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Abstract— In this paper we deal with a social dynamics
model, where one controls a small number of leaders in order
to influence the behavior of the whole group (leaders and
followers). We first provide a general mathematical framework
to deal with optimal control of the microscopic problem, where
the number of agents is finite, and its mean-field limit with an
infinite number of followers.
Then we focus on a migration-type model and develop optimal
control strategies for the microscopic model. Such strategies are
tested in their behavior both for the number of agents tending to
infinity and for different initial conditions and initial locations
of the leaders.

I. INTRODUCTION

The interest in social dynamics, i.e. multi-agent systems
with structured interaction patterns, increased in the last
decade in various research domains. One of the interests is in
defining mathematical models which can capture and predict
the main phenomenology. The models were proposed by re-
searchers with very different backgrounds, such as: biologists
to model animal groups [7], [21], [24], [25]; physicists to
study the dynamics of crowds [8]; engineers interested in
robot formations [19], [17]; economists interested in socio-
economic networks [1]; general models from mathematicians
as the celebrated Cucker-Smale one [9].

Following the model design, many papers were devoted
to the analysis of the models. This activity included the
understanding of self-organization phenomena, which is one
of the main features of the social dynamics, see [22], [3],
[21]. A mathematical definition of self-organization is that
of a stable group configuration toward which the system
tends naturally. For instance in the Cucker-Smale model
(briefly CS) all agents tend to align their velocity to the
average one. Such a phenomenon is called alignment and is
encompassed in the more general concept of consensus [23].
The convergence to consensus is not guaranteed in all cases,
but depends on the characteristics of the dynamics as well
as on the initial conditions. For the CS model it is possible
to define a consensus region, so that every initial datum in
this region converges to consensus.

The natural question then is to design control policies
inducing consensus, in particular centralized policies which
are sparse, i.e. act only on a small number of agents. In [2],
[5] a feedback control strategy, defined by the solution to a
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variational problem, was designed for a generalized version
of the CS model. Another direction of investigation is the
study of the limiting behavior when the number of agents
tends to infinity, see [14], [13], [6]. The recent work [12]
combined the two issues of control strategies and mean-
field limit, by providing convergence results based on the
concept of Γ-limit. Other authors addressed the problem of
controlling a whole group by a limited number of leaders
mostly at a microscopic level, see for instance [18], [4], [11],
[15], [16] and references therein.

In the present paper we further push the investigation along
this line by testing how the leaders control strategies behave
for increasing numbers of agents. More precisely, we focus
on a migration-type model, see also [20], which can be seen
as a generalization of the Cucker-Smale one. In rough words,
while the CS model leads to alignment of all velocities to the
average one, the migration model tends to align all velocities
to an ideal preassigned migration velocity.
We first adapt the result of [12] to deal with the case of
Mayer-type problems (as opposed to the Bolza-type prob-
lems analysed in [12]). The main idea is that all ingredients
of the Γ-limit are still valid for the Mayer-type problem.
Then we design optimal controls for the migration model.
The controls act on the individual choice of weighting more
the migration velocity (which in practice can be sensed) or
the consensus mechanism, which acts by averaging with the
other agents’ velocities. The cost function is given by the sum
of squared distances from the migration velocity. To make
the analysis easier we neglect the dependence on agents’
positions in space and consider constant-in-time interaction
coefficients. We will choose a control bound so that we can
act with full strength only on a single agent. This choice leads
to a naturally sparse control and allows a simple strategy
which coincides with the instantaneous decrease of the cost
function.
We compare different control strategies: 1) control only on
the leaders; 2) control on all agents (but only one at a
time); 3) no control; 4) leaders staying ”close” to the other
agents. The achieved results can be summarized as follows.
The performances of Strategies 2 and 4 clearly outperform
the no control strategy (as expected), but strategy 4 suffers
from a lack of optimality. For what concerns sending the
number of agents to infinity, we verify that the Strategy 2
still works when the number of agents N increases but the
performance deteriorates. This is in line with the convergence
results proved in the first part of the paper.

The organization of the paper is as follows. In section
II we introduce the general mathematical framework for
social dynamics. Then in section III we describe a coupled



ODE-PDE model and convergence results (Γ-limits) for the
optimal controls. In section IV we describe a migration
model and study the optimal controls to steer the group
towards consensus at migration velocity.

