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Abstract

We provide a complete and rigorous description of phase transitions for ki-
netic models of self-propelled particles interacting through alignment. These
models exhibit a competition between alignment and noise. Both the align-
ment frequency and noise intensity depend on a measure of the local align-
ment. We show that, in the spatially homogeneous case, the phase transition
features (number and nature of equilibria, stability, convergence rate, phase
diagram, hysteresis) are totally encoded in how the ratio between the align-
ment and noise intensities depend on the local alignment. In the spatially
inhomogeneous case, we derive the macroscopic models associated to the sta-
ble equilibria and classify their hyperbolicity according to the same function.
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1 Introduction
In this work we provide a complete and rigorous description of phase transitions
in a general class of kinetic models describing self-propelled particles interacting
through alignment. These models have broad applications in physics, biology and
social sciences for instance for the description of animal swarming behavior or opin-
ion consensus formation. Their essential feature is the competition between the
alignment process which provides self-organization, and noise which destroys it. An
important point is that both the alignment frequency and noise intensity depend
on a measure of the local alignment denoted by |J |. The phase transition behavior
in the spatially homogeneous case is totally encoded in the ratio between these two
functions denoted by k(|J |). Namely we have the following features:

(i) The function k gives rise to an algebraic compatibility relation whose roots
provide the different branches of equilibria of the kinetic model. One distin-
guished branch is given by isotropic or uniform distributions which correspond
to no alignment at all, i.e. |J | = 0. The other branches are associated to
non-isotropic von Mises–Fisher distributions associated to non-zero |J |.

(ii) The stability of these various equilibria is completely determined by the mono-
tonicity of a function derived from k around these roots and there exists an
exponential rate of local convergence of the solution to one of these stable
equilibria.

(iii) The global shape of this function k provides the phase diagram which encodes
the order of the associated phase transitions. According to its monotonicity,
these can be second-order phase transitions, first-order phase transitions with
hysteresis behavior or even be more complex. For second-order phase tran-
sition, we give an explicit formula for the critical exponent in terms of the
local behavior of k. The involved phase transitions are spontaneous symme-
try breaking phase transitions between isotropic and non-isotropic equilibria.
Such phase transitions appear in many branches of physics, such as spon-
taneous magnetization in ferromagnetism, nematic phase transition in liquid
crystals and polymers, Higgs mechanism of mass generation for the elementary
particles.
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(iv) In the spatially inhomogeneous case, we can derive the hydrodynamic equa-
tions associated to both the isotropic and non-isotropic stable equilibria (the
former leading to diffusion behavior, the latter to hyperbolic models). The
hyperbolicity is again completely determined by this function, and is linked to
the critical exponent in the case of a second-order phase transition.

To our knowledge, this is the first time that a complete mathematical theory of
phase transitions in a physics system can be rigorously derived and related to one
single object with high physical significance: this function k. One of the main
achievement of this work is Theorem 2, which provides part of point (ii) above,
namely the nonlinear stability of the non-isotropic equilibria (the von Mises–Fisher
distributions) when the function associated to k is increasing. To be more precise,
let us write this set of equilibria as {f eqΩ ,Ω ∈ S} (it has the same symmetries as
the unit sphere S of Rn, n being the dimension of the model). Then, we have a
rate of convergence λ and two positive constants δ and C such that, if the initial
condition f0 satisfies ‖f0 − f eqΩ ‖ < δ for some Ω ∈ S, then there exist Ω∞ ∈ S such
that for all t > 0, the solution f of the spatially homogeneous model satisfies

‖f(t)− f eqΩ∞‖ 6 C‖f0 − f eqΩ ‖ e−λt.

This stability result takes place in the Sobolev space Hs as long as s > n−1
2 . In

previous works (in the case where the function k is linear) such as [17] or [18] (for
the Kuramoto model in dimension n = 2, where a precise study of the attractor is
performed), the exponential convergence with rate β was only proven for all β < λ,
and the existence of such a constant C independent of f0 was lacking.

Self-propelled particle systems interacting through alignment have been widely
used in the modeling of animal swarms (see e.g. the review [29] and [2,6,8,27,28]).
Kinetic models of self-propelled particles have been introduced and studied in [3, 4,
12,20,21]. Here, specifically, we are interested in understanding phase transitions and
continuum models associated to the Vicsek particle system [28]. Phase transitions
in the Vicsek system have been widely studied in the physics literature [1,5]. There
have been some controversies whether the involved phase transitions were first or
second order. In some sense, this paper provides a complete answer to this question,
at least in the kinetic framework.

The passage from the kinetic to macroscopic descriptions of the Vicsek system
has first been proposed in [12]. Further elaboration of the model can be found
in [11, 16]. The resulting continuum model is now referred to as the Self-Organized
Hydrodynamic (SOH) model. In these derivations of the SOH, the noise and align-
ment intensities are functions of the local densities and not of the local alignment.
No phase transition results from this choice but the resulting SOH models are hy-
perbolic. In [10, 17], alignment intensity has been made proportional to the local
alignment. Second-order phase transition have been obtained. However, the re-
sulting SOH model is not hyperbolic. In the present paper, we investigate general
relations between the noise and alignment intensities upon the local alignment |J |.
As described above, the phase diagram becomes extremely complex and its com-
plexity is fully deciphered here. The kind of alignment phase transition that we find
here is similar to nematic phase transitions in liquid crystals, polymer dynamics and
ferromagnetism [7,14,15,23,24].
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The organization of the paper is as follows. In section 2, we derive the kinetic
model from the particle system and determine its equilibria. In section 3, we study
the stability of these equilibria in the spatially homogeneous case and find the rates
of convergences of the solution to the stable ones. Then, in section 4, we use these
results to study two examples respectively leading to second order and first order
phase transitions, and in the case of first order phase transitions, to the hysteresis
phenomenon. Finally, in section 5, we return to the spatially inhomogeneous case
and investigate the macroscopic limit of the kinetic model towards hydrodynamic
or diffusion models according to the considered type of equilibrium. For the hy-
drodynamic limit, we provide conditions for the model to by hyperbolic. Finally, a
conclusion is drawn in section 6. We supplement this paper with appendix A which
provides elements on the numerical simulation of the hysteresis phenomenon.

2 Kinetic model and equilibria
In this section, we derive the mean-field kinetic model from the particle system, and
determine its equilibria. We begin with the particle model in the next section. Then,
in section 2.2 we derive the mean-field limit. The space-homogeneous case will be
highlighted in section 2.3 and the equilibria will be determined in section 2.4.

2.1 The particle model
We consider a system of a large number N of socially interacting agents defined
by their positions Xi ∈ Rn and the directions of their velocities ωi ∈ S (where S is
the unit sphere of Rn). They obey the following rules, which are a time continuous
version of those of the Vicsek model [28]:

- they move at constant speed a,

- they align with the average direction of their neighbors, as a consequence of
the social interaction.

- the directions of their velocities are subject to independent random noises,
which expresses either some inaccuracy in the computation of the social force
by the subject, or some trend to move away from the group in order to explore
the surrounding environment.

These rules are expressed by the following system of stochastic differential equations:

dXi = aωidt, (2.1)

dωi = ν(|Ji|)Pω⊥i ω̄idt+
√

2τ(|Ji|)Pω⊥i ◦ dBi
t, (2.2)

ω̄i = Ji
|Ji|

, Ji = a

N

N∑
`=1

K(|X` −Xi|)ω`. (2.3)

Eq. (2.1) simply translates that particle i moves with velocity aωi. The first term at
the right-hand side of (2.2) is the social force, which takes the form of a relaxation of
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the velocity direction towards the mean direction of the neighbors ω̄i, with relaxation
rate ν (the operator Pω⊥i is the projection on the tangent space orthogonal to ωi,
ensuring that ωi remains a unit vector). Eq. (2.3) states that the mean direction is
obtained through the normalization of the average current Ji, itself computed as the
average of the velocities of the particles. This average is weighted by the observation
kernel K, which is a function of the distance between the test particle i and its
considered partner `. Without loss of generality, we can assume that

∫
K(|ξ|) dξ = 1.

The second term of (2.2) models the noise in the velocity direction. Eq. (2.2) must
be understood in the Stratonovich sense (as indicated by the symbol ◦), with N
independent standard Brownian motions Bi

t in Rn. The quantity τ > 0 is the
variance of the Brownian processes.

In this paper, we assume that the relaxation rate ν and the noise intensity τ
are functions of the norm of the current |J |. The present hypothesis constitutes a
major difference with previous works. Indeed, the case where ν and τ are constant
has been investigated in [12], while the case where ν(|J |) = |J | and τ = 1 has been
treated in [10]. We recall that no phase transition appears at the macroscopic level
in the first case while in the second case, a phase transition appears. This phase
transition corresponds to a change in the number of equilibria as the density crosses
a certain threshold called critical density. The critical exponent is 1/2 in this case.
Here, we investigate the more general case of almost arbitrary dependences of ν
and τ upon |J |, and show that the phase transition patterns can be much more
complex than those found in [10]. For later convenience, we will denote by τ0 > 0
the value of τ(0).

To understand why |J | is the crucial parameter in this discussion, let us introduce
the local density ρi and order parameter (or mean alignment) ci as follows:

ci = |Ji|
a ρi

, ρi = 1
N

N∑
`=1

K(|X` −Xi|),

and we note that 0 6 ci 6 1. The value ci ∼ 0 corresponds to disorganized motion,
with an almost isotropic distribution of velocity directions, while ci ∼ 1 characterizes
a fully organized system where particles are all aligned. Therefore |Ji| appears as the
“density of alignment” and increases with both particle density and order parameter.
This paper highlights that the dependence of ν and τ upon |Ji| acts as a positive
feedback which triggers the phase transition. Besides, in [16], it has been shown that
making ν and τ depend on the density ρ only does not produce any phase transition,
and that the recovered situation is qualitatively similar to that of [12]. The present
work could be extended to ν and τ depending on both ρ and |J | at the expense
of an increased technicality, which will be omitted here. The present framework is
sufficient to cover all interesting situations that can be desirable at the macroscopic
scale.

2.2 Mean-field derivation of the kinetic model
The first step in the study of the macroscopic behaviour of this system consists
in considering a large number of particles. In this limit, we aim at describing the
evolution of the density probability function fN(x, ω, t) of finding a particle with
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direction ω at position x. This has been studied in [3] in the case where ν(|J |) = |J |
and τ = 1. It is nearly straightforward to perform the same study in our more general
case.

For convenience, we will use the following notation for the first moment of a
function f with respect to the variable ω (the measure on the sphere is the uniform
measure such that

∫
S dω = 1):

Jf (x, t) =
∫
ω∈S

ω f(x, ω, t) dω. (2.4)

For the following, we will assume that:

Hypothesis 2.1.

(i) The function K is a Lipschitz bounded function with finite second moment.

(ii) The functions |J | 7→ ν(|J |)
|J | and |J | 7→ τ(|J |) are Lipschitz and bounded.

In these conditions the mean-field limit of the particle model is the following
kinetic equation, called Kolmogorov–Fokker–Planck equation:

∂tf + aω · ∇xf + ν(|Jf |)∇ω · (Pω⊥ω̄f f) = τ(|Jf |)∆ωf (2.5)

with

Jf (x, t) = a (K ∗ Jf )(x, t) , ω̄f = Jf
|Jf |

, (2.6)

where ∗ denotes the convolution in Rn (only on the x variable), ∆ω and ∇ω· stand
for the Laplace-Beltrami and divergence operators on the sphere S.

More precisely, the following statements hold:

Proposition 2.1. If f0 is a probability measure on Rn×S with finite second moment
in x ∈ Rn, and if (X0

i , ω
0
i )i∈J1,NK are N independent variables with law f0, then:

(i) There exists a pathwise unique global solution f to the particle system (2.1)-
(2.3) with initial data (X0

i , ω
0
i ).

(ii) There exists a unique global weak solution of the kinetic equation (2.5) with
initial data f0.

(iii) The law fN at time t of any of one of the processes (Xi, ωi) converges to f
as N →∞.

The proof of this proposition follows exactly the study performed in [3], using
auxiliary coupling processes as in the classical Sznitman’s theory (see [25]), and is
omitted here. Let us make some comment on the structure of the kinetic equa-
tion (2.5). The first two terms of the left hand side of (2.5) correspond to the free
transport with speed given by aω. It corresponds to (2.1) in the particle model. The
last term of the left hand side corresponds to the alignment mechanism towards the
target orientation ω̄f , with intensity ν(|Jf |), while the term at the right hand side
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is a diffusion term in the velocity variable, with intensity τ(|Jf |). These two terms
correspond to (2.2) in the particle model. We will see in (2.7) and (5.6) that these
two terms, under certain assumptions (spatially homogeneous case, or expansion in
terms of a scaling parameter η), behave as a local collision operator Q, only acting
on the velocity variable ω. Finally, the convolution with K in (2.6) expresses the
fact that Jf is a spatial averaging of the local momentum Jf defined in (2.4), it
corresponds to the definition (2.3) in the particle model.

2.3 The space-homogeneous kinetic model
The hydrodynamic limit involves an expansion of the solution around a local equi-
librium (see section 5.1). Therefore, local equilibria of the collision operator Q are
of key importance. We will see that such equilibria are not unique. The existence
of multiple equilibria requires an a priori selection of those equilibria which make
sense for the hydrodynamic limit. Obviously, unstable equilibria have to be ignored
because no actual solution will be close to them. In order to make this selection, in
the present section, we consider the spatially homogeneous problem. To the most
possible exhaustive way, in section 3, we will determine the stable equilibria and
characterize the convergence rate of the solution of the space-homogeneous problem
to one of these equilibria. In section 4, we will illustrate these results on two exam-
ples. Finally, in section 5, we will deal with the spatially non-homogeneous case and
apply the conclusions of the spatially homogeneous study.

The spatially homogeneous version of this model consists in looking for solu-
tions of the kinetic equation (2.5) depending only on ω and t. Obviously, such
solutions cannot be probability measures on Rn × S any more, so we are looking
for solutions which are positive measures on S. In that case, Jf = aJf , and (up to
writing ν̂(|Jf |) = ν(a|Jf |) and τ̂(|Jf |) = τ(a|Jf |)) the kinetic equation (2.5) reduces
to

∂tf = Q(f), (2.7)

where the operator Q is defined by

Q(f) = −ν(|Jf |)∇ω · (Pω⊥Ωf f) + τ(|Jf |)∆ωf, (2.8)

where Ωf = Jf
|Jf |

and where we have dropped the “hats” for the sake of clarity. Let
us remark that by hypothesis 2.1, we do not have any problem of singularity of Q
as |Jf | → 0: if |Jf | = 0, we simply have Q(f) = τ0∆ωf .

The investigation of the properties of the operator Q is of primary importance,
as we will see later on. For later usage, we define

k(|J |) = ν(|J |)
τ(|J |) , Φ(r) =

∫ r

0
k(s)ds, (2.9)

so that Φ(|J |) is an antiderivative of k: dΦ
d|J | = k(|J |). The space-homogeneous

dynamics corresponds to the gradient flow of the following free energy functional:

F(f) =
∫
S
f ln f dω − Φ(|Jf |). (2.10)
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Indeed, if we define the dissipation term D(f) by

D(f) = τ(|Jf |)
∫
S
f |∇ω(ln f − k(|Jf |)ω · Ωf )|2 dω, (2.11)

we get the following conservation relation:
d
dtF(f) = −D(f) 6 0. (2.12)

The main ingredient to derive this relation is the identity Pω⊥Ωf = ∇ω(ω · Ωf ).
Therefore, the collision operator Q defined in (2.8) can be written:

Q(f) = τ(|Jf |)∇ω ·
[
f ∇ω(ln f − k(|Jf |)ω · Ωf )

]
. (2.13)

Finally, since
d
dtF =

∫
S
∂tf(ln f − k(|Jf |)ω · Ωf ) dω ,

using (2.7), (2.13) and integrating by parts, we get (2.12).
We first state results about existence, uniqueness, positivity and regularity of

the solutions of (2.7). Under hypothesis 2.1, we have the following

Theorem 1. Given an initial finite nonnegative measure f0 in Hs(S), there exists a
unique weak solution f of (2.7) such that f(0) = f0. This solution is global in time.
Moreover, f ∈ C1(R∗+, C∞(S)), with f(ω, t) > 0 for all positive t.

