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a b s t r a c t

We continue our study of hydrodynamic models of self-organized evolution of agents with singular
interaction kernelφ(x) = |x|−(1+α). Following ourworks Shvydkoy and Tadmor (2017) [1,2]which focused
on the range 1 ≤ α < 2, and Do et al. (2017) which covered the range 0 < α < 1, in this paper we revisit
the latter case and give a short(-er) proof of global in time existence of smooth solutions, together with a
full description of their long time dynamics. Specifically, we prove that starting from any initial condition
in (ρ0, u0) ∈ H2+α

×H3, the solution approaches exponentially fast to a flocking state solution consisting
of awave ρ̄ = ρ∞(x−tū) travelingwith a constant velocity determined by the conserved average velocity
ū. The convergence is accompanied by exponential decay of all higher order derivatives of u.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and statement of main results

We continue our study of one-dimensional Eulerian dynamics
driven by forcing with a commutator structure initiated in [1,2]:{
ρt + (ρu)x = 0,

ut + uux = T (ρ, u).
(1.1)

The forcing T (ρ, u) takes the form T (ρ, u) = [Lφ, u](ρ) :=

Lφ(ρu)−Lφ(ρ)u, which involves the density ρ, the velocity u, and
a convolution kernel φ,

Lφ(f ) :=

∫
R
φ(|x − y|)(f (y) − f (x)) dy. (1.2)

The system arises as the macroscopic description for large-crowd
dynamics ofN ≫ 1 ‘‘agents’’ driven by binary interactions through
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velocity alignment, [3],⎧⎪⎪⎨⎪⎪⎩
ẋi = vi,

v̇i =
1
N

N∑
j=1

φ(|xi − xj|)(vj − vi),

(xi, vi) ∈ Ω × R, i = 1, 2, . . . ,N. (1.3)

The kernel φ regulates the binary interactions among agents in
Ω . In the original setting of [3], φ is assumed positive, bounded
influence function. Many aspects of the formal passage from (1.3)
to (1.1) are discussed in e.g., [4,5] and references therein; con-
sult [6,7] for singular φ’s. The important dynamical feature of the
model is encoded in its long time behavior describing a flocking
phenomenon, in which the crowd of agents congregates within a
finite diameter D(t) = supi,j|xi(t)− xj(t)| < D∞ < ∞, while align-
ing their velocities, supi,j|vi(t) − vj(t)|

t→∞
−→ 0, thus approaching

the conserved average velocity, vj(t)
t→∞
−→

1
N

∑
kvk(0). Starting with

the seminal work of Cucker and Smale paper [3] and the follow-up
works [2,4,8–11] and reference therein, it has become clear that in
order to achieve unconditional flocking in either the agent-based or
the macroscopic descriptions (1.3), (1.1), the system has to involve
long range interactions so that

∫
φ(r) dr = ∞. The drawback of

such an assumption in the context of Cucker–Smale model (1.3)

http://dx.doi.org/10.1016/j.physd.2017.09.003
0167-2789/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physd.2017.09.003
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:shvydkoy@uic.edu
mailto:tadmor@cscamm.umd.edu
http://dx.doi.org/10.1016/j.physd.2017.09.003


Please cite this article in press as: R. Shvydkoy, E. Tadmor, Eulerian dynamics with a commutator forcing III. Fractional diffusion of order 0 < α < 1, Physica D (2017),
http://dx.doi.org/10.1016/j.physd.2017.09.003.

2 R. Shvydkoy, E. Tadmor / Physica D ( ) –

is that each agent has to ‘‘count’’ all its (N − 1) neighbors, close
and far with equal footing. To remove this deficiency, Motsch and
Tadmor introduced in [12] an adaptive averaging protocol inwhich
each neighboring agents is counted by its relative influence. Thus,
the normalization pre-factor 1/N on the right of (1.3) is replaced
by 1/

∑
jφ(|xi − xj|), leading to the Eulerian dynamics (1.1) with

non-symmetric forcing T (ρ, u) = [Lφ, u](ρ)/(φ ∗ ρ). The model is
argued in [12] as more realistic in both—close to and away from
equilibrium regimes, but its lack of symmetry is less amenable
to the spectral analysis available in the symmetric Cucker–Smale
model (1.3). An alternative approach was proposed by us in [1,2],
where nearby interactions are highlighted by the singularity of the
interaction kernel at the origin, thus ‘‘adapting’’ different footing
of neighboring agents by placing substantially smaller weights to
those agents at far away distances relative to those nearby. A natu-
ral example is given by the power-law singularities |x|−(1+α), α >

0. We consider the system (1.1) on the torus T with the 2π-
periodized version of such kernels1

φα(x) :=

∑
k∈Z

1
|x + 2πk|1+α

, 0 < α < 2.

which preserve the essential long range but less dominant interac-
tions. In this case the operatorLα = Lφα becomes the (negative of)
classical fractional Laplacian, Lα = −Λα , which we denote

Λαu(x) =

∫
R
(u(x) − u(x + z))

dz
|z|1+α

=

∫
T
(u(x) − u(x + z))φα(z) dz, Λα = (−∆)α/2.