II. GENERAL FRAMEWORK

We consider a multi-agent control system, with N agents,
each moving in a 2d dimensional space (d coordinates for
position and d for velocity). The systems is thus defined in a
Euclidean space with 2d×N dimensions. We assume that a
consensus dynamics is represented by a convolution operator,
thus writes:{
ẋi = vi,

v̇i = 1
N

∑
i aij (vj − vi) + ui, i = 1, . . . N, t ∈ [0, T ],

(1)
where the coefficients aij may depend both on x =
(x1, . . . , xN ) and/or v = (v1, . . . , vN ). For instance in the
Cucker-Smale (briefly CS) model one has aij = 1/(1+‖xi−
xj‖2)β . Such a system can be written in general form as:{
ẋi = vi,

v̇i = (H ? µN )(xi, vi) + ui, i = 1, . . . N, t ∈ [0, T ],
(2)

where the interaction kernel H : R2d → Rd is locally
Lipschitz, ? is the convolution operator and and µN is the
atomic measure

µN (t) =
1

N

N∑
i=1

δ(xi(t),vi(t)). (3)

We look for control functions ui : [0, T ]→ Rd which will be
vanishing for most indices i and whose number of switchings
in time is limited. We call such controls sparse. Results for
the CS model were achieved in [5] with control on all agents,
but here we are interested in the case of a limited number
m of leaders and to N tending to infinity. The microscopic
dynamics with m leaders can be written as:

ẏk = wk,

ẇk = (H ? µN )(yk, wk) + (H ? µm)(yk, wk) + uk

ẋi = vi,

v̇i = (H ? µN )(xi, vi) + (H ? µm)(xi, vi)
(4)

with k = 1, . . .m and i = 1, . . . N , and where we defined
a new atomic measure similar to the one applying to the
followers (3), but with a different weight 1

m :

µm(t) =
1

m

m∑
k=1

δ(yk(t),wk(t)); (5)

this is because we want to keep the weight of leaders
w.r.t. the whole group independent from the total number
of agents.
The functions uk : [0, T ] → Rd are measurable controls for
k = 1, ...,m and only act on the leaders. In this setting, it
makes sense to choose u ∈ L1([0, T ],U) where U is a fixed
nonempty compact subset of Rd×m.
We are interested in minimizing a certain functional V at

final time T , i.e. solving the following Mayer optimization
problem:

min
u∈L1([0,T ],U)

V (y(T ), w(T ), x(T ), v(T )) = V (µm, µN ).

(6)

III. THE COUPLED ODE AND PDE SYSTEM

Let us now describe the limiting dynamics for N → ∞.
We can define a mean-field limit of (4) in a certain sense
specified later.
Let the population be represented by the vector of positions-
velocities (y, w) of the leaders, coupled with the compactly
supported probability measure µ ∈ P1(R2d) (the space of
probability measures with bounded first moment) of the
followers in the position-velocity space. Then, the mean-field
limit will result in a coupled system of an ODE with control
u ∈ L1([0, T ],U) for (y, w) and a PDE without control for
µ. More precisely the limit dynamics will be described by
ẏk = wk,

ẇk = (H ? (µ+ µm))(yk, wk) + uk, k = 1, . . .m,

∂tµ+ v · ∇xµ = ∇v · [(H ? (µ+ µm))µ] ,
(7)

where the weak solutions of the equations have to be
interpreted in the Carathéodory sense.

We first address the question of existence of solution to
the coupled ODE-PDE system (7). On the space P1(R2d) of
probability measures of bounded first moments, we define
the Monge-Kantorovich-Rubistein distance (also known as
the 1-Wasserstein distance) by:

W1(µ, ν) = sup

{∣∣∣∣∫
Rn

ϕ(x)d(µ− ν)(x)

∣∣∣∣} (8)

where ϕ varies among Lipschitz function with Litpschitz
constant bounded by 1. This allows us to give a definition
of solution which we report in the Appendix.