Finally, we have the following instantaneous regularity and uniform boundedness
estimates (for m ∈ N, the constant C being independent of f0):

‖f(t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖f0‖2

Hs .

The proof of this theorem follows exactly the lines of the proof given in [17]
for the case where ν(|J |) = |J |, and will be omitted here. Let us remark that
here we do not need the bounds on ν(|J |)

|J | and on τ provided by hypothesis 2.1,
since the positivity ensures that |J | takes values in [0, ρ0], where ρ0 is the total
mass of f0 (a conserved quantity). Therefore τ is uniformly bounded from below in
time, by a positive quantity τmin, and ν(|J |)

|J | is also uniformly bounded from above
in time. Finally, the fact that f is only C1 in time comes from the fact that the
proof only gives f ∈ C([0, T ], Hs(S)) for all s, and we use the equation to get one
more derivative. We could obtain a better time regularity at the price of a better
regularity for the functions ν(|J |)

|J | and on τ .

2.4 Equilibria
We now define the von Mises–Fisher distribution which provides the general shape
of the non-isotropic equilibria of Q.

Definition 2.1. The von Mises–Fisher distribution of orientation Ω ∈ S and con-
centration parameter κ > 0 is given by:

MκΩ(ω) = eκω·Ω∫
S e

κυ·Ω dυ . (2.14)
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The order parameter c(κ) is defined by the relation

JMκΩ = c(κ)Ω, (2.15)

and has expression:

c(κ) =
∫ π
0 cos θ eκ cos θ sinn−2 θ dθ∫ π

0 e
κ cos θ sinn−2 θ dθ . (2.16)

The function c : κ ∈ [0,∞) 7→ c(κ) ∈ [0, 1) defines an increasing one-to-one
correspondence. The case κ = c(κ) = 0 corresponds to the uniform distribution,
while when κ is large (or c(κ) is close to 1), the von Mises–Fisher distribution is
close to a Dirac delta mass at the point Ω.

For the sake of simplicity, we will assume the following:

Hypothesis 2.2. The function |J | 7→ k(|J |) = ν(|J |)
τ(|J |) is an increasing function. We

denote by j its inverse, i.e.

κ = k(|J |)⇔ |J | = j(κ). (2.17)

This assumption is not critical. It would be easy to remove it at the price of
an increased technicality. Additionally, it means that when the alignment of the
particles is increased, the relative intensity of the social force compared to the noise
is increased as well. This can be biologically motivated by the existence of some
social reinforcement mechanism. It bears analogies with Diffusion Limited Aggrega-
tion (see [32]), in which the noise intensity is decreased with larger particle density.
This can also be related with what is called “extrinsic noise” in [1], where the noise
corresponds to some uncertainty in the particle-particle communication mechanism.
Indeed in this case, the intensity of the noise increases when |J | decreases.

The equilibria are given by the following proposition:

Proposition 2.2. The following statements are equivalent:

(i) f ∈ C2(S) and Q(f) = 0.

(ii) f ∈ C1(S) and D(f) = 0.

(iii) There exists ρ > 0 and Ω ∈ S such that f = ρMκΩ, where κ > 0 satisfies the
compatibility equation:

j(κ) = ρc(κ). (2.18)

Sketch of the proof. The proof is identical to that of [17], and we just summarize
the main ideas here. The main ingredient is to observe that Q(f) (or D(f)) is equal
to zero if and only if f is proportional to Mk(|Jf |) Ωf . This is quite straightforward
for D using (2.11). For Q, it follows from the following expression:

Q(f) = τ(|Jf |)∇ω ·
[
Mk(|Jf |) Ωf∇ω

(
f

Mk(|Jf |) Ωf

)]
. (2.19)

This expression comes from Definition 2.1, which gives first

∇ω

( 1
Mk(|Jf |) Ωf

)
= −k(|Jf |)∇ω(ω · Ωf )

Mk(|Jf |) Ωf
= − k(|Jf |)

Mk(|Jf |) Ωf
Pω⊥Ωf ,
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and therefore, applying the chain rule to the right-hand side of (2.19), we recover
the definition of Q given in (2.8). Hence, we obtain∫

S
Q(f) f

Mk(|Jf |) Ωf
dω = −τ(|Jf |)

∫
S

∣∣∣∣∇ω

(
f

Mk(|Jf |) Ωf

)∣∣∣∣2Mk(|Jf |) Ωf dω.

So if Q(f) = 0, we get that f
Mk(|Jf |) Ωf

is equal to a constant. Conversely if f is
proportional to Mk(|Jf |) Ωf , we directly get with (2.19) that Q(f) = 0.

Now if f is proportional to Mk(|Jf |) Ωf , we write f = ρMκΩ, with κ = k(|Jf |),
which corresponds to |Jf | = j(κ) thanks to (2.17). But then by (2.15), we get
that |Jf | = ρc(κ), which gives the compatibility equation (2.18). Conversely, if we
have (iii), we also get that |Jf | = ρc(κ) = j(κ) and so κ = k(|Jf |), which gives
that f is proportional to Mk(|Jf |) Ωf .

We now make comments on the solutions of the compatibility equation (2.18).
Let us first remark that the uniform distribution, corresponding to κ = 0 is always
an equilibrium. Indeed, we have c(0) = j(0) = 0 and (2.18) is satisfied. However,
Proposition 2.2 does not provide any information about the number of the non-
isotropic equilibria. The next proposition indicates that two values, ρ∗ and ρc, that
can be expressed through the function k only, are important threshold values for the
parameter ρ, regarding this number of non-isotropic equilibria.
Proposition 2.3. Let ρ > 0. We define

ρc = lim
κ→0

j(κ)
c(κ) = lim

|J |→0

|J |
c(k(|J |)) = lim

|J |→0

n|J |
k(|J |) , (2.20)

ρ∗ = inf
κ∈(0,κmax)

j(κ)
c(κ) = inf

|J |>0

|J |
c(k(|J |)) , (2.21)

where ρc > 0 may be equal to +∞, where κmax = lim|J |→∞ k(|J |), and where we
recall that n denotes the dimension. Then we have ρc > ρ∗, and

(i) If ρ < ρ∗, the only solution to the compatibility equation is κ = 0 and the only
equilibrium with total mass ρ is the uniform distribution f = ρ.

(ii) If ρ > ρ∗, there exists at least one positive solution κ > 0 to the compatibility
equation (2.18). It corresponds to a family {ρMκΩ,Ω ∈ S} of non-isotropic
equilibria.

(iii) The number of families of nonisotropic equilibria changes as ρ crosses the
threshold ρc (under regularity and non-degeneracy hypotheses that will be pre-
cised in the proof, in a neighborhood of ρc, this number is even when ρ < ρc
and odd when ρ > ρc).

Proof. Some comments are necessary about the definitions of ρc and ρ∗. First note
that, under hypotheses 2.1 and 2.2, k is defined from [0,+∞), with values in an
interval [0, κmax), where we may have κmax = +∞. So j is an increasing func-
tion from [0, κmax) onto R+, and this gives the equivalence between the two terms
of (2.21). Thanks to hypothesis 2.1, we have

k(|J |) = ν1

τ0
|J |+ o(|J |) as |J | → 0,
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with τ0 = τ(0) and ν1 = lim|J |→0
ν(|J |)
|J | , and the last term of (2.20) is well defined

in (0,+∞] (we have ρc = nτ0
ν1

if ν1 > 0 and ρc = +∞ if ν1 = 0). The last equality
in (2.20) comes from the fact that c(κ) ∼ 1

n
κ as κ→∞ (see [17] for instance), and

the first equality comes from the correspondence (2.17).
To investigate the positive solutions of equation (2.18), we recast it into:

j(κ)
c(κ) = ρ, (2.22)

which is valid as long as κ 6= 0, since c is an increasing function. This gives points (i)
and (ii): there is no solution to (2.22) if ρ < ρ∗, and at least one solution if ρ > ρ∗,
since κ 7→ j(κ)

c(κ) is a continuous function, and its infimum is ρ∗.
Let us precise now the sense of point (iii). We fix ε > 0, and we suppose

that j
c

is differentiable and that for ρ ∈ (ρc − ε, ρc) ∪ (ρc, ρc + ε), all the solutions
of the compatibility equation satisfy ( j

c
)′(κ) 6= 0. Then, the number of solutions

of the compatibility equation (2.22), if finite, is odd for ρ ∈ (ρc, ρc + ε) and even
for ρ ∈ (ρc − ε, ρc).

Indeed, under these assumptions, by the intermediate value theorem, the sign
of ( j

c
)′ must be different for two successive solutions of the compatibility equa-

tion (2.22). Moreover, since j is unbounded (it maps its interval of definition [0, κmax)
onto [0,+∞)), we have

lim
κ→κmax

j(κ)
c(κ) = +∞, (2.23)

so the sign of ( j
c
)′ must be positive for the greatest solution of the compatibility

equation (2.22). Finally for the smallest solution, this sign must be the same as the
sign of ρ− ρc.

Except from these facts, since c and j are both increasing, we have no further
direct information about this function κ 7→ j(κ)/c(κ).

Remark 2.1. The results of Proposition 2.3 are illustrated by Figure 1: the number
of families of non-isotropic equilibria is given by the cardinality of the level set at ρ
of the function κ 7→ j(κ)

c(κ) . We see that depending on the value of ρ, this number
can be zero, one, two or even more. The minimum of this function and its limiting
value at κ = 0 provide a direct visualization of the thresholds ρ∗ and ρc thanks
to (2.21)-(2.20).

We will see later on that the importance of the threshold ρc is above all due to
a loss of stability of the uniform equilibrium, more than a change in the number of
families of nonisotropic equilibria. And we will see that the sign of ( j

c
)′(κ) which

played a role in counting this number in the proof of point (iii) will actually play a
stronger role to determine the stability of the nonisotropic equilibria.

We now turn to the study of the stability of these equilibria, through the study
of the rates of convergence.
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0
0

κmax κ

ρc = ρ∗

ρc = ρ∗

ρc

ρ∗

ρc

ρ∗

j(κ)
c(κ)

Figure 1: The green, blue, red and purple curves correspond to various possible
profiles for the function κ 7→ j(κ)

c(κ) .

3 Stability and rates of convergence to equilibria

3.1 Main results
We provide an overview of the most important results of this section. We emphasize
that the results of this section are concerned with the space-homogeneous model as
reviewed in section 2.3 and 2.4.

The first result deals with the stability of uniform equilibria. We prove that the
critical density ρc defined previously at (2.20) acts as a threshold:

(i) if ρ < ρc, then the uniform distribution is locally stable and we show that the
solution associated to any initial distribution close enough to it converges with
an exponential rate to the uniform distribution.

(ii) if ρ > ρc, then the uniform distribution is unstable, in the sense that no
solution (except degenerate cases that we specify) can converge to the uniform
distribution.

The second result deals with the stability of anisotropic equilibria. As seen in
the previous section, the anisotropic equilibria are given by the von Mises–Fisher
distributions f = ρMκΩ, defined in (2.14), of concentration parameter κ and asso-
ciated order parameter c(κ), given by the formula (2.16). Recall that j(κ) is the
inverse function of |J | 7→ k(|J |) = ν(|J |)

τ(|J |) . We also recall that, for a von Mises–
Fisher distribution to be an equilibrium, the compatibility equation (2.18) i.e. the
relation j(κ)

c(κ) = ρ must be satisfied. Then:

12



(i) the von Mises–Fisher equilibrium is stable if
(
j
c

)′
> 0 where the prime denotes

derivative with respect to κ. Then, we have an exponential rate of convergence
of the solution associated to any initial distribution close enough to one of
the von Mises–Fisher distributions, to a (may be different) von Mises–Fisher
distribution (with the same κ but may be different Ω).

(ii) the von Mises–Fisher equilibrium is unstable if
(
j
c

)′
< 0. Here, the proof

for instability relies on the fact that on any neighborhood of an unstable von
Mises–Fisher distribution there exists a distribution which has a smaller free
energy than the equilibrium free energy, which only depends on κ but not
on Ω. The instability follows from the time decay of the free energy.

The main tool to prove convergence of the solution to a steady state is LaSalle’s
principle. We recall it in the next section and only sketch its proof. Indeed, the
proof follows exactly the lines of [17]. Then, in section 3.3, we consider stability and
rates of convergence near uniform equilibria. Finally, in section 3.4, we investigate
the same problem for non-isotropic equilibria.

3.2 LaSalle’s principle
By the conservation relation (2.12), we know that the free energy F is decreasing in
time (and bounded from below since |J | is bounded). LaSalle’s principle states that
the limiting value of F corresponds to an ω-limit set of equilibria:

Proposition 3.1. LaSalle’s invariance principle: let f0 be a positive measure on the
sphere S, with mass ρ. We denote by F∞ the limit of F(f(t)) as t→∞, where f is
the solution to the mean-field homogeneous equation (2.7) with initial condition f0.
Then

(i) the set E∞ = {f ∈ C∞(S) with mass ρ and s.t. D(f) = 0 and F(f) = F∞} is
not empty.

(ii) f(t) converges in any Hs norm to this set of equilibria (in the following sense):

lim
t→∞

dHs(f, E∞) = 0, where dHs(f, E∞) = inf
g∈E∞

‖f(t)− g‖Hs .

This result has been proved in [17]. Since the different types of equilibria are
known, we can refine this principle to adapt it to our problem:

Proposition 3.2. Let f0 be a positive measure on the sphere S, with mass ρ. If no
open interval is included in the set {κ, ρc(κ) = j(κ)}, then there exists a solution κ∞
to the compatibility solution (2.18) such that we have:

lim
t→∞
|Jf (t)| = ρc(κ∞) (3.1)

and

∀s ∈ R, lim
t→∞

‖f(t)− ρMκ∞Ωf (t)‖Hs = 0. (3.2)

13



This proposition helps us to characterize the ω-limit set by studying the sin-
gle compatibility equation (2.18). Indeed, when κ∞ = 0 is the unique solution,
Proposition 3.2 implies that f converges to the uniform distribution. Otherwise,
two cases are possible: either κ∞ = 0, and f converges to the uniform distribu-
tion, or κ∞ > 0, and the ω-limit set consists in the family of von Mises–Fisher
equilibria {ρMκ∞Ω,Ω ∈ S}, but the asymptotic behavior of Ωf(t) is unknown.

Proof. We first recall some useful formulas regarding functions on the sphere. Any
function g in Hs can be decomposed g = ∑

` g` where g` is a spherical harmonic of
degree ` (an eigenvector of −∆ω for the eigenvalue `(`+n−2), which has the form of
a homogeneous polynomial of degree `), and this decomposition is orthogonal in Hs.
The spherical harmonics of degree 1 are the functions ω 7→ ω · A for A ∈ Rn, and
we have ∫

S
ω ⊗ ω dω = 1

n
In, i.e. ∀A ∈ Rn,

∫
S
(A · ω)ω dω = 1

n
A. (3.3)

which gives that the first mode g1 of g is given by the function ω 7→ nω · Jg, where
the first moment Jg is defined in (2.4). We refer to the appendix of [17] for more
details on these spherical harmonics. Another useful formula is∫

S
ω∇ω · A(ω) dω = −

∫
A(ω)dω, (3.4)

where A is any tangent vector field (satisfying A(ω) · ω = 0).
Since the decomposition in spherical harmonics is orthogonal in Hs, we have a

lower bound on the norm of f(t) − ρMκΩ (for κ > 0 and Ω ∈ S) with the norm of
its first mode:

‖f(t)− ρMκΩ‖2
Hs >

∫
S
nω · (Jf − JρMκΩ)(−∆ω)s[nω · (Jf − JρMκΩ)] dω

> (n− 1)s
∫
S
n2 [ω · (Jf − JρMκΩ)]2 dω,

and using (3.3), we get

‖f(t)− ρMκΩ‖2
Hs > n(n− 1)s|Jf − ρc(κ)Ω|2 (3.5)

> n(n− 1)s
∣∣∣|Jf | − ρc(κ)

∣∣∣2. (3.6)

Since E∞ consists in functions of the form ρMκΩ with Ω ∈ S and κ a solution of (2.18)
(and such that F(ρMκΩ) = F∞), if we define S∞ = {ρc(κ), κ s.t. ρc(κ) = j(κ)}, we
get that the distance dHs(f, E∞) is greater than

√
n(n− 1)s/2d(|Jf |, S∞), where the

notation d(|Jf |,J∞) denotes the usual distance in R between |Jf | and the set S∞. By
LaSalle’s principle, we then have limt→∞ d(|Jf |, S∞) = 0. Since |Jf | is a continuous
function, bounded in time, its limit points consist in a closed interval, which is
included in S∞. Obviously, if no open interval is included in the set of solutions to
the compatibility equation (2.18), then no open interval is included in S∞, and the
limit points of |Jf | are reduced to a single point ρc(κ∞). Since |Jf | is bounded, this
proves (3.1).

