illustrate example trajectories for G(φt(x0)) and corresponding upper and lower bounds
for the Case I (left) and Case III (right) PDs. In the example for the Case I PD, we can see that
G(φt(x0)) and its bounds of are non-monotonic in time, corresponding to the characteristic curves
traversing the intermediate optimum composition for average group payoff.
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Figure 5: Comparison of group payoff along characteristic curves G(φt(x0)) with expressions along exactly
solvable curves for the PD game. Parameters correspond to Case I (left) and Case III (right).

We can similarly bound G(φt(x0)) for the HD game using the ranking of characteristic curves from
Equations 3.17 and 3.22 and the fact that γ > 0 and α < 0 for all HD games. We find that

γΠt

(
1− β

|α| ;x0

)
− |α|Πt(1;x0)2 ≤ G(φt(x0)) ≤ γΠt (1;x0)− |α|Πt

(
1− β

|α| ;x0

)2
: x0 <

β
|α|

γΞt (1;x0)− |α|Ξt
(

1− β
|α| ;x0

)2
≤ G(φt(x0)) ≤ γΠt

(
1− β

|α| ;x0

)
− |α|Πt (1;x0)2 : x0 >

β
|α|

In Figure 6, we illustrate example trajectories for G(φt(x0)) and corresponding upper and lower bounds
for the group payoff both above the within-group equilibrium (left) and and below the within-group
equilibrium (right).

Figure 6: Comparison of group payoff along characteristic curves G(φt(x0)) with expressions for upper and
lower bounds of group payoff in terms of exactly solvable curves. for the HD game. Dynamics described
above within-group equlibrium (left) and below the within-group equilibrium (right). Long-time behavior for
G(φt(x0)) and the bounds agree upon group payoff G(xeq) at within-group equilibrium for HD game.

To study solutions along characteristics from Equation 2.14, we also know the must integrate G(φt(x0))
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in time. From Equation 2.15, we know that this requires computing∫ t

0
G(φs(x0))ds = γ

∫ t

0
φs(x0)ds+ α

∫ t

0
φs(x0)2ds

Using the bounds for G(φt(x0)) found above, this means that we need to be able to compute both the
integrals in time of our simplified characteristic curves and of the squares of our simplified characterstic
curves. For convenience, we include a derivation of these formulas in Section B of the appendix.

For the Prisoners’ Dilemma, we see that the integrals of the simplified curves Ψt(k;x) and their squares
Ψt(k;x)2 are given by∫ t

0
Ψs(k, x)ds = t− 1

k
log
(
x+ (1− x)ekt

)
, (3.24)∫ t

0
Ψs(k;x)2ds = t+

1

k
log
(
x+ (1− x)e−kt

)
+
x

k
− 1

k

x

x+ (1− x)e−kt
. (3.25)

For within-group dynamics above the Hawk-Dove equilibrium, we find the integrals along the simpler
characteristic curves Ξt(k;x0) are given by∫ t

0
Ξs(k, x)ds = t− 1

|α|k
log

(
|α|x− β + |α|(1− x) e(−|α|−β)kt

|α|−β

)
, (3.26)

∫ t

0
Ξs(k;x)2ds = t−

(
|α|+β
|α|2k

)
log

(
|α|x− β + |α|(1− x) e(|α|−β)kt

|α|−β

)
(3.27)

− 1

|α|k

[
(1− x) (|α|x− β)

(
1− e−(|α|−β)kt

)
|α|x− β + |α|(1− x) e−(|α|−β)kt

]

For within-group dynamics in the Hawk-Dove game below the within-group equilibrium, we want to
integrate the simpler solution curves Πt(k;x) in time. With the same method, we find that∫ t

0
Πs(k;x0)ds = −1

k
log

(
1

β

[
(β − |α|x) + |α|xe−βkt

])
(3.28a)∫ t

0
Πs(k;x0)2ds = − β

|α|2k
log

(
1

β

{
(β − |α|x) + |α|xe−βkt

})
(3.28b)

− 1

|α|k

[
x (β − |α|x)

(
eβkt − 1

)
|α|x+ (β − |α|x) eβkt

]

We note that both of these integrals are bounded for all x and t, unlike the integrals for dynamics
above the within-group equilibria that scale linearly with t. For the other integrals, the linear t term
will help us to determine the levels of λ for which all groups will convergence to a delta-concentration
at the equilibrium level of cooperation for the within-group dynamics.

3.3 Hölder Exponent Near Full-Cooperator Group

To describe the long-time behavior of our multilevel dynamics, it is useful to characterize the tail of
the measure µt(dx) near the endpoint x = 1 corresponding to full-cooperator groups. We quantify this
tail behavior using the Hölder exponent near 1, which is defined as follows.
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Definition 3.1. The Hölder exponent θ of measure µ(dx) near x = 1 satisfies the relation

θ = inf
Θ≥0

{
lim
y→0

µ ([1− y, 1])

yΘ
> 0

}
(3.29)

The Hölder exponent near x = 1 was employed by Luo and Mattingly [18] and by Cooney [28] to show
when multilevel dynamics converge to a delta-function or a steady-state density for cases in which the
within-group dynamics were exactly solvable. They arise when tracing solutions along characteristics
backwards in time, as the within-group dynamics drive groups away from compositions of cooperators
near x = 1 as time proceeds. We can better understand the intuitive meaning of the Hölder exponent
near x = 1 from the following example.

Example 3.1. The measures with power law densities of the form µ(dx) = θ (1− x)θ−1 dx have Hölder
exponent θ near x = 1. We can see this by noting that µ ([1− y, 1]) = θ

∫ 1
1−y (1− z)θ−1 dz = yθ, and

then finding the limit

lim
y→0

µ ([1− y, 1])

yΘ
= lim

y→0
yθ−Θ =


0 : Θ < θ
1 : Θ = θ
∞ : Θ > θ

.

Then Definition 3.1 tells us that θ is the Hölder exponent near x = 1.

Intuitively, we can think of a measure with Hölder exponent θ near x = 1 as acting like µ(dx) =
θ (1− x)θ−1 dx near x = 1, i.e. having a similar level of concentration or lack of probability near the
full-cooperator groups. In particular, higher θ corresponds to sparser concentration of groups with
composition close to full cooperation.
In the previously studied cases, the Hölder exponent of the initial distribution turned out to also be
the Hölder exponent of the eventual steady state of the dynamics [18, 28]. For a special family of
the Prisoners’ Dilemma for which Equation 2.5 has an explicit solution, it was shown directly using
the solution formula that the Hölder exponents of µt(dx) were preserved in time [28]. Making use
of comparison principles, we now shown in the following propositions that the Hölder exponent is
preserved in time for all PD and HD games, highlighting the importance of the Hölder exponent
in describing the long-time behavior of our multilevel dynamics. Because we use comparisons with
both Ψt(k;x) and Ξt(k;x), we separately address the PD game in Proposition 3.1 and the HD game
Proposition 3.2.

Proposition 3.1. For the multilevel PD dynamics, the Hölder exponent near x = 1 is preserved in
time. Given an initial measure µ0(dx) with Hölder exponent near x = 1 of θ0 = θ, the Hölder exponent
θt of the measure µt(dx) solving Equation 2.13 satisfies θt = θ.

Proof. Using the push-forward reseprentation of µt(dx) = wt(x)(µ0 ◦ φ−1
t )(dx) and noting that x = 1

is a fixed point of the replicator dynamics (so φt(1) = 1 and φ−1
t (1) = 1), we see that

µt[1− x, 1]

xΘ
=

∫ 1
1−x µt(dy)

xΘ
=

∫ 1

φ−1
t (1−x)

wt(φt(y))µ0(dy)

xΘ

We note, for x ∈ [0, 1], that φ−1
t (1 − x) ≥ 1 − x ≥ φt(1 − x). We recall from Equation 2.14 that

wt(φt(x)) = exp
(∫ t

0 [G(φs(x))− 〈G(·)〉µs ] ds
)
, which allows us to deduce the estimate

exp (−G∗t) ≤ wt(φt(x)) ≤ exp (G∗t) where G∗ = max
x∈[0,1]

G(x)− min
x∈[0,1]

G(x)
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Using the upper bound for wt(φt(x)) and the fact that 1− x ≤ φ−1
t (1− x), we now see that

µt[1− x, 1]

xΘ
≤ eG∗tµ0[φ−1

t (1− x), 1]]

xΘ
≤ eG∗tµ0[1− x, 1]

xΘ
.

Because this is true for x ∈ [0, 1], we further see that

lim sup
x→0

µt[1− x, 1]

xΘ
≤ eG∗t lim sup

x→0

µ0[1− x, 1]

xΘ

If we consider Θ < θ0, we know from our assumption that µ0(dx) has Hölder exponent Θ near 1 that

lim sup
x→0

µ0[1− x, 1]

xΘ
= lim

x→0

µ0[1− x, 1]

xΘ
= 0.

This allows us to deduce that

lim sup
x→0

µt[1− x, 1]

xΘ
≤ 0 and therefore lim

x→0

µt[1− x, 1]

xΘ
= 0 when Θ < θ0.

As a result, the smallest Θ for which limx→0
µt[1−x,1]

xΘ > 0 can be no smaller than θ0, and we conclude
that θt ≥ θ0, the Hölder exponent near x = 1 is non-decreasing in time.

Using the corresponding lower bound for wt(φt(x)) and the fact that x ≤ 1− φt(1− x), we have that

µt[1− x, 1]

xΘ
≥ e−G∗tµ0[φ−1

t (1− x), 1]

xΘ
≥ e−G∗tµ0[φ−1

t (1− x), 1]

(1− φt(1− x))Θ

Because this inequality holds for all x ∈ [0, 1], we know further that

lim inf
x→0

µt[1− x, 1]

xΘ
≥ e−G∗t lim inf

x→0

µ0[φ−1
t (1− x), 1]

(1− φt(1− x))Θ
(3.30)

Now we explore the righthand side of this inequality, noticing that

lim
x→0

µ0[φ−1
t (1− x), 1]

(1− φt(1− x))Θ
= lim

x→0

([
µ0[φ−1

t (1− x), 1](
1− φ−1

t (1− x)
)Θ
][(

1− φ−1
t (1− x)

)Θ
(1− φt(1− x))Θ

])

=

[
lim
x→0

(
µ0[φ−1

t (1− x), 1](
1− φ−1

t (1− x)
)Θ
)][

lim
x→0

((
1− φ−1

t (1− x)
)

(1− φt(1− x))

)]Θ

(3.31)

First we note by the substitution y = 1− φ−1
t (1− x) and the continuity of φ−1

t (1− x) that

lim
x→0

µ0[φ−1
t (1− x), 1](

1− φ−1
t (1− x)

)Θ = lim
y→0

µ0[1− y, 1]

yΘ

We next see that we can describe the rightmost limit of Equation 3.31 through comparison principles
on φt(·) and φ−1

t (·) for the relevant game. For the Prisoners’ Dilemma, we recall that there exists kf
such that there are faster characteristic curves satisfying φ−1

t (x) ≤ Ψ−1
t (kf ;x) and φt(x) ≥ Ψt(kf ;x),
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and therefore we know that

1− φ−1
t (1− x)

1− φt(1− x)
≥

1−Ψ−1
t (kf ; 1− x)

1−Ψt(kf ; 1− x)

Using Equations 3.2 and 3.3, we are able to find the expressions Ψt(kf , 1 − x) =
1− x

1− x+ xekf t
and

Ψ−1
t (kf , 1− x) =

1− x
1− x+ xe−kf t

. This allows us to see that

1− φ−1
t (1− x)

1− φt(1− x)
≥
(

xekf t

1− x+ xekf t

)/(
xe−kf t

1− x+ xe−kf t

)
=
e2kf t

(
1− x+ xe−kf t

)(
1− x+ xekf t

) .

Then we compute the limit

lim
x→0

1− φ−1
t (1− x)

1− φt(1− x)
≥ lim

x→0

e2kf t
(
1− x+ xe−kf t

)(
1− x+ xekf t

) = e2kf t

This allows us to write Equation 3.31 as

lim
x→0

µ0[φ−1
t (1− x), 1]

(1− φt(1− x))Θ
≥ e2kf t

[
lim
y→0

µt[1− y, 1]

yΘ

]
.

Considering Θ ≥ θ0, we know from our assumption on the Hölder exponent of µ0(dx) that

lim inf
x→0

µ0[φ−1
t (1− x), 1]

(1− φt(1− x))Θ
= lim

x→0

µ0[φ−1
t (1− x), 1]

(1− φt(1− x))Θ
≥ e2kf t

[
lim
y→0

µt[1− y, 1]

yΘ

]
=∞.

Then we are able to see from Equation 3.30 that

lim inf
x→0

µt[1− x, 1]

xΘ
≥ ∞ and therefore lim

x→0

µt[1− x, 1]

xΘ
=∞ when Θ ≥ θ0.

As a result, the smallest Θ for which limx→0
µt[1−x,1]

xΘ > 0 cannot be larger than θ0, so we deduce
that θt ≤ θ0, the Hölder exponent near x = 1 is non-increasing in time for the Prisoners’ Dilemma.
Combining this with our previous observation that θt ≥ θ0 lets us conclude that θt = θ0 for all t ≥ 0,
so the Hölder exponent near x = 1 is preserved in time under the evolution of our multilevel system
for PD games. �

Proposition 3.2. For the multilevel Hawk-Dove game, the Hölder exponent near x = 1 is preserved in
time. Given an initial measure µ0(dx) with Hölder exponent near x = 1 of θ0 = θ, the Hölder exponent
θt of the measure µt(dx) solving Equation 2.13 satisfies θt = θ.

Proof. Because the within-group dynamics for the HD have an intermediate equilibrium xeq, we restrict
our attention to sufficiently small values of x such that 1 − x is located above the HD equilibrium so
that we are still able to apply the inequality φ−1

t (1 − x) ≥ 1 − x ≥ φt(1 − x). With this restriction,
the proof that θt ≤ θ0 carries over to the HD game because it relies only on properties of a general
solution φt(x0) and φ−1

t (x) to the replicator dynamics with an unstable fixed point at 1. Similarly, we
can use the argument from Proposition 3.1 to show that Equations 3.30 and 3.31 hold for the HD as
well. To further analyze Equation 3.31 for the Hawk-Dove game, we can use the inequalities provided
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by Equations 3.17 and 3.18 to see that

1− φ−1
t (1− x)

1− φt(1− x)
≥ 1− Ξ−1

t (1; 1− x)

1− Ξt(1; 1− x)
(3.32)

Using our expressions from Equations 3.15 and 3.16, we know that

Ξt (k; 1− x) =
βx+ [|α|(1− x)− β] e(β−|α|)kt

|α|x+ [|α|(1− x)− β] e(β−|α|)kt (3.33a)

Ξ−1
t (k; 1− x) =

βx+ [|α|(1− x)− β] e(|α|−β)kt

|α|x+ [|α|(1− x)− β] e−(|α|−β)kt
(3.33b)

Plugging these expressions into the inequality in Equation 3.32, we see that

1− φ−1
t (1− x)

1− φt(1− x)
≥
(

(|α|−β)x

|α|x+ [|α|(1− x)− β] e(β−|α|)kt

)/(
(|α|−β)x

|α|x+ [|α|(1− x)− β] e(|α|−β)kt

)
=
|α|x+ [|α|(1− x)− β] e(|α|−β)kt

|α|x+ [|α|(1− x)− β] e(β−|α|)kt

Then, taking the limit as x→ 0 on both sides, we see that

lim
x→0

1− φ−1
t (1− x)

1− φt(1− x)
≥ e2(|α|−β)kt ≥ 0

Looking back to Equation 3.31, we can now use above inequality and the continuity of φ−1
t (1− x) to

find that

lim
x→0

µ0[φ−1
t (1− x), 1]

(1− φt(1− x))Θ
≥ e(2(|α|−β)−G∗)t

[
lim
y→0

µt[1− y, 1]

yΘ

]
.