This allows us to state:
Theorem 3.1: Let (y0, w0, µ0) ∈ X be given, with

µ0 of bounded support, and let (µ0
N )N∈N be the

sequence of atomic probability measures such that
each µ0

N is given by µ0
N :=

∑N
i=1 δx0

i,N ,v
0
i,N

and
limN→∞W1(µ0

N , µ
0) = 0. Given a weakly convergent

sequence (uN )N∈N ⊂ L1([0, T ],U) of controls and an
initial datum ζ0

N = (y0, w0, x0
N , v

0
N ) depending on N ,

let us denote with ζN (t) = (yN (t), wN (t), µN (t)) :=
(yN (t), wN (t), xN (t), vN (t)) the unique solution of
the finite-dimensional control problem (4) with control
uN . Then, the sequence (yN , wN , µN ) converges in
C0([0, T ],X ) to some (y∗, w∗, µ∗), which is a solution of
(7) with initial data (y0, w0, µ0) and control u∗.

We thus showed that the limit when N →∞ of the solu-
tions to the finite-dimensional dynamics (4) corresponds to
a solution to the infinite-dimensional dynamics (7). We may
now ask ourselves whether solutions to finite-dimensional
optimal control problems indeed converge to the optimal
solution to the infinite-dimensional problem.



The finite-dimensional optimal control problem can be
stated as follows: Given N ∈ N and an initial datum
(y(0), w(0), x(0), v(0)) ∈ (Rd)m×(Rd)m×(Rd)N×(Rd)N ,
we consider the following Mayer optimal control problem:

min
u=(u1,...,uk)

V (y(T ), w(T ), µN (T )) = V (µm(T ), µN (T ))

(9)
where µm and µN are the time dependent atomic measures
supported on the phase space trajectories (yk(t), wk(t)) ∈
R2d, for k = 1, . . .m and (xi(t), vi(t)) ∈ R2d, for i =
1, . . . N , respectively, constrained by being the solution of
the system (4).

Let us then recall the concept of Γ-limit.
Definition 3.2 (Γ-convergence): [10, Definition 4.1,

Proposition 8.1] Let X be a metrizable separable space
and FN : X → (−∞,∞], N ∈ N be a sequence of
functionals. Then we say that FN Γ-converges to F , written
as FN

Γ−→ F , for an F : X → (−∞,∞], if

1) lim inf-condition: For every u ∈ X and every se-
quence uN → u,

F (u) ≤ lim inf
N→∞

FN (uN );

2) lim sup-condition: For every u ∈ X , there exists a
sequence uN → u, called recovery sequence, such that

F (u) ≥ lim sup
N→∞

FN (uN ).

We define the following functional on X

F (u) = V (y(T ), w(T ), µ(T )) (10)

where the triplet (y, w, µ) defines the unique solution of (7)
with initial datum (y0, w0, µ0) and control u.

Similarly, we define the functionals on X given by

FN (u) = V (y(T ), w(T ), µN (T )) (11)

where µN (t) = 1
N

∑N
i=1 δ(xi,N (t),vi,N (t)) is the time-

dependent atomic measure supported on the trajectories
defining the Carathéodory solution of the finite-dimensional
system (4) with initial datum (y0, w0, x0

N , v
0
N ) and control

u.
Theorem 3.3: Given an initial datum (y0, w0, µ0) ∈ X

and an approximating sequence µ0
N , with µ0, µ0

N , equi-
compactly supported, the sequence of functionals (FN )N∈N
on X = L1([0, T ],U) defined in (11) Γ-converges to the
functional F defined in (10).

A proof can be obtained by modifying that of [12], see
the Appendix.

IV. APPLICATION TO A MIGRATION SYSTEM

We now introduce a migration model, where the agents’
dynamics is determined by two forces: the attraction towards
a migration velocity V (which we assume can be sensed) and
the consensus dynamics as in the CS model. More precisely,
each agent has a parameter αi which provides the balance

between the two forces. The system can be written as:
ẋi = vi

v̇i = αi(V − vi) + (1− αi) 1
N

N∑
j=1

aij(x, v) (vj − vi)

(12)
where: V is the desired velocity (given by a magnetic field,
an economic trend...), which from now on we will set to zero
for simplicity; αi ∈ [0, 1] is the control allowing to choose
whether the agent senses the desired velocity or follows the
group, with the constraint

∑
i αi ≤M (M a given constant);

we also simplify the consensus dynamics assuming that aij
does not depend on the agents’ positions in this simplified
case (even choosing aij = 1 for all i, j).

This new system is a special case of the general dynamics
(1), obtained by choosing ui = αi(− 1

N

∑
i aij(vi − vj) +

V − vi). Since we have not bounded the control u, we can
decide to take α in [0, 1]N+m.