Here and below we assume that u(·, t)|T and likewise, ρ(·, t)|T,
are extended periodically onto the line R. The commutator forcing
on the right hand side of the momentum equation in (1.1) then
becomes a fractional elliptic operator:

T (ρ, u) = −[Λα, u](ρ)(x)

=

∫
R
ρ(x + z)(u(x + z) − u(x))

dz
|z|1+α

,

0 < α < 2, (1.3)α

with the density controlling uniform ellipticity. Written in this
form, system (1.1) resembles the fractional Burgers equation with
non-local non-homogeneous dissipation.

In [1] we proved global existence of smooth solutions of (1.1),
(1.3)α in the range 1 ⩽ α ⩽ 2, with focus on themost difficult criti-
cal case α = 1. To this endwe utilized refined tools from regularity
theory of fractional parabolic equations to verify a Beale–Kato–
Majda (BKM) type continuation criterion which guarantees that
the solution can be extended beyond T provided

∫ T
0 |ux(·, t)|∞ dt <

∞. Building upon the technique developed in [1], in [2] we proved
that all regular solutions converge exponentially fast to a so called
flocking state, consisting of a traveling wave, ρ(x, t) = ρ∞(x − tu),
with a fixed speed u,

|u(·, t) − ū|X + |ρ(·, t) − ρ̄(·, t)|Y
t→∞
−→ 0, u :=

P0

M0
. (1.4)

Here the average velocity, u, is dictated by the conservedmass and
momentum,

M0 =

∫
T
ρ0(x) dx, P0 =

∫
T
(ρ0u0)(x) dx.

Parallel to the release of [1,2], Do et al. in [13] treated the case
0 < α < 1, where they proved global existence result with
fast alignment of velocities. Although on the face of it, the system

1 We can in fact have an arbitrarily large period.

for that α-range seems supercritical, one can employ the known
conservation law for e = ux − Λαρ to conclude a priori uniform
C1−α Hölder regularity of the velocity, so that Eqs. (1.1), (1.3)α are
kept critical in the range 0 < α < 1. In [13], the authors use
construction of amodulus of continuity, the celebratedmethod im-
plemented in treatingmany critical equations such as Burgers and,
most notably, critical SQG equation by Kiselev et al. [14], in order
to verify a Beale–Kato–Majda type criterion

∫ T
0 |ρx(·, t)|2∞ dt < ∞,

to guarantee continuation of the solution beyond T .
In this present paper we revisit the parameter range 0 < α < 1

using the fractional parabolic technique developed in our earlier
works for the range 1 ⩽ α < 2. As in [2], our methodology will be
to extract quantitative enhancement estimates for the dissipation
term, using an adaptation of the non-linear maximum principle as
in Constantin and Vicol’s proof for the critical SQG, [15], that yields
global existence and, moreover, allows us to completely describe
the long time behavior—exponential convergence towards a flock-
ing state. The main result summarized in the following theorem
covers the global regularity and flocking behavior for singular
kernels in the unified range 0 < α < 2. The (1 ⩽ α < 2)-part
of the theorem was covered already in [2, Theorem 1.3], quoted
in (1.4) with (X, Y ) = (H3,H2+α). The (0 < α < 1)-part of the
theorem is new.

Theorem 1.1 (Flocking for Singular Kernels of Fractional Order α ∈

(0, 2)). Consider the system (1.1), (1.3)α with singular kernel φα(x) =

|x|−(1+α), 0 < α < 2, on the periodic torus T, subject to initial
conditions (ρ0, u0) ∈ H2+α

× H3 away from the vacuum. Then it
admits a unique global solution (ρ, u) ∈ L∞([0,∞);H2+α

× H3).
Moreover, the solution converges exponentially fast to a flocking state
ρ̄ = ρ∞(x − tū) ∈ H2+α traveling with a finite speed ū, so that for
any s < 2 + α there exists C = Cs, δ = δs with

|u(t) − ū|H3 + |ρ(t) − ρ̄(t)|Hs ⩽ Ce−δt , t > 0,

u :=
P0

M0
. (1.5)

We recall that the global existence part for 0 < α < 1 was first
derived in Do et al. [13]. Our alternative proof is along the lines
of—and in fact simpler to handle than, the borderline case α = 1
in [1]. The result is a consequence of Lemma 3.1 below, which
gives a direct control on BKM continuation criteria |ρx(·, t)|∞, and
consequently on |ux(·, t)|∞, uniformly in time. Most of our work
is then devoted for obtaining quantitative bounds on long time
behavior of the slopes and higher order derivatives of the solution
in the (0 < α < 1)-part of the theorem.