Let us now suppose that (3.2) does not hold. We can find an increasing and
unbounded sequence tn such that ‖f(tn)−ρMκ∞Ωf (tn)‖Hs > ε. By LaSalle’s principle,
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we can find gn ∈ E∞ such that ‖f(tn)− gn‖ → 0 when n → ∞. Since gn is of the
form ρMκnΩn , we then have by the estimation (3.6) that

∣∣∣|Jf(tn)| − ρc(κn)
∣∣∣→ 0, and

so c(κn) → c(κ∞), consequently κn → κ∞. If κ∞ 6= 0, then we also get by (3.5)
that |Ωf(tn) − Ωn| → 0, so in any case, that gives that ‖gn − ρMκ∞Ωf (tn)‖Hs → 0
(it is equal to ‖ρMκnΩn − ρMκ∞Ωf (tn)‖Hs). But then we obtain the convergence
of ‖f(tn)− ρMκ∞Ωf (tn)‖Hs to 0, which is a contradiction.

From this proposition, the asymptotic behavior of a solution can be improved in
two directions. First, as pointed above, the behavior of Ωf(t) is unknown and we are
left to comparing the solution to a von Mises–Fisher distribution with asymptotic
concentration parameter κ∞ but local mean direction Ωf (t), varying in time. If
we are able to prove that Ωf → Ω∞ ∈ S, then f would converge to a fixed non-
isotropic steady-state ρMκ∞Ω∞ . The second improvement comes from the fact that
Proposition 3.2 does not give information about quantitative rates of convergence
of |Jf | to ρc(κ∞), and of ‖f(t)− ρMκ∞Ωf (t)‖Hs to 0, as t→∞.

So we now turn to the study of the behavior of the difference between the solu-
tion f and a target equilibrium ρMκ∞Ωf (t). There are two tools we will use. First, a
simple decomposition in spherical harmonics will give us an estimation in Hs norm
near the uniform distribution. Then we will expand the free energy F and its dissipa-
tion D around the nonisotropic target equilibrium Mκ∞Ωf (t). In case of stability, we
will see that it gives us control on the displacement of Ωf (t), allowing to get actual
convergence to a given steady-state. We split the stability analysis into two cases:
stability about uniform equilibrium, and stability about anisotropic equilibrium.

3.3 Local analysis about the uniform equilibrium
We first state the following proposition, about the instability of the uniform equi-
librium distribution for ρ above the critical threshold ρc.

Proposition 3.3. Let f be a solution of (2.7), with initial mass ρ. If ρ > ρc, and
if Jf0 6= 0, then we cannot have κ∞ = 0 in Proposition 3.2.

This proposition tells that the uniform equilibrium is unstable, in the sense that
no solution of initial mass ρ and with a nonzero initial first moment Jf0 can converge
to the uniform distribution.

Proof. We first derive an estimation for the differential equation satisfied by Jf
which will also be useful for the next proposition.

We expand f under the form f = ρ+ nω · Jf + g2 (g2 consists only in spherical
harmonics modes of degree 2 and more), and we get

∫
S g2 dω = 0 and

∫
S g2 ωdω = 0.

Let us first expand the alignment term ∇ω · (Pω⊥Ωff) of the operator Q defined
in (2.8), using the fact that ∇ω · (Pω⊥Ωf ) = ∆ω(Ωf · ω) = −(n− 1) Ωf · ω. We get

∇ω · (Pω⊥Ωff) = −ρ(n− 1) Ωf · ω − n2|Jf |
[
(Ωf · ω)2 − 1

n
] +∇ω · (Pω⊥Ωfg2), (3.7)

and we remark that the term in brackets is a spherical harmonic of degree 2, asso-
ciated to the eigenvalue 2n of −∆ω. Multiplying (2.7) by ω and integrating on the
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sphere, we obtain, using (3.7), (3.4) and (3.3) (and observing that the terms
∫
S ω dω

and
∫
S(ω · Ωf )2 ω dω are both zero):

d
dtJf = n− 1

n
ρ ν(|Jf |) Ωf + ν(|Jf |)

∫
S
Pω⊥Ωf f dω − (n− 1)τ(|Jf |) Jf (3.8)

= −(n− 1)τ(|Jf |)
[
1− ρ k(|Jf |)

n|Jf |
]
Jf + ν(|Jf |)

∫
S
Pω⊥Ωfg2 dω.

Using (2.20) and hypothesis 2.1, we can write:

d
dtJf = −(n− 1)τ0

(
1− ρ

ρc

)
Jf +R(|Jf |)Jf + ν(|Jf |)

|Jf |

( ∫
S
Pω⊥g2 dω

)
Jf , (3.9)

with the remainder estimation, with an appropriate constant C > 0.

R(|J |) 6 C|J |. (3.10)

Equation (3.9) can be seen as d
dtJf = M(t)Jf , the matrix M being a continuous

function in time. Therefore we have uniqueness of a solution of such an equation
(even backwards in time), and if Jf0 6= 0, then we cannot have Jf(t) = 0 for t > 0.
Now if we suppose that ‖f − ρ‖Hs → 0, then we have |Jf | → 0 and

∫
S Pω⊥g2 dω → 0

(as a matrix). So, for any ε > 0, and for t sufficiently large, taking the dot product
of (3.9) with Jf , we get that

1
2

d
dt |Jf |

2 >
[
(n− 1)τ0

( ρ
ρc
− 1

)
− ε

]
|Jf |2,

which, for ε sufficiently small, leads to an exponential growth of |Jf |, and this is a
contradiction.

We now turn to the study of the stability of the uniform distribution when ρ is
below the critical threshold ρc. We have the

Proposition 3.4. Suppose that ρ < ρc. We define

λ = (n− 1)τ0(1− ρ

ρc
) > 0.

Let f0 be an initial condition with mass ρ, and f the corresponding solution of (2.7).
There exists δ > 0 independent of f0 such that if ‖f0 − ρ‖Hs < δ, then for all t > 0

‖f(t)− ρ‖Hs 6
‖f0 − ρ‖Hs

1− 1
δ
‖f0 − ρ‖Hs

e−λt.

Proof. We multiply (2.7) by (−∆ω)sg2 and integrate by parts on the sphere. Us-
ing (3.7), (3.4), and the fact that g2 is orthogonal to the spherical harmonics of
degree 1, we get

1
2

d
dt‖g2‖2

Hs =− ν(|Jf |)n2|Jf |
∫
S

[
(Ωf · ω)2 − 1

n

]
(−∆ω)sg2 dω

+ ν(|Jf |)
∫
S
[Ωf · ∇ω(−∆ω)sg2]g2 dω

− τ(|Jf |)
∫
S
g2(−∆ω)s+1g2 dω.
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Using the fact that the second eigenvalue of −∆ω is 2n, we get

1
2

d
dt‖g2‖2

Hs = −τ(|Jf |)‖g2‖2
Hs+1 − n2ν(|Jf |)|Jf |

∫
S
(2n)s(Ωf · ω)2g2dω

+ ν(|Jf |)
∫
S
[Ωf · ∇ω(−∆ω)sg2]g2 dω.

(3.11)

We can directly compute the Hs norm of the first mode of f − ρ as in (3.5), and we
get by orthogonal decomposition that

‖f − ρ‖2
Hs = n(n− 1)s|Jf |2 + ‖g2‖2

Hs . (3.12)

Taking the dot product of (3.9) with n(n− 1)sJf and summing with (3.11), we get
the time derivative of ‖f − ρ‖2

Hs :

1
2

d
dt‖f − ρ‖

2
Hs = − n(n− 1)s+1τ0

(
1− ρ

ρc

)
|Jf |2 − τ(|Jf |)‖g2‖2

Hs+1

+ n(n− 1)sR(|Jf |)|Jf |2 + ν(|Jf |)
∫
S
g2 Ωf · ∇(−∆ω)sg2 dω

+ [n(n− 1)s − n2(2n)s]ν(|Jf |)|Jf |
∫
S

Ωf · Pω⊥Ωfg2dω.
(3.13)

Using the Poincaré inequality, and again, that the second eigenvalue of −∆ω is 2n,
we get that

‖g2‖2
Hs+1 > 2n‖g2‖2

Hs > (n− 1)(1− ρ

ρc
)‖g2‖2

Hs . (3.14)

We combine the first two terms of the right-hand side of (3.13) with (3.14) to get an
estimation of 1

2
d
dt‖f − ρ‖

2
Hs in terms of a constant times ‖f − ρ‖2

Hs and a remainder
that we expect to be of smaller order:

1
2

d
dt‖f − ρ‖

2
Hs 6 −(n− 1)τ0

(
1− ρ

ρc

)
‖f − ρ‖2

Hs +Rs, (3.15)

where

Rs = n(n− 1)sR(|Jf |)|Jf |2 + ν(|Jf |)
∫
S
g2 Ωf · ∇(−∆ω)sg2 dω

+ [n(n− 1)s − (2n)s]ν(|Jf |)|Jf |
∫
S
(Ωf · ω)2g2dω

+ [τ0 − τ(|Jf |)](n− 1)(1− ρ

ρc
)‖g2‖2

Hs .

(3.16)

Using Lemma 2.1 of [17], there exists a constant C1 (independent of g2) such that∣∣∣ ∫
S
g2 Ωf · ∇(−∆ω)sg2 dω

∣∣∣ 6 C1‖g2‖2
Hs .

Together with the estimates R, ν and τ given by (3.10) and hypothesis (2.1), and
the fact that the function ω 7→ (Ωf ·ω)2 belongs to H−s, we can estimate every term
of (3.16), giving existence of constants C2, C3, such that

Rs 6 C2
[
|Jf |3 + |Jf |2‖g2‖Hs + |Jf |‖g2‖2

Hs

]
6 C3‖f − ρ‖3

Hs ,
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the last inequality coming from equation (3.12). Solving the differential inequal-
ity y′ 6 −λy + C3y

2 which corresponds to (3.15) with y = ‖f − ρ‖Hs , we get that

y

λ− C3y
6

y0

λ− C3y0
e−λt,

provided that y < δ = λ
C3

. If y0 < δ, the differential inequality ensures that y is
decreasing and the condition y < δ is always satisfied. In this case, we get

y 6
y

1− y
δ

6
y0

1− y0
δ

e−λt,

which ends the proof.

Remark 3.1. We can indeed remove this condition of closeness of f0 to ρ by using
the method of [17] in the case where ρ < ρ̂, where the critical threshold ρ̂ is defined
as follows: ρ̂ = inf |J | n|J |

k(|J |) (since we have c(κ) 6 κ
n

for all κ, compared to the
definition (2.20)-(2.21) of ρc and ρ∗, we see that ρ̂ 6 ρ∗ 6 ρc, with a possible
equality if for example |J | 7→ k(|J |)

|J | is nonincreasing).
We can use the special cancellation presented in [17]:∫

∇g ∆̃n−1g = 0,

where ∆̃n−1 is the so-called conformal Laplacian on S, a linear operator defined, for
any spherical harmonic Y` of degree `, by

∆̃n−1 Y` = `(`+ 1) . . . (`+ n− 2)Y`.

Multiplying (2.7) by ∆̃−1
n−1(f − ρ) and integrating by parts, we get the following

conservation relation:

1
2

d
dt

(
n

(n−1)! |Jf |
2 + ‖g2‖2

H̃−
n−1

2

)
= −τ(|Jf |)

[
n

(n−2)!

(
1− ρk(|Jf |)

n|Jf |

)
|Jf |2 + ‖g2‖2

H̃−
n−3

2

]
,

(3.17)
where the norms ‖ · ‖

H̃−
n−1

2
and ‖ · ‖

H̃−
n−3

2
are modified Sobolev norms respectively

equivalent to ‖ · ‖
H−

n−1
2

and ‖ · ‖
H−

n−3
2

.
So if ρ < ρ̂, equation (3.17) can be viewed as a new entropy dissipation for the

system, and we have global exponential convergence with rate λ̂ = (n−1)τmin(1− ρ
ρ̂
),

where τmin = min|J |6ρ τ(|J |):

‖f − ρ‖
H̃−

n−1
2

6 ‖f0 − ρ‖
H̃−

n−1
2
e−λ̂t, (3.18)

valid for any initial condition f0 ∈ H−
n−1

2 (S) with initial mass ρ, whatever its dis-
tance to ρ.

Let us also remark that if ρ̂ 6 ρ < ρ∗, where ρ∗ is defined in (2.21), any solution
with initial mass ρ converges to the uniform distribution (the unique equilibrium),
but we do not have an a priori global rate. We can just locally rely on Proposition 3.4.
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3.4 Local analysis about the anisotropic equilibria
We fix κ > 0 and let ρ be such that κ is a solution of the compatibility equa-
tion (2.18), i.e. ρ = j(κ)

c(κ) . In this subsection, to make notations simpler, we will not
write the dependence on κ when not necessary.

We make an additional hypothesis on the function k:

Hypothesis 3.1. The function |J | 7→ k(|J |) is differentiable, with a derivative k′
which is itself Lipschitz.

We can then state a first result about the stability or instability of a non-isotropic
solution ρMκΩ, depending on the sign of ( j

c
)′. In summary, if the function κ 7→ j

c

is (non-degenerately) increasing then the corresponding equilibria are stable, while
if it is (non-degenerately) decreasing the equilibria are unstable. For example, for
the different cases depicted in Figure 1, it is then straightforward to determine the
stability of the different equilibria.

Proposition 3.5. Let κ > 0 and ρ = j(κ)
c(κ) . We denote by Fκ the value of F(ρMκΩ)

(independent of Ω ∈ S).

(i) Suppose ( j
c
)′(κ) < 0. Then any equilibrium of the form ρMκΩ is unstable,

in the following sense: in any neighborhood of ρMκΩ, there exists an initial
condition f0 such that F(f0) < Fκ. Consequently, in that case, we cannot
have κ∞ = κ in Proposition 3.2.

(ii) Suppose ( j
c
)′(κ) > 0. Then the family of equilibria {ρMκΩ,Ω ∈ S} is stable, in

the following sense: for all K > 0 and s > n−1
2 , there exists δ > 0 and C such

that for all f0 with mass ρ and with ‖f0‖Hs 6 K, if ‖f0 − ρMκΩ‖L2 6 δ for
some Ω ∈ S, then for all t > 0, we have

F(f) > Fκ,
‖f − ρMκΩf‖L2 6 C‖f0 − ρMκΩf0‖L2 .

Proof. We first make some preliminary computation which will also be useful for
the following theorem. We expand the solution f of (2.7) (with initial mass ρ)
around a “moving” equilibrium ρMκΩf (t). Let us use the same notations as in [17]:
we write 〈g〉M for

∫
S g(ω)MκΩfdω, we denote ω · Ωf by cos θ and we write:

f = MκΩf (ρ+ g1) = MκΩf (ρ+ α(cos θ − c) + g2),

where
α = |Jf | − ρc

〈(cos θ − c)2〉M
. (3.19)

We have 〈g1〉M = 〈g2〉M = 0, and definition of α ensures that 〈ω g2〉M = 0. The
derivative of c with respect to κ is given by

c′(κ) = 〈cos2 θ〉M − 〈cos θ〉2M = 〈(cos θ − c)2〉M . (3.20)
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We are now ready to estimate the difference between the free energy of f and of
the equilibrium ρMκΩf . We have a first expansion, for the potential term of the free
energy (2.9):

Φ(|Jf |) = Φ(ρc) + k(ρc)α〈(cos θ − c)2〉M + k′(ρc)α
2

2 〈(cos θ − c)2〉2M +O(α3)

= Φ(j) + κc′(κ)α + (c′(κ))2

j′(κ)
α2

2 +O(α3).