From these calculations, we can show as in the proof of Proposition 3.1 that if limy→0
µt[1−y,1]

yΘ > 0,

then so is limy→0
µt[1−y,1]

xΘ . Therefore θt ≤ θ0 for t > 0, and then we can further deduce that φt = φ0,
the Hölder exponent near x = 1 is conserved under the evolution of the multilevel dynamics for HD
games. �

4 General PD Games

In this section, we consider PD games with general payoff matrices. In Section 4.1, we characterize the
conditions under which the multilevel PD dynamics converge to a concentration at all-defector groups.
In Section 4.2, we find density steady states of the PD dynamics and characterize the most abundant
composition of cooperators and average payoff of the population at steady state.

4.1 PD Long-Time Behavior

Here, we use the comparison principles from Section 3.1 to characterize the conditions under which
the within-group dynamics dominate and the population converges to a delta-function at the all-
defector equilibrium. Due to a subtlety in the group payoff functions, we first handle Case I-III PDs in
Proposition 4.1 and then study the Case IV PD in Proposition 4.2. In Proposition 4.1, we show that
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there is a critical relative level of selection λ∗ such that the multilevel dynamics for the Case I-III PDs
converge to δ(x) as t→∞ when λ < λ∗.

Proposition 4.1. Consider Cases I-III of the PD (in which γ > 0) and supose an initial condition
µ0(dx) with Hölder coefficient θ near x = 1. If λ(γ + α) < (|β|−α) θ, then µt(dx) ⇀ δ(x).

Here we use the symbol “⇀” to denote weak convergence of probability measures, so we say that
µn(dx) ⇀ µ(dx) if

∫ 1
0 ψ(x)µn(dx)→

∫ 1
0 ψ(x)µ(dx) for each admissible test function ψ(x).

Proof. We wish to show,for any continuous test function ψ(x), that
∫ 1

0 ψ(x)µt(dx)→
∫ 1

0 ψ(x)δ(x)dx =
ψ(0). Because µt(dx) is a probability distribution, we have that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ =

∣∣∣∣ ∫ 1

0
ψ(x)− ψ(0)µt(dx)

∣∣∣∣ ≤ ∫ 1

0
|ψ(x)− ψ(0)|µt(dx)

Because ψ(·) is continuous, we know that ∀ε > 0, ∃δ such that |ψ(x)−ψ(0)|< ε when x ∈ [0, δ]. Using
this and our pushforward representation µt(dx) = wt(x)

[
µ0 ◦ φ−1

t

]
(dx), we obtain∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ ≤ ∫ δ

0
|ψ(x)− ψ(0)|µt(dx) +

∫ 1

δ
|ψ(x)− ψ(0)|µt(dx)

≤ ε+ 2||ψ||∞
∫ 1

φ−1(δ)
wt(φt(x))µ0(dx)

We now recall from Equation 2.14 that

wt(φt(x)) = exp

(∫ t

0
λ [G (φs(x))− 〈G(·)〉µs ] ds

)
= exp

(∫ t

0
λ
[
γφs(x) + αφs(x)2 − 〈G(·)〉µs

]
ds

)
Recalling that G(x) ≥ 0 for x ∈ [0, 1] for Cases I-III of the PD, we know 〈G(·)〉µs ≥ 0, so we have
that exp

(
−λ
∫ t

0 〈G(·)〉µsds
)
≤ 1. For the Case I PD (with α < 0), we know from Equation 3.6 that

Ψs(|β|+|α|;x) ≤ φs(x) and φs(x) ≤ Ψs(|β|;x). Denoting ks = |β| and kf = |β|+|α|, we use these
inequalities and the expressions for

∫ t
0 Ψs(k;x)ds and

∫ t
0 Ψs(k;x)2ds from Equations 3.24 and 3.25 to

see that there is a constant M1(δ) such that for t ≥ 0 and x ∈ [δ, 1],

wt(φt(x)) = exp

(
λγ

∫ t

0
φs(x)ds+ λα

∫ t

0
φs(x)2ds− λ

∫ t

0
〈G(·)〉µsds

)
≤ exp

(
λγ

∫ t

0
Ψs(ks;x)ds+ λα

∫ t

0
Ψs(kf ;x)2ds

)

= eλ(γ+α)t

(
x+ (1− x)e−kst

)λγ
ks(

x+ (1− x)e−kf t
) |α|γ
kf

exp

(
x

kf

(
(1− x)e−kf t + (x− 1)

x+ (1− x)e−kf t

))
≤M1(δ)eλ(γ+α)t

For the Case III PD, we know from Equation 3.11 that φs(x) ≤ Ψs(|β|−α;x). Writing ks = |β|−α, we
use this inequality and the integrals along the simplified characteristic curve Ψs(k;x) to see that there
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is a constant M2(δ) such that for t ≥ 0 and x ∈ [δ, 1],

wt(φt(x)) = exp

(
λγ

∫ t

0
φs(x)ds+ λα

∫ t

0
φs(x)2ds

)
≤ exp

(
λγ

∫ t

0
Ψs(ks;x)ds+ λα

∫ t

0
Ψs(ks;x)2ds

)
= eλ(γ+α)t

(
x+ (1− x)e−kst

)λ(γ+α)
ks exp

(
x

ks

(
(1− x)e−kst + (x− 1)

x+ (1− x)e−kst

))
≤M2(δ)eλ(γ+α)t

Because α = 0 for the Case II PD, a similar estimate follows from either of the other. For M(δ) =
max (M1(δ),M2(δ)), we can put this together to say that wt(φt(x)) ≤ Meλ(γ+α)t. This now tells us
that ∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ ≤ ε+ 2||ψ||∞M(δ)eλ(γ+α)t

∫ 1

ψ−1(x)
µ0(dx)

= ε+ 2||ψ||∞M(δ)eλ(γ+α)tµ0

(
[φ−1(x), 1]

)
Now we show how to complete the proof using comparison results that hold for the Case I PD, and
then subsequently address Case III. From Equation 3.7, we know that that within-group trajectories
for the Case I PD satisfty Ψ−1

t (|β|;x) ≤ φ−1
t (x), which allows us to deduce that

µ0

(
[φ−1
t (x), 1]

)
≤ µ0

(
[Ψ−1

t (|β|;x), 1]
)

= µ0

([
x

x+ (1− x)e−|β|t
, 1

])
= µ0

([
1− (1− x)e−|β|t

x+ (1− x)e−|β|t
, 1

])

Then we see, for x ∈ [δ, 1] that ∃D > 0 (namely 1
δ − 1) and sufficiently large t such that we can use

the fact that 1−x
x ≤

1−δ
δ = D and our assumption about the Hölder exponent of µ0(dx) near x = 1 to

deduce that

µ0

(
[φ−1
t (x), 1]

)
≤ µ0

([
1−

(
1− x
x

)
e−|β|t, 1

])
≤ µ0

(
[1−De−|β|t, 1]

)
≈ CDθe−|β|θt

If λ(γ +α) < (|β|+α)θ, then either λ(γ +α) < |β|θ < (|β|+α)θ or |β|θ < λ(γ +α) < (|β|+α)θ. In the
former case, we can use the above estimates and the fact that λ(γ + α) < |β|θ to see that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ ≤ ε+ 2||ψ||∞CMDθe[λ(γ+α)−|β|θ]t < 2ε as t→∞

and we can deduce that µt(dx) ⇀ δ(x) as t→∞ when λ (γ + α) < |β|θ for the Case I PD.

When |β|θ < λ (γ + α) < (|β|+α) θ, we must take a more refined choice of slower characteristic curve
Ψt(|β|+αk;x) to compare with φt(x). Because λ (γ + α) < (|β|+α) θ, for each choice of λ, there exists
k ∈ [0, 1) such that λ(γ + α) = (|β|+αk)θ. If λ(γ + α) = (|β|+αk) θ for k < 1, then we know that
λ(γ + α) < (|β|+αΓ) θ for Γ := k+1

2 ∈ (k, 1). Now we look to make use of a comparison principle to
study the solutions of φt(x) using solutions of Ψt(|β|+|α|Γ;x).

Solving backwards from δ, we know for any Γ ∈ [0, 1) that ∃T δΓ such that ∀t ≥ T , φ−1
t (δ) ≥ Γ.

For x ≥ Γ, we further see that |β|+|α|x ≥ |β|+|α|Γ and therefore we see, from looking at solutions
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backward in time, that

x(1− x) (|β|+|α|Γ) ≤ x(1− x) (|β|+|α|x) and
d

dt
Ψ−1
t (|β|+|α|Γ;x) ≤ d

dt
φ−1
t (x)

Therefore, for t ≥ T δΓ and x ≥ δ, characteristic curves φ−1
t (x) travel faster than solutions to Ψ−1

t (|β|+|α|Γ;x)
and we have that Ψ−1

t (|β|+|α|Γ;x) ≤ φ−1
t (x).

In fact, tracking the solution to
d

dt
Ψt(|β|+|α|Γ; ·) which starts at Γ at time Tδ (coinciding with the

solution of φ−1
t (δ) at this point), we see the subsequent trajectory will be given at times t > T by

Ψ−1
t−T (|β|+|α|Γ; Γ) =

Γ

Γ + (1− Γ)e−(|β|+|α|Γ)(t−T )
= 1− (1− Γ)e−(|β|+|α|Γ)(t−T )

Γ + (1− Γ)e−(|β|+|α|Γ)(t−T )

≥ 1−
(

1− Γ

Γ

)
e(|β|+|α|Γ)T e−(|β|+|α|Γ)t

Then recalling that φt(x) ≥ Ψ−1
t−T (|β|+|α|Γ; Γ) for x ∈ [Γ, 1], we have that

µ0

(
[φ−1
t (δ), 1]

)
≤ µ0

([
Ψ−1
t−T (|β|+|α|Γ; Γ) , 1

])
≤ µ0

([
1−

(
1− Γ

Γ

)
e(|β|+|α|Γ)T e−(|β|+|α|Γ)t, 1

])
Denoting K =

(
1−Γ

Γ

)
e(|β|+|α|Γ)T and using our assumption about the Hölder exponent near x = 1 for

µ0(dx), we can say, for sufficiently large t, that

µ0

(
[φ−1
t (x), 1]

)
≤ C

[(
1− Γ

Γ

)
e(|β|+|α|Γ)T

]θ
e−(|β|+|α|Γ)θt ≈ CKθe−(|β|+|α|Γ)θt

Combining this with our estimates from above and using that λ (γ + α) < (|β|+|α|k) θ < (|β|+|α|Γ) θ
for our given λ, we can deduce that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ ≤ ε+ 2||ψ||∞CMKθe[λ(γ+α)−(|β|+|α|Γ)θ]t < 2ε as t→∞

and therefore µt(dx) ⇀ δ(x) as t→∞ when λ (γ + α) < (|β|+|α|k) θ. Because such a k can be found
whenever λ (γ + α) < (|β|+|α|) θ, we now know that µt(dx) ⇀ δ(x) as t→∞ whenever this inequality
is satisfied for the Case I PD.

Now we turn our attention to Case III. Because α > 0 for Case III, so our hypothesis on λ can be
written as λ (γ + α) < (|β|−α) θ. We know from Equation 3.12 that the trajectories for this case
satisfy Ψ−1

t (|β|−α;x) ≤ φ−1
t )(x), which allows us to deduce that

µ0

(
[φ−1
t (x), 1]

)
≤ µ0

(
[Ψ−1

t (|β|−α;x) , 1]
)

= µ0

([
x

x+ (1− x) e(|β|−α)t
, 1

])
= µ0

([
1− (1− x) e(|β|−α)t

x+ (1− x) e(|β|−α)t
, 1

])

In an analogous manner to Case I, we know that for D = 1
δ − 1, that for x ∈ [δ, 1] and sufficiently

large t, we can use the fact that 1−x
x ≤ 1−δ

δ = D and our assumption about the Hölder exponent of
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the initial distribution µ0(dx) to see that

µ0

(
[φ−1
t (x), 1]

)
≤ µ0

([
1−

(
1− x
x

)
e−|β|−αt, 1

])
≤ µ0

([
1−De−|β|−αt, 1

])
≈ CDθe−|β|−αθt

Using the above estimate that wt(φt(x)) ≤M(δ)eλ(γ+α)t, we further see, when λ (γ + α) < (|β|−α) θ,
that ∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ ≤ ε+ 2||ψ||∞CM(δ)Dθe[λ(γ+α)−(|β|−α)θ]t < ε as t→∞,

so we can conclude that µt(dx) ⇀ δ(x) at t→∞ for the Case III PD when λ (γ + α) < (|β|−α) θ.

�

Proposition 4.2. Consider Case IV of the PD (γ < 0 and α > 0) and an initial distribution µ0(dx)

with Hölder exponent θ near x = 1. If λ(γ + α) + γ2

4α < (|β|+α)θ, then µt(dx) ⇀ δ(x).

Remark 4.1. The distinction with case IV is that G(x) is not minimized at x = 0, but rather has an
interior minimizer at xmin = − γ

2α with value G(xmin) = γ2

4α . Unlike Cases I-III, we don’t know that∫ t
0 〈G〉µsds ≤ 0, and can only say that

∫ t
0 〈G〉µsds ≥ −

γ2

4α t. This allows us to say that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ(0)

∣∣∣∣ ≤ ε+ 2||ψ||∞Me

[
λ(γ+α)+ γ2

4α

]
t
∫ 1

ψ−1(x)
µ0(dx)

and then we require λ(γ + α) + γ2

4α < (|β|+α)θ to show that the exponential term converges to 0 in the
long-time limit. However, we also show in Section 4.2 that Case IV PDs have density steady states
precisely when λ(γ + α) > (|β|+α)θ, so we conjecture that a more refined argument can show that
µt(dx) ⇀ δ(x) when λ(γ + α) < (|β|+α)θ < λ(γ + α) + γ2

4α .

4.2 Steady States of General Multilevel PD

In this section, we explore the steady state solutions for the multilevel PD dynamics. Steady state
solutions f(x) of Equation 2.11 satisfy

∂

∂x
[x(1− x) (β + αx) f(x)] = λf(x)

[
γx+ αx2 −

(
γMf

1 + αMf
2

)]
Because β < 0 for the Prisoners’ Dilemma, we hereafter write β as −|β|. We can solve the steady state
ODE by separating variables and a partial fraction expansion, yielding steady state densities of the
form

f(x) = Z−1
f x

λ
|β|

(
γMf

1 +αMf
2

)
−1

(1− x)

(
λ

|β|−|α|

)(
γ+α−

(
γMf

1 +αMf
2

))
−1

(|β|−αx)
λα

|β|(|β|−α)

((
γMf

1 +αMf
2

)
−α(γ+|β|)

)
−1

From Proposition 3.1, we know that the Hölder exponent of µt(dx) near x = 1 is preserved in time,
so it sensible to describe our steady state densities in terms of their Hölder exponents as well. Using
Definition 3.1 for µ(dx) := f(x)dx, we can compute the Hölder exponent of the steady state densities.
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Denoting the exponents of x and |β|−αx by A and B, respectively, we find that

lim
y →0

µ ([1− y, 1])

yΘ
= lim

y→0

∫ 1
1−y f(z)dz

yθ

= lim
y→0

f(1− y)

ΘyΘ−1

= lim
y→0

[
Θ−1Z−1

f (1− y)A (|β|−α+ αy)B y

(
λ

|β|−α

)(
γ+α−

(
γMf

1 +αMf
2

))
−Θ
]

=


0 : Θ < λ (|β|−α)−1

(
γ + α−

(
γMf

1 + αMf
2

))
Z−1
f (|β|−α)B : Θ = λ (|β|−α)−1

(
γ + α−

(
γMf

1 + αMf
2

))
∞ : Θ > λ (|β|−α)−1

(
γ + α−

(
γMf

1 + αMf
2

))
Therefore, for a given average payoff 〈G(·)〉f = γMf

1 + αMf
2 , the characterization from Definition 3.1

tell us that the Hölder exponent near the endpoint x = 1 of our steady-state density f(x) is equal to

θ = λ (|β|−α)−1
(
γ + α−

(
γMf

1 + αMf
2

))
(4.1)

We can also rearrange this to express the average payoff in the whole population (
∫ 1

0 G(y)dy = γMf
1 +

αMf
2 ) in terms of the Hölder exponent θ, for given λ and θ, as follows∫ 1

0
G(y)f(y)dy = γMf

1 + αMf
2 = (γ + α)− (|β|−α)

λ
θ (4.2)

Rewriting our steady states in terms of θ, we have

fλθ (x) = Z−1
f x|β|

−1(λ(γ+α)−(|β|−α)θ)−1 (1− x)θ−1 (|β|−αx)
− λ
|β| (γ+|β|+α)− α

|β| θ−1 (4.3)

For θ > 0, we see that there is a threshold level of between-group selection strength λ∗ such that the
steady states fθ(x) are integrable if and only if

λ > λ∗ :=

(
|β|−α
γ + α

)
θ (4.4)

and that it is not possible to have an integrable steady state for any positive λ when γ → −α.
We can further understand the existence of steady state densities by recharacterizing the threshold
selection strength needed for integrability of our steady states λ∗ :=

(
T−R
R−P

)
θ, and make the following

observations

• λ∗ is increasing in T − R: increasing the incentive to defect against a cooperator increases the
relative strength of between-group selection need to sustain cooperation.