As done above, we divide the agents into m leaders and
N followers, where only the leaders can sense the migration
direction, while the followers are simply guided by the
leaders. The system thus becomes:

ẋi = vi, i = 1, ..., N +m,

v̇i = −αivi + (1− αi)
m+N∑
j=1

qj(vj − vi), i = 1, ..,m,

v̇i =
m+N∑
j=1

qj(vj − vi), i = m+ 1, ..,m+N,

where qi, i = 1, ...,m + N , represent the weights given to
each agents’ influence on the others. We give the leaders a
greater weight than the followers: qi = 1

m for i ∈ {1, ...,m}
and qi = 1

N for i ∈ {m + 1, ...,m + N}. In this way the
total weight of leaders is the same as the total weight of
followers.

For more simplicity, we design a control strategy for a
system composed only of leaders (i.e. supposing that all n
agents can be controlled). We thus choose to minimize the
functional V(T ) = 1

n

∑
i ‖vi(T ) − V ‖2 at final time T . V

measures the distance between each agent’s velocity and the
desired velocity V .

First of all we define the average velocity by v̄ = 1
n

∑
i vi

and project the dynamics over v̄ by considering the new
variables ξi = 〈vi, v̄

‖v̄‖ 〉. This gives: ξ̇i = −ξi + (1 − αi)ξ̄,
where ξ̄ = 1

n

∑
i ξi. The orthogonal component ωi = vi−ξiv̄

simply satisfies ω̇i = −ωi. Thus we consider the optimal
control problem for the ξi with cost V = 1

n

∑
i ξ

2
i . For this

problem the Hamiltonian and covector equations read:
H =

N∑
i=1

λi
(
−ξi + (1− αi)ξ̄

)
λ̇i = −

∂H

∂ξi
for every i ∈ {1, ..., n},

which gives:

H = −ξ̄ (
∑
j

αjλj) + H̃, λ̇i = λi− λ̄+

∑
j αjλj

n
, (13)



where H̃ does not depend on αj and λ̄ = 1
n

∑
i λi. The

global strategy consists of setting αj = 1 on the biggest
covector λj and αk = 0 on the others (k 6= j), if and
only if λj ≥ 0. Since λ̇k − λ̇j = λk − λj , we know
that if λj = maxi λi at time t, then it is maximal at all
time. Let λmax := maxi λi. According to equation (13), λmax
is increasing. Hence, if λmax is negative, it is necessarily
on a time interval [0, δ], with δ < T . The transversality
condition reads λi(T ) = 2

nξi(T ). If there exists a j such
that ξj(T ) > ξk(T ) for every k 6= j, then we deduce
λj(t) > λk(t) for every t. Furthermore, we can assume with
no loss of generality that the ξi stay in the same order. From
the expression of H we conclude that if λj(t) ≥ 0 for all t,
where λj = λmax, then αj ≡ 1 and the other controls vanish.
If there are more than one λj(T ) with maximal value, then
every control driving the corresponding agents to the same
final position would be optimal. Simulations showed that the
event λmax < 0 on some interval [0, δ[ happens only in a few
isolated cases, and that the gain in performance in setting
αk = 0 instead of αk = 1 on [0, δ[ is very modest. Therefore,
we simply use the ansatz of always choosing the maximal
ξi and act only on agent i with control αi = 1.
This strategy also coincides with the instantaneous maximal
decrease of V. Indeed, computing the derivative of V w.r.t.
time gives: dV

dt = −2V + 2
n ξ̄
∑
i(1− αi)ξi.

We test the potency of control using only a selected group
of leaders based on their initial positions. To do this, we
design four different strategies:

1) Only m of the m+N agents can be controlled.
2) Any of the m+N agents can be controlled.
3) No control at all is applied. This is the reference case.
4) Only m of the m+N agents can be controlled, with the

additional constraint that if the leaders become too far
away from the followers, they stop being controlled
in order to “wait” for the remaining agents. This
creates a better cohesion in the group. We set the
threshold such that the leaders stop being controlled if
maxj∈{m+1,...,m+N}〈vj , v̄〉 > 6

5 maxi∈{1,...,m}〈vi, v̄〉.
We apply these various control strategies to three ini-

tial configurations on a plane. Configuration a) consists of
spreading the followers randomly within a disc of radius 1
centered around the point (1, 1), while placing the leaders
in a semi-circle around the followers opposite from the
target velocity (0, 0). In configurations b) and c), all agents
are given random initial velocities within that same disc.
Moreover, in configuration c), the leaders are chosen to be
the ones with the biggest projected velocities over the mean
velocity.