Now, we will use the following estimation, valid for any x ∈ (−1,+∞):

|(1 + x) ln(1 + x)− x− 1
2x

2| 6 1
2 |x|

3. (3.21)

To get this estimation, we note that h2(x) = (1 + x) ln(1 + x) − x − 1
2x

2 is such
that h2, h′2 and h′′2 cancel at x = 0, and that h(3)

2 (x) = −1
(1+x)2 ∈ (−1, 0) for x > 0.

Therefore Taylor’s formula gives −1
6x

3 < h2(x) < 0 for x > 0. For x < 0 we have
by the same argument h2(x) > 0, but Taylor’s formula is not sufficient to have a
uniform estimate on (−1, 0). We introduce h3 = h2 + 1

2x
3. By induction from i = 3

to i = 1 we have that h(i)
3 as a unique root γi in (−1, 0), with γ3 > γ2 > γ1.

Since h′3(x)→ −∞ as x→ −1, h3 is decreasing on (−1, γ1) and increasing on (γ1, 0),
but we have h3(−1) = h3(0) = 0 so h3 < 0 on (−1, 0), which ends the derivation
of (3.21).

Using (3.21) with x = g1
ρ

, we have that
∫
S
f ln fdω = 〈(ρ+ g1)[ln(1 + g1

ρ
) + ln(ρMκΩf )]〉M

= 〈ρ ln(ρMκΩf )〉M + 〈κ cos θg1〉M + 1
2ρ〈g

2
1〉M +O(〈|g1|3〉M)

=
∫
S
ρMκΩf ln(ρMκΩf )dω + ακc′ + 1

2ρ [α2c′ + 〈g2
2〉M ] +O(〈|g1|3〉M).

Finally we get

F(f)−F(ρMκΩf ) = α2

2 c′
(1
ρ
− c′

j′

)
+ 1

2ρ〈g
2
2〉M +O(〈|g1|3〉M)

= 1
2ρ [c

′c

j′

(j
c

)′
α2 + 〈g2

2〉M ] +O(〈|g1|3〉M). (3.22)

Now, we prove (i). We simply take α sufficiently small and g2 = 0, and the estima-
tion (3.22) gives the result. Indeed, since c and j are increasing functions of κ, the
leading order coefficient in (3.22), which is 1

2ρ
c′c
j′

(
j
c

)′
, is negative by the assumption.

We now turn to point (ii). We will use the following simple lemma, the proof of
which is left to the reader.
Lemma 1. Suppose x(t) > 0 is a continuous function and y(t) is a decreasing
function satisfying

|x(t)− y(t)| 6 Cx(t)1+ε,∀t > 0,
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for some positive constants C and ε. Then there exist δ > 0 and C̃ such that,
if x(0) 6 δ, then

y(t) > 0, and |x(t)− y(t)| 6 C̃y(t)1+ε,∀t > 0.

By Sobolev embedding, Sobolev interpolation, and the uniform bounds of The-
orem 1, we have

‖g1‖∞ 6 C‖g1‖
H
n−1

2
6 C‖g1‖1−ε

Hs ‖g1‖εL2 6 C1(〈g2
1〉M)ε, (3.23)

for some ε > 0, and where the constant C1 depends only on K (the constant in
the statement of the proposition, which is an upper bound for ‖f0‖Hs), s, κ and
the coefficients ν and τ of the model. We will denote by Ci such a constant in the
following of the proof.

We define x(t) = 1
2ρ [ cc′

j′
( j
c
)′ α2 + 〈g2

2〉M ] and y(t) = F(f)−Fκ. Together with the
estimate (3.22), since 〈g2

1〉M = c′α2 + 〈g2
2〉M , and ( j

c
)′ > 0, we can apply Lemma 1.

It gives us that if 〈g2
1〉M is initially sufficiently small, then F(f) > Fκ and we have

x(t) = 1
2ρ [cc

′

j′
(j
c
)′ α2 + 〈g2

2〉M ] = F(f)−Fκ +O((F(f)−Fκ)1+ε).

Now, using the fact that x(t), 〈g2
1〉M and ‖f − ρMκΩf‖2

L2 are equivalent quantities
(up to a multiplicative constant) and the estimate (3.22), we get that

‖f − ρMκΩf‖2
L2 6 C2x(t) 6 C3(F(f)−Fκ). (3.24)

Using the fact that F(f)−Fκ is decreasing in time, and the same equivalent quan-
tities, we finally get

‖f − ρMκΩf‖2
L2 6 C3(F(f0)−Fκ) 6 C4‖f0 − ρMκΩf0‖

2
L2 .

This completes the proof, with the simple remark that, as in the proof of proposi-
tion 3.2, we can control |Ω−Ωf0 | by ‖f0− ρMκΩ‖L2 (using the formula (3.5)). Then
we can also control the quantities ‖ρ(MκΩ −MκΩf0 )‖L2 and ‖f0 − ρMκΩf0‖L2 , and
finally the initial value of 〈g2

1〉M , by this quantity ‖f0 − ρMκΩ‖L2 .

We can now turn to the study of the rate of convergence to equilibria when it
is stable (in the case ( j

c
)′ > 0). The main result is the following theorem, which

also gives a stronger stability result, in any Sobolev space Hs with s > n−1
2 . Let

us remark that this theorem is an improvement compared to the results of [17], in
the case where τ is constant and ν(|J |) is proportional to |J |. In what follows, we
call constant a quantity which does not depend on the initial condition f0 (that is
to say, it depends only on s, κ, n and the coefficients of the equation ν and τ).

Theorem 2. Suppose ( j
c
)′(κ) > 0. Then, for all s > n−1

2 , there exist constants δ > 0
and C > 0 such that for any f0 with mass ρ satisfying ‖f0 − ρMκΩ‖Hs < δ for
some Ω ∈ S, there exists Ω∞ ∈ S such that

‖f − ρMκΩ∞‖Hs 6 C‖f0 − ρMκΩ‖Hse−λt,
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where the rate is given by
λ = cτ(j)

j′
Λκ(

j

c
)′. (3.25)

The constant Λκ is the best constant for the following weighted Poincaré inequality
(see the appendix of [10] for more details on this constant, which does not depend
on Ω):

〈|∇ωg|2〉M > Λκ〈(g − 〈g〉M)2〉M . (3.26)

We first outline the key steps. Firstly, we want to get a lower bound for the dissipa-
tion term D(f) in terms of F(f)−Fκ, in order to get a Grönwall inequality coming
from the conservation relation (2.12). After a few computations, we get

D(f) > 2λ(F(f)−Fκ) +O((F(f)−Fκ)1+ε).

With this lower bound, we obtain exponential decay of F(f) − Fκ (with rate 2λ),
which also gives exponential decay of ‖f−MκΩf‖L2 (with rate λ) in virtue of (3.24).
We also prove that we can control the displacement Ω̇f by

√
〈g2

2〉M . Hence we get
that Ωf is also converging exponentially fast towards some Ω∞ ∈ S (with the same
rate λ). After linearizing the kinetic equation (2.7) around this equilibrium ρMκΩ∞ ,
an energy estimate for a norm equivalent to the Hs norm gives then the exponential
convergence for ‖f −MκΩ∞‖Hs with the same rate λ.
We now give the detailed proof.

Proof of Theorem 2. We fix s > n−1
2 and we suppose ( j

c
)′(κ) > 0. We recall the

notations of the proof of Proposition 3.5:

f = MκΩf (ρ+ g1) = MκΩf (ρ+ α(cos θ − c) + g2),

where cos θ = ω · Ωf and α, defined in (3.19), is such that

|Jf | = ρc+ α〈(cos θ − c)2〉M = j + α c′, (3.27)

thanks to (3.20). We have that 〈g1〉M = 〈g2〉M = 0, and 〈ω g2〉M = 0.
The proof will be divided in three propositions.

Proposition 3.6. There exist constants δ > 0, ε > 0 and C such that, if initially,
we have 〈g2

1〉M < δ and ‖f0 −MκΩf0‖Hs 6 1, then for all time, we have

F(f) > Fκ,
D(f) > 2λ(F(f)−Fκ)− C(F(f)−Fκ)1+ε,

where the rate is given by (3.25): λ = cτ(j)
j′

Λκ( jc)
′.

Proof. We apply the stability results of the second part of Proposition 3.5, with the
constant K being 1 + ‖ρMκΩf0‖Hs (this does not depend on Ωf0). This gives us
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constants δ1 > 0, ε > 0, C1, C2 such that if we have initially 〈g2
1〉M < δ1, then (see

formulas (3.23)-(3.24))

F(f) > Fκ,
‖g1‖∞ 6 C1〈g2

1〉εM , (3.28)∣∣∣ 1
2ρ [cc

′

j′
(j
c
)′ α2 + 〈g2

2〉M ]− (F(f)−Fκ)
∣∣∣ 6 C2(F(f)−Fκ)1+ε, (3.29)

〈g2
1〉M 6 C3(F(f)−Fκ). (3.30)

We get, using the definition (2.11):

D(f) = τ(|Jf |)〈(ρ+ g1)|∇ω[ln(ρ+ g1)− (k(|Jf |)− κ)ω · Ωf ]|2〉M

= τ(|Jf |)〈
1

ρ+ g1
|∇ωg1|2 + (ρ+ g1)(k(|Jf |)− κ)2|∇ω(ω · Ωf )|2〉M

− 2τ(|Jf |)〈∇ωg1 · (k(|Jf |)− κ)∇ω(ω · Ωf )〉M .

Using the fact that 1
ρ+g1

> 1
ρ2 (ρ− ‖g1‖∞), we obtain

D(f) > τ(|Jf |)(ρ− ‖g1‖∞)〈 1
ρ2 |∇ωg1|2 + (k(|Jf |)− κ)2|∇ω(ω · Ωf )|2〉M

− 2τ(|Jf |)〈∇ωg1 · (k(|Jf |)− κ)∇ω(ω · Ωf )〉M
D(f) > τ(|Jf |)(ρ− ‖g1‖∞)〈|∇ω[g1

ρ
− (k(|Jf |)− κ)ω · Ωf ]|2〉M

+ τ(|Jf |)
2
ρ
‖g1‖∞(k(|Jf |)− κ)〈g1(κ|∇ω(ω · Ωf )|2 − (n− 1)ω · Ωf )〉M .

where we used Green’s formula to evaluate 〈∇ωg1 · ∇ω(ω · Ωf )〉M .
First of all, using the definition (3.27) we can get that |k(|Jf |)−κ−α c′

j′
| 6 C4α

2,
for a constant C4. Then we use the Poincaré inequality (3.26):

〈|∇ωg|2〉M > Λκ〈(g − 〈g〉M)2〉M .

Hence, since |α| is controlled by
√
〈g2

1〉M (we recall that 〈g2
1〉M = c′α2 + 〈g2

2〉M), and
since we also have ||Jf | − j| 6 C5|α| for a constant C5, we get

D(f) > Λκτ(|Jf |)(ρ− ‖g1‖∞)〈|g1

ρ
− (k(|Jf |)− κ)(cos θ − c)|2〉M

− C6‖g1‖∞〈g2
1〉M

> Λκτ(j)ρ〈|g2

ρ
+ α(1

ρ
− c′

j′
)(cos θ − c)|2〉M − C7‖g1‖∞〈g2

1〉M

= Λκτ(j)
ρ

[ c
2c′

(j′)2 ((j
c
)′)2 α2 + 〈g2

2〉M ]− C7‖g1‖∞〈g2
1〉M ,

where C6 and C7 are constants. Together with the fact that c
j′

( j
c
)′ 6 1 (this is

equivalent to jc′ > 0), and with equations (3.28)-(3.30), this ends the proof.
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Proposition 3.7. There exist positive constants C, C̃ and δ such that if initially,
we have 〈g2

1〉M < δ and ‖f0 − ρMκΩf0‖Hs 6 1, then for all time, we have

‖f − ρMκΩf‖L2 6 C‖f0 − ρMκΩf0‖L2 e−λt,

and furthermore, there exists Ω∞ ∈ S such that for all time, we have

|Ωf − Ω∞| 6 C̃‖f0 − ρMκΩf0‖L2 e−λt. (3.31)

Proof. By Proposition 3.6, using the expression 〈g2
1〉M = c′α2 + 〈g2

2〉M and inequali-
ties (3.29) and (3.30), we get that there exist constants δ1 > 0 and C1, C2, and C̃2 > 0
such that if 〈g2

1〉M < δ1, then F(f) > Fκ, and for all time,

d
dt(F(f)−Fκ) = −D(f) 6 −2λ(F(f)−Fκ) + C1(F(f)−Fκ)1+ε, (3.32)

C̃2(F(f)−Fκ) 6 〈g2
1〉M 6 C2(F(f)−Fκ). (3.33)

Solving the differential inequality (3.32) for F (f)−Fκ sufficiently small, we get that,
up to taking δ2 < δ1, if 〈g2

1〉M < δ2, we get a constant C3 such that

F(f)−Fκ 6 C3(F(f0)−Fκ)e−2λt.

This gives the first part of the proposition, with (3.33), and the fact that there exists
constants C4, and C̃4 such that

C̃4‖f − ρMκΩf‖L2 6
√
〈g2

1〉M 6 C4‖f − ρMκΩf‖L2 .

Now we compute the time derivative of Ωf , using d
dtΩf = 1

|Jf |
PΩ⊥

f

d
dtJf and (3.8):

d
dtΩf = ν(|Jf |)

|Jf |
PΩ⊥

f
〈Pω⊥Ωf (ρ+ α(cos θ − c) + g2)〉M = −ν(|Jf |)

|Jf |
PΩ⊥

f
〈cos θ ωg2〉.

So there exist constants C5 and C6 such that

|Ω̇f | 6 C5

√
〈g2

2〉M 6 C5

√
〈g2

1〉M 6 C6‖f0 − ρMκΩf0‖L2 e−λt,

which, after integration in time, gives the second part of the proposition.

We can now prove the last step which leads to Theorem 2.
Proposition 3.8. There exist constants δ > 0 and C > 0, such that for any initial
condition f0 with mass ρ satisfying ‖f0 − ρMκΩf0‖Hs < δ, there exists Ω∞ ∈ S such
that

‖f − ρMκΩ∞‖Hs 6 C‖f0 − ρMκΩf0‖Hse−λt.

Proof. All along this proof we will use the symbol � to denote quantities of the
same order: for a and b two nonnegative quantities, a � b means that there exist
two positive constants C1, C2 such that C1a 6 b 6 C2a.

By the estimation 〈g2
1〉M � ‖f − ρMκΩf‖2

L2 (since the weight MκΩ is bounded
above and below), and by a simple Sobolev embedding (L2 ⊂ Hs), there exists a
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constant δ1 > 0 such that if ‖f0 − ρMκΩf0‖Hs < δ1, then we are in the hypotheses
of Proposition 3.7. We suppose we are in that case and we can then go back to
the original equation and perform a linear analysis around ρMκΩ∞ . We will now
write 〈g〉M for

∫
S gMκΩ∞dω.

If we write f = (ρ+ g)MκΩ∞ , then the equation becomes

∂tg = −τ(|Jf |)Lg − A(t) · ∇ωg +B(ω) · A(t)(ρ+ g), (3.34)

where

Lg = − 1
MκΩ∞

∇ω · (MκΩ∞∇ωg) = −(∆ωg + κΩ∞ · ∇ωg),

A(t) = ν(|Jf |)Ωf − τ(|Jf |)κΩ∞,
B(ω) = (n− 1)ω − κPω⊥Ω∞.

Let us remark that the linear operator L is a coercive selfadjoint operator for the
inner product (g1, g2) 7→ 〈g1g2〉M (also denoted 〈g1, g2〉M in the following), on the
space L̇2

M ⊂ L2 of functions g such that 〈g〉M = 0 (thanks to the Poincaré inequal-
ity (3.26)). Indeed we have

〈g1, Lg2〉M = 〈∇ωg1 · ∇ωg2〉M .

It is classical to prove that the inverse of L is a positive selfadjoint compact operator
of L̇2

M . Hence, by spectral decomposition, we can define the operator Ls, and use it
to define a new Sobolev norm by

‖g‖2
Ḣs
M

= 〈g, Lsg〉M .

We will use a lemma (the proof of which is postponed at the end of this section)
about estimations for this norm, and about a commutator estimate:
Lemma 2. For s > 0, we have ‖g‖Ḣs

M
� ‖g‖Hs, for functions g in Ḣs

M = Hs ∩ L̇2
M .