• λ∗ is decreasing in R − P : increasing the relative advantage of mutual cooperation over mutual
defection decreases the relative strength of between-group selection needed to sustain cooperation.

• λ∗ → ∞ as R − P → 0: as mutual cooperation loses its advantage over mutual defection, then
between-group selection cannot maintain cooperation at any selection strength.
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In terms of our expressions for G(x) and πC(x)− πD(x) from Equations 2.12 and 2.8, we can rewrite
our threshold selection strength as

λ∗ =

(
πD(1)− πC(1)

G(1)−G(0)

)
θ, (4.5)

where we have included in our expression G(0) = 0 because the expression would have held even if we
had not shifted G(x) by P , and because the difference between the group payoff at the unstable and
stable equilibria for the within-group dynamics also shows up in an analogous way for the threshold in
the multilevel HD dynamics studied in Section 5.2. This form of the threshold λ∗ highlights the struggle
of trying to achieve cooperation by multilevel selection as a tug-of-war between the individual-level
advantage of a defector outperforming cooperators in a many-cooperator group and the group-level
advantage of many-cooperator groups achieving higher average payoff than the all-defector groups that
arise from the effects of individual-level selection alone. We can also rewrite the average payoff at
steady state from Equation 4.2 using the expressions from Equations 2.12 and 2.8 to see that

〈G(·)〉fλθ = G(1)− (πD(1)− πC(1)) θ

λ

Using the expression for λ∗ from Equation 4.5, we can further find that

〈G(·)〉fλθ = G(1)−
(
λ∗

λ

)
(G(1)−G(0)) (4.6)

where we see that 〈G(·)〉fλθ → G(0) = 0 as λ→ λ∗ and that 〈G(·)〉fλθ → G(1) as λ→∞. In particular,
we see from Equation 4.6 that the average payoff of the population at steady state is always limited by
the payoff of the full-cooperator group, so a PD with intermediate average payoff optimum will always
see suboptimal levels of cooperation, even in the limit of arbitrarily strong between-group population.

So far, we have shown in Section 4.1 that a population with initial Hölder exponent θ near x = 1
will converge to a delta-concentration at the full-defector group when λ(γ + α) < (β + α) θ. Under
the alternate condition λ(γ + α) > (β + α) θ, we have shown in this section that there is a unique
and integrable steady state for each Hölder exponent θ, and we showed in Section 3.3 that the Hölder
exponent near x = 1 is preserved in time for solutions of Equation 2.13 for the PD. It is then natural
to suspect that populations should converge to the steady state with the same Hölder exponent near
x = 1 as the initial distribution, so we make the following conjecture about the long-time behavior of
solutions to Equation 2.13.

Conjecture 4.1. Suppose we have an initial distribution µ0(dx) has a Hölder exponent of θ near
x = 1. If λ (γ + α) > (β + α)θ, then

µt(dx) ⇀ µ∞(dx) = x|β|
−1(λ(γ+α)−(|β|−α)θ)−1 (1− x)θ−1 (|β|−αx)

− λ
|β| (γ+|β|+α)− α

|β| θ−1
dx,

where Z−1
f is a normalizing constant such that

∫ 1
0 µ∞(dx) = 1.

This long-term behavior has already been shown to hold for special families of Case I PDs with
α = β = −1 [28] and for the Case II PD [18]. The main impediment to the general proof of the
conjecture is that we have not yet shown that solutions µt(dx) of Equation 2.13 necessarily converge to
a steady state. However, for the remainder of this section, we will study the properties of the density
steady states given by Equation 4.3, knowing that these are time-independent solutions of Equation
2.13, with the potential additional relevance that these steady states could be the long-time outcome
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for initial data with Hölder exponent θ near x = 1 when λ (γ + α) > (β+α)θ. In Figure 7, we illustrate
sample steady state densities for PDs in which average group payoff is maximized by full-cooperator
groups (left) and by groups with an intermediate level of cooperation (right). In the fomer case, we
see that values of λ as small as 9 can produces steady states with high levels of cooperation and many
groups close to full cooperation. In the latter case in which group payoff is maximized by groups with
80 percent cooperator, we see in Figure 7 that most groups feature at most 60 percent cooperation
even for values λ as large as 300, and we will further address the behavior of the limit λ → ∞ in
Proposition 4.3.

Figure 7: Steady state densities for the PD for various values of λ. Parameters shown are γ = 2.5 and γ = −0.5
(Left) and γ = 3.2 and α = −2.0 (Right), with β = −1 and θ = 2 for both panels. Dotted line in right panel
corresponds to the group type x∗ with maximal average payoff.

Now we will examine which type of group cooperator composition x is most abundant in steady state
fλθ (x). To do this, we denote peak abundance by x̂λ(fλθ (x)) = argsupx∈[0,1] f

λ
θ (x). Because our density-

valued steady states become unbounded as x→ 1 when θ < 1, we will now focus only on steady states
when θ ≥ 1. We show that if γ ≥ 2α (when full-cooperator groups are optimal), x̂λ → 1 as λ→∞. If
γ < 2α (the optimal group has both cooperators and defectors), we see that the most abundant group
type at steady states has more defectors than the type of group maximizing average payoff, even in
the limit at λ→∞.

Proposition 4.3. Suppose θ ≥ 1. If γ + 2α < 0, then lim
λ→∞

x̂λ(fλθ ) =
γ + α

−α
∈ (0, 1) and γ+α

−α < γ
−2α :

x∗. If γ + 2α > 0, lim
λ→∞

x̂λ(fλθ ) = 1 = x∗.

Proof. We start by differentiating fλθ (x) and see that

dfλθ (x)

dx
= g(x)

[
Z−1
f x|β|

−1(λ(γ+α)−(|β|−α)θ)−2 (1− x)θ−2 (|β|−αx)
− λ
|β| (γ+|β|+α)− α

|β| θ−2
]

where g(x) is a quadratic in x given by

g(x) = [λ (γ + α)− (|β|−α) θ − |β|] + [−λγ + 2 (α+ |β|)]x− [λ+ 3]αx2 (4.7)
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We note that g(x) vanishes at the points

xλ± =
λγ − 2(α+ |β|)±

√
(λγ − 2(α+ |β|))2 + 4 (λ(γ + α)− (|β|−α)θ − |β|) (3 + λ)α

−2(3 + λ)α
(4.8)

Using o(λ2) to mean any function h(λ) such that limλ→∞
(
h(λ)/λ2

)
= 0, we can rewrite the above

expression as

xλ± =
λγ − 2(α+ |β|)
−2(3 + λ)α

∓ 1

2α

√
[γ2 + 4α (γ + α)]λ2 + o(λ2)

(3 + λ)2
(4.9)

In the limit of large λ, that this simplifies to

x∞± := lim
λ→∞

xλ± = − γ

2α
∓ 1

2α

√
γ2 + 4αγ + 4α2 =

−γ ∓
√

(γ + 2α)2

2α
(4.10)

Therefore the critical points of g(x) depend on the sign of γ+ 2α, which corresponds to whether group
average payoff G(x) has an interior maximum.

• For γ + 2α < 0, then x∞± = −γ±(γ+2α)
2α , and therefore x∞+ = 1 and x∞− = − (γ+α)

α . Because
γ + α = R − P > 0 for the PD, we see that x∞− < 0 if α > 0, and therefore the only feasible
critical point is x∞+ = 1 in the limit λ→∞ when γ + 2α < 0 and α > 0. When α < 0,

x∞− = −(γ + α)

α
= − γ

2α
−
[ γ

2α
+ 1
]

= x∗ −
[
γ + 2α

2α

]
︸ ︷︷ ︸

>0

< x∗

So we see that g(x) has a unique interior critical point x∞− ∈ [0, 1] and that this interior critical
point satisfies x∞− < x∗ = −γ

2α , having fewer cooperators than the type of group with maximum
average payoff.

• For γ + 2α > 0, x∞± = −γ∓(γ+2α)
2α and then x∞− = 1 and x∞− = − (γ+α)

α . Again, if α > 0, then we
see that x∞+ < 0, and the only feasible critical point for g(x) is x∞− = 1. When α < 0, we see that

x∞+ = −(γ + α)

α
= 1−

(
γ + 2α

α

)
︸ ︷︷ ︸

<0

> 1,

so the unique feasible critical point for g(x) is also x∞− = 1 in this case.

For λ > (|β|−α)θ
γ+α , we have from Equation 4.3 that fλθ (0) = fλθ (1) = 0 when θ ≥ 1 (when θ < 1, the

steady state density blows up near x = 1). Because 0 and 1 are the only possible critical points of

fλθ (x) other than those of gλ(x), we can deduce that lim
λ→∞

x̂λ(fλθ ) = −(γ + α)

α
when and α < 0 and

γ + 2α < 0 and that lim
λ→∞

x̂λ(fλθ ) = 1 for γ ≥ 1 for other Prisoners’ Dilemmas. �

Based on the conditions derived above, we see for Case I PDs (in which α < 0) that limλ→∞ x̂
λ < x∗

if an only if α+ 2γ < 0. Only when α < 0 and γ + 2α is it the case that the group type with maximal
fitness features a mix of cooperators and defectors. Notably, in cases II-IV (in which α ≥ 0), in which
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average group payoff G(x) is maximized by full cooperator groups, peak abundance at steady state
x̂λ → 1 as λ → ∞. Unlike Case I, there is no discrepency between peak abundance at steady state
and group type with highest average payoff (x∗ = 1) in the limit of strong between-group selection.

In the process of proving Proposition 4.3, we also see that the most abundant group compostion at
steady state is given by

x̂λ =

{
0 : 0 ≤ λ < λ∗ + |β|
x̂λ− : λ > λ∗ + |β| (4.11)

Because we know from Proposition 4.1 that µt(dx) ⇀ δ (x) when λ < λ∗, we can use Equation 4.6 to
characterize the average payoff at steady state for all values of λ with the piecewise description

〈G〉fλθ =

{
G (0) : 0 ≤ λ < λ∗(

λ∗

λ

)
G(0) +

(
1−

(
λ∗

λ

))
G(1) : λ > λ∗

(4.12)

In Figure 8(left), we plot the average payoff at steady state 〈G(·)〉fλθ and the average payoff of the
most abundant group type at steady state G(x̂λ) as functions of λ, showing that both tend to G(1)
as λ → ∞ (lower-dashed line) rather than the maximal possible group payoff (upper-dashed line). In
Figure 8(right), we plot the maximal group payoff G(x∗) and the average payoff at steady state in
the limit as λ → ∞ ( lim

λ→∞
〈G(·)〉fλθ = G(1)). In Figure 9, we present heat maps of the most abundant

group type in the limit of large λ, limλ→∞ x̂λ, as a function of α and γ for all cases of the PD (left)
and focusing on Case I (right). In Figure 10, we present average payoffs at steady state in the limit of
large λas a function of α and γ for all cases of the PD (left) and for Case I (right). In Figure 11, we
plot the group payoff function G(x) for two sets of parameter values, showing how the group payoff
achieved by the most abundant group composition G (limλ→∞ x̂λ) = G(1).
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Figure 8: Comparison between average payoff at steady state and optimal average payoff for a group. (Left)
Plots of average payoff at steady state 〈G(·)〉fλ

θ
(blue line) and payoff of most abundant group type in steady

state distribution G(x̂λ) (green line) as a function of λ in a sample game with optimal group composition
x∗ = 3

4 . Lower dashed line corresponds to G(1), the limit of average steady state payoff as λ → ∞), and
the upper dashed line corresponds to maximal possible group payoff G(x∗). (RIght) Plots of the group type
with maximal average payoff G(x∗) (blue solid line) and the average payoff at the population at steady state
limλ→∞〈G(·)〉fλ

θ
in the large λ limit (green dashed line), each described as a function of γ with a fixed choice of

α = −3. The gray dotted verticle line corresponds to the value γ = 6 at which the group compostion maximizing
payoff x∗ = − γ

−2α |α=−3 = 1. We notice that the two lines coincide for γ > 6, when the full-cooperator groups
are optimal for between-group competition, while the green dotted line falls below the blue solid line when
γ < 6, as the average payoff of the population falls belows the interior optimal group payoff. In particular, when
γ → 3, we see that 〈G(·)〉fλ

θ
→ 0 and the full-defection outcome is achieved, even though the for this game the

group average payoff is G(x) = 3x(1− x), and groups of a fifty-fitfy mix of cooperators and defectors are most
favored by between-group competition.

Figure 9: Most abundant group type as λ→∞ for various values of γ and α. Games in region below dashed
line are not Prionsers’ Dilemmas. (Left) Region in γ and α parameter space featuring all cases of Prisoners’
Dilemmas. (Right) Focus on Case I PDs for which intermediate fitness optima are possible, and the only region
in which x̂λ 6→ 1 as λ→∞ for PD games.
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Figure 10: Average payoff of population at steady state as λ → ∞ for various values of γ and α. Games in
region below dashed line are not Prionsers’ Dilemmas. (Left) Region in γ and α parameter space featuring all
cases of Prisoners’ Dilemmas. (Right) Focus on Case II PDs for which intermediate fitness optima are possible.
Notably, the large λ steady state payoff limλ→∞〈G〉fλ

θ
= γ + α is an increasing function of both γ and α.

Figure 11: Illustration of peak abudance at steady state as λ→∞ and group type with maximal payoff x∗ for
Case Ia PDs with α = −1 (both) and γ = 1.75 (left) and γ = 1.25 (right). In both cases, we see how the modal
level of cooperation at steady state x̂λ in the large λ limit has the same collective payoff as the full cooperator
group, G(x̂∞) = G(1). We also observe that the gap between the maximal possible collective payoff G(x∗) and
the maximal payoff achieved at steady stateG(x̂∞) increases as x∗ decreases from 0.875 (left) to x∗ = 0.625.