2. Preliminary a priori bounds

We start by listing several structural features of the system
(1.1), (1.3)α and some preliminary a priori bounds of its solutions.
We refer to [1,2,13] for details.

• (Control of higher order regularity). The starting point is the
conservation law for a new quantity :

et + (ue)x = 0, e := ux −Λαρ. (2.1)

Paired with the mass equation we find that the ratio e/ρ satisfies
the transport equation

D
Dt

(e/ρ) := (∂t + u∂x)(e/ρ) = 0. (2.2)

Hence, starting from sufficiently smooth initial condition with ρ0
away from vacuum, this gives a priori pointwise bound

|e(x, t)| ≲ ρ(x, t). (2.3)
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This argument can be bootstrapped to higher orders [1, Sec. 2]: the
next order quantity Q = (e/ρ)x/ρ is transported

(∂t + u∂x)Q = 0, Q := (e/ρ)x/ρ (2.4)

hence solving for e′(·, t) we obtain the a priori pointwise bound

|e′(x, t)| ≲ |ρ ′(x, t)| + ρ(x, t). (2.5)

This can be iterated to any order yielding the high-order bounds

|e(k)(x, t)| ≲ |ρ(k)(x, t)| + · · · + ρ(x, t), k = 0.1.2., . . . . (2.6)

As observed in [1], the smallest order L2-based regularity class
for which (2.4) can be understood classically, and hence (2.3)
holds at every point is the class u ∈ H3, and (2.3) is the lowest
order law among (2.6) which allows to close energy estimates.
The corresponding regularity class for density ρ follows from its
connection to u through the e-quantity which itself is of lower
order. Hence, ρ ∈ H2+α . Indeed, it is proved in [1] for 1 ⩽ α < 2
and in [13] for 0 < α < 1, that for any initial condition (ρ0, u0) ∈

H2+α
× H3 away from vacuum there exists a unique local solution

in the same class (ρ, u) ∈ L∞([0, T );H2+α
× H3). We note that

since the argument [1] for 1 ⩽ α < 2 is not using the dissipative
structure of the commutator term, it can be easily adapted to the
case 0 < α < 1. Both results [1] and [13] are accompanied by
a BKM type continuation criterion which enables to extend the
solution beyond any finite T .

• (Pointwise bound on the density). We have the pointwise
lower- and upper-bound on the density globally on the interval of
existence

0 < c0 ⩽ ρ(x, t) ⩽ C0, x ∈ T, t ⩾ 0, (2.7)

where the constants c0 and C0 depend only on the initial condition.
This was established in [2] following a weaker lower bound ρ ≳
1/(1 + t) found in [1,13].

• (Strong alignment). The variation of the velocity, maxyu(y, t)−
minyu(y, t), is contracting exponentially fast,

d
dt

V (t) ⩽ −c1V (t), V (t) := max
y

u(y, t) − min
y

u(y, t), (2.8)

hence there is an exponentially fast alignment of velocities to their
average value u(x, t) → ū = P0/M0.

• (Fractional parabolic enhancement). The parabolic nature of
both the momentum and mass equations is an essential structural
feature of the system that has been used in all of the preceding
works. Using the e-quantity we can write

ρt + uρx + eρ = −ρΛαρ. (2.9)

The drift u and the forcing eρ are bounded a priori due to the max-
imum principle stated above. Moreover, utilizing the boundedness
of ρ and of e = ux −Λαρ we immediately conclude for 0 < α < 1
that u(·, t) ∈ C1−α uniformly in time. Hence, the mass equation
falls under the general class of fractional parabolic equations,

wt + b · ∇xw = Lαw + f ,

Lαw(x) =

∫
R
K (x, z, t)(w(x + z) − w(x)) dz

with a diffusion operator associated with the singular kernel
K (x, z, t) = ρ(x + z)|z|−(1+α), and f ∈ L∞, b ∈ C1−α . Regularity
of these equations has been the subject of active research in recent
years. In particular, the result of Silvestre [16], see also Schwab and
Silvestre [17], states that there exists a γ > 0 such that for all t > 0,

|ρ|Cγ (T×[1,2)) ≲ |ρ|L∞(0,2) + |ρe|L∞(0,2). (2.10)

Since the right hand side is uniformly bounded on the entire
line we have obtained uniform bounds on Cγ -norm starting, by
rescaling, from any positive time.

3. Proof of the main result

3.1. Existence of global smooth solutions

We begin with proving a uniform bound |ρx(·, t)|∞ < ∞. As a
direct consequence, we then obtain a uniform bound on |Λαρ|∞,
e, and hence on |u′

|∞, and this readily implies global existence by
the BKM criterion

∫ T
0 |ux(·, t)|∞ dx < ∞. To simplify notations, we

now use {·}
′, {·}′′ and so on to denote spatial differentiation.