Furthermore, for g ∈ Ḣs
M , the (vector valued) quantity 〈Lsg∇ωg〉M is well defined

and there is a constant C such we have:

|〈Lsg∇ωg〉M | 6 C‖g‖2
Ḣs
M
. (3.35)

We will also use the following Poincaré estimate, for g ∈ Ḣs
M , with the same

constant Λκ as in (3.26):

〈g, Ls+1g〉M = 〈|∇(L s
2 g)|2〉M > Λκ〈(L

s
2 g)2〉M = Λκ‖g‖2

Ḣs
M

We now multiply the equation (3.34) by Lsg and integrate with respect to the
measure MκΩ∞dω. We get

1
2

d
dt‖g‖

2
Ḣs
M
6 −τ(|Jf |)Λκ‖g‖2

Ḣs
M

+ |A(t)|(C1 ‖g‖2
Ḣs
M

+ ‖g‖Ḣs
M
‖B(ω)(ρ+ g)‖Ḣs

M
),

where ‖B(ω)(ρ + g)‖Ḣs
M

denotes the maximum of ‖e · B(ω)(ρ + g)‖Ḣs
M

for e ∈ S.
Since ω 7→ e ·B(ω) is smooth, the multiplication by e ·B(ω) is a continuous operator
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from Ḣs
M to Hs when s is an integer, so by interpolation this is true for all s.

Therefore, we get a constant C2 such that for all g ∈ Ḣs
M , we have

‖B(ω)g‖Ḣs
M
6 C2 ‖g‖Ḣs

M
. (3.36)

We finally get

d
dt‖g‖Ḣs

M
6 −τ(|Jf |)Λκ‖g‖Ḣs

M
+ |A(t)|((C1 + C2) ‖g‖Ḣs

M
+ ‖B(ω)ρ‖Ḣs

M
).

Now, applying Proposition 3.7, there exist constants C3, C4, C5 such that

|A(t)| 6 ν(|Jf |)|Ωf − Ω∞|+ [ν(|Jf |)− τ(|Jf |)κ]|Ω∞|
6 ν(|Jf |)|Ωf − Ω∞|+ τ(|Jf |)[k(|Jf |)− k(j(κ))]
6 C3|Ωf − Ω∞|+ C4||Jf | − j(κ)|
6 C5‖f0 − ρMκΩf0‖L2 e−λt 6 C5‖f0 − ρMκΩf0‖Ḣs

M
e−λt.

in virtue of (3.6). By the same argument, we get, for a constant C6, that

|τ(|Jf |)− τ(j)| 6 C6‖f0 − ρMκΩf0‖Ḣs
M
e−λt,

so we finally obtain, together with a uniform bound on ‖g‖Ḣs
M

coming from The-
orem 1 (and independent of f0 since ‖f0 − ρMκΩf0‖Hs < δ1), a constant C7 such
that

d
dt‖g‖Ḣs

M
6 −τ(j)Λκ‖g‖Ḣs

M
+ C7‖f0 − ρMκΩf0‖Ḣs

M
e−λt.

We solve this inequality and we get

‖g‖Ḣs
M
6 ‖g0‖Ḣs

M
exp(−τ(j)Λκt) + C7‖f0 − ρMκΩf0‖Ḣs

M

e−λt − e−τ(j)Λκt

τ(j)Λκ − λ
,

and this gives the final estimation, using the fact that λ < τ(j)Λκ (this is equivalent,
by definition (3.25) of λ, to ( j

c
)′ < j′

c
, and we indeed have j c′ > 0), and that

‖g0‖Ḣs
M
� ‖f0 − ρMκΩ∞‖Ḣs

M

6 ‖f0 − ρMκΩf0‖Ḣs
M

+ C8|Ωf0 − Ω∞|
6 C9‖f0 − ρMκΩf0‖Hs ,

in virtue of (3.6), Lemma 2 and (3.31) (we have s > n−1
2 so L2 ⊂ Hs is a continuous

embedding).

Finally, Proposition 3.8 can be refined since, thanks to the estimation (3.6),
we only need to control ‖f0 − ρMκΩ‖Ḣs

M
for a given Ω ∈ S in order to ensure

that ‖f0−ρMκΩf0‖Ḣs
M

is sufficiently small, and this ends the proof of Theorem 2.

Proof of Lemma 2. We first define the space Ḣs
M as the completion of C∞(S) ∩ L̇2

M

for ‖ · ‖Ḣs
M

. The first estimate (which amounts to prove that ‖g‖Ḣs
M
� ‖g‖Hs

for smooth functions g ∈ C∞(S) ∩ L̇2
M) is true when s is an integer: indeed Ls
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and (−∆ω)s are simple differential operators (of degree 2s), and these estimates can
be done by induction on s: when s = 2p is even, we write〈g, L

sg〉M = ‖Lpg‖2
L2
M
� ‖Lpg‖2

2

‖g‖2
Hs = ‖(−∆)pg‖2

2 � ‖(−∆)pg‖2
L2
M
.

In the first case, L is decomposed as (−∆ω) − κΩ∞ · ∇ω to estimate ‖Lpg‖2
2 in

terms of ‖g‖2
Hs , and in the second case −∆ω is decomposed as L + κΩ∞ · ∇ω to

estimate ‖(−∆)pg‖2
L2
M

in terms of 〈g, Lsg〉. When s = 2p + 1 is odd, the same
argument applies, writing

〈g, Lsg〉M =
∥∥∥|∇ω(Lpg)|

∥∥∥2

L2
M

�
∥∥∥|∇ω(Lpg)|

∥∥∥2

2

‖g‖2
Hs =

∥∥∥|∇ω(−∆)pg|
∥∥∥2

2
�
∥∥∥|∇ω(−∆)pg|

∥∥∥2

L2
M

.

Finally, the general case is done by interpolation, for s = n + θ, with θ ∈ (0, 1).
We refer the reader to [26] for an introduction to interpolation spaces, and we will
denote (F1, F2)(θ,p) the interpolation space between F1 and F2 using the real inter-
polation method. Using the so-called K-method (see [26, Lecture 22]), it consists
in the space of elements u ∈ F1 + F2 such that ‖u‖θ,p < +∞, together with the
norm ‖ · ‖θ,p, where

‖u‖θ,p =
( ∫ ∞

0
[t−θK(t, u)]q dt

t

) 1
q

, with K(t, u) = inf
u=u1+u2,

u1∈F1,u2∈F2

‖u1‖F1 + t‖u2‖F2 .

We will use the following result (see [26, Lemma 23.1]): if (X,µ) is a measured space
and w0, w1 are two weight functions, we have

(L2(w0dµ), L2(w1dµ))(θ,2) = L2(w1−θ
0 wθ1dµ), (3.37)

where, for a weight function w > 0, the weighted space L2(wdµ) denotes the func-
tions h such that ‖h‖2

L2(wdµ) =
∫
X h

2(x)w(x)dµ(x) is finite. Now if (gi)i∈N is an
orthonormal basis (for the dot product 〈·, ·〉M) of eigenvectors of L (associated to
the eigenvalues (λi)), it is easy to see that the map h 7→ (〈h, gi〉M)i∈N is an isom-
etry between Ḣs

M and the weighted `2 space with weight (λi)i∈N (it corresponds
to L2(wdµ) where X = N, µ is the counting measure, and w(i) = λi). There-
fore, we obtain with (3.37) that Ḣs

M = (Ḣn
M , Ḣ

n+1
M )(θ,2), and by the same argu-

ment Hs = (Hn, Hn+1)(θ,2). So we finally get, with equivalence of norms:

Hs ∩ L̇2
M = (Hn ∩ L̇2

M , H
n+1 ∩ L̇2

M)(θ,2) = (Ḣn
M , Ḣ

n+1
M )(θ,2) = Ḣs

M .

To get the estimation (3.35), we first observe that it is a commutator estimate.
Indeed, by integration by parts for a given e ∈ S, we get that the adjoint operator
of e·∇ω (for 〈·, ·〉M) is −e·∇ω+e·B(ω), where B(ω) = (n−1)ω−κPω⊥Ω∞ (the same
expression as in the proof of Proposition 3.8). So, splitting the left part of (3.35) in
two halves, we are led to show that for g ∈ Ḣs

M , we have

1
2 |〈g[Ls,∇ω]g〉M + 〈B(ω)gLsg〉M | 6 C〈g, Lsg〉M .
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Using (3.36), it is equivalent to find a constant C̃ such that for all g ∈ Ḣs
M , we have

|〈g[Ls,∇ω]g〉M | 6 C〈g, Lsg〉M . (3.38)

In the case s = 1, by using Schwartz Theorem, we see that [L,∇ω] = [−∆ω,∇ω]. It
is proven in Lemma 2.1 of [17] that (3.35) is true in the limit case where κ = 0. This
means that [(−∆ω)s,∇ω] is an operator of degree 2s. In particular [−∆ω,∇ω] is a
differential operator of degree 2. Actually, using Lemma A.5 of [17], it is possible to
get that

[−∆ω,∇ω] = 2ω∆ω − (n− 3)∇ω.

This directly gives the estimate (3.38) when s = 1. We obtain the estimate when s
is an integer with the formula [Lp+1,∇ω] = ∑p

q=0 L
p−q[L,∇ω]Lq.

The proof in the general case relies on a resolvent formula for the operator Aθ,
when θ belongs to (0, 1), and A : D(A) ⊂ H → H is a strictly positive operator of
a Hilbert space H with a complete basis of eigenvectors (see [22, Remark V-3.50]):

Aθ = sin πθ
π

∫ ∞
0

tθ(t−1 − (t+ A)−1)dt.

This formula can be checked on an orthonormal basis of eigenvectors of A, and relies
on the fact that, for λ > 0, we have

∫ ∞
0

tθ
(1
t
− 1
t+ λ

)
dt = λθ

∫ ∞
0

tθ−1dt
1 + t

.

The fact that this last integral is equal to π
sinπθ for 0 < θ < 1 is classical, and can

be done by the method of residues.
We then have, for another operator B (with dense domain for (t + A)−1B

and B(t+ A)−1 for t > 0)

[Aθ, B] = sin πθ
π

∫ ∞
0

tθ[B, (t+ A)−1]dt

= sin πθ
π

∫ ∞
0

tθ(t+ A)−1[A,B](t+ A)−1dt.

We can apply this result to A = Lm with H = L̇2
M , B = e · ∇ω for a fixed e ∈ S,

and θ = s
m

for 0 < s < m and we get, using the fact that (t + Lm)−1 is self-
adjoint in H (and bounded, so all smooth functions are in the domain of (t+A)−1B
and B(t+ A)−1),

|〈g [Ls, e · ∇ω]g〉M | 6
sin πθ
π

∫ ∞
0

tθ|〈g (t+ Lm)−1[Lm, e · ∇ω](t+ Lm)−1g〉M |dt

6
sin πθ
π

∫ ∞
0

tθ|〈(t+ Lm)−1g [Lm, e · ∇ω](t+ Lm)−1g〉M |dt

6 Cm
sin πθ
π

∫ ∞
0

tθ〈(t+ Lm)−1g, Lm(t+ Lm)−1g〉Mdt

6 Cm
sin πθ
π

∫ ∞
0

tθ〈g, (t+ Lm)−1Lm(t+ Lm)−1g〉Mdt.
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But as before, it is easy to see that∫ ∞
0

tθ
λ

(t+ λ)2 dt = λθ
∫ ∞

0

tθdt
(1 + t)2 = θλθ

π

sin πθ ,

and then
θAθ = sin πθ

π

∫ ∞
0

tθ(t+ A)−1A(t+ A)−1dt.

Finally, we get
|〈g [Ls, e · ∇ω]g〉M | 6 Cm

s

m
〈g, Lsg〉M ,

wich ends the proof of Lemma 2

4 Phase transitions

4.1 Application of the previous theory to two special cases
In the previous section, we have stated results which are valid for all possible be-
haviors of the function κ 7→ j(κ)

c(κ) . In particular, the number of branches of equilibria
can be arbitrary.

In this section, we apply the previous theory to two typical examples:
(i) The function κ 7→ j(κ)

c(κ) is increasing. In this case, there exists only one branch of
stable von Mises–Fisher equilibria. The uniform equilibria are stable for ρ < ρc,
where ρc = limκ→0

j(κ)
c(κ) , and become unstable for ρ > ρc. The von Mises–Fisher

equilibria only exist for ρ > ρc and are stable. This corresponds to a second-
order phase transition. We will provide details and a determination of the
critical exponent of this phase transition in section 4.2.

(ii) The function κ 7→ j(κ)
c(κ) is unimodal, i.e. there exists κ∗ such that this function is

decreasing on [0, κ∗] and increasing on [κ∗,∞). Then, another critical density
is defined by ρ∗ = j(κ∗)

c(κ∗) . Then we have the following situation:

a. if ρ ∈ (ρ∗, ρc), there exist two branches of von Mises–Fisher equilibria, and
therefore, three types of equilibria if we include the uniform distribution.
Both the uniform distribution and the von Mises–Fisher distribution with
the largest κ are stable while the von Mises–Fisher distribution with
intermediate κ is unstable.

b. if ρ < ρ∗, there exists only one equilibrium, the uniform one, which is
stable.

c. if ρ > ρc, there exist two types of equilibria, the uniform equilibrium
which is unstable and the von Mises–Fisher equilibria which are stable.

This situation corresponds to a first-order phase transition and is depicted in
section 4.3, where phase diagrams for both the two-dimensional and three-
dimensional cases are given. The major feature of first-order phase transitions
is the phenomenon of hysteresis, which will be illustrated by numerical simu-
lations in section 4.3.

For references to phase transitions, we refer the reader to [19].
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4.2 Second order phase transition
Let us now focus on the case where we always have ( j

c
)′ > 0 for all κ > 0 (this

corresponds for example to the upper two curves of Figure 1). In this case, the
compatibility equation (2.22) has a unique positive solution for ρ > ρc. With the
results of the previous subsection about stability and rates of convergence, we obtain
the behavior of the solution.

Proposition 4.1. Let f0 be an initial condition with mass ρ, and f the corresponding
solution of (2.7). We suppose that ( j

c
)′ > 0 for all κ > 0. Then:

(i) If ρ < ρc, then f converges exponentially fast towards the uniform distribu-
tion f∞ = ρ.

(ii) If ρ = ρc, then f converges to the uniform distribution f∞ = ρ.

(iii) If ρ > ρc and Jf0 6= 0, then there exists Ω∞ such that f converges exponentially
fast to the von Mises–Fisher distribution f∞ = ρMκΩ∞, where κ > 0 is the
unique positive solution to the equation ρc(κ) = j(κ).

Proof. This is a direct application of Propositions 3.2-3.4 and Theorem 2.

Remark 4.1.

(i) When ρ > ρc, the special case where Jf0 = 0 leads to the study of heat equa-
tion ∂tf = τ0∆ωf . Its solution converges exponentially fast to the uniform
distribution, but this solution is not stable under small perturbation of the ini-
tial condition.

(ii) For some particular choice of the coefficients, as in [17], it is also possible to
get a polynomial rate of convergence in the second case ρ = ρc. For example
when j(κ) = κ, we have ‖f − ρ‖ 6 Ct−

1
2 for t sufficiently large.

We now describe the phase transition phenomena by studying the order param-
eter of the asymptotic equilibrium α = |Jf∞ |

ρ
, as a function of the initial density ρ.

We have α(ρ) = 0 if ρ 6 ρc, and α(ρ) = c(κ) for ρ > ρc, where κ > 0 is the
unique positive solution to the equation ρc(κ) = j(κ). This is a positive continuous
increasing function for ρ > ρc. This is usually described as a continuous phase
transition, also called second order phase transition.

Definition 4.1. We say that β is the critical exponent of the phase transition if
there exists α0 > 0 such that

α(ρ) ∼ α0(ρ− ρc)β, as ρ >→ ρc.