5 General HD Games

In this section, we describe the dynamics and steady-states for the multilevel dynamics of the Hawk-
Dove game. In Section 5.1, we show that the probability of having groups below the within-group
equilibrium vanishes in the long-time limit, and we characterize conditions under which the population
converges to a delta-concentration at the within-group equilibrium mix of cooperators and defectors. In
Section 5.2, we study the steady state densities which exist under the opposite conditions, supporting
all levels of cooperation between the within-group equilibrum and the full-cooperator group.
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5.1 HD Long-Time Behavior

Because α < 0 for the Hawk-Dove game, we write the expression for group payoff along characteristic
curves as G(φt(x) = γφt(x) − |α|φt(x)2. This allows us to describe the change in the population
distribution µt(dx) due solely to between-group competition as

wt(φt(x)) = exp

(
λ

[∫ t

0

(
γφs(x)− |α|φs(x)2

)
ds−

∫ t

0
(γMµs

1 − |α|M
µs
2 ) ds

])
(5.1)

As in Reference [28], it can be helpful to rearrange the above expression by picking a ∈ [0, β|α| ] and
writing

(5.2)wt(φt(x)) = exp

([
λ

∫ t

0

(
γφs(x)− |α|φs(x)2 −

(
γa− |α|a2

))
ds

−
∫ t

0

[
γ (Mµs

1 − a)−
(
|α|Mµs

2 − a
2
)]
ds

])

where the integral
∫ t

0

[
(γMµs

1 − a) +
(
Mµs

2 − a2
)]
ds provides a measurement of the deviation of the

flow of measures {µs(dx)}s∈[0,t] from the delta-function δ(x− a) concentrated at composition a up to
time t. We will use this integral in a same way that we used that

∫ t
0 〈G(·)〉µsds ≥ 0 in the proof of

Proposition 4.1. For convenience, we will denote its integrand by

ja(s) := γ (Mµs
1 − a)− |α|

(
Mµs

2 − a
2
)

(5.3)

We now prove two lemmas which are useful for characterizing the long-time behavior of multilevel HD
dynamics. In Lemma 5.1, we show that the probability of being below the within-group HD equilibrium
should vanish in the long-run. This Lemma is a direct extension of Lemma 4.1 from [28], making use
of the comparison principles of Equations 3.22 and 3.23 to extend the argument to games without
solvable within-group dynamics. In Lemma 5.2, we show that

∫∞
0 ja(s)ds is bounded below, aiding

in the proof of convergence of the population to a delta-function at the within-group equilibrium in
the appropriate parameter regime. For these Lemmas, we can characterize the dynamics of dynamics
below xeq in terms of the Hölder exponent of the initial measure near x = 0, which is given by

ζ = inf
Θ≥0

{
lim
y→0

µ0([0, y])

yΘ
> 0

}
(5.4)

We will assume for convenience that our initial measures µ0(dx) will have Hölder exponent ζ > 0,
although the results should hold as well in the case in which some groups are concentrated at the
all-defector group in the initial population.

Lemma 5.1. Suppose µ0(dx) has Hölder exponent ζ > 0 near the all-defector group x = 0. Then, for
any δ > 0, µt

(
[0, β|α| − δ]

)
→ 0 as t→∞.

Proof. Using the measure-valued formulation, we have for test function ψ(x) that

∫ β
|α|−δ

0
ψ(x)µt(dx) =

∫ φ−1
t

(
β
|α|−δ

)
0

ψ (φt(x))wt (φt(x))µ0(dx) ≤ ||ψ||∞
∫ φ−1

t

(
β
|α|−δ

)
0

wt (φt(x))µ0(dx)
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Using the characterization of wt(φt(x)) from equation 2.14, we have that

∫ φ−1
t

(
β
|α|−δ

)
0

ψ(x)µt(dx) ≤
∫ φ−1

t

(
β
|α|−δ

)
0

exp

(
λ

∫ t

0
[G(φs(x))− 〈G(·)〉µs ] ds

)
µ0(dx)

≤
∫ φ−1

t

(
β
|α|−δ

)
0

exp

(
λ

∫ t

0
G(φs(x))ds

)
µ0(dx)

≤
∫ φ−1

t

(
β
|α|−δ

)
0

exp

(
λ

∫ t

0
G(Πs(1;x))ds

)
µ0(dx)

The second inequality holds above because 〈G(·)〉µs = γMµ
1 − |α|M

µ
2 ≥ |α|(M

µ
1 −M

µ
2 ) ≥ 0 (as γ > |α|

for the HD game and x ≥ x2 for x ∈ [0, 1]). The third inequality holds because G(φt(x)) ≤ G (Πt(1 : x))
(as G(x) is increasing for x ∈ [0, β/|α|] and φt(x) ≤ Πt(1;x) from Equation 3.22). Because we see from
Equations 3.28a and 3.28b that

∫ t
0 G(Πt(1;x))ds = γ

∫ t
0 Πs(1;x)ds− |α|

∫ t
0 Πs(1;x)2ds is bounded in t,

we can deduce that ∃M > 0 such that

∫ β
|α|−δ

0
ψ(x)µt(dx) ≤M ||ψ||∞

∫ φ−1
t

(
β
|α|−δ

)
0

µ0(dx) ≤M ||ψ||∞µ0

([
0, φ−1

t

(
β

|α|
− δ
)])

Then we can use the ranking of backward characteristics from Equation 3.23 to see that

∫ β
|α|−δ

0
ψ(x)µt(dx) ≤M ||ψ||∞µ0

([
0,Π−1

t

(
1− β

|α|
;x

)])
After a large time t, we see from Equation 3.21 and our assumption about the initial distribution near
x = 0 that ∃C > 0 such that

µt

(
[0,Π−1

t

(
1− β

|α| ;x
))
≈ C

(
βx

|α|x+ (β − |α|x) e
β
|α| (|α|−β)t

)ζ

= C

(
βx

|α|xe−
β
|α| (|α|−β)t

+ β − |α|x

)ζ
e
− β
|α| (|α|−β)t

Because x ∈ [0, β|α| − δ) and β, |α|xe−
β
|α| (|α|−β)t

> 0, we further see that

µt

(
[0,Π−1

t

(
1− β

|α| ;x
))
≤ C

(
β

β − |α|x

)ζ
e
− β
|α| (|α|−β)t ≤ C

(
β

|α|δ

)ζ
e
− β
|α| (|α|−β)t

and, after choosing the test function ψ(x) ≡ 1, we can use the fact that β < |α| for the HD game to
deduce that

µt

([
0, β|α| − δ

])
=

∫ β
|α|−δ

0
µt(dx) ≤

[
CMβζ

(|α|δ)ζ

]
e
− β
|α| (|α|−β)t → 0 as t→∞

�

Lemma 5.2. Suppose µ0(dx) has Hölder exponent ζ > 0 near the all-defector group x = 0. For any
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a ∈
[
0, β|α|

)
, there exists an Aa > −∞ such that

∫∞
0 ja(s)ds > Aa.

Proof. We can decompose the integrand js(a) as

ja(s) =

∫ a

0

[
γ (x− a)− |α|

(
x2 − a2

)]
µt(dx) +

∫ 1

a

[
γ (x− a)− |α|

(
x2 − a2

)]
µt(dx) := j1

a(s) + j2
a(s)

Following the proof of Lemma 4.2 in [28], we are able to show that j2
a(s) ≥ 0 using the change of

variable z = x−a
1−a mapping [a, 1]→ [0, 1] and the measure νt(dz) := 1−a

pa
µt(dz) with pa = µt ([a, 1]). As

calculated in [28], this approach allows us express the integrals in j2
a(s) in terms of the moments of

νt(dx), denoted by Mν
j :=

∫ 1
0 z

jνt(dz), yielding∫ 1

a
(x− a)µt(dx) = pa (1− a)Mν

1∫ 1

a

(
x2 − a2

)
µt(dx) = pa (1− a) [2aMν

1 + (1− a)Mν
2 ]

Using these expressions, we can compute j2
a(s) as

j2
a(s) = γ

∫ 1

a
(x− a)µt(dx)− |α|

∫ 1

a

(
x2 − a2

)
µt(dx)

= pa (1− a) [(γ − 2|α|a)Mν
1 − |α|(1− a)Mν

2 ]

= pa (1− a) {[γ − |α|(1 + a)]Mν
1 + |α|(1− a) (Mν

1 −Mν
2 )}

≥ pa (1− a) [γ − |α|(1 + a)]Mν
1

where we noted that Mν
1 ≥ Mν

2 because supp(νt(dz)) ⊆ [0, 1]. Because a ≤ β
|α| by assumption, we

further see that
j2
a(s) ≥ pa (1− a) [γ − (|α|+β)] = pa (1− a) (R− S) ≥ 0

Now turning our attention to j1
a(s), we can adapt the approach from [28] to get a lower bound for j1

a(s)
and

∫ t
0 j

1
a(s)ds. We can observe that

j1
a(s) = γ

∫ a

0
(x− a)µt(dx)− |α|

∫ a

0

(
x2 − a2

)︸ ︷︷ ︸
≤0

µt(dx) ≥ −γa
∫ 1

0
µt(dx) = −γaµt ([0, a])

Because a < β
|α| , there is a δa > 0 such that a = β

|α| − δa. This allows us to use the proof of Lemma
5.1 to see that ∃C,M <∞ such that j1

a(s) satisfies the bound

j1
a(s) ≥ −γaµt

([
0, β|α| − δa

])
≥ −CMγaβζ

|α|ζδζa
e
− β
|α| (|α|−β)t
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Using this bound and that j2
a(s), we can bound the integral of ja(s) as∫ t

0
ja(s)ds =

∫ t

0

(
j1
a(s) + j2

a(s)
)
ds ≥ −

∫ t

0

CMγaβζ

|α|ζδζa
e
− β
|α| (|α|−β)s

ds

=
CMγaβζ−1

|α|ζ−1δζa (|α|−β)

(
e
− β
|α| (|α|−β)t − 1

)

and then we see that in the long-time limit that∫ ∞
0

ja(s)ds ≥ −
CMγaβζ−1

|α|ζ−1δζa (|α|−β)
≥ −∞

�

Now we are ready to characterize the conditions under which the population converges to a delta-
function at the within-group equilibrium of the HD game. In Proposition 5.1, we use Lemmas 5.1
and 5.2 and the comparison principles for HD characteristic curves to show that there exists a critical
level of between-group selection λ∗ such that the population converges to δ

(
x− β

|α|

)
as t→∞ when

λ < λ∗.

Proposition 5.1. Suppose µ0(dx) has Hölder exponents of ζ near x = 0 and θ near x = 1. If
λ (γ − (β + |α|)) < |α|θ, then µt(dx) ⇀ δ

(
x− β

|α|

)
as t→∞.

Proof. Again, we consider a continuous test function ψ(x) and will show that
∫ 1

0 ψ(x)µt(dx) →∫ 1
0 ψ(x)δ

(
x− β

|α|

)
dx = ψ

(
β
|α|

)
. Using the continuity of ψ(x), we know that ∀ε > 0, ∃δ such that

|ψ(x) − ψ
(
β
|α|

)
|< ε when x ∈

[
β
|α| − δ,

β
|α| + δ

]
. Because µt(dx) is a probability distribution, we see

that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ

(
β
|α|

) ∣∣∣∣ ≤ ∫
β
|α|−δ

0

∣∣∣∣ψ(x)− ψ
(
β
|α|

) ∣∣∣∣µt(dx) +

∫ 1

β
|α|+δ

∣∣∣∣ψ(x)− ψ
(
β
|α|

) ∣∣∣∣µt(dx)

+

∫ β
|α|+δ

β
|α|−δ

∣∣∣∣ψ(x)− ψ
(
β
|α|

) ∣∣∣∣µt(dx)

≤ ε+ 2||ψ||∞
∫ β
|α|−δ

0
µt(dx) + 2||ψ||∞

∫ 1

φ−1
t

(
β
|α|+δ

)wt(φt(x))µ0(dx)

≤ ε+ 2||ψ||∞µt
([

0, β|α| − δ
])

+ 2||ψ||∞
∫ 1

φ−1
t

(
β
|α|+δ

)wt(φt(x))µ0(dx)

From Lemma 5.1, we know that for δ > 0 that µt
([

0, β|α| − δ
])
→ 0 as t→∞, so there exists a time

T1 such that µt
([

0, β|α| − δ
])
≤ ε

2||φ||∞ for t > T1. For such t, we have that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ

(
β
|α|

) ∣∣∣∣ ≤ 2ε+ 2||ψ||∞
∫ 1

φ−1
t

(
β
|α|+δ

)wt(φt(x))µ0(dx)
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Using Equation 5.2, we can see for a ∈ [0, β|α|) that

wt(φt(x)) = exp

(
λ

[∫ t

0

(
γφs(x)− |α|ψs(x)2

)
ds−

(
γa− |α|a2

)
t−

∫ t

0
js(a)ds

])
From Lemma 5.2, we know that there exists an A(a) > −∞ such that

∫ t
0 js(a)ds ≥ A(a) for all t, and

therefore we know that

wt(φt(x)) ≤ e−λ(γa−|α|a2)t−λA(a) exp

(
λ

∫ t

0

(
γφs(x)− |α|ψs(x)2

)
ds

)
Using the ranking of characteristic curves from Equation 3.17, we know that φs(x) ≤ Ξs

(
β
|α| ;x

)
and

that −φs(x)2 ≤ −Ξs(1;x)2. This allows us to say that

wt(φt(x)) ≤ e−λ(γa−|α|a2)t−λAa exp

(
λ

[∫ t

0

(
γΞs(

β
|α| ;x)− |α|Ξs(1;x)2

)
ds

])
Using the integrals along simplified characteristic curves Ξt(k;x0) from Equations 3.26 and 3.27, there
is a bound M1(δ) such that

wt(φt(x)) ≤ e−λ(γa−|α|a2)t−λAa
(
M1(δ)eλ(γ−|α|)t

)
= M1(δ)eλ(1−a)(γ−(1+a)|α|)te−λA(a)

The exponential rate
H(a) := (1− a) (γ − (1 + a) |α|) (5.6)

is a continuous and decreasing function of a, which ranges between(
|α|−β
|α|

)
(γ − (|α|+β)) = H

(
β

|α|

)
≤ H(a) ≤ H(0) = γ − |α| (5.7)

for a ∈ [0, β|α| ]. We can rewrite the hypothesis λ (γ − (|α|+β)) < |α|θ in terms of our use our expression

for H
(
β
|α|

)
. Because |α|> β > 0 for the HD game, we can see that

λ (γ − (|α|+β)) < |α|θ ⇐⇒ λH

(
β

|α|

)
:=

(
|α|−β
|α|

)
(γ − (|α|+β)) < (|α|−β) θ (5.8)

so we will use the form λH(
(
β
|α

)
< (|α|−β) θ in order to best make use of the estimate

wt(φt(x)) ≤M1(δ)eλH(a)te−λA(a).

If λH
(
β
|α|

)
< (|α|−β) θ, we can use the fact that H(a) is continuous and decreasing to deduce that

either there exists an a∗ ∈ [0, β|α| ] such that λH(a∗) = (|α|−β) θ or that λH(0) < (|α|−β) θ. In either

case, this tells us that we can choose a∗∗ = 1
2

(
max(a∗, 0) + β

|α|

)
which satisfies λH(a∗∗) < (|α|−β) θ.

We will stick this choice of a∗∗ for the rest of the proof, which means that we can write

wt(φt(x)) ≤M1(δ)eλH(a∗∗)te−λA(a)
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Now that we have bounded wt(φt(x)), we can say for t > T1 that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ

(
β
|α|

) ∣∣∣∣ ≤ 2ε+ 2||ψ||∞M1(δ)eλH(a∗∗)te−λA(a)µ0

([
φ−1
t

(
β
|α| + δ

)
, 1
])

(5.9)

To consider the effect of µ0

([
φ−1
t

(
β
|α| + δ

)
, 1
])

on the long-time behavior of µt(dx), we consider sepa-

rately the cases in which λH(a∗∗) < β
|α| (|α|−β) θ < (|α|−β) θ and in which β

|α| (|α|−β) θ < λH(a∗∗) <

(|α|−β) θ. When λH(a∗∗) < β
|α| (|α|−β) θ, we use the ranking of backward characteristics from Equa-

tion 3.18 to recall that Ξ−1
t

(
β
|α| ;x

)
≤ φ−1

t (x) for x ∈ [βα , 1], yielding

µ0

([
φ−1
t (x), 1

])
≤ µ0

([
Ξ−1
t

(
β
|α| ;x

)
, 1
])

= µ0

 (1− x)β + (|α|x− β) e
− β
|α| (β−|α|)t

(1− x) |α|+ (|α|x− β) e
− β
|α| (β−|α|)t

, 1


= µ0

([
1− (1− x) (|α|−β)

(1− x) |α|+ (|α|x− β) e
− β
|α| (β−|α|)t

, 1

])

≤ µ0

([
1− (|α|−β)

|α|δ
e
− β
|α| (|α|−β)t

, 1

])
Denoting K := (1−δ)(|α|−β)

|α|δ , we can use our assumption about the Hölder exponent of µ0(dx) near
x = 1 to show, for sufficiently large time t, that

µ0

([
φ−1
t (x), 1

])
≤ µ0([1−Ke−

β
|α| (|α|−β)t

, 1]) ≈ CKθe
− β
|α| (|α|−β)θt

(5.10)

Because this holds for all x ∈ [ β|α , 1], in the case that λH(a∗∗) < β
|α| (|α|−β) θ, we see that

(5.11)2||ψ||∞M1(δ)eλH(a∗∗)te−λA(a)µ0

([
φ−1
t

(
β
|α| + δ

)
, 1
])

≤ 2||ψ||∞CM1(δ)Kθe−λA(a) exp
([
λH(a∗∗)− β

|α| (|α|−β) θ
]
t
)
, as t→∞.