Lemma 3.1. Under the assumptions stated of Theorem 1.1 the
following uniform bound holds

sup
t⩾0

|ρ ′(·, t)|∞ < ∞. (3.1)

Proof. Taking the derivative of the density equation we obtain

∂tρ
′
+ uρ ′′

+ u′ρ ′
+ e′ρ + eρ ′

= −ρ ′Λαρ − ρΛαρ ′,

and expressing, u′
= e +Λαρ, we rewrite the ρ ′-equation as

∂tρ
′
+ uρ ′′

+ e′ρ + 2eρ ′
= −2ρ ′Λαρ − ρΛαρ ′.

Multiplying by ρ ′ and evaluating the equation at the point x+

which maximize |ρ ′(x+, t)| = maxx|ρ ′(x, t)| we obtain

1
2
∂t |ρ

′

+
|
2
+ e′

+
ρ+ρ

′

+
+ 2e+|ρ ′

+
|
2

= −2|ρ ′

+
|
2
Λαρ+ − ρ+ρ

′

+
Λαρ ′

+

=: −2|ρ ′
|
2
· I + II. (3.2)

In view of (2.7) and (2.5) the whole nonlinear term on the left hand
side can be estimated by⏐⏐e′

+
ρ+ρ

′

+
+ 2e+|ρ ′

+
|
2⏐⏐ ⩽ c2|ρ ′

+
|
2
.

Next, in view of the lower-bound ρ ⩾ c0, we have

− II = ρ+ρ
′

+
Λαρ ′

+
⩾

1
2
c0Dαρ ′(x+), (3.3)

where

Dαρ ′(x) :=

∫
R

|ρ ′(x) − ρ ′(x + z)|2

|z|1+α
dz.

By the nonlinear maximum principle of [15], at the maximal point
x = x+ we have

Dαρ ′(x+) ⩾ c3
|ρ ′

+
|
2+α

|ρ|∞

⩾ c4|ρ ′

+
|
2+α
,

and hence

II = −ρ+ρ
′

+
Λαρ ′

+
⩽ −c5|ρ ′

+
|
2+α
, c5 =

1
2
c0c4. (3.4)

We now get back to estimating the term I = Λαρ in (3.2).
The estimates are not restricted to the maximal point x+ so we
temporarily drop the subscript {·}+. Letψ ∈ C∞ be the usual even
cut-off functionwithψ(z) = 1 for |z| < 1 andψ(z) = 0 for |z| > 2.
Denote ψr (z) = ψ(z/r), and decompose

Λαρ(x) =

∫
ψr (z)

ρ(x) − ρ(x + z)
|z|1+α

dz

+

∫
|z|<2π

(1 − ψr (z))
ρ(x) − ρ(x + z)

|z|1+α
dz

+

∫
2π<|z|

(1 − ψr (z))
ρ(x) − ρ(x + z)

|z|1+α
dz =: I1 + I2 + I3.

The last integral, I3, is bounded by a constant multiple of |ρ|∞,
which is uniformly bounded, ⩽ c6. In the intermediate integral we
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use Cγ -regularity of ρ and the fact that the region of integration is
restricted to |z| > r . So, we obtain

|I2| =

⏐⏐⏐⏐∫
|z|<2π

(1 − ψr (z))
ρ(x) − ρ(x + z)

|z|1+α
dz

⏐⏐⏐⏐ ⩽ c7rγ−α.

For the first small-scale integral, we use that |z|−1−α
= −

1
α

∂z(z|z|−1−α) and integrate by parts to obtain

I1 =

∫
ψr (z)

ρ(x) − ρ(x + z)
|z|1+α

dz =
1
α

∫
ψ ′

r (z)
ρ(x) − ρ(x + z)

|z|1+α
z dz

−
1
α

∫
ψr (z)

ρ ′(x + z)
|z|1+α

z dz.

In the first integral we use Cγ regularity to obtain an upper-bound
≲ rγ−α; as to the second, sinceψr is evenwe can add the term ρ ′(x)
inside,
1
α

∫
ψr (z)

ρ ′(x + z)
|z|1+α

zdz =
1
α

∫
ψr (z)

ρ ′(x + z) − ρ ′(x)
|z|1+α

z dz,

and using Hölder, the last integral does not exceed c8(Dαρ ′)1/2
(x+)r1−α/2. Putting all these estimates of I1, I2 and I3 together, we
obtain the bound for the nonlinear term −2|ρ ′

|
2I ,⏐⏐|ρ ′

+
|
2
Λαρ+

⏐⏐ ≲ c6|ρ ′

+
|
2
+ c7|ρ ′

+
|
2rγ−α

+ c8|ρ ′

+
|
2(Dαρ ′)1/2(x+)r1−α/2

⩽ c6|ρ ′

+
|
2
+ c7|ρ ′

+
|
2rγ−α

+
c0
4
Dαρ ′(x+)

+ c9r2−α|ρ ′
|
4
.