This critical exponent β can take arbitrary values in (0, 1], as can be seen by
taking k such that j(κ) = c(κ)(1 + κ

1
β ) (we recall that k is the inverse function of j,

see Hypothesis 2.2). Indeed in this case, the function k is well defined (its inverse j is
increasing), and satisfies Hypothesis 3.1 (if β 6 1). We then have ( j

c
)′ = 1

β
κ

1
β
−1 > 0,

and the conclusions of Proposition 4.1 apply, with ρc = 1. Finally, the compatibility
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equation ρc(κ) = j(κ) becomes ρ = (1 +κ
1
β ), i.e. κ = (ρ− 1)β. And since c(κ) ∼ 1

n
κ

when κ→ 0, we get:

α(ρ) = c
(
(ρ− 1)β

)
∼ 1
n

(ρ− 1)β as ρ >→ 1.

More generally, we can give the expression of the critical exponent in terms of the
expansion of k in the neighborhood of 0.

Proposition 4.2. We suppose, as in Proposition 4.1, that ( j
c
)′ > 0 for all κ > 0.

We assume an expansion of k is given under the following form:

k(|J |)
|J |

= n

ρc
− a|J |q + o(|J |q) as |J | → 0, (4.1)

with q > 1 (see Hypothesis 3.1) and a ∈ R.

(i) If q < 2 and a 6= 0, then a > 0 and we have a critical exponent given by β = 1
q
.

(ii) If q > 2, the critical exponent is given by β = 1
2 .

(iii) If q = 2 and a 6= − n2

ρ3
c(n+2) , then a > − n2

ρ3
c(n+2) and the critical exponent is given

by β = 1
2 . In the special case where

k(|J |)
|J |

= n

ρc
+ n2

ρ3
c(n+ 2) |J |

2 − a2|J |p + o(|J |p) as |J | → 0,

with 2 < p < 4 and a2 6= 0, then a2 > 0 and we have a critical exponent given
by β = 1

p
.

It is also possible to give more precise conditions for a higher order expansion
of k in order to have a critical exponent less than 1

4 , the point (iii) of this proposition
is just an example of how to get an exponent less than 1

2 . We will only detail the
proofs of the first two points, the last one can be done in the same way, with more
computations, which are left to the reader.

Proof. We only detail the first two points, the last one is done in the same way, with
more complicate computations. We recall that k(j(κ)) = κ by definition of j. So we
get that κ ∼ nj(κ)

ρc
as κ→ 0. And using (4.1), we obtain

κ

j(κ) = k(j(κ))
j(κ) = n

ρc
− a

(
κρc
n

)q
+ o(κq).

Furthermore, we have c(κ)
κ

= 1
n
− 1

n2(n+2)κ
2 +O(κ4) (see [17], Remark 3.5) as κ→ 0.

So we get, as κ→ 0:

1
ρ

= c(κ)
j(κ) = κ

j(κ)
c(κ)
κ

= 1
ρc

(
1− a(ρc

n
)q+1 κq − 1

n(n+2)κ
2
)

+ o(κmin(q,3)).
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So since κ 7→ c(κ)
j(κ) is decreasing, if q < 2 and a 6= 0 we have a > 0. In this case,

we get that ρ = ρc(1 + a(ρc
n

)q+1 κq) + o(κq) as κ → 0. Hence, as ρ >→ ρc, we
have κ ∼ n

1+ 1
q

a
1
q (ρc)

1+ 2
q

(ρ− ρc)
1
q . Since c(κ) ∼ κ

n
as κ→ 0, we obtain (i).

For the same reason, if q > 2, we get ρ = ρc(1 + 1
n(n+2)κ

2) + o(κmin(q,3)) as κ→ 0,

and then κ ∼
√

n(n+2)
ρc

(ρ− ρc) as κ→ 0, which proves point (ii).

The hypothesis in Proposition 4.1 is not explicit in terms of the alignment and
diffusion rates ν and τ . We have a more direct criterion in terms of k which is given
below (but which is more restricted in terms of the critical exponents that can be
attained).

Lemma 3. If k(|J |)
|J | is a non-increasing function of |J |, then we have ( j

c
)′ > 0 for

all κ > 0. In this case, the critical exponent, if it exists, can only take values in [1
2 , 1].

Proof. We have that d
dκ( c(κ)

κ
) < 0 for κ > 0 (see [17]). Then

(
j

c

)′
=
(
κ

c

j

k(j)

)′
= κ

c

(
j

k(j)

)′
+
(
κ

c

)′ j

k(j) < 0,

since ( j
k(j))

′ > 0 (j is an increasing function of κ and k(|J |)
|J | is a non-increasing

function of |J |). Now if we suppose that there is a critical exponent β according
to Definition 4.1, we get, using the fact that α(ρ) = c(κ) ∼ κ

n
as κ → 0, that

1
ρ

= 1
ρc
− aκ

1
β + o(κ

1
β ) as κ→ 0, with a = (ρc)−2(nα0)−

1
β . We then have

k(j)
j

= κ

c

c

j
= (n+ 1

n+ 2κ
2 +O(κ4))( 1

ρc
− aκ

1
β + o(κ

1
β ))

= n

ρc
+ 1

(n+ 2)ρc
κ2 − naκ

1
β + o(κmin(2, 1

β
)).

Then β cannot be less than 1
2 , otherwise the function k(j(κ))

j(κ) could not be a nonin-
creasing function of κ in the neighborhood of 0.

Remark 4.2. When this criterion is satisfied, we can also use the result of Re-
mark 3.1. Indeed, in that case we get easily that ρ̂ = ρc, and we obtain that
for any ρ < ρc, there is a global rate of decay for the modified H−

n−1
2 norm: for

all f0 ∈ H−
n−1

2 (S), we have the estimation (3.18).

4.3 First order phase transition and hysteresis
We now turn to a specific example, where all the features presented in the stability
study can be seen. We focus on the case where ν(|J |) = |J |, as in [17], but we now
take τ(|J |) = 1/(1 + |J |). From the modeling point of view, this can be related to
the Vicsek model with vectorial noise (also called extrinsic noise) [1,5], since in that
case the intensity of the effective noise is decreasing when the neighbors are well
aligned.
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In this case, we have k(|J |) = |J |+ |J |2, so the assumptions of Lemma 3 are not
fulfilled, and the function j is given by j(κ) = 1

2(
√

1 + 4κ− 1).
Expanding j

c
when κ is large or κ is close to 0, we get

j

c
=

n (1− κ) +O(κ2) as κ→ 0,
√
κ+O(1) as κ→∞.

Consequently, there exist more than one family of non-isotropic equilibria when ρ is
close to ρc = n (and ρ < ρc).

The function κ 7→ j(κ)
c(κ) can be computed numerically. The results are displayed

in Figure 2 in dimensions n = 2 and n = 3.

n=2
n=3

κ
6 9 1230

1

2

3

4

κ∗ κ∗

ρ∗

ρ∗

j(κ)
c(κ)

Figure 2: The function κ 7→ j(κ)
c(κ) , in dimensions 2 and 3.

We observe the following features:

• There exists a unique critical point κ∗ for the function j
c
, corresponding to

its global minimum ρ∗ (we obtain numerically ρ∗ ≈ 1.3726 and κ∗ ≈ 1.2619
if n = 2, and ρ∗ ≈ 1.8602 and κ∗ ≈ 1.9014 if n = 3).

• The function j
c

is strictly decreasing in [0, κ∗) and strictly increasing in (κ∗,∞).

We conjecture that this is the exact behavior of the function j
c
, called unimodality.

From these properties, it follows that the solution associated to an initial condition f0
with mass ρ can exhibit different types of behavior, depending on the three following
regimes for ρ.

Proposition 4.3. We assume that the function j
c

is unimodal, as described above.
Then we have the following hysteresis phenomenon:
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(i) If ρ < ρ∗, then the solution converges exponentially fast to the uniform equi-
librium f∞ = ρ.

(ii) If ρ∗ < ρ < n, there are two families of stable solutions: either the uniform
equilibrium f = ρ or the von Mises–Fisher distributions of the form ρMκΩ
where κ is the unique solution with κ > κ∗ of the compatibility equation (2.18)
and Ω ∈ S. If f0 is sufficiently close to one of these equilibria, there is expo-
nential convergence to an equilibrium of the same family.
The von Mises–Fisher distributions of the other family (corresponding to so-
lution of (2.18) such that 0 < κ < κ∗) are unstable in the sense given in
Proposition 3.5.

(iii) If ρ > n and Jf0 6= 0, then there exists Ω∞ ∈ S such that f converges exponen-
tially fast to the von Mises–Fisher distribution ρMκΩ∞, where κ is the unique
positive solution to the compatibility equation ρc(κ) = j(κ).

Proof. Again, it is a direct application of Propositions 3.2-3.4 and Theorem 2.

Remark 4.3.

(i) At the critical point ρ = ρ∗, the uniform equilibrium is stable (and for any
initial condition sufficiently close to it, the solution converges exponentially fast
to it), but the stability of the family of von Mises–Fisher distributions ρ∗Mκ∗Ω,
for Ω ∈ S, is unknown.

(ii) At the critical point ρ = n, the family of von Mises–Fisher distributions of the
form nMκcΩ, for Ω ∈ S and where κc is the unique positive solution of (2.18),
is stable. For any initial condition sufficiently close to nMκcΩ for some Ω ∈ S,
there exists Ω∞ such that the solution converges exponentially fast to nMκcΩ∞.
However, in this case, the stability of the uniform distribution f = n is un-
known.

(iii) As previously, in the special case Jf0 = 0, the equation reduces to the heat
equation and the solution converges to the uniform equilibrium.

The order parameter c1 as a function of ρ (i.e. c1(ρ) = c(κ) with ρ = j(κ)
c(κ)) is

depicted in Figure 3 for dimension 2 or 3. The dashed lines corresponds to branches
of equilibria which are unstable.

The hysteresis phenomenon can be described by the hysteresis loop. If the pa-
rameter ρ starts from a value less than ρ∗, and increases slowly, the only stable distri-
bution is initially the uniform distribution and it remains stable, until ρ reaches the
critical value ρc. For ρ > ρc, the only stable equilibria are the von Mises–Fisher dis-
tributions. The order parameter then jumps from 0 to c1(ρc). If then the density ρ
is further decreased slowly, the von Mises–Fisher distributions are stable until ρ
reaches ρ∗ back. For ρ < ρ∗, the only stable equilibrium is the uniform distribution,
and the order parameter jumps from c1(ρ∗) to 0. The order parameter spans an
oriented loop called hysteresis loop.

This hysteresis loop can be observed numerically at the kinetic level or at the
particle level. The plots of the order parameter for such numerical simulations are
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Figure 3: Phase diagram of the model with hysteresis, in dimensions 2 and 3.

given by Figures 4 and 5. The details of the numerical simulations are provided
in appendix A. The key point to be able to perform these numerical simulations
while varying the parameter ρ in time is to rescale the equation in order to see the
parameter ρ as a coefficient of this new equation, and not anymore as the mass of
the initial condition (normalized to be a probability measure).

We can also obtain the theoretical diagrams for the free energy and the rates
of convergences. For this particular example, the free energies F(ρ) and Fκ (cor-
responding respectively to the uniform distribution and to the von Mises–Fisher
distribution ρMκΩ for a positive solution κ of the compatibility equation (2.18)) are
given by

F(ρ) = ρ ln ρ,

Fκ = ρ ln ρ+ 〈ρ lnMκΩ〉M −
1
2j

2 − 1
3j

3

= ρ ln ρ− ρ ln
∫
eκ cos θdω − 1

6(κ− j) + 2
3jκ.

The plots of these functions are depicted in dimensions 2 and 3 in the left plot
of Figure 6. Since the functions are very close in some range, we magnify the
difference Fκ − F(ρ) in the right plot of Figure 6. The dashed lines correspond to
unstable branches of equilibria.

We observe that the free energy of the unstable non-isotropic equilibria (in
dashed line) is always greater than the one of the uniform distribution. There ex-
ist ρ1 ∈ (ρ∗, ρc) and a corresponding solution κ1 of the compatibility solution (2.18)
(with κ1 > κ∗, corresponding to a stable family of non-isotropic equilibria) such
that Fκ1 = F(ρ1). If ρ < ρ1, the global minimizer of the free energy is the uniform
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Figure 4: Hysteresis loop for the order parameter c1 in a numerical simulation of
the homogeneous kinetic equation with time varying ρ (see (A.1)), in dimension 2.
The red curve is the theoretical curve, the blue one corresponds to the simulation.
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Figure 5: Hysteresis loop for the order parameter c1 in a numerical simulation of
the homogeneous particle model with varying ρ (see (A.2)-(A.3)), in dimension 2.
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Figure 6: Free energy levels of the different equilibria (left), and difference of free
energies of anisotropic and uniform equilibria (right), as functions of the density, in
dimensions 2 and 3. The dashed lines in the right picture corresponds to unstable
equilibria. At the density ρ1, the free energies of the stable anisotropic and the
uniform equilibria are the same.

distribution, while if ρ > ρ1, then the global minimum is reached for the family
of stable von Mises–Fisher equilibria. However, there is no easy way to assess the
value of ρ1 numerically. We observe that the stable von Mises–Fisher distribution
has larger free energy than the uniform distribution if ρ < ρ1 and therefore consists
of a metastable state. On the contrary, the uniform distribution has larger free en-
ergy than the stable von Mises–Fisher distributions if ρ > ρ1 and now, consists of a
metastable state.

The rates of convergence to the stable equilibria, following Proposition 3.4 and
Theorem 2, are given by

λ0 = (n− 1)(1− ρ

n
), for ρ < ρc = n,

λκ = 1
1 + j

Λκ

(
1−

(1
c
− c− n− 1

κ

)
j(1 + 2j)

)
, for ρ > ρ∗,

where λ0 is the rate of convergence to the uniform distribution ρ, and λκ is the rate
of convergence to the stable family of von Mises–Fisher distributions ρMκΩ, where κ
is the unique solution of the compatibility condition (2.18) such that κ > κ∗. Details
for the numerical computation of the Poincaré constant Λκ are given in the appendix
of [10]. The computations in dimensions 2 and 3 are depicted in Figure 7. We observe
that the rate of convergence to a given equilibrium is close to zero when ρ is close to
the corresponding threshold for the stability of this equilibrium, and large when ρ is
far from this threshold. Moreover, the rate λκ of convergence to a von Mises–Fisher
distribution is unbounded as ρ→∞, while the rate λ0 of convergence to the uniform
distribution is bounded by n− 1.
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Figure 7: Rates of convergence to both types of stable equilibria, as functions of the
density ρ, in dimensions 2 and 3.

5 Macroscopic models, hyperbolicity, and diffu-
sivity

We now go back to the spatially inhomogeneous system. We want to investigate the
hydrodynamic models that we can derive from the kinetic equation (2.5).

5.1 Scalings
In order to understand the roles of the various terms, it is useful to introduce di-
mensionless quantities. We set t0 the time unit and x0 = a t0 the space unit.
We assume that the range of the interaction kernel K is R, meaning that we
can write K(|x|) = 1

Rn
K̃( |x|

R
) (we recall that K is normalized to 1, so we still

have
∫
K̃(|ξ|) dξ = 1). We also assume that K̃ has second moment of order 1,

i.e. K̃2 = O(1), where
K̃2 = 1

2n

∫
Rn
K̃(|ξ|)|ξ|2 dξ. (5.1)

We now introduce dimensionless variables x̃ = x/x0, t̃ = t/t0, and we make the
change of variables f̃(x̃, ω, t̃) = xn0 f(x0x̃, ω, t0t̃), J̃f̃ (x̃, t̃) = xn0Jf (x0x̃, t0t̃)/a. Fi-
nally, we introduce the dimensionless quantities:

η = R

x0
, ν̂(|J̃

f̃
|) = ν(|Jf |) t0, τ̂(|J̃

f̃
|) = τ(|Jf |) t0.