For the alternate case in which β
|α| (|α|−β) θ < λH(a∗∗) < (|α|−β) θ, we must use a more refined

comparison principle. From this condition, we know that there exists k ∈ ( β
|α| , 1) such that λH(a∗∗) =

k (|α|−β) θ. Further, this means that choosing Γ := k+1
2 yields λH(a∗∗) < Γ (|α|−β) θ. Because

φ−1
t

(
β
|α| + δ

)
travels from β

|α| + δ to 1 as t increases, we know that there exists a time T δΓ such that

φ−1
T δΓ

( β
|α| + δ) = Γ and φ−1

t ( β
|α| + δ) > Γ for t > T δΓ. Further, we see, for x ≥ Γ, that

Γ (1− x) (|α|x− β) ≤ x (1− x) (|α|x− β) and
d

dt
Ξ−1
t (Γ;x) ≤ d

dt
φ−1
t (x).

For t > TΓ
δ and x ≥ β

|α| + δ, this tells us that the characteristic curves travel faster than solutions
to Ξ−1

t (Γ;x), so we know that Ξ−1
t (Γ;x) ≤ φ−1

t (x). We can track solutions of our slower curves
d
dtΞ
−1
t (Γ; ·) located at Γ at time T δΓ (coinciding with the backwards characterstic curve φ−1

t (δ) at time
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T δΓ), seeing from Equation 3.16 that its subsequent tracjectory for t > T δΓ is given by

Ξ−1
t−T δΓ

(Γ; Γ) =
(1− Γ) β + (|α|Γ− β) eΓ(|α|−β)(t−T δΓ)

(1− Γ) |α|+ (|α|Γ− β) eΓ(|α|−β)(t−T δΓ)
= 1− (1− Γ) (|α|−β)

(1− Γ) |α|+ (|α|Γ− β) eΓ(|α|−β)(t−T δΓ)

≤ 1−

(
(1− Γ) (|α|−β) eΓ(|α|−β)T δΓ

|α|Γ− β

)
e−Γ(|α|−β)t

Denoting KΓ := (1−Γ)(|α|−β)eΓ(|α|−β)TδΓ

|α|Γ−β , and using our assumption about the Hölder exponent of µ0(dx)
near x = 1, we see, for sufficiently large t that

µ0

([
φ−1
t (x), 1

])
≤ µ0

([
Ξ−1
t−T δΓ

(Γ; Γ) , 1
])
≤ µ0

([
1−KΓe

−Γ(|α|−β)t, 1
])
≈ CKθ

Γe
−Γ(|α|−β)t

Because this holds for x ∈ ( β
|α|+δ, 1] and we chose Γ such that λH(a∗∗) < Γ (|α|−β) θ, we can conclude

that

(5.12)2||ψ||∞M1(δ)eλH(a∗∗)e−λA(a)µ0

([
φ−1
t

(
β
|α| + δ

)
, 1
])

≤ 2||ψ||∞CM1(δ)Kθ
Γe
−λA(a) exp ([λH(a∗∗)− Γ (|α|−β) θ] t) , as t→∞.

From Equations 5.11 and 5.12, we can see that µt
([

β
|α| + δ, 1

])
→ 0 as t → ∞ whenever λH(a∗∗) <

(|α|−β) θ. Recalling that we chose a∗∗ in alignment with the equivalent conditions of Equation 5.8, we
can see that when the inequality λH(βα) < (|α|−β) θ holds, there exists a time T2 such that for t > T2,

µt

([
β
|α| + δ, 1

])
< ε. Then, returning to Equation 5.9, we see for t > max (T1, T2), that∣∣∣∣ ∫ 1

0
ψ(x)µt(dx)− ψ

(
β
|α|

) ∣∣∣∣ ≤ 3ε

confirming that
∫ 1

0 ψ(x)µt(dx)→
∫ 1

0 ψ(x)δ
(
x− β

|α|

)
dx, and therefore µt(dx) ⇀ δ

(
x− β

|α|

)
when the

condition of Equation 5.8 holds. �

5.2 Steady States of General Multilevel HD

We look for density steady state solutions f(x) for the multilevel HD dynamics, which satisfy

0 =
∂

∂x
(x(1− x)(β − |α|x)f(x)) + λf(x)

[
γx− |α|x2 −

(
γMf

1 − |α|M
f
2

)]
(5.13)

From Lemma 5.1, we know that the probability of having groups below the within-group equilibrium
xeq = β

|α| vanishes as t→∞. Therefore we explore steady state solutions with zero density below the
within-group equilibrium, which take the piecewise form

f(x) =

{
0 : 0 ≤ x ≤ β

|α|
p(x) : β

|α| < x ≤ 1

Because the moments Mf
j depend on f(x), we look for implicit solutions of Equation 5.13 taking the

moments as given. An implicit expression for p(x) can be found using separation of variables and
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integration by partial fractions, yielding

(5.14)p(x) = Z−1
f x

β−1λ
(
γMf

1−|α|M
f
2

)
−1

(1− x)(|α|−β)−1
[
λ(γ−|α|)−λ

(
γMf

1−|α|M
f
2

)]
−1

× (|α|x− β)(|α|−β)−1
[
λ(β−γ)+λ

(
γMf

1−|α|M
f
2

)]
−1

From Proposition 3.2, we know that the Hölder exponent near x = 1 is preserved in time for the
multilevel HD dynamics. Therefore it is sensible to parametrize steady states by the Hölder exponent
θ of p(x) near x = 1. In the same manner as was computed for the PD dynamics in section 4.2, we
find that θ is related to the exponent of the (1− x) term by

θ =
λ(γ − |α|)− λ(γMf

1 − |α|M
f
2 )

|α|−β

This equation can also be rewritten to characterize the average payoff of the population at steady state,
γMf

1 − |α|M
f
2 , as the following

〈G(·)〉f =

∫ 1

0
G(x)f(x)dx = γMf

1 − 2Mf
2 = (γ − |α|)− (|α|−β)θ

λ
. (5.15)

Substituting this expression into Equation 5.14 allows us to obtain an explicit expression for p(x) in
terms of the Hölder exponent θ, taking the form

(5.16)pλθ (x) = Z−1
f xβ

−1[λ(|α|−γ)+(|α|−β)θ]−1 (1− x)θ−1 (|α|x− β)β
−1[λ(γ−|α|−β)−|α|θ]−1

We note that there is a threshold level of between-group selection strength λ∗ such these steady states
are integrable if and only if

λ > λ∗ :=

(
|α|

γ − (β + |α|)

)
θ, (5.17)

and that if γ = (β + |α|), it is not possible to have an integrable steady state of this form, regardless
of the value of λ. We can further rearrange our expression for the threshold λ∗ to obtain

λ∗ =
(|α|−β) θ(

|α|−β
|α|

)
(γ − (β + |α|))

=
(|α|−β) θ

(γ − |α|)−
(
γ
(
β
|α|

)
− |α|

(
β
|α|

)2
)

Using the expressions for G(x) and πC(x)− πD(x) from Equations 2.12 and 2.8, we can then see that
the threshold corresponds to

λ∗ =

(
πD(1)− πC(1)

G(1)−G( β
|α|)

)
θ. (5.18)

From this characterization, we see that the threshold λ∗ is increasing in the defector’s payoff advantage
over a cooperator in an otherwise full-cooperator group πD(1)−πC(1), and that λ∗ is decreasing in the
collective advantage of a full-cooperator group over a group at the Hawk-Dove equilibrium composition
G( β
|α|). As a result, we can understand the struggle to promote cooperation above the within-group

equilibrium as a tug-of-war between the individual incentive to be a defector in a group with many
cooperators and the group incentive to have many cooperators rather than the level of cooperation
that would result from within-group dynamics alone. When the full-cooperator group confers the
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same average payoff as the HD-equilibrium group, then the individual incentive πD(1) − πC(1) wins
out for any strength of between-group selection, corresponding to the threshold satisfying λ∗ → ∞
as G(1) → G( β

|α|). We can rewrite the threshold selection strength λ∗ in terms of our original payoff
matrix as

λ∗ =

(
T − P
R− S

− 1

)
θ (5.19)

This allows us to make the following observations

• λ∗ is increasing in T − P , the relative advantage to a defector of playing against a cooperator
rather than a defector

• λ∗ is decreasing in R− S, the relative advantage to a cooperator of playing against a cooperator
rather than a defector

• λ∗ → ∞ as R → S, so achieving cooperation above the within-group equilibrium by multilevel
selection becomes increasingly difficult as cooperators lose the benefit of playing with cooperators
rather than defectors.

For the multilevel HD dynamics, we have shown in Section 5.1 that a population with initial Hölder
exponent θ near x = 1 will converge to a delta-concentration at the full-defector group when λ(γ −
(β + |α|)) < |α|θ. Under the alternate condition λ(γ− (β + |α|)) > |α|θ, we have shown in this section
that there is a unique and integrable steady state with Hölder exponent θ, and we showed in Section
3.3 that the Hölder exponent near x = 1 is preserved in time for solutions of Equation 2.13 for the HD
game. It is then natural to suspect that populations should converge to the steady state with the same
Hölder exponent near x = 1 as the initial distribution, so we make the following conjecture about the
long-time behavior of solutions to Equation 2.13.

Conjecture 5.1. Suppose we have an initial distribution µ0(dx) has a Hölder exponents ζ near x = 0
and θ near x = 1. If λ (γ − (β + |α|)) > |α|θ, then

µt(dx) ⇀ µ∞(dx) =

{
0 : x < β

|α|

Z−1
f xβ

−1[λ(|α|−γ)+(|α|−β)θ]−1 (1− x)θ−1 (|α|x− β)β
−1[λ(γ−|α|−β)−|α|θ]−1 : x ≥ β

|α|

where Z−1
f is a normalizing constant such that

∫ 1
0 µ∞(dx) = 1.

This long-term behavior has already been shown to hold for special families of HD games with α = −2
and β = 1 [28]. The main impediment to the general proof of the conjecture is that we have not
yet shown that solutions µt(dx) of Equation 2.13 necessarily converge to a steady state outside of the
aforementioned special case with exactly solvable within-group dynamics. However, for the remainder
of this section, we will study the properties of the density steady states given by Equation 5.16, knowing
that these are time-independent solutions of Equation 2.13, with the potential additional relevance that
these steady states will be the long-time outcome for initial data with Hölder exponent θ near x = 1
when λ (γ − (β + |α|)) > |α|θ. In Figure 12, we illustrate sample steady state densities for HDs in which
average group payoff is maximized by full-cooperator groups (left) and by groups with an intermediate
level of cooperation (right).
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Figure 12: Steady state densities for the HD for various values of λ. Parameters shown are γ = 4.5 (Left) and
γ = 3.2 (Right), with α = −2, β = 4

5 and θ = 2 for both panels. Left dotted lines in both panels correspond to
within-group HD equilibrium xeq = β

|α| and dotted line on right in right panel corresponds to the group type
x∗ = γ

2|α| with maximal average payoff.

Now we will examine peak abundance at steady state x̂λ, with an emphasis on the limit at λ→∞. As
was the case in the PD, we consider only the case of θ ≥ 1. In Proposition 5.2, as in the corresponding
Proposition 4.3, we show that if γ ≥ 2|α| (full-cooperator groups achieve maximal average payoff), the
most abundant group type at steady state x̂λ becomes full cooperator groups as the relative strength
group selection λ→∞. If γ < 2|α| (the type of group maximizing average payoff has both cooperators
and defectors), we see that the most abundant group type at steady states has more defectors than
the type of group maximizing average payoff, even in the limit at λ→∞.

Proposition 5.2. Suppose θ ≥ 1. If γ < 2|α|, lim
λ→∞

x̂λ(fλθ ) = γ
|α| − 1 ∈ (0, 1) and lim

λ→∞
x̂λ(fλθ ) < x∗.

If γ > 2|α|, lim
λ→∞

x̂λ(fλθ ) = 1.

Proof. To determine the fraction of cooperators x at which the density pθ(x) is maximized, we compute

p′θ(x) = Z−1
f g(x)xβ

−1((2−γ)λ+(|α|−β)θ)−2 (1− x)θ−|α| (|α|x− β)β
−1(λ(γ−β−|α|)−|α|θ)−2

where
g(x) = (γ − |α|)λ− (|α|−β)θ + β − [λγ + 2(β + |α|)]x+ |α|(λ+ 3)x2

If λ [γ − (β + |α|)] > |α|θ, we have from Equation 5.16 that pλθ ( β
|α|) = pλθ (1) = 0 when θ ≥ 1 (when

θ < 1, the steady state density blows up near x = 1). Because β
|α| and 1 are the only possible critical

points of fλθ (x) other than the roots of g(x), we see that fλθ (x) is maximized at a root of g(x). These
roots are given by

xλ± =
λγ + 2(β + |α|)

2|α|(λ+ 3)
±

√
(λγ + 2(β + |α|))2

4|α|2(λ+ 3)2
− (γ − |α|)λ− (|α|−β)θ + β

|α|(λ+ 3)

42



For large λ, we see that

x∞± := lim
λ→∞

xλ± =
γ

2|α|
±

√
γ2

4|α|2
− (γ − |α|)

|α|
=

γ

2|α|
±

√(
γ − 2|α|

2|α|

)2

We now break our analysis into two cases:

• If γ ≥ 2|α| (and the full-cooperator group maximizes average payoff), then x∞± = γ
2|α|±

(
γ

2|α| − 1
)
,

so x∞+ = γ
|α| − 1 > 1 and x∞− = 1, so the most abundant group type in the steady state fθ(x) has

cooperator fraction x approach 1 as λ→∞.

• If γ < 2|α| (and x∗ = γ
2|α| maximizes average payoff) , then x∞± = γ

2|α| ±
(

1− γ
2|α|

)
, so x∞+ = 1

and x∞− = γ
|α| −1 ∈ (0, 1). In this case, the most abundant group type in steady state approaches

an intermediate fraction γ
|α| − 1 as λ→∞. We further see that

x∞− =
γ

2|α|
+

γ

2|α|
− 1︸ ︷︷ ︸

<0

<
γ

2|α|
= x∗,

and therefore there are most abundant group type at steady states has fewer cooperators than is
optimal even in the limit at λ→∞.

�

In particular, we notice in the limit in which γ → β + |α| that limγ→(β+|α|) x
∞
− = β+|α|

|α| − 1 = β
|α| .

This tells us that as γ approaches a value at which the density p(x) cannot be integrable, then the
most abundant group type has cooperator composition approaching x∞− |γ=β+|α|=

β
|α| , consistent with

the prediction from Proposition 5.1 the long-time behavior of Equation 2.13 produces a steady-state
of δ

(
x− β

|α|

)
when γ = β + |α|, regardless of the value of λ.