The various simulations show that consensus is reached in
the cases where several or all of the agents are controlled. See
Figure 1 for an example of the resulting dynamics. Figure 2
shows the evolution of the functional V for a group of agents
initially in configuration a) (i.e. with the controlled agents
spread in a semi-circle around the uncontrolled ones), for a
group of 10 leaders and 10 followers (m = N = 10).

The simulation is consistent with expectations: without
any control on the agents, V hardly decreases and does

Fig. 1: Evolution of the leaders’ (thick red lines) and follow-
ers’ (thin blue lines) velocities starting from configuration a),
with control strategy 4. Initial positions are marked by stars
(leaders) and circles (followers).

Fig. 2: Evolution of the functional V for initial configuration
a), using control strategies 1 (full line), 2 (dashed), 3 (dotted)
and 4 (dot-dashed line)

not tend to zero, whereas there is a clear decrease in the
cases where the agents are controlled. It is interesting to
notice that the control strategies 1 and 2 do not differ much.
As expected, controlling all agents is more efficient than
controlling only a group of leaders. However, the difference
is small, which proves that controlling only some agents can
be effective. When using strategy 4, in which the leaders
“wait” for the followers, the functional V first follows the
curves of strategies 1 and 2, but then its decrease rate
becomes lower as the leaders become too far from the
followers and thus stop being controlled.

It is also informative to compare the evolution of V when
starting from initial configurations b) and c). The first striking
difference is the behavior of V when using the fourth control
strategy. When controlled and uncontrolled agents are spread
out randomly, the initial decrease of V is much slower than
when the controlled agents are chosen on one side. Indeed,
since the control attracts the leaders towards the opposite side



of the group, it takes them a longer time to cross the threshold
at which they are considered to be too far from the leaders
when starting from configurations a) and c). Therefore, they
are controlled for a longer period of time and are better able
to drive the group to consensus.

As displayed in Table I, a quantitative analysis shows
that when using the second control strategy (i.e. controlling
only the group of leaders), the final value of V is lower in
configuration c) than in configuration b). This confirms the
intuition that the leaders are better able to guide the followers
when pushing them from behind rather than being spread out
among the group.

Control strategies 1 2 3 4
Initial average 3.277

Initial stand. dev. 0.249
Final average 0.620 0.709 3.012 1.458

Final stand. dev. 0.060 0.070 0.256 0.144

Initial configuration a)
Control strategies 1 2 3 4

Initial average 2.521
Initial stand. dev. 0.308

Final average 0.447 0.514 2.050 1.2180
Final stand. dev. 0.063 0.073 0.292 0.147

Initial configuration b)
Control strategies 1 2 3 4

Initial average 2.456
Initial stand. dev. 0.215

Final average 0.470 0.529 2.367 0.940
Final stand. dev. 0.051 0.059 0.236 0.114

Initial configuration c)

TABLE I: Average and standard deviation of the functional
V at initial and final time where 40 simulations were run for
each control strategy (T = 20, m = 10, N = 20)

We now focus on the first control strategy. Starting from
the third configuration, we run simulations for a total number
of agents respectively equal to 10, 20, 40, 80 and 120, while
keeping a constant number of 10 leaders. Since the initial
configuration is random, we run a total of 40 simulations in
each of these cases and average the resulting functional V.
Figure 3 shows the evolution of the average of V with respect
to time. One notices that as the number of agents increases,
consensus is slower to reach. In the first case, m = 10 and
N = 0: all agents are controlled, and therefore, consensus
is reached very fast. In the second case, m = N = 10,
so only half of the agents are controlled. In the third case,
N = 30, so there are thrice as many followers as leaders.
Although convergence is slower, the small group of agents is
still able to drive the group to consensus, as in the fifth case,
in which leaders represent one-twelfth of the agents. Even
more, the difference in the decay of V from the case of 80
agents to that of 120 is modest, inline with the expectation
of Γ-convergence of cost functionals.