(3.5)

The third term on the right, c0
4 Dαρ

′(x+) is absorbed into (3.3),
leaving uswith the dissipation of 1

2 II ⩽ −
c5
2 |ρ ′

+
|
2+α in (3.4). Setting

r =
c10
|ρ′

+
|
with sufficiently small c10, we see that the second and

fourth terms on the right hand side of (3.5) are absorbed into the
dissipation term 1

2 II . With such choice of r , the final bound of (3.2)
reads,

∂t |ρ
′

+
|
2
⩽ c11|ρ ′

+
|
2
+ c12|ρ ′

+
|
2+α−γ

− c13|ρ ′

+
|
2+α
. (3.6)

Finally let us remark that if ρ satisfies (2.10) for one γ it certainly
satisfies (2.10) for any other smaller γ . In particular we may as-
sume that 0 < γ < α, whichmakes the exponent 2+α−γ strictly
between 2 and 2 + α. By generalized Young, we readily obtain

∂t |ρ
′

+
|
2
⩽ c14|ρ ′

+
|
2
− c15|ρ ′

+
|
2+α
. (3.7)

which implies the claimed control of |ρ ′(·, t)|∞. □

3.2. Main theorem—step 1: exponential decay towards a flocking state

To establish the stated exponential decay of |ux(·, t)| we first
prepare with the following refinement of the nonlinear maximum
principle, [15] extending [2, Lemma 3.3].

Lemma 3.2 (Enhancement of Dissipation by Small Amplitudes). Let
u ∈ C1(T) be a given function with amplitude V = max u − min u.
There is an absolute constant c1 > 0 such that the following pointwise
estimate holds

Dαu′(x) =

∫
R

|u′(x) − u′(x + z)|2

|z|1+α
dz ⩾ c1

|u′(x)|2+α

V α
,

V = max u − min u. (3.8)

In addition, there is an absolute constant c2 > 0 such that for all B > 0
one has

Dαu′(x) ⩾ B|u′(x)|2 − c2B
1+α
α V 2. (3.9)

Proof. Let ψr be as in the proof of Lemma 3.1. Discarding the
positive term |u(x + z)|2 we obtain

Dαu′(x) ⩾
∫

|z|>r
(1 − ψr (z))

|u′(x)|2 − 2u′(x + z)u′(x)
|z|1+α

dz

= c1|u′(x)|2r−α
− 2u′(x)

∫
|z|>r

(1 − ψr (z))
u′(x + z)
|z|1+α

dz.

Now, using u′(x + z) ≡ (u(x + z) − u(x))z we integrate by parts in
the second integral to obtain∫

|z|>r
(1 − ψr (z))

u′(x + z)
|z|1+α

dz

=

∫
r<|z|<2r

ψ ′

r (z)
u(x + z) − u(x)

|z|1+α
dz

+ (1 + α)
∫

|z|>r
(1 − ψr (z))

u(x + z) − u(x)
|z|3+α

z dz.

Both integrals are bounded by a constant multiple of Vr−(1+α).
Hence

Dαu′(x) ⩾ c1|u′(x)|2r−α
− c2|u′(x)|Vr−(1+α).

Picking r =
2c2V

c1|u′(x)| we obtain (3.8). Picking r = B−(1/α) and using
Young’s inequality,

Du′(x) ⩾ c1B|u′(x)|2 − c2|u′(x)|VB
1+α
α ⩾ c3B|u′(x)|2 − c4B

2+α
α V 2,

we obtain (3.9). □

Lemma 3.3. Under the assumptions of Theorem 1.1 there exist
constants C, δ > 0 such that for all t > 0 one has

|u′(·, t)|∞ ⩽ Ce−δt . (3.10)

Proof. Differentiating the u-equation and evaluating at a point of
maximum we find
d
dt

|u′
|
2
⩽ |u′

|
3
+ T (ρ ′, u)u′

+ T (ρ, u′)u′,

T (ρ, u) := −Λα(ρu) + uΛα(ρ). (3.11)

Pertaining to the dissipation term, let us observe

(u′(y) − u′(x))u′(x) = −
1
2
|u′(y) − u′(x)|2 +

1
2
(|u′(y)|2 − |u′(x)|2)

⩽ −
1
2
|u′(y) − u′(x)|2.

Thus, in view of density bounds (2.7),

T (ρ, u′)u′(x) ⩽ −c1Dαu′(x).