In the process of proving Proposition 5.2, we also see that the most abundant group compostion at
steady state is given by

x̂λ =

{
0 : 0 ≤ λ < λ∗ + β
x̂λ− : λ > λ∗ + β

(5.20)

We can also show a similar piecewise characterization of the average payoff in the population. From
Equation 5.15 and the expressions for G(x), πC(x)− πD(x) from Equations 2.12 and 2.8, we see that

〈G(·)〉fλθ = (γ − |α|)− (|α|−β) θ

λ
= G(1)− (πD(1)− πC(1)) θ

λ

Using the expression for λ∗ from Equation 5.18, we further see that

〈G(·)〉fλθ =

(
λ∗

λ

)
G
(
β
|α|

)
+

(
1− λ∗

λ

)
G(1) (5.21)

Therefore we see that G〈(·)〉fλθ = G( β
|α|) when λ = λ∗ and that 〈G〉fλθ → G(1) as λ→∞. Notably, the

average payoff at steady-state 〈G(·)〉fλθ is limited by the average payoff of a full-cooperator group G(1),
and therefore an HD game with an intermediate average payoff optimum will always see suboptimal
outcomes, even in the limit in which between-group selection is infinitely stronger than within-group

43



selection. Because we know from Proposition 5.1 that µt(dx) ⇀ δ
(
x− β

|α|

)
when λ < λ∗, we can

characterize the average payoff at steady state for all values of λ with the piecewise description

〈G〉fλθ =

 G
(
β
|α|

)
: 0 ≤ λ < λ∗(

λ∗

λ

)
G
(
β
|α|

)
+
(
1− λ∗

λ

)
G(1) : λ > λ∗

(5.22)

In Figure 13(left), we plot the average payoff at steady state 〈G(·)〉fλθ and the average payoff of the
most abundant group type at steady state G(x̂λ) as functions of λ, showing that both tend to G(1)
as λ → ∞ (lower-dashed line) rather than the maximal possible group payoff (upper-dotted line).
In Figure 8(right), we plot the maximal group payoff G(x∗) and the average payoff at steady state
in the limit as λ → ∞ ( lim

λ→∞
〈G(·)〉fλθ = G(1)). In Figure 14, we present heat maps of the most

abundant group type at steady state (left) and the average payoff at steady state (right) in the large
λ limit as a function of α and γ. In Figure 15, we plot the group payoff function G(x) for two sets
of parameter values, showing how the group payoff achieved by the most abundant group composition
G (limλ→∞ x̂λ) = G(1), rather than the group type which maximizes collective payoff.

Figure 13: Comparison between average payoff at steady state and optimal average payoff for a group in the
HD game. (Left) Plots of average payoff at steady state 〈G(·)〉fλ

θ
and payoff of most abundant group type in

steady state distribution G(x̂λ) as a function of λ for an HD game with optimal group composition x∗ = 0.8125.
Lower dashed line corresponds to G(1), the limit of average steady state payoff as λ → ∞), and the upper
dashed line corresponds to maximal possible group payoff G(x∗). (Right) Plots of the group type with maximal
average payoff G(x∗) (blue solid line) and the average payoff at the population at steady state limλ→∞〈G(·)〉fλ

θ

in the large λ limit (green dashed line), each described as a function of γ with a fixed choice of α = −8. The
gray dotted verticle line corresponds to the value γ = 16 at which the group compostion maximizing payoff
x∗ = − γ

−2α |α=−8 = 1. We notice that the two lines coincide for γ > 16, when the full-cooperator groups are
optimal for between-group competition, while the green dotted line falls below the blue solid line when γ < 16,
as the average payoff of the population falls belows the interior optimal group payoff. In particular, when
γ → 9, we see that 〈G(·)〉fλ

θ
→ 1 = G( 1

8 ) = G( β
|α| ), the payoff of the within-group equilibrium for the HD game.

Therefore the group achieves even though the for this game the group average payoff is G(x) = 9x − 8x2, for
which groups composed of x∗ = 9

16 cooperators are most favored by between-group competition.
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Figure 14: Most abundant group at steady state (left) and average payoff of the population (right) in the limit
as between-group selection λ→∞. The region above the dotted black lines indicates values of α and γ which
constitute a HD game when β = 1.

Figure 15: Illustration of peak abudance at steady state as λ → ∞ and group type with maximal payoff x∗

for the HD game with α = −2, β = 1, and γ = 3.5 (left) and γ = 3.25 (right). In both cases, we see how
the modal level of cooperation at steady state x̂λ in the large λ limit has the same collective payoff as the full
cooperator group, G(x̂∞) = G(1), although the gap between the optimal and modal group compositions widens
as the optimum x∗ decreases.

6 SH Games and Other Social Dilemmas

In this section, we discuss the multilevel dynamics for the other two-player, two-strategy social dilem-
mas. Considering a game with the payoff matrix of Equation 2.1, we characterize social dilemmas in
terms of the following four conditions on payoffs

(i) R > P : mutual cooperation yields greater payoff than mutual defection

(ii) T > R: the temptation to defect exceeds the reward of mutual cooperation
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(iii) P > S: punishment for mutual defection yields greater payoff than cooperation with a defector

(iv) T > S: the defector gets the best outcome of an interaction between a cooperator and defector

A relatively expansive definition of a social dilemma is any game for which condition (i) holds and at
least one of conditions (ii)-(iv) holds as well [35, 36]. Other definitions of social dilemmas have been
proposed for more general classes of games [37] or for more a more restrictive class of matrix games
[38–40], but we will consider the definition above to illustrate the variety of qualitative behaviors of
multilevel dynamics that are possible for different games. In addition to the PD, HD, and SH games,
there are five other games which satisfy our definition of a social dilemma, which rank payoffs as follows

T > S > R > P : anti-coordination game 1 (AC1)
S > T > R > P : anti-coordination game 2 (AC2)
R > P > S > T : coordination game 1 (CG1)
R > P > T > S : coordination game 2 (CG2)
R > T > S > P : Prisoners’ Delight (PDel)

Within-group dynamics promote coexistence of a cooperators and defectors in anti-coordination games
at xeq = β

|α| , bistability of all-cooperator and all-defector groups in coordination games (with unstable

equilibrium xeq = |β|
α ), and dominance of cooperators over defectors in the Prisoners’ Delight.

Using the defining payoff rankings, we find that group payoff is maximized by the full-cooperator group
for the Prisoners’ Delight and both of the coordination games. Furthermore, we can use calculations
like we made for the SH game in Section 2.1 to see that G(x) is always increasing for the Prisoners’
Delight and that the group level payoff for the coordination games is analogous to the behavior of the
SH game. For the anti-coordination games, we see that S + T > 2R, so we know that group payoff is
maximized by an intermediate level of cooperators x∗ = γ

2|α| . Comparing the optimum group outcome

with the stable within-group equilibrium xeq = β
|α| , we see that x∗ > xeq if and only if γ > 2β. This is

true when T > S, and therefore we see that x∗ > xeq for AC1 and that x∗ < xeq for AC2.

Now we would like to characterize the long-time behavior of the remaining social dilemmas. For stag-
hunt games, the other coordination games, and the Prisoners’ delight, the all-cooperator equilibrium is
locally stable under the within-group replicator dynamics. Because average group payoff is maximized
by full-cooperator groups as well for these games, we can show that full-cooperation will be promoted
by multilevel selection. In Proposition 6.1, we show, in the presence of any between-group competition
(namely when λ > 0), that the population will eventually concentrate to full-cooperation in all groups
if there is initially some density of groups arbitrarily close to the full-cooperator equilibrium. For
convenience, we will analyze the dynamics using the density-valued formulation of Equation 2.5, though
it would be nice to generalize this result to the measure-valued formulation.

Proposition 6.1. Suppose we have an initial density f0(x) such that for some z− < 1,
∫ 1
z f0(y)dy > 0

for each z > z−. If λ > 0, then the solution f(t, x) solving Equation 2.5 satisfies f(t, x) ⇀ δ(1− x) as
t→∞.

Proof. We denote the probability PIz(t) of being in the interval Iz = [z, 1] at time t, given by PIz(t) =
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∫ 1
z f(t, y)dy, and integrate Equation 2.5 from z to 1 to obtain

dPIz
dt

=

∫ 1

z

∂f(t, y)

∂t
dy = − [x(1− x) (πC(x)− πD(x)) f(t, x)]

∣∣∣∣1
z

+ λ

[∫ 1

z
G(x)f(t, x)dx− PIz

(∫ 1

0
G(y)f(t, y)dy

)]
First we will address the SH and the coordination games. Because πC(x) > πD(x) for x > |β|

α for the
SH and coordination games, choosing z > |β|

α for these games implies that z(1−z) (πC(z)− πD(z)) ≥ 0.
Further noting that x = 1 is an equilibrium of the within-group dynamics, we have that

dPIz
dt
≥ λ

[∫ 1

z
G(x)f(t, x)dx− PIz

(∫ 1

0
G(y)f(t, y)dy

)]
= λPIz

[
1

PIz

∫ 1

z
G(x)f(t, x)dx−

(∫ 1

0
G(y)f(t, y)dy

)]
Noting that 1

Iz
∫ 1
z G(x)f(t, x)dx is the conditional mean of G(x) for x ∈ Iz and that G(x) is increasing

in x and greater than maxy∈[0,xeq ]G(y) when x > xeq for both the SH and coordination games, we
know that 1

PIz

∫ 1
z G(x)f(t, x)dx ≥ 〈G(·)〉f (x), for x ≥ z. Therefore we have that dPIz

dt > 0 whenever
0 < PIz(t) < 1, and, then, if z > z−, we further know that 0 < PIz(0) ≤ PIz(t) ≤ 1. Therefore we
know for z > max

(
|β|
α , z

−
)
that there exists a limit P ∗Iz ∈ [PIz(0), 1] such that PIz → P ∗Iz as t→∞.

Now we will show that P ∗Iz = 1. Suppose instead that P ∗Iz < 1. Then consider z and z′ such that

z′ > z > max
(
|β|
α , z

−
)
, we know from the inequality above that

dPIz′ (t)

dt
≥ λPIz′ (t)

[
1

PIz′

∫ 1

z′
G(x)f(t, x)dx−

(∫ 1

0
G(y)f(t, y)dy

)]
≥ λPIz′ (t)

[(
1

PIz′ (t)
− 1

)∫ 1

z′
G(x)f(t, x)dx−

∫ z

0
G(y)f(t, y)dy −

∫ z′

z
G(y)f(t, y)dy

]

We see that the first integral has the lower bound∫ 1

z′
G(y)f(t, y)dy ≥ G(z′)PIz′ (t),

while the second and third integrals have the upper bounds∫ z

0
G(y)f(t, y)dy ≤ G(z) (1− PIz(t)) and

∫ z′

z
G(y)f(t, y)dy ≤ G(z′)

(
PIz(t)− PIz′ (t)

)
Incorporating these estimates into our above inequality and noting that 1

PIz′
(t) − 1 > 0 for PIz′ (t) ≤

P ∗Iz′
< 1 yields

(6.1)
dPIz′ (t)

dt
≥ λPIz′ (t)

[(
1− PIz′ (t)

)
G(z′)−

(
PIz(t)− PIz′ (t)

)
G(z′)− (1− PIz(t))G(z)

]
= λPIz′ (t) (1− PIz(t))

(
G(z′)−G(z)

)
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Because z′ > z, we know for our relevant games that G(z′) > G(z) when z > max
(
|β|
α , z

−
)
. Fur-

thermore, we know that 1 − PIz(t) is a decreasing function of time, and therefore we know that
1− PIz(t) ≥ 1− P ∗Iz > 0. This let’s us know that

(6.2)
dPIz′ (t)

dt
≥
[
λ
(
1− P ∗Iz

) (
G(z′)−G(z)

)]
PIz′ (t)

We can solve this differential inequality to find that

PIz′ (t) ≥ PIz′ (0)e[λ(1−P ∗Iz)(G(z′)−G(z))]t.

Knowing that λ
(
1− P ∗Iz

)
(G(z′)−G(z)) > 0, we deduce that PIz′ (t) → ∞ as t → ∞, contradicting

the fact that PIz′ (t) is a probabilit. This allows us to conclude that P ∗Iz = 1 for z > max
(
|β|
α , z

−
)
.

Because this condition holds for all z sufficiently close to 1, we know that probability of being in
intervals of the form [z, 1] gets arbitrarily close to 1 in the long-run for all such z. This means that
the probability density concentrates arbitrarily closely to 1 in the long-time limit, and we can conclude
that f(t, x) ⇀ δ(1− x) as t→∞ for the SH and coordination games.
For the Prisoners’ Delight, we know both that πC(x) − πD(x) ≥ 0 and that G(x) is increasing for all
x ∈ [0, 1]. Therefore we can use the same argument as above, but don’t have to worry about an interior
equilbrium at |β|α , so intead we simply require choosing z′ > z > z− and repeat the steps above. �

Remark 6.1. Our assumption on the initial density requires that there is some density of groups
arbitrarily close to a full-cooperator composition. In principle, we could relax this assumption to only
requiring that there is some initial positive fraction of groups within the basin of attraction for the
full-cooperator groups under the within-group dynamics. This would necessitate waiting for the within-
group dynamics to produce sufficiently high levels of cooperation, and then invoking the arguments made
above.

The remaining social dilemmas to analyze are the anti-coordination games. Like the Hawk-Dove game,
within-group dynamics push groups towards a mixed composition of cooperators and defectors at
xeq = β

|α| .

Proposition 6.2. Consider either of the anti-coordination games and an initial distribution with
Hölder exponents ζ > 0 and θ > 0 near x = 0 and x = 1, respectively. For any level of selection
strength λ ≥ 0, µt(dx) ⇀ δ(x− β

|α|) as t→∞.

Remark 6.2. The proof strategy is identitical to that of Proposition 5.1, except that we can omit the
condition λ (γ − (β + |α|)) < |α|θ because

γ − (β + |α|) = (S + T − 2P )− (S − P − (R− S − T + P )) = R− S < 0

for the anti-coordination games. Then the lefthand side of the inequality is negative, and therefore is
satisfied for any possible non-negative λ. The results of Lemmas 5.1 and 5.2 carry through for the
anti-coordination games as well.

One manner in which we can explore the most extreme effects of the shadow of lower-level selection
in the HD game is to increase S towards R until the threshold for achieving additional cooperation
λ∗HD →∞ as S → R (or γ → β+ |α|). Taking an HD game and increasing S past R sees the transition
in payoff rankings

T > R > S > P =⇒ T > S > R > P,
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resulting in an anti-coordination game (AD1). Therefore one way to understand the result of Proposi-
tion 6.2 is as the behavior HD dynamics in the limit of S ↑ R extended into the region in which R < S.
Further increasing S past T then results in the transition of payoff rankings

T > S > R > P =⇒ S > T > R > P,

correpsonding to a transition from AD1 to AD2.

Because the long-time dynamics for the anti-coordination games results in achieving an xeq

fraction of cooperators, this means that there are fewer cooperators than what is optimal for the
group when x∗ > xeq (AD1), while there are more cooperators than what is optimal for the group
when x∗ < xeq (AD2). Then the behavior of the AD2 game is somewhat unique amongst the other
cooperative dilemmas, as the multilevel dynamics actually produces too much cooperation. This result
is not in and of itself inconsistent with the idea of the shadow of lower-level selection, and this outcome
with more cooperators than is optimal still produces a lower collective payoff the desired state with
fewer cooperators. Perhaps this calls into question the meaning of the word “cooperation” in the context
in which groups are best off with a level of cooperation less than what is achieved by individual-level
selection alone, as is the case with the AD2 game. However, together with the results of the PD and
HD games with interior group payoff optima, the results for the anti-coordination games do show us
that the intermediate optimum is never achievable for any level of relative selection strength λ, even in
the limit of infinitely strong between-group selection. Therefore, we have seen that all two-player, two-
strategy games with intermediate group payoff optima display an indelible shadown of individual-level
competition.