In this new system of coordinates, the system (2.5) is written as follows (we still use
the notation Jf (x, t) =

∫
S f(x, ω, t)ω dω):∂tf + ω · ∇xf + ν̂(|Jf |)∇ω · (Pω⊥ω̄f f) = τ̂(|Jf |)∆ωf

Jf (x, t) = (Kη ∗ Jf )(x, t) dy , ω̄f = Jf
|Jf |

,
(5.2)
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where we have dropped the tildes for the sake of clarity, and where Kη is the rescaling
of K given by

Kη(x) = 1
ηn
K
(x
η

)
. (5.3)

Now, by fixing the relations between the three dimensionless quantities (5.1), we
define the regime we are interested in. We suppose that the diffusion and social
forces are simultaneously large, while the range of the social interaction η tends
to zero. More specifically, we let ε � 1 be a small parameter and we assume
that τ̂ = O(1/ε) (large diffusion), ν̂ = O(1/ε) (large social force). In order to
highlight these scaling assumptions, we define τ ], ν], which are all O(1) and such
that

τ̂ = 1
ε
τ ], ν̂ = 1

ε
ν]. (5.4)

Since η is supposed to be small, using the fact that K is isotropic, we can first
get the Taylor expansion of Jf with respect to η, using (5.3) and (5.1), when Jf is
sufficiently smooth with respect to the space variable x:

Jf = Jf + η2K2∆xJf +O(η4). (5.5)

Inserting this expansion into (5.2), and dropping all “hats” and “sharps”, we are
lead to:

ε(∂tf + ω · ∇xf) +K2η
2
[
∇ω · (Pω⊥`ff)−mf∆ωf

]
= Q(f) +O(η4), (5.6)

with

Q(f) = −ν(|Jf |)∇ω · (Pω⊥Ωf f) + τ(|Jf |)∆ωf,

Jf (x, t) =
∫
S
f(x, ω, t)ω dω, Ωf = Jf

|Jf |

`f = ν(|Jf |)
|Jf |

PΩ⊥
f

∆xJf + (Ωf ·∆xJf ) ν ′(|Jf |)Ωf ,

mf = (Ωf ·∆xJf ) τ ′(|Jf |),

where the primes denote derivatives with respect to |J |. We recover the same defini-
tion of Q as in the spatially homogeneous setting (2.8), and the additional terms `f
and mf do not depend on the velocity variable ω (they only depend on Jf and its
Laplacian ∆xJf ).

Our plan is now to investigate the hydrodynamic limit ε→ 0 in this model, within
two different regimes for the range of the social interaction η: firstly, η = O(ε), and
secondly, η = O(

√
ε). We have seen in [11] that the second scaling allows us to

retain some of the nonlocality of the social force in the macroscopic model, while
the first one does not. Indeed, ε corresponds to the characteristic distance needed
by an individual to react to the social force, while η is the typical distance at which
agents are able to detect their congeners. The first scaling assumes that these two
distances are of the same order of magnitude. The second one corresponds to a large
detection region compared to the reaction distance. Which one of these two regimes
is biologically relevant depends on the situation. For instance, we can imagine that
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the first scaling will be more relevant in denser swarms because in such systems, far
agents are concealed by closer ones.

In both cases, we will write f as f ε to insist on the dependence on ε. The limiting
behavior of the function f ε as ε → 0 is supposed to be a local equilibrium for the
operator Q, as can be seen in (5.6). Keeping in mind the results of the previous
section on the spatial homogeneous version, we will assume that f ε converges to
a stable equilibrium of a given type in a given region. Depending on the type of
equilibrium (uniform distribution or von Mises–Fisher distribution), we will observe
different behaviors.

5.2 Disordered region: diffusion model
We consider a region where f ε converges as ε → 0 to a uniform equilibrium ρ(x, t)
which is stable. Therefore we must have ρ < ρc.

We first remark that we can integrate (5.2) on the sphere to get the following
conservation law (conservation of mass):

∂tρfε +∇x · Jfε = 0. (5.7)

Therefore, if we suppose that the convergence is sufficiently strong, Jfε converges
to 0, and we get ∂tρ = 0.

To obtain more precise information, we are then looking at the next order in ε in
the Chapman–Enskog expansion method, in the same spirit as in the case of rarefied
gas dynamics (see [9] for a review). We obtain exactly the same model as in [10].
We prove the following theorem:

Theorem 3. With both scalings η = O(
√
ε) and η = O(ε), when ε tends to zero,

the (formal) first order approximation to the solution of the rescaled mean-field
model (5.6) in a “disordered region” (where the solution locally converges to a stable
uniform distribution) is given by

f ε(x, ω, t) = ρε(x, t)− ε nω · ∇xρ
ε(x, t)

(n− 1)nτ0
(
1− ρε(x,t)

ρc

) , (5.8)

where the density ρε satisfies the following diffusion equation

∂tρ
ε = ε

(n− 1)nτ0
∇x ·

( 1
1− ρε

ρc

∇xρ
ε
)
. (5.9)

Proof. We let ρε = ρfε and write f ε = ρε + εf ε1 (x, ω, t) (so we have
∫
S f

ε
1 dω = 0).

The assumption is that f ε1 is a O(1) quantity as ε→ 0. We then get

Jfε = εJfε1 , (5.10)

and the model (5.6) becomes:

ε(∂tρε + ω · ∇xρ
ε) = −εν ′(0)∇ω · (Pω⊥Jfε1ρ

ε) + ετ0∆ωf
ε
1 +O(ε2) +O(η2ε). (5.11)
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Additionally, using (5.7) and (5.10), we get that ∂tρε = O(ε). Therefore we can
put ε∂tρε into the O(ε2) terms of (5.11) and get, in both scalings,

∆ωf
ε
1 = 1

τ0
(∇xρ

ε − ν ′(0)(n− 1)ρεJfε1 ) · ω +O(ε).

We can solve this equation for f ε1 and, together with the fact that ν ′(0) = τ0n
ρc

(thanks
to the definition (2.20) of ρc), we get

f ε1 =
(
− 1
τ0(n− 1)∇xρ

ε + nρε

ρc
Jfε1

)
· ω +O(ε).

This gives us, using (3.3), that

Jfε1 = − 1
τ0n(n− 1)∇xρ

ε + ρε

ρc
Jfε1 +O(ε),

which implies that f ε1 = nJfε1 · ω +O(ε) and that we have

Jfε1 = −1
(n− 1)nτ0

(
1− ρε

ρc

)∇xρ
ε +O(ε).

Therefore we obtain the expression (5.8) of f ε1 . Moreover, inserting this expression
of Jfε1 into the conservation of mass (5.7) gives the diffusion model (5.9).

Remark 5.1. The same remark was made in [10] (see Remark 3.1 therein): the
expression of f ε1 , which is given by the O(ε) term of (5.8) confirms that the approx-
imation is only valid in the region where ρc − ρε � ε. The diffusion coefficient is
only positive in the case where the uniform distribution is stable for the homogeneous
model (ρε < ρc) and it blows up as ρε tends to ρc, showing that the Chapman-Enskog
expansion loses its validity.

5.3 Ordered region: hydrodynamic model and hyperbolicity
We now turn to the derivation of a macroscopic model in a region where the local
equilibria follow a given branch of stable von Mises–Fisher equilibria. More precisely,
we suppose that the function f ε converges towards ρ(x, t)Mκ(ρ(x,t))Ω(x,t) in a given
region, where κ(ρ) is a branch of solutions of the compatibility equation (2.22)
defined for a given range of positive values of ρ, and which correspond to stable
equilibria (in the sense of Theorem 2). This implies that κ is an increasing function
of ρ. The goal is to prove the following theorem, which gives the evolution equations
for ρ(x, t) and Ω(x, t), assuming that the convergence of f ε is as smooth as needed.

Theorem 4. We suppose that f ε converges as ε → 0 towards ρ(x, t)Mκ(ρ(x,t))Ω(x,t),
for a positive density ρ(x, t) and an orientation Ω(x, t) ∈ S, and where ρ 7→ κ(ρ)
is a branch of solutions of the compatibility equation (2.22). We also suppose that
the convergence of f ε and of all its needed derivatives is sufficiently strong. Then ρ
and Ω satisfy the following system of partial differential equations:

∂tρ+∇x · (ρc1Ω) = 0, (5.12)
ρ (∂tΩ + c2 (Ω · ∇x)Ω) + ΘPΩ⊥∇xρ = K2 δ PΩ⊥∆x(ρc1Ω), (5.13)
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where K2 is the scaling parameter corresponding to the limit of K2
η2

ε
as ε→ 0, and

where the coefficients c1, c2, Θ and δ are the following functions of ρ(x, t) (where
the dependence on ρ for κ or on κ(ρ) for c, c̃ or j is omitted when no confusion is
possible):

c1(ρ) = c(κ) (5.14)

c2(ρ) = c̃(κ) = 〈cos θ hκ(cos θ) sin2 θ〉M
〈hκ(cos θ) sin2 θ〉M

=
∫ π

0 cos θ hκ(cos θ) eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ) eκ cos θ sinn θ dθ , (5.15)

Θ(ρ) = 1
κ

+ (c̃− c) ρ
κ

dκ
dρ =

n− κ
c

+ κc̃− 1 + κ
j

dj
dκ

κ
(
n− κ

c
+ κc− 1 + κ

j
dj
dκ

) , (5.16)

δ(ρ) = ν(j)
c

(n− 1
κ

+ c̃
)
. (5.17)

The function hκ is defined below at Proposition 5.3.

Proof. The first equation (5.12) (for the time evolution of ρ) can easily be derived
from the conservation of mass (5.7), since the hypotheses imply that Jfε converges
to ρc(κ(ρ))Ω, and thanks to (5.5), we obtain:

∂tρ+∇x · (ρc(κ(ρ))Ω) = 0.

The main difficulty is the derivation of an equation of evolution for Ω, since we do
not have any conservation relation related to this quantity. To this aim, the main
tool consists in the determination of the so-called generalized collisional invariants,
introduced by Degond and Motsch [12] to study the model corresponding to the
case ν = τ = 1 and the scaling η = O(ε) in our setting. These generalized colli-
sional invariants were then used successfully to derive the same kind of evolution
equation for some variants of the model we are studying (see [10] when ν(|J |) = |J |
and τ = 1, [16] for the case where ν is a function of ρ, and where the interaction
is anisotropic, [13] for another type of alignment, based on the curvature of the
trajectories, and [11] in the case of the second scaling η = O(

√
ε) when ν = τ = 1).

The idea is to introduce, for a given κ > 0 and Ω ∈ S, the operator LκΩ (linearized
operator of Q):

LκΩ(f) = ∆ωf − κ∇ω · (fPω⊥Ω) = ∇ω ·
[
MκΩ∇ω

(
f

MκΩ

)]
,

so that we have Q(f) = τ(|Jf |)Lk(|Jf |)Ωf (f). And we define the set of generalized
collisional invariants CκΩ:
Definition 5.1. The set CκΩ of generalized collisional invariants associated to κ ∈ R
and Ω ∈ S, is the following vector space:

CκΩ =
{
ψ|
∫
ω∈S

LκΩ(f)ψ dω = 0, ∀f such that PΩ⊥Jf = 0
}
.

Hence, if ψ is a collisional invariant in CκΩ, we have
∫
ω∈SQ(f)ψ dω = 0 for any

function f such that k(|Jf |) = κ and Ωf = Ω.
The determination of CκΩ has been done in [16]. We recall the result here:
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Proposition 5.1. There exists a positive function hκ : [−1, 1]→ R such that

CκΩ = {ω 7→ hκ(ω · Ω)A · ω + C, C ∈ R, A ∈ Rn, with A · Ω = 0}.

More precisely, hκ(cos θ) = gκ(θ)
sin θ , where gκ is the unique solution in the space V

of the elliptic problem L̃∗κg(θ) = sin θ, where

L̃∗κg(θ) = − sin2−n θe−κ cos θ d
dθ (sin

n−2 θeκ cos θg′(θ)) + n−2
sin2 θ

g(θ),
V = {g | (n− 2)(sin θ)n2−2g ∈ L2(0, π), (sin θ)n2−1g ∈ H1

0 (0, π)}.

We now define the vector-valued generalized collisional invariant associated to κ
and Ω as

~ψκΩ(ω) = hκ(ω · Ω)PΩ⊥ω,

and we have the following useful property:

∀f such that k(|Jf |) = κ and Ωf = Ω,
∫
ω∈S

Q(f) ~ψκΩ dω = 0.

The next step consists in multiplying the rescaled kinetic model (5.6) by 1
ε
~ψκεΩfε ,

with κε = k(|Jfε|), and to integrate it on the sphere. We get,

P(Ωε)⊥
(
Xε +K2

η2

ε
[Y ε + Zε]

)
= O

(η4

ε

)
,

where

Xε =
∫
ω∈S

(∂tf ε + ω · ∇xf
ε)hκε(ω · Ωε)ω dω ,

Y ε =
∫
ω∈S
∇ω · (Pω⊥`fεf ε)hκε(ω · Ωε)ω dω ,

Zε =
∫
ω∈S

mfε∆ωf
ε hκε(ω · Ωε)ω dω .

Now we can pass to the limit ε → 0. We denote by K2 the limit of K2
η2

ε
, which

makes sense in both scalings (either η = O(ε), and K2 = 0, or η = O(
√
ε) and we

suppose that K2 is a positive quantity), and we obtain

PΩ⊥ (X +K2[Y + Z]) = 0, (5.18)

where, since we suppose that f ε → ρ(x, t)Mκ(ρ(x,t))Ω(x,t)), we have

X =
∫
ω∈S

(∂t(ρMκΩ) + ω · ∇x(ρMκΩ))hκ(ω · Ω)ω dω ,

Y =
∫
ω∈S
∇ω · (Pω⊥`ρMκΩρMκΩ)hκ(ω · Ω)ω dω ,

Z =
∫
ω∈S

mρMκΩ∆ω(ρMκΩ)hκ(ω · Ω)ω dω .

The computation of PΩ⊥ X has been done in [16]: we get

PΩ⊥ X = 〈hκ(cos θ) sin2 θ〉M ρ
κ

n− 1 (∂tΩ + c̃ (Ω · ∇x)Ω) + ΘPΩ⊥∇xρ, (5.19)
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where c̃ and Θ are given by (5.15) and the first expression of (5.16). We now
compute PΩ⊥Y and PΩ⊥Z. Since ∇ω ·(Pω⊥A) = −(n−1)A ·ω for any vector A ∈ Rn,
we get

Y = ρ
∫
ω∈S

[−(n− 1 + κω · Ω) `ρMκΩ · ω + κ `ρMκΩ · Ω]hκ(ω · Ω)ωMκΩ dω .

Writing ω = cos θΩ + sin θ v (orthogonal decomposition with v ∈ Sn−2), and using
the fact that

∫
Sn−2

v dv = 0 and
∫
Sn−2

v ⊗ v dv = 1
n−1PΩ⊥ , we obtain

PΩ⊥ Y = −〈hκ(cos θ) sin2 θ〉M ρ
n− 1 + κc̃

n− 1 PΩ⊥`ρMκΩ

= −〈hκ(cos θ) sin2 θ〉M ν(ρ c) n− 1 + κc̃

(n− 1)c PΩ⊥∆x(ρcΩ). (5.20)

Finally, since ∆ω(MκΩ) is a function of cos θ, the same decomposition and argument
shows that we have PΩ⊥Z = 0. Inserting (5.19) and (5.20) into (5.18) and dividing
by κ

n−1〈hκ(cos θ) sin2 θ〉M ends the derivation of (5.13), with δ given by (5.17).
We finally derive the expression of Θ given by the right-hand side of (5.16).

We differentiate the compatibility condition ρc = j with respect to κ (in a given
local branch of solutions), and we get c dρ

dκ + ρ dc
dκ = dj

dκ . As was shown in [10], we
have dc

dκ = 1− (n− 1) c
κ
− c2, therefore we get

κ

ρ

dρ
dκ = c

κ

j

dρ
dκ = κ

j

dj
dκ − ρ

κ

j
(1− (n− 1) c

κ
− c2) = (n− 1 + κ

j

dj
dκ −

κ

c
+ κc),

and finally, thanks to the first expression of (5.16), we have

Θ = 1
κ

+ c̃− c
n− 1 + κ

j
dj
dκ −

κ
c

+ κc
=

n− κ
c

+ κc̃− 1 + κ
j

dj
dκ

κ
(
n− κ

c
+ κc− 1 + κ

j
dj
dκ

) , (5.21)

which gives an expression of Θ in terms of κ and the functions c, c̃ and j only.

5.4 Hyperbolicity
As shown in [11,12,16], and more precisely in [10] when the coefficients c1, c2 and Θ
depend on ρ, we have the following

Proposition 5.2. The self-organized hydrodynamic (SOH) model (5.12)-(5.13) is
hyperbolic if and only if Θ > 0.

In that case it has been proved in [11] that the SOH model is locally well-posed
in dimension 2 (provided δ > 0) and in dimension 3 (for the scaling where K2 = 0,
with an additional condition for the orientation of the initial data). Therefore, in
this section, we study the sign of these coefficients in some generic situations.