The dissipation encoded in−c1Dαu′(x) cannot control the full cubic
term |u′

|
3 on the right of (3.11); yet as noted earlier, the term |u′

|

is uniformly bounded (by the bounds of |Λαρ|∞ and |e|∞) and in
view of the enhancement Lemma 3.2,

|u′
|
3
≲ |u′

|
2+α

≲ V α(t)Dαu′, V (t) = max
y

u(y, t) − min
y

u(y, t).

Thus, the latter bound on |u′
|
3 can be absorbed into dissipation

term, at least after a finite time at which V (t) becomes small
enough below certain threshold, V (t) < c1.

Let us turn to the remaining term T (ρ ′, u)u′. We have

|T (ρ ′, u)u′
| ⩽ |u′

|

∫
|z|<2π

|ρ ′(x + z)|
|u(x + z) − u(x)|

|z|1+α
dz

+ |u′
|

∫
|z|>2π

|ρ ′(x + z)|
|u(x + z) − u(x)|

|z|1+α
dz

⩽ |u′
|
2
∞

|ρ ′
|∞ + |u′

|∞|ρ ′
|∞V ⩽ c2|u′

|
2
∞

+ E,
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where E denotes a generic exponentially decaying quantity, recall
strong alignment (2.8). In view of (3.9), the quadratic term gets ab-
sorbed into dissipation leaving only exponentially decaying source
term:
d
dt

|u′
|
2
⩽ E − c3|u′

|
2
,

for all t > t0 for some large t0. The result follows by integration. □

We are now ready to prove existence of a flocking pair, at this
stage in rough spaces.

Lemma 3.4. Under the assumptions of Theorem 1.1 there exist
C, δ > 0 and a flocking pair (ū, ρ̄) ∈ F , ρ̄ ∈ W 1,∞ such that

|ρ(·, t) − ρ̄(·, t)|∞ ⩽ Ce−δt , t > 0. (3.12)

Thus, F contains all limiting states of the system (1.1).

Proof. The proof is identical to one given in [2]. We include it
for completeness. Clearly, the velocity goes to its natural limit
ū = P0/M0. We pass to the moving reference frame and denote
ρ̃(x, t) := ρ(x + tū, t). We see that ρ̃ satisfies

ρ̃t + (u − ū)̃ρx + uxρ̃ = 0,

where all the u’s are evaluated at x + tū. According to the estab-
lished bounds we have |̃ρt |∞ < Ce−δt . This proves that ρ̃(·, t) is
Cauchy as t → ∞, and hence there exists a unique limiting state,
ρ∞(x), such that

|̃ρ(·, t) − ρ∞(·)|∞ < C1e−δt .

Denoting ρ̄(·, t) = ρ∞(x − tū) completes the proof of (3.12).
The membership of ρ̄ in W 1,∞ follows from Lemma 3.1 by
compactness. □

3.3. Main theorem—step 2: decay of higher derivatives

We start by showing exponential decay of |u′′
|∞. As before we

denote by E = E(t) any quantity with an exponential decay. For
example, at this point we know that |u′

|∞ = E and V = E.
According to Lemma 3.2 applied to u′′, we have the following
pointwise bounds

Dαu′′(x) ⩾
|u′′(x)|2+α

E
,

Dαu′′(x) ⩾ B|u′′(x)|2 − C(B)E.

(3.13)

Due to these bounds the dissipation term absorbs all (2 + α)-
power terms C |u′′

|
2+α as well as quadratic terms with bounded

coefficients C |u′′
|
2, and by Young’s inequality any linear term E|u′′

|

with exponentially decaying coefficient. The cost of this absorbing
is a free source term of type E.

Lemma 3.5. Under the assumptions of Theorem 1.1, there are con-
stants C, δ > 0 such that for all t > 0 one has

|u′′(·, t)|∞ ⩽ Ce−δt . (3.14)

Proof. Evaluating the u′′-equation at a point of maximum and
performing the same initial steps as in Lemma 3.3 we obtain
d
dt

|u′′
|
2
⩽ E|u′′

|
2
− c0Dαu′′(x) + T (ρ ′′, u)u′′

+ 2T (ρ ′, u′)u′′. (3.15)

As elaborated above, the quadratic term can be absorbed into
dissipation by cost of an exponentially decaying source:
d
dt

|u′′
|
2
⩽ E − c1Dαu′′(x) + T (ρ ′′, u)u′′

+ 2T (ρ ′, u′)u′′.

Wenow focus on T (ρ ′′, u)u′′. Unfortunately, at this pointwe do not
have any uniform control on |ρ ′′

|. Thus, we will need to move one
or 1 − α derivative from ρ ′′. To achieve this we add and subtract
zu′(x) inside the integral. We obtain

T (ρ ′′, u)u′′
= u′′(x)u′(x)

∫
ρ ′′(x + z)

z
|z|1+α

dz

+ u′′(x)
∫
ρ ′′(x + z)(u(x + z) − u(x) − zu′(x))

dz
|z|1+α

=: u′′(x)u′(x) · I + u′′(x) · II.