7 Discussion

In this paper, we have shown that comparison principles can be used to characterize when multilevel
replicator dynamics converge to delta-functions at within-group equilibria, and to show that the Hölder
exponents near x = 1 are preserved in time, demonstrating how this invariant quantity can select a
single steady state for a given initial population out of an inifinity of possibilities. Notably, we have
characterized the cooperative dilemmas for which the there is a shadow of lower-level selection: for
games in which the average payoff of a group is maximized by a composition with less than full
cooperation, the most abundant group composition at steady state always has fewer cooperators than
in the optimal composition, even in the limit of infinitely-strong between group selection.

With the methods used in this paper, we have also found a potential strategy for analyzing a
broader class of multilevel selection problems. By proving that the Hölder exponent near x = 1 is
preserved by the multilevel dynamics, we have also gained more insight into the long-time behavior
found in previous analyses of special cases of these models [18, 28]. These techniques are employed
in a companion paper exploring the role of assortment and reciprocity mechanisms for individual
interactions in altering the within-group and between-group competition [41]. In those cases, varying
a parameter characterizing the probability of assortment or reciprocity will change the within-group
replicator dynamics, and therefore one naturally would like to compare multilevel selection models
beyond a cherry-picked family of payoff matrices with solvable withn-group dynamics.

In addition, the comparison principle techniques from this paper may find application in other
nonlocal PDEs for models in game theory and collective behavior. Advection terms also arise in
models for continuous-strategy games in which individuals gradually adjust their strategies by climing
their local payoff gradient [42–44]. In such models, the individual dynamics can depend nonlocally on
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the strategy distribution of the population, leading to nonlocal characteristic ODEs that may require
comparison principle approaches to study long-time behavior. These models and methods have also
found use in continuum models of opinion dynamics [45], and similar approaches could find use with
proving convergence to consensus of opinions or to Nash equilibria in continuous-strategy games.

The work in this paper also lays out challenges for future analytical and numerical work. We have
made Conjectures 4.1 and 5.1 about the long-time behavior of multilevel PD and HD dynamics, and we
would still like to show that solutions of Equation 2.13 converge to a density steady-state in the cases
in which we know that the steady-states exists and that the dynamics does not converge to a delta-
function. Dawson suggests a strategy for characterizing long-time behavior using an invariant quantity
for the moments of the distribution [46]. The result in this paper on Hölder exponents serves a similar
purpose to the idea suggested by Dawson, but characterizing the equivalent approach with moments
may provide an alternate strategy for proving convergence to steady state and bears resemblence to the
strategy used to analyze the long-time behavior for Becker-D’́oring models of aggregation-fragmentation
processes [47–49]. In related models possesing individual level selection and replicator-mutator or
replicator-diffusion dynamics, formulation of these systems as gradient flows has provided a strategy for
proving convergence of the dynamics to a steady-state solution [50, 51], and others models with diffusion
have used arguments regarding the principle eigenvalue of the diffusion operator [52, 53] or decay of an
energy-like function [54, 55] to prove convergence to steady-state. In addition to analytical attempts
to charactertize the long-time behavior, effort should be placed into developing numerical methods for
solving Equations 2.5 and 2.13 and comparing the numerical solutions to analytical predictions.

So far, we have only considered between-group competition in which group-level birth and death
events depend on the average payoff of group members, and don’t consider any interaction between the
groups. One could attempt to extend the multilevel replicator dynamics PDE to describe strategic or
frequency-dependent interactions between groups. Mathematically, the term describing between-group
competition would be reminiscent of the continuous trait competition models explored by in replicator
diffusion equations [51], and could address game-theoretic problems such as the frameworks of team
games [56] and hierachical games [57], which model games played between groups in which group
strategy is determined by the choices of its constituent indviduals. Another interesting direction for
future research is to explore the competing effects of three or more levels of selection. Three competing
levels of selection arise naturally in virus dynamics, as defecting viral genomes [58] and collective
infectious units [59] make possible the misalignment of evolutionary incentives at the within-cell, with-
host between-cell, and between-host levels of pathogen transmission. To describe simultaneous selection
at three levels of organization, one must describe the population by a probability distribution of
probability distributions, which was the approach taken by Ambrosio et al to describe a spatial version
of the replicator dynamics with mixed strategies and spatial movement [60].

From both a biological and mathematical perspective, an important direction for future research
is to better understand the mechanisms and significance of the shadow of lower-level selection. In
particular, do signatures of this outsized effect of individual selection continue to arise in models
which take into account heterogeneous group size and group level fission/fusion events [19–23, 61] or in
models in which group structure is emergent from assortative interactions [62, 63] or spatial clustering
[64, 65]. It is also interesting to ask whether a scenario in which collapse of group benefit in a two-level
system, as seen in phenomena from mitochondrial DNA [66] and cancer [67] are better attributed to
incentives favoring the dominance of cheaters or a group-level scenario preventing the possibility of
cooperation, as would hold in determinsitic analogues of stochastic corrector models [68, 69]. Overall,
this phenomenon displayed by two-level replicator dynamics provides an interesting motivation to
further explore related mathematical frameworks and to connect the behavior of two-level models with
empirical work in biology.

50



Acknowledgments

This research was supported by NSF grants DMS-1514606 and GEO-1211972 and by ARO grant
W911NF-18-1-0325. I am thankful to Simon Levin, Joshua Plotkin, Carl Veller, and Fernando
Rossine for helpful discussions.

A Well-Posedness for Measure-Valued Formulation

In this section, we will demonstrate that our representation of µt(dx) in terms of the push-forward
measure of µ0(dx) is well-posed, justifying our use of the push-forward representation in proving preser-
vation of the Hölder exponents and in characterizing convergence to delta-functions at within-group
equlibrium below the threshold for existence of steady-state. Our strategy for proving existence of
solutions to our measure-valued equations involves a contraction mapping approach often used for
hyperbolic scalar or systems of equations with nonlocal terms, which often arise in models of popu-
lations structured by age or size [70], as well as models of collective motion of animal groups [33, 71]
or bacterial chemotaxis [72]. This approach has also been considered in the context of measure-valued
solutions for transport equations [32, 73], models of collective motion, and models with genetic or age
structure [33, 74].

To discuss existence of solutions, we can consider the following slight generalization of the
measure-valued dynamics of Equation 2.13

d

dt

∫ 1

0
Ψ(x)µt(dx) =

∫ 1

0

{
j(x)

∂Ψ(x)

∂x
+ λΨ(x)

[
G(x)−

(∫ 1

0
G(y)µt(dy)

)]}
µt(dx) (A.1)

where the within-group dynamics j(x), the group payoff G(x), and the test function Ψ(x) are defined
on [0, 1] and are continuously differentiable in x. We also assume that j(0) = j(1) = 0 to capture the
feature that all-cooperator and all-defector groups are steady states of the within-group dynamics. To
understand the solutions of Equation A.1, we consider an associated linear PDE. Given an arbitrary
h(t) ∈ C([0, T ]), we define the linear PDE

d

dt

∫ 1

0
Ψ(x)µht (dx) =

∫ 1

0

{
j(x)

∂Ψ(x)

∂x
+ λΨ(x) [G(x)− h(t)]

}
µht (dx) (A.2a)

µh0(dx) = µ0(dx) (A.2b)

where µht (dx) denotes our solution of Equation A.2 for given h(t). Because j(x) is Lipschitz and

j(0) = j(1) = 0, we see that the characteristic curves x(t, x0) satisfying
d

dt
x(t, x0) = j(x(t)) and

x(0, x0) = x0 exist globally in time.

Our strategy will be to use solutions of Equations A.2 in order to establish existence a solution
to Equation A.1. We can do this by considering an arbitary forcing function h0(t), finding the cor-
responding solution µh

0

t (dx), and then finding a new forcing function h1(t) :=
∫ 1

0 G(x)µh
0

t (dx). By
iterating this process, we hope to construct a sequence of forcing functions hj converging to a fixed
point. In other words, if we define our iteration function as

H(h(t)) :=

∫ 1

0
G(x)µht (dx), (A.3)
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then we are looking to find a fixed point h[(t) satisfyingH(h[(t)) = h[(t), in which case µh[t (dx) satisfies
Equation A.1. For our subsequent analysis, we denoteG∗ := maxx∈[0,1]G(x), (G′)∗ = maxx∈[0,1]|G′(x)|,
j∗ := maxx∈[0,1] j(x), and ||h(t)||T := sups∈[0,t]|h(s)|. Using the norm ||·||T , we aim to show that
H(h(t)) is a contraction on C ([0, T ]). To discuss contraction mappings, we will look to estimate
||H(h(t)) −H(h̃(t))||T for any two given functions h(t), h̃(t) in our function space. In describing the
measure-valued dynamics, it is helpful to use the shorthand notation

〈Ψ, µt〉 :=

∫ 1

0
Ψ(x)µt(dx) (A.4)

For example, this allows us to describe the dynamics of the auxiliary linear problem of Equation A.2
as follows

d

dt
〈Ψ, µht 〉 =

〈
j(x)

∂Ψ

∂x
, µht

〉
+ λ〈Ψ [G(x)− h(t)] , µht 〉 (A.5a)

µh0 = µ0 (A.5b)

Now we will present the results on well-posedness for the two-level PDE of Equation A.1. First,
we have two lemmas dealing with the linear auxiliary problem from Equation A.2. In Lemma A.1, we
show that there is a variation of constants formula which must be satisfied by any solution µht (dx) of
Equation A.2, which serves as a useful tool for proving uniqueness and computing contraction-mapping
estimates. In Lemma A.2, we show that there exists a unique solution to Equation A.2, which has an
explicit representation formula reminiscent of the implicit formula of Equation 2.16 for the nonlinear
problem. In Proposition A.1, we use the results of the two lemmas and a contraction-mapping argument
to show that Equation A.1 has a unique solution and that this solution µt(dx) satisfies the implicit
representation formula of Equation 2.16.

Lemma A.1. If µht (dx) is a measure-valued solution to Equation A.2, then it also satisfies the variation
of constants formula

〈Ψ, µht 〉 = 〈PtΨ, µh0〉+ λ

∫ t

0
〈Pt−s (G(x)− h(t)) , µhs 〉ds (A.6)

where Pt(f(x)) = f(φt(x)) denotes evaluating functions along characteristic curves φt(x).

Remark A.1. This is a generalization of the variation of constants formula described in Lemma 11
of Luo and Mattingly [18], which described the special case in which j(x) = −sx(1− x) and G(x) = x.
The derivation of the formula is analogous for the generalized formula, so we will omit the proof.

Lemma A.2. Given T > 0, the flow of measures µht (dx) given by the formula

µht (dx) = wht (x)(µ0 ◦ φ−1
t )(dx) (A.7a)

wht (φt(x0)) = exp

(
λ

∫ t

0
[G(φs(x0))− h(s)] ds

)
(A.7b)

is the unique solution of Equation A.2 for each t ∈ [0, T ].
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Proof. We see that Equation A.7 solve Equation A.2 by differentiating with respect to time, obtaining

d

dt

∫ 1

0
Ψ(x)µht (dx) =

d

dt

∫ 1

0
Ψ(x)wh(x)(µh0 ◦ φ−1

t )(dx) =
d

dt

∫ 1

0
Ψ(φt(x))wht (φt(x))µh0(dx)

=

∫ 1

0

∂Ψ(φt(x))

∂φt(x)

[
∂φt(x)

∂t

]
wht (φt(x))µh0(dx) +

∫ 1

0
Ψ(φt(x))

∂wht (φt(x))

∂t
µh0(dx)

=

∫ 1

0

∂Ψ(φt(x))

∂φt(x)
j(φt(x))wht (φt(x))µh0(dx)

+ λ

∫ 1

0
Ψ(φt(x)) [G(φt(x))− h(t)]wht (φt(x))µh0(dx)

=

∫ 1

0

{
∂Ψ(x)

∂x
j(x)wht (x) + λΨ(x) [G(x)− h(t)]wht (x)

}[
µh0 ◦ φ−1

t

]
(dx)

=

∫ 1

0

{
∂Ψ(x)

∂x
j(x) + λΨ(x) [G(x)− h(t)]

}
µt(dx)

where we used that φt(x) solves ∂
∂tφt(x0) = j(φt(x0)), that ∂

∂tw
h
t (φt(x0)) = λ (G(φt(x0))− h(t))wht (φt(x0)).

Putting together the first line and last line, we can conclude that µht (dx) given by Equation A.7a is a
solution to Equation A.2.

Next we see that µht (dx) is unique. Suppose there were two solutions µht (dx) and νht (dx) to Equation
A.2 (where notably the initial conditions agree upon µh0(dx) = νh0 (dx) = µ0(dx). Using the variation
of constants formula, we have that

〈Ψ, µht 〉 = 〈PtΨ, µ0〉+ λ

∫ t

0
〈(Pt−sΨ) (G(x)− h(t)) , µhs 〉ds

〈Ψ, νht 〉 = 〈PtΨ, µ0〉+ λ

∫ t

0
〈(Pt−sΨ) (G(x)− h(t)) , νhs 〉ds

We see that

|〈Ψ, µht − νht 〉|≤ λ (G∗ + ||h||t)
∫ t

0
〈Pt−sΨ, µhs − νhs 〉ds

Using the total variation norm ||µt − νt||TV := sup||Ψ||≤1〈Ψ, µt − νt〉 and that ||Pt−sΨ||∞≤ ||Ψ∞||
(because Pt−sΨ := Ψ(φt−s(x0))), we can further see, for test functions satisfying ||Ψ||∞≤ 1, that

||µht − νht ||TV≤ λ (G∗ + ||h||t)
∫ t

0
||µht − νht ||TV ds

and Grönwall’s inequality lets us deduce that

||µht − νht ||TV≤ ||µh0 − νh0 ||TV exp (λ [G∗ + ||h||t]T ) = 0 because µh0 = νht ,

which allows us to conclude that µht (dx) = νht (dx) for all t ∈ [0, T ] and solutions of Equation A.2 are
unique. Together with our explicit representation formula from µht (dx), we can conclude that there
exists a unique solution to equation A.2 for given function h(t). We now need to construct an iteration
scheme use solutions from Equation A.2 to produce a solution of Equation A.1. �

Proposition A.1. Assume that j(x), G(x), and ψ(x) are C1 on [0, 1]. Given initial probability measure
µ0(dx), there eixsts a unique solution µt(dx) to Equation A.1 for all time t ≥ 0. Furthermore, the
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solution µt(dx) satisfies the implicit representation formula from Equation 2.16

µt(dx) = wt(x)
(
µ0 ◦ φ−1

t

)
(dx).

Proof. From the push-foward representation of µht (dx) and the fact that µ0(dx) is a probability measure,
we see that µht satisfies the following a priori estimate

(A.8)

∫ 1

0
Ψ(x)µht (dx) ≤

∫ 1

0
Ψ(φt(x))wt(φt(x))µ0(dx)

≤ ||Ψ||∞ exp (λ [G∗ + ||h||T ]T )

∫ 1

0
µ0(dx)

= ||Ψ||∞ exp (λ [G∗ + ||h||T ]T ) ,

so for T <∞ and given h(t), there exists MT
h <∞ such that 〈Ψ, µht 〉 ≤MT

h .

To apply the Banach fixed-point theorem, we now need to show that

(i) H(h(t)) is a contraction: ∃η ∈ (0, 1) such that ∀h(t), h̃(t) ∈ C[0, T ], ||H(h(t)) − H(h̃(t))||T≤
η||h(t)− h̃(t)||T

(ii) There exists sufficiently large R such that the closed ball B(R, 0), centered at 0 with radius R, is
mapped to itself by H(h(t)).