V. CONCLUSIONS

We considered a general mathematical framework for
social dynamics, which allows to deal both with microscopic

Fig. 3: Evolution of the functional V from initial configu-
ration c), using control strategy 1, for a total number of 10
(solid line), 20 (dashed), 40 (dot-dash), 80 (dotted) and 120
(solid line) agents

models and their mean-field limits. Moreover, we provide
convergence of cost functional in the sense of Γ-convergence.
We then test our framework on a model for migration, where
we want to drive the group to consensus at a given migration
velocity. After designing a control strategy, we apply that to
a small number of leaders. Via simulations, we show the
effectiveness of our control strategy both w.r.t. the case of
control over all group and for the number of agents tending
to infinity. Further investigations will concern the optimal
control of the mean-field limit and control strategies for other
social dynamic models.

APPENDIX

Definition 5.1: Let u ∈ L1([0, T ],U) be given. We say
that a map (y, w, µ) : [0, T ]→ X := R2d×m×P1(R2d) is a
solution of the controlled system with interaction kernel H

ẏk = wk, k = 1, . . .m, t ∈ [0, T ],

ẇk = H ? (µ+ µm)(yk, wk) + uk,

∂tµ+ v · ∇xµ = ∇v · [(H ? (µ+ µm))µ] ,

(14)

with control u, where µm is the time-dependent atomic
measure as in (5), if
(i) the measure µ is equi-compactly supported in time, i.e.,

there exists R > 0 such that supp(µ(t)) ⊂ B(0, R) for
all t ∈ [0, T ];

(ii) the solution is continuous in time with respect to the
following metric in X

‖(y, w, µ)− (y′, w′, µ′)‖X :=

:=
1

m

m∑
k=1

(|yk − y′k|+ |wk − w′k|) +W1(µ, µ′),

(15)

where W1(µ, µ′) is the 1-Wasserstein distance in
P1(R2d);



(iv) the (y, w) coordinates define a Carathéodory solution of
the following controlled problem with interaction kernel
H , control u(·), and the external field H ? µ:{
ẏk = wk,

ẇk = H ? (µ+ µm)(yk, wk) + uk, k = 1, . . .m;
(16)

(v) the µ component satisfies

d

dt

∫
R2d

φ(x, v) dµ(t)(x, v) =

=

∫
R2d

∇φ(x, v) · ωH,µ,y,w(t, x, v) dµ(t)(x, v)

(17)

for every φ ∈ C∞c (Rd × Rd), in the sense of distribu-
tions, where ωH,µ,y,w(t, x, v) : [0, T ] × Rd × Rd →
Rd × Rd is the time-varying vector field defined as
follows

ωH,µ,y,w(t, x, v) := (v,H?µ(t)(x, v)+H?µm(t)(x, v)).
(18)

Let moreover (y0, w0, µ0) ∈ X be given, with µ0 ∈ P1(R2d)
of bounded support. We say that (y, w, µ) : [0, T ] → X is
a solution of (14) with initial data (y0, w0, µ0) and control
u if it is a solution of (14) with control u and it satisfies
(y(0), w(0), µ(0)) = (y0, w0, µ0).

Proof of Theorem 3.3: Proof: Fix a weakly convergent
sequence of controls uN ⇀ u∗ in L1([0, T ],U). Let ζN (t) =
(yN (t), wN (t), µN (t)) := (yN (t), wN (t), xN (t), vN (t)) be
the associated solutions. Then the sequence ζN converges to
a solution ζ∗(t) = (y∗(t), w∗(t), µ∗(t)) of (7) in the sense of
Definition 5.1 with control u∗ and initial datum (y0, w0, µ0).
All supports are uniformly bounded w.r.t. N and we do
have uniform convergence of the trajectories (yN , wN ) (the
leader trajectories, whose number does not tend to infinity).
Moreover W1(µN (t), µ∗(t)) → 0 uniformly in t ∈ [0, T ]
thus we get the Γ− lim inf condition

lim inf
N→∞

FN (uN ) ≥ F (u∗).

For the Γ− lim sup condition, let us fix u∗ and we consider
the trivial recovery sequence uN ≡ u∗ for all N ∈ N. We
can proceed as above associating a corresponding sequence
of solutions, which have the same convergence properties,
thus we deduce:

lim sup
N→∞

FN (uN ) = lim
N→∞

FN (u∗) = F (u∗).
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