We now integrate by parts both integrals, I and II . In the first we
obtain

I =

∫
ρ ′′(x + z)

z
|z|1+α

dz =

∫
(ρ ′(x + z) − ρ ′(x))z

z
|z|1+α

dz

= α

∫
(ρ ′(x + z) − ρ ′(x))

dz
|z|1+α

= −αΛαρ ′(x).

Note thatΛαρ ′(x) = e′
− u′′, and |e′

| ≲ |ρ ′
| < C . Consequently,

|u′′(x)u′(x) · I| = |−αΛαρ ′(x)u′′(x)u′(x)| ⩽ E|u′′
|
2
+ E|u′′

|,

both are absorbed into dissipation with an extra E-term. In the
second integral, we obtain

II = −

∫
ρ ′(x + z)(u′(x + z) − u′(x))

dz
|z|1+α

+ c
∫
ρ ′(x + z)(u(x + z) − u(x) − zu′(x))

z dz
|z|3+α

.

(3.16)

Splitting each integral into |z| < 2π and |z| > 2π regions, and
using Taylor in the small scale regions we immediately obtain
the bound ≲ |ρ ′

||u′
| + |ρ ′

||u′′
| ⩽ E + c|u′′

|. The corresponding
term u′′(x) · II is therefore bounded by E|u′′

| + c|u′′
|
2, which is

again absorbed into dissipation. We conclude that the whole term
T (ρ ′′, u)u′′ is dominated by dissipative term plus an E-source.

It remains to notice that the T (ρ ′, u′)u′′ term is precisely given
by the first integral on the right hand side of (3.16), which has been
estimated already. We arrive at

d
dt

|u′′
|
2
⩽ E − cDαu′′(x) ≲ E − |u′′(x)|2.

This finishes the proof. □

To proceed, let us note that we have automatically obtained the
uniform bound

sup
t

|Λαρ ′(·, t)|∞ < ∞. (3.17)

We are now in a position to perform final estimates in the top
regularity class H3

× H2+α .

Lemma 3.6. Under the assumptions of Theorem 1.1, there are con-
stants C, δ > 0 such that for all t > 0 one has

|u′′′(·, t)|2 ⩽ Ce−δt

|Λαρ ′′(·, t)|2 ⩽ C .
(3.18)

Proof of Lemma 3.6. Let us write the equation for u′′′:

u′′′

t + uu′′′

x + 4u′u′′′
+ 3u′′u′′

= T (ρ ′′′, u) + 3T (ρ ′′, u′)
+ 3T (ρ ′, u′′) + T (ρ, u′′′). (3.19)
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Testing with u′′′ and noticing that
∫
T u′′u′′u′′′ dx = 0, we obtain

d
dt

|u′′′
|
2
2 = −7

∫
T
u′(u′′′)2 dx + 2

∫
T
T (ρ ′′′, u)u′′′ dx

+ 6
∫
T
T (ρ ′′, u′)u′′′ dx

+ 6
∫
T
T (ρ ′, u′′)u′′′ dx + 2

∫
T
T (ρ, u′′′)u′′′ dx

⩽ E|u′′′
|
2
2 − c0

∫
Dαu′′′ dx + 2

∫
T
T (ρ ′′′, u)u′′′ dx

+ 6
∫
T
T (ρ ′′, u′)u′′′ dx + 6

∫
T
T (ρ ′, u′′)u′′′ dx.

(3.20)

From Lemma 3.2 we have the lower bound∫
T
Dαu′′′ dx ⩾ B|u′′′

|
2
2 − C(B)E, for any B > 0. (3.21)

Again, the dissipation absorbs all quadratic terms and linear terms
with E-coefficient. Manipulations below are much similar to the
ones we performed in the proof of Lemma 3.5. So, we proceed
straight with computations. We have∫