First we show that H(h(t)) is a contraction. Because G(x) is an admissible test function, we can use
Equation A.2 to compute

∂

∂t

∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣ ≤ ∣∣∣∣ ∂∂t
∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣
=

∣∣∣∣− ∫ 1

0
G′(x)j(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣
+ λ

∣∣∣∣ ∫ 1

0
G(x)

[
G(x)

(
µht (dx)− µh̃t (dx)

)
+
(
h(t)µht − h̃(t)µh̃t

)] ∣∣∣∣
≤ (G′)∗j∗

∣∣∣∣ ∫ 1

0

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣+ λG∗
∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣
+ λ

∣∣∣∣ ∫ 1

0
G(x)h(t)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣+ λ

∣∣∣∣ ∫ 1

0
G(x)

(
h(t)− h̃(t)

)
µh̃t (dx)

∣∣∣∣
Because h(t) ∈ C([0, T ]), we know that there exists a bound Bh <∞ such that h(t) ≤ ||h(t)||T≤ Bh.
From our a priori estimate on µh̃t (dx), we know that there is MT

h̃
such that

∫ 1
0 µ

h̃
t (dx) ≤ MT

h̃
for

t ∈ [0, T ] and a corresponding bound MT
h for µht (dx). Using these, we can now say that

∂

∂t

∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣ ≤ (G′)∗j∗
(
MT
h +MT

h̃

)
+ λ (G∗ +Bh)

∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣
+ λG∗MT

h̃
||h(t)− h̃(t)||T
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If ||h(t) − h̃(t)||T= 0, we know that h(t) = ˜h(t) and µht (dx) = µh̃t (dx) by the uniqueness of so-
lutions to Equation A.2, and we can correspondingly conclude

∫ 1
0 G(x)

(
µht (dx)− µh̃t (dx)

)
= 0 for

t ∈ [0, T ]. In the alternate case that ||h(t)− h̃(t)||T> 0, we know that there exists W < ∞ such that
(G′)∗j∗

(
MT
h +MT

h̃

)
≤W ||h(t)− h̃(t)||T , and we can write that

∂

∂t

∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣ ≤ λ (G∗ +Bh)

∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣+
(
W + λG∗MT

h̃

)
||h(t)− h̃(t)||T

By Grönwall’s inequality, we have that∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣ ≤
(
W + λG∗MT

h̃

λ (G∗ +Bh)

)(
eλ(G∗+||h||T )T − 1

)
||h(t)− h̃(t)||T .

For an η ∈ (0, 1), we can choose T (η) close enough to 0 guarantees that

||H(h(t))−H(h̃(t))||T (η) := sup
t∈[0,T (η)]

∣∣∣∣ ∫ 1

0
G(x)

(
µht (dx)− µh̃t (dx)

) ∣∣∣∣ ≤ η||h(t)− h̃(t)||T (η),

which tells us that H(h(t)) : C[0, T ]→ C[0, T ] is a contraction. Now we show that H(h(t)) is a maps
closed balls BR of radius R to itself. We compute

|H(h(t))|=
∣∣∣∣ ∫ 1

0
G(x)µht (dx)

∣∣∣∣ ≤ G∗|〈1, µt〉 ≤ sup
||Ψ|∞≤1

〈Ψ, µht 〉 := ||µht ||TV

Therefore, to estimate |H(h(t))|, it suffices to estimate ||µht ||TV . We use the variation of constants
formula to compute that

|〈Ψ, µht 〉|=
∣∣∣∣〈Ψ, µh0〉+ λ

∫ t

0
〈(Pt−sΨ) (G(x)− h(t)), µhs 〉ds

∣∣∣∣ ≤ ||µh0 ||TV +λ (G∗ + ||h||T )

∫ t

0
〈Pt−sΨ, µhs 〉ds

where we used that PtΨ(x) = Ψ(φt(x)) to deduce that ||PtΨ||∞≤ ||Ψ||∞≤ 1 and that 〈PtΨ, µh0〉 ≤
||µh0 ||TV . Noting further that 〈Pt−sΨ, µs〉 ≤ ||Pt−sΨ||∞

∫ 1
0 µ

h
s (dx) ≤ ||Ψ||∞MT

h ≤ MT
h for ||Ψ||∞≤ 1,

we find that
|〈Ψ, µt〉|||µh0 ||TV +λ (G∗ + ||h||T )MT

h T

Beacuse this is true for all test functions Ψ satisfying ||Ψ||∞≤ 1, we can combine our inequalities above
and the definition of the ||·||T norm to conclude that

||H(h(t))||T≤ ||µh0 ||TV +λ (G∗ + ||h||T )MT
h T

Choosing Tε <
(
λ (G∗ + ||h||T )MT

h

)−1
ε gives us that

||H(h(t))||Tε≤ ||µ0||TV +ε

, so we see that choosing a ball with radius R ≥ ||µ0||TV +ε, then we see that H(h(t)) maps that closed
ball {h(t)|||h(t)||T≤ R} to itself.
Combining the facts that H(h(t)) maps C[0, T ] into C[0, T ], it is a contraction mapping, and it maps
sufficiently large closed balls BR to themselves, and that C[0, T ] is complete with respect to the ||·||T
norm, we can apply the Banach fixed-point theorem to show that there exists a unique fixed point h[
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such that H(h[(t)) =
∫ 1

0 G(x)µ
h[
t (dx) = h[(t), which further means that µh[t (dx) solves Equation A.1

and is unique. Because there exists a T > 0 such that the solution µt(dx) exists and is unique, we can
use the a priori estimate of Equation A.8 to applying a similar argument existence argument starting
with an initial population at µT

2
(dx) and function h(t) definied for t ∈ [T2 .

3T
2 ] to demonstrate existence

of solutions on the time interval [T2 ,
3T
2 ], and we can continue this iteration to establish the existence

of a unique solution µt(dx) to Equation A.1 for any time t ≥ 0.

Furthermore, because solutions to Equation A.2 satisfy the representation formula

µht (dx) = wht (x)(µ0◦φ−1
t )(dx)or

∫ 1

0
Ψ(x)µht (dx) =

∫ 1

0
Ψ(φt(x)) exp

(
λ

∫ t

0
[G(φs(x0))− h(s)] ds

)
µ0(dx),

we can choose h(t) = h[(t) and use the fixed point relation h[(t) = H(h[(t)) = 〈G(·)〉
µ
h[
t

to find that

∫ 1

0
Ψ(x)µt(dx) =

∫ 1

0
Ψ(φt(x)) exp

(
λ

∫ t

0

[
G(φs(x0))− 〈G(·)〉

µ
h[
s

]
ds

)
µ0(dx).

Because µh[t (dx) is the unique solution to Equation A.1, we now see that the solution of Equation A.1
satisfies the implicit representation formula µh[t (dx) = wt(x)(µ0 ◦ φ−1

t )(dx) of Equation 2.16. �

B Integrals Along Simplified Characteristics

In this section, we show how to compute the integrals of solutions along the simplified characteristic
curves Ψt(k;x0) from the PD and Ξt(k;x0) and Πt(k;x0) from the HD game.

B.1 PD Integrals

We start with Ψt(k;x), the solution for the logistic family serving as the faster and slower characteristics
for the within-group replicator dynamics.

∫ t

0
Ψs(k;x0)ds =

∫ t

0

[
x0

x0 + (1− x0) eks

]
ds

= x0

∫ x0+(1−x0)ekt

1

du

ku (u− x0)
(where u = x0 + (1− x0) eks)

=
1

k

∫ x0+(1−x0)ekt

1

(
−1

u
+

1

u− x0

)
du

=
1

k
[− log (u) + log (u− x0)]

∣∣∣∣x0+(1−x0)ekt

1

=

[
t− 1

k
log
(
x0 + (1− x0) ekt

)]
Knowing that x0 can be written as x0 = x

x+(1−x)e−kt
, we can plug in for x0 above and conclude that∫ t

0
Ψs(k;x0)ds = t− 1

k
log

(
x

x+ (1− x)e−kt
+

[
(1− x)e−kt

x+ (1− x)e−kt

]
ekt
)

= t+
1

k
log
(
x+ (1− x)e−kt

)
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For the logistic ODE, we can also compute the integral of Ψt(k.x) as∫ t

0
Ψs(k;x0)2ds = x2

0

∫ t

0

ds

(x0 + (1− x0) eks)
2 =

x2
0

k

∫ x0+(1−x0)ekt

1

du

u2 (u− x0)

=
1

k

∫ x0+(1−x0)ekt

1

(
1

u− x0
− 1

u
− x0

u2

)
du

=
1

k

[
log(u− x0)− log(u) +

x0

u

] ∣∣∣∣x0+(1−x0)ekt

1

= t− 1

k
log(x0 + (1− x0) ekt) +

x0

k

[
1

x0 + (1− x0)ekt
− 1

]
Using the formula x0 = x

x+(1−x)e−kt
and our expression for

∫ t
0 Ψt(k;x0)dt, we can further see that∫ t

0
Ψs(k;x0)2ds = t+

1

k
log
(
x+ (1− x)e−kt

)
+

1

k

[
x

x+ (1− x)e−kt

] [
x+ (1− x)e−kt

x+ ((1− x)e−kt) ekt
− 1

]
= t+

1

k
log
(
x+ (1− x)e−kt

)
+
x

k

[
1− 1

x+ (1− x)e−kt

]

B.2 HD Integrals

B.2.1 Dynamics Above Within-Group Equilibrium at β
|α|

We first consider Ξt(k, x), the faster and slower characteristic curves for the within-group replicator
dynamics for the HD games when the level of cooperation exceeds the within-group equilibrium. Be-
cause we are interested in dynamics in the interval [ β|α| , 1], we can choose a rescaled state variable

X := |α|x−β
|α|−β . In terms of our new variable, the ODE from Equation 3.14 takes the following form

dX(t)

dt
= − (|α|−β) kX (1−X) , X(0) = X0 :=

|α|x0 − β
|α|−β

(B.1)

whose solution is given by Ψt ((|α|−β) k;X0). Because Ξt(k;x0) describes the evolution of x(t) and
Ψt ((|α|−β) k;X0) describes the evolution of X(t) = |α|x(t)−β

|α|−β , we see that we can relate the two named
solutions by

Ξt(k;x0) =
β

|α|
+

(
|α|−β
|α|

)
Ψt ((|α|−β) k;X0) (B.2)

and we also have that

Ξt(k;x0)2 =
β2

|α|2
+ 2

β

|α|

(
|α|−β
|α|

)
Ψt ((|α|−β) k;X0) +

(
|α|−β
|α|

)2

Ψt ((|α|−β) k;X0)2 (B.3)
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Using Equation B.2 and our result from Equation 3.24, we can compute∫ t

0
Ξs (k;x) ds =

∫ t

0

[
β

|α|
+

(
|α|−β
|α|

)
Ψs ((|α|−β) k;X0)

]
ds

=

(
β

|α|

)
t+

(
|α|−β
|α|

)∫ t

0
Ψs ((|α|−β) k;X0) ds

= t+

(
|α|−β
|α|

)(
1

(|α|−β) k

)
log
(
X + (1−X)e−(|α|−β)t

)
Then, using X = |α|x−β

|α|−β , we can deduce that∫ t

0
Ξs (k;x) ds = t+

1

|α|k
log

(
|α|x− β + |α|(1− x) e−kt

|α|−β

)
Using Equation B.3 and the integrals calculated in Equations 3.24 and 3.25, we can also see that∫ t

0
Ξs (k;x)2 ds =

(
β2

|α|2

)
t+

2β (|α|−β)

|α|2

∫ t

0
Ψs ((|α|−β) k;X0) ds+

(
|α|−β
|α|

)2 ∫ t

0
Ψs ((|α|−β) k;X0)2 ds

= t+

(
|α|+β
|α|2k

)
log
(
X + (1−X)e−(|α|−β)kt

)
+

(
|α|−β
|α|2

)
X

k

[
1− 1

X + (1−X)e−(|α|−β)kt

]
Using that X = |α|x−β

|α|−β , we are able to see that

∫ t

0
Ξs (k;x)2 ds = t+

(
|α|+β
|α|2k

)[
log
(
|α|x− β + |α|(1− x)e−(|α|−β)kt

)
− log(|α|−β)

]
− 1

|α|k

[
(1− x) (|α|x− β)

(
1− e−(|α|−β)kt

)
|α|x− β + |α|(1− x) e−(|α|−β)kt

]

B.2.2 Dynamics Below xeq = β
|α|

For the HD dynamics below the within-group dynamics, we choose rescaled state variable X = |α|
β x.

In terms of the new variable, the within-group dynamics of Equation 3.19 can be written as

dX(t)

dt
= βkX (1−X) , X0 =

|α|
β
x0 (B.4)

Because Equation B.4 can be obtained from Equation B.1 by reversing time, we see that solutions to
Equation B.4 are the backwards-in-time solution to the logistic ODE, Ψ−1

t (k;X0). Therefore we have
that Πt(k;x0) = Ψ−1

T (βk;X0), so we see the equivalence of the characteristic curves

Πt(k;x0) =

(
β

|α|

)
Ψ−1
t (βk;X0) (B.5)
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and, using Equation 3.3, we can now compute the following integrals along the characteristic curves
Πt(k;x0)∫ t

0
Πs(k;x0)ds =

β

|α|

∫ t

0
Ψ−1
s (βk;X0) ds

=
β

|α|

∫ t

0

[
X0

X0 + (1−X0) e−βks

]
ds

= −βX0

α

∫ X0+(1−X0)eβkt

1

dU

βkU (U −X0)
(where U = X0 + (1−X0) eβks)

=
1

|α|k

∫ X0+(1−X0)eβkt

1

(
1

U
− 1

U −X0

)
dU

=
1

|α|k
[log (U)− log (U −X0)]

∣∣∣∣X0+(1−X0)e−βkt

1

=
1

|α|

[
βt+

1

k
log
(
X0 + (1−X0) e−βkt

)]
Now, we can write X0 in terms of t and X using X0 = Ψt(βk;X) = X

X+(1−X)eβkt
and use X = |α|

β x to
tell us that∫ t

0
Πs(k;x0)ds =

1

|α|

[
βt+

1

k
log

(
X

X + (1−X) eβkt
+

(
(1−X) eβkt

X + (1−X) eβkt

)
e−βkt

)]
=

1

|α|

[
βt− 1

k
log
(
X + (1−X) eβkt

)]
=

1

|α|k
log
(

(1−X) +Xe−βkt
)

= − 1

|α|k

[
log
(

(β − |α|) + |α|e−βkt
)

+ log (β)
]

We also want to calculate∫ t

0
Πs(k;x0)2ds =

β2

|α|2

∫ t

0
Ψ−1
s (βk;X0)2 ds

=
β2

|α|2

∫ t

0

[
X2

0

(X0 + (1−X0) e−βks)
2

]
ds

= −β
2X2

0

|α|2

∫ X0+(1−X0)eβkt

1

dU

βkU2 (U −X0)
(where U = X0 + (1−X0) eβks)

=
β

|α|2k

∫ X0+(1−X0)e−βkt

1

(
X0

U2
+

1

U
− 1

U −X0

)
dU

=
β

|α|2k

[
X0

U
+ log(U)− log(U −X0)

] ∣∣∣∣X0+(1−X0)e−βkt

1

=
β

|α|2k

[
βkt+ log

(
X0 + (1−X0) e−βkt

)
+X0

(
1− 1

X0 + (1−X0) e−βkt

)]
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From Equation B.5, we can also express X0 in terms of t and X as X0 = X
X+(1−X)eβkt

. Plugging this
in for X0 above lets us write that∫ t

0
Πs(k;x0)2ds =

β

|α|2k

[
βkt− log

(
X + (1−X) eβkt

)
+
X(1−X)

(
1− eβkt

)
X + (1−X)eβkt

]

=
β

|α|2k

[
log
(

(1−X) +Xe−βkt
)

+
X(1−X)

(
1− eβkt

)
X + (1−X)eβkt

]

Then, using X = |α|
β x, we can finally see that

(B.6)

∫ t

0
Πs(k;x0)2ds = − β

|α|2k

[
log
(
β − |α|x+ |α|xe−βkt

)
− log(β)

]
− 1

|α|k

[
x (β − |α|x)

(
eβkt − 1

)
|α|x+ (β − |α|x) eβkt

]
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