Conjecture 5.1. For all κ > 0, we have 0 < c̃(κ) < c(κ). Consequently, in the
SOH model, we have δ > 0, and the SOH model is well-posed if it is hyperbolic.
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Numerically, this conjecture is clear, at least in dimension 2 and 3, as can be
seen in Figure 3 of [10]. We know it is true when κ is small or large, thanks to the
asymptotics of c and c̃ given in [16]:

c =


1
n
κ− 1

n2(n+2)κ
3 +O(κ5) as κ→ 0,

1− n−1
2κ + (n−1)(n−3)

8κ2 +O(κ−3) as κ→∞,
(5.22)

c̃ =


2n−1

2n(n+2)κ+O(κ2) as κ→ 0,
1− n+1

2κ + (n+1)(3n−7)
24κ2 +O(κ−3) as κ→∞.

(5.23)

These asymptotics can also help us to know if the system is hyperbolic in various
regimes. In the next four propositions, we provide different cases where we can deter-
mine the hyperbolicity of the SOH model with simple assumptions on the behavior
of the function k. The first result is about non-hyperbolicity in the neighborhood of
the critical threshold ρ∗ for a first order phase transition.

Proposition 5.3. Suppose that there is a first order phase transition with hystere-
sis as described by Proposition 4.3. If Conjecture 5.1 is true, then the SOH model
associated to the branch of stable von Mises–Fisher equilibria (for ρ > ρ∗) satis-
fies Θ(ρ) < 0 if ρ is sufficiently close to ρ∗. The SOH model is not hyperbolic.

Proof. We have ( j
c
)′(κ∗) = 0 and ( j

c
)′(κ) > 0 for κ > κ∗. This gives that dκ

dρ → +∞
as κ→ κ∗, and then we use (5.16) and Conjecture 5.1 to get that Θ→ −∞ as κ→ κ∗
(for κ > κ∗).

We now provide the same type of proposition in the neighborhood of the critical
threshold ρc in the case of a second order phase transition. The following proposition
gives a strong link between hyperbolicity and the critical exponent of a second order
phase transition: it is hyperbolic when the critical exponent β is greater than 1

2 , and
not hyperbolic when β < 1

2 (this threshold value 1
2 also corresponds to the lowest

possible critical exponent which can appear in the case of the simple criterion given
by Lemma 3).

Proposition 5.4. We suppose that there is a second order phase transition as de-
scribed by Proposition 4.1, and we consider the SOH model associated to the von
Mises–Fisher equilibria (for ρ > ρc). We suppose furthermore that there is a critical
exponent β as stated in Definition 4.1, and we assume that this estimation is also
true at the level of the derivative:

dκ
dρ ∼ nα0β(ρ− ρc)β−1, as ρ >→ ρc.

Then

(i) If β < 1
2 , then Θ(ρ) < 0 if ρ is sufficiently close to ρc. The SOH model is not

hyperbolic.

(ii) If β > 1
2 , then Θ(ρ) > 0 if ρ is sufficiently close to ρc. The SOH model is

hyperbolic.
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(iii) If β = 1
2 and α0 6=

√
4(n+2)
5nρc , then when ρ is sufficiently close to ρc, Θ(ρ) is of

the sign of
√

4(n+2)
5nρc − α0.

Proof. We have κ(ρ) ∼ nα0(ρ − ρc)β, as ρ >→ ρc. So we get ρ
κ

dκ
dρ ∼ β ρc

ρ−ρc . Finally,
using (5.22)-(5.23), we get c̃ − c ∼ − 5

2n(n+2)κ as κ → 0. We can then obtain an
equivalent of Θ as ρ >→ ρc, with (5.16):

Θ(ρ) ∼


1

nα0
(ρ− ρc)−β if β > 1

2
−5 ρc α0 β

2(n+2) (ρ− ρc)β−1 if β < 1
2(

1
nα0
− 5 ρc α0

4(n+2)

)
1√
ρ−ρc if β = 1

2 ,

where the last expression is valid only if 1
nα0
6= 5ρcα0

4(n+2) . The sign of Θ is then directly
given by these equivalents, and this ends the proof.

It is possible to refine Proposition 4.2 in order to have the critical exponent
estimation on the level of the derivative, and then express the hyperbolicity of the
system with the help of the expansion of k only. In summary, we get the following
proposition, the proof of which is left to the reader:

Proposition 5.5. If k satisfies:

k′(|J |) = n

ρc
− a(q + 1)|J |q + o(|J |q) as |J | → ∞,

then we have

(i) if q < 2 and a > 0, the critical exponent is given by β = 1
q

and the SOH model
is hyperbolic when ρ is sufficiently close to ρc.

(ii) if q = 2 and a > n2

4 ρ3
c(n+2) , then β = 1

2 and the SOH model is hyperbolic when ρ

is sufficiently close to ρc.

(iii) if q = 2 and − n2

ρ3
c(n+2) < a < n2

4 ρ3
c(n+2) , then β = 1

2 and the SOH model is not
hyperbolic for ρ close to ρc.

We finally give a result about hyperbolicity when ρ is large, depending on the
behavior of k as |J | → ∞.

Proposition 5.6. We suppose that k(|J |) ∼ a |J |b as |J | → ∞ (with a, b > 0), and
that this equivalent is also true at the level of the derivative: k′(|J |) ∼ a b |J |b−1. We
consider the SOH model associated to a branch of stable von Mises–Fisher equilibria.

(i) If 0 < b < 1, then for ρ sufficiently large, Θ(ρ) < 0 and the SOH model is not
hyperbolic.

(ii) If b > 1, then for ρ sufficiently large, Θ(ρ) > 0 and the SOH model is hyper-
bolic.
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(iii) If b = 1, we have to make stronger hypotheses on k. For example, if we suppose
that, as |J | → ∞, we have k(|J |) = a|J |+ r + o(1) and k′(|J |) = a+ o(|J |−1)
with r 6= n+1

6 , then for ρ sufficiently large, Θ(ρ) is of the sign of r − n+1
6 .

Proof. We first use the expansion (5.22) to get that n−1− κ
c

+κc ∼ −n+1
2κ as κ→∞,

and that c̃ − c = − 1
κ

+ n−2
3κ2 + o(κ−2). Using Hypothesis 2.2, the assumptions

become j(κ) ∼ (κ
a
) 1
b and dj

dκ = [k′(j(κ))]−1 ∼ (a b)−1(κ
a
) 1
b
−1 as κ → ∞. This

gives ρ = j(κ)
c(κ) ∼ (κ

a
) 1
b as κ→∞, which can be inverted to get κ ∼ a ρb as ρ→∞.

Finally, for b 6= 1, we get, with the left part of (5.21):

Θ(ρ) ∼
(
1− 1

b
) 1
a ρb

as ρ→ +∞.

This proves the first two points. In the case where b = 1, we suppose that we have
the expansions k(|J |) = a|J | + r + o(1) and k′(|J |) = a + o(|J |−1) as |J | → ∞.
Then j(κ) = 1

a
(κ− r) + o(1) and dj

dκ = 1
a

+ o(κ−1). And we finally get, using the left
part of (5.21), as κ→ +∞:

Θ = 1
κ

+
−κ−1 + n−2

3 κ−2 + o(κ−2)
1 + (r − n−1

2 )κ−1 + o(κ−1)
= (r − n+1

6 )κ−2 + o(κ−2),

Since κ ∼ a ρ as ρ→∞, we have Θ(ρ) ∼ 1
a2 (r − n+1

6 )ρ−2 as ρ→∞ and this proves
point (iii).

Remark 5.2. The case b = 0 can also be treated if we assume Conjecture 5.1.
This corresponds to the case where k takes values on [0, κmax) with κmax < ∞. If
furthermore we assume that its derivative satisfies k′ ∼ a|J |−b (with b > 1 and a > 0)
as |J | → ∞, then after the same kind of computations we get that Θ(ρ) → +∞
as ρ→ +∞, and the system is hyperbolic.

Let us now comment these results in the case of specific examples. The case
where ν(|J |) = |J | and τ(|J |) = 1 corresponds to the model studied in [10]. It was
shown to be non hyperbolic (numerically for all ρ > ρc = n, and theoretically for ρ
large or close to ρc). We now see that it corresponds to points (iii) of Proposition 5.6
and Proposition 5.5, which are the special cases separating hyperbolicity to non-
hyperbolicity. A really slight change in the function k in this model could easily
lead to hyperbolicity, while nearly keeping the same phase transition phenomena,
from the point of view of equilibria.

The case studied in Section 4.3 and leading to a first order phase transition
corresponds to the function k(|J |) = |J | + |J |2. Thanks to Proposition 5.3 and
to 5.6, we get that the corresponding SOH model is not hyperbolic in both regimes:
when ρ is close to ρ∗ and when ρ is sufficiently large. Numerical computations of
the coefficient Θ suggest that this is the case for all the values of ρ > ρ∗ (at least in
dimensions 2 and 3).

Finally, we are interested in the original model presented in [12], where ν and τ
are constant. We remark that hypotheses 2.1 and 2.2 do not cover this model,
but we can see it as a limiting case of a regularized ν satisfying such hypotheses,
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such as νε(|J |) = |J |
ε+|J | . In that case, we have ρεc = n ε τ0, and by Lemma 3 and

Proposition 4.2, we get that there is a second order phase transition with critical
exponent 1. Furthermore, with Remark 5.2 and Proposition 5.4, we get that the
corresponding SOH model is hyperbolic when ρ is large or close to ρc. Figures 8
and 9 correspond to the plots of the phase diagram (the order parameter c) and of
the function Θ for three different values of ε, with τ0 = 1

3 and n = 2. We observe
that the system is always hyperbolic.
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Figure 8: Order parameter c1, as function of the density ρ, in dimension 2, for the
regularized model.

We get the same conclusion for a regularization given by νε(|J |) = |J |√
ε2+|J |2

,
with a critical exponent β = 1

2 this time, and k satisfies the condition (ii) of Propo-
sition (5.5) if τ0 >

1√
2n(n+2)

. This gives a practical example of a second order phase
transition with the minimal critical exponent such that the associated SOH model
is hyperbolic in the neighborhood of the threshold ρc (indeed, in that case, thanks
to Proposition (5.4), we must have β > 1

2).

6 Conclusion
In this work, we have provided a comprehensive and rigorous description of phase
transitions for kinetic models describing self-propelled particles interacting through
alignment. We have highlighted how their behavior results from the competition
between alignment and noise. We have considered a general framework, where both
the alignment frequency and noise intensity depend on a measure of the local align-
ment. We have shown that, in the spatially homogeneous case, the phase transition
features (number and nature of equilibria, stability, convergence rate, phase diagram,

48



ε = 0.1
ε = 0.3
ε = 1

2 4 60
0

0.5

1

1.5

2

Density ρ

C
oe

ffi
ci

en
t

Θ

Figure 9: Coefficient Θ, as function of the density ρ, in dimension 2, for the regu-
larized model.

hysteresis) are totally encoded in the function obtained by taking the quotient of the
alignment and noise intensities as functions of the local alignment. The phase transi-
tions dealt with in this paper belong to the class of spontaneous symmetry-breaking
phase transitions that also appear in many physics systems such as ferromagnetism,
liquid crystals, polymers, etc. We have also provided the derivation of the macro-
scopic models (of hydrodynamic or diffusion types) that can be obtained from the
knowledge of the stable equilibria and classified their hyperbolicity. In particular,
we have provided a strong link between the critical exponent in the second order
phase transition and the hyperbolicity of the hydrodynamic model. In the future,
we will investigate how the hydrodynamic and diffusion regimes can be spatially
connected through domain walls and find the dynamic of these domain walls.

A Appendix: numerical methodology for the hys-
teresis simulation

In this appendix, we give more details on the computation of the hysteresis loop
provided in section 4.3. In order to highlight the role of the density ρ as the key
parameter for the phase transition, we introduce the probability measure f̃ = f

ρ
and

we rewrite the homogeneous kinetic equation (2.7) in terms of f̃ . We get

∂tf̃ = τ(ρ|J
f̃
|)∆ωf̃ − ν(ρ|J

f̃
|)∇ω · (Pω⊥Ω

f̃
f̃). (A.1)

When ρ is constant, this equation is equivalent to (2.7). We will now consider ρ
as a parameter of the equation (and not anymore a parameter for the mass of
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initial condition, since f̃ is now a probability measure), but the long time behavior
(equilibria, stability, convergence) is still given by this parameter ρ. Finally, we let ρ
vary slowly with time (compared to the time scale of convergence to equilibrium,
given by Figure 7), as we expect it would be the case in the spatial inhomogeneous
framework given by the kinetic equation (2.5).

A.1 Simulation at the kinetic level.
Let us now present how the numerical simulations of the system (A.1) in dimen-
sion n = 2, depicted in Figure 4, have been obtained. We start with an initial
condition which is a small perturbation of the uniform distribution, and we take a
varying parameter of the form ρ = 1.75 − 0.75 cos( π

T
t), with T = 500. We use a

standard central finite different scheme (with 100 discretization points), implicit in
time (with a time step of 0.01). The only problem with this approach is that the
solution converges strongly to the uniform distribution for ρ < ρc. So after pass-
ing ρc, the linear rate of increase for J

f̃
is given by ρ

ρc
− 1, by virtue of (3.9), and

is very slow when ρ is close to ρc. So since J
f̃

is initially very small when passing
the threshold ρ = ρc, the convergence to the stable von Mises–Fisher distribution
is very slow. Two ideas can be used to overcome this problem: either injecting
noise in the system, or more efficiently, adding a threshold ε and strengthening |J

f̃
|

when ‖f̃ − 1‖∞ 6 ε, replacing f̃ at the end of such a step by

f̃ + max(0, ε− ‖f̃ − 1‖∞) Ω
f̃
· ω.

We note that after this transformation, we still have ‖f̃ − 1‖∞ 6 ε if it was the case
before applying the transformation.

Figure 4 depicts the result of a numerical simulation with a threshold ε = 0.02.
We clearly see this hysteresis cycle, which agrees very well with the theoretical
diagram. The jumps at ρ = ρ∗ and ρ = ρc are closer to the theoretical jumps
when T is very large.

A.2 Simulations at the particle level.
Now, since the kinetic equation (2.5) comes from a limit of a particle system, we are
interested in observing this hysteresis phenomenon numerically at the level of the
particle system, where noise is already present in the model, since it is a system of
stochastic differential equations.

As for (2.5), it is easy to derive the mean-field equation (A.1), in the spirit of
Proposition 2.1, from the following system:

dωi = ν(ρ|J |)Pω⊥i Ω dt+
√

2τ(ρ|J |)Pω⊥i ◦ dBi
t, (A.2)

Ω = J

|J |
, J = 1

N

N∑
i=1

ωi. (A.3)

Here, once again, the parameter ρ is a parameter of the equation, which can be
variable in time. We perform numerical simulations of this system for a large number

50



of particles, with ρ varying as in the numerical simulation of the kinetic model. As
before, we start with a initial condition which consists of N = 10000 particles
uniformly distributed on S1, and we take ρ = 1.75− 0.75 cos( π

T
t), with T = 500. We

use a splitting method for the random and the deterministic parts of this equation
(with a time step of 0.01). We then plot the order parameter c, given by |J |. The
result is given in Figure 5.

Let us remark that, thanks to the central limit theorem, the mean J of N vectors
uniformly distributed on the circle has a law equivalent to a multivariate normal
distribution in R2 centered at 0, and with covariance matrix 1

2N I2. Therefore |J | is
equivalent to a Rayleigh distribution of parameter 1√

2N , and so the mean of |J | is
equivalent to

√
π

2
√
N

. In our case, that gives a mean of |J | of approximately 0.009, of
the same order as in the previous section, since the threshold ε ensures that, when f̃
is close to the uniform distribution |J

f̃
| ≈ ε

2 with ε = 0.02.
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de Saint-Flour XIX — 1989, volume 1464 of Lecture Notes in Mathematics,
pages 165–251. Springer, Berlin, 1991.

[26] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces, volume 3
of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg, 2007.

[27] J. Toner, Y. Tu, and S. Ramaswamy. Hydrodynamics and phases of flocks.
Ann. Phys., 318:170–244, 2005.
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