T
T (ρ ′′′, u)u′′′ dx

=

∫
T×R

ρ ′′′(x + z)(u(x + z) − u(x))u′′′(x)
|z|1+α

dz dx

=

∫
T×R

ρ ′′′(x + z)zu′(x)u′′′(x)
|z|1+α

dz dx

+

∫
T×R

ρ ′′′(x + z)(u(x + z) − u(x) − zu′(x))u′′′(x)
|z|1+α

dz dx

= α

∫
T
Λαρ ′′(x)u′(x)u′′′(x) dx +

∫
T×R

ρ ′′(x + z)(u′(x + z) − u′(x))u′′′(x)
|z|1+α

dz dx

+

∫
T×R

ρ ′′(x + z)(u(x + z) − u(x) − zu′(x))u′′′(x)z
|z|3+α

dz dx

⩽ |u′
|∞|Λαρ ′′

|2|u
′′′
|2 + |ρ ′′

|2|u
′′′
|2|u

′
|∞

+ |ρ ′′
|2|u

′′′
|2|u

′′
|∞ ⩽ E|Λαρ ′′

|2|u
′′′
|2

⩽ E|e′′
|
2
2 + E|u′′′

|
2
2,

where the last term is absorbed into dissipation. Next,∫
T
T (ρ ′′, u′)u′′′ dx =

∫
T×R

ρ ′′(x + z)(u′(x + z) − u′(x))u′′′(x)
|z|1+α

dz dx,

which is precisely an integral we already estimated above Finally,∫
T
T (ρ ′, u′′)u′′′ dx

=

∫
T×R

ρ ′(x + z)(u′′(x + z) − u′′(x))u′′′(x)
|z|1+α

dz dx

=

∫
T

∫
|z|<2π

ρ ′(x + z)(u′′(x + z) − u′′(x))u′′′(x)
|z|1+α

dz dx

+

∫
T

∫
|z|>2π

ρ ′(x + z)(u′′(x + z) − u′′(x))u′′′(x)
|z|1+α

dz dx

⩽ |ρ ′
|∞|u′′′

|
2
2 + |ρ ′

|∞|u′′
|∞|u′′′

|2 ⩽ c|u′′′
|
2
2 + E|u′′′

|2.

This term is entirely absorbed into dissipation. We have obtained
the estimate

d
dt

|u′′′
|
2
2 ⩽ E + E|e′′

|
2
2 −

∫
Dαu′′′ dx. (3.22)

It remains to close with a bound on e′′:
d
dt

|e′′
|
2
2 ⩽ 3

∫
T
u′e′′e′′ dx + 2

∫
T
u′′e′e′′ dx +

∫
T
u′′′ee′′ dx. (3.23)

Let us recall that at this stage we know exponential decay of |u′
|∞,

hence∫
T
u′e′′e′′ dx ⩽ E|e′′

|
2
2,

exponential decay of |u′
|∞, uniform bound |e′

|∞ ⩽ |ρ ′
|∞ < C , and

simply |e′′
|1 ⩽ |e′′

|2 since we work on the torus, implying∫
T
u′′e′e′′ dx ⩽ E|e′′

|2,

and by uniform control over |e|∞ < C implying∫
T
u′′′ee′′ dx ⩽ C |u′′′

|2|e
′′
|2.

Putting these estimates together we obtain

d
dt

|e′′
|
2
2 ⩽ E|e′′

|
2
2 + E|e′′

|2 + C |u′′′
|2|e

′′
|2

⩽ E|e′′
|
2
2 +

E2

δ
+ δ|e′′

|
2
2 +

1
δ
|u′′′

|
2
2 + δ|e′′

|
2
2,

(3.24)

for every δ > 0. Combining with (3.22) and absorbing all quadratic
terms of |u′′′

|2 we obtain for X = |u′′′
|
2
2 + |e′′

|
2
2:

d
dt

X ⩽
E
δ

+ cδX . (3.25)

This implies that the exponential growth rate of X is at most cδ,
which can be made arbitrarily small. In particular this implies that
|e′′

|2 has arbitrarily small exponential rate. Going back to (3.22) we
find that E|e′′

|
2
2 is another E-type term, since the E coefficient has

a finite negative decay rate. Consequently, we obtain

d
dt

|u′′′
|
2
2 ⩽ E − c|u′′′

|
2
2, (3.26)

which proves the result for |u′′′
|2. To finish the bound ondensitywe

go back to the e′′-equation with the obtained exponential decay of
u′′′:
d
dt

|e′′
|
2
2 ⩽ 3u′e′′e′′

+ 2u′′e′e′′
+ u′′′ee′′ ⩽ E(|e′′

|
2
2 + |e′′

|2). (3.27)

This readily implies global uniform bound on |e′′
|2, and hence on

|ρ ′′′
|2. This proves the lemma. □

As a consequence of Lemmas proved in this section we directly
obtain the full statement of Theorem 1.1 pertaining to velocity
convergence. As to the density, since ρ(t) → ρ̄ already in L∞, and
since ρ(t) is uniformly bounded in H2+α according to Lemma 3.6,
by weak compactness we conclude that ρ̄ ∈ H2+α and ρ(t) →

ρ̄ weakly in H2+α . Furthermore, by interpolation inequality and
exponential convergence in L2, we obtain for any s < 2 + α,

|ρ(t) − ρ̄(t)|Hs ⩽ |ρ(t) − ρ̄(t)|
2+α−s
2+α

L2
|ρ(t) − ρ̄(t)|

s
2+α
H2+α ⩽ Ce−δt .

This concludes that proof of Theorem 1.1.
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