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Abstract. This paper discusses a numerical method for computing the evolu-

tion of large interacting system of quantum particles. The idea of the random
batch method is to replace the total interaction of each particle with the N −1

other particles by the interaction with p ≪ N particles chosen at random at

each time step, multiplied by (N − 1)/p. This reduces the computational cost
of computing the interaction potential per time step from O(N2) to O(N).
For simplicity, we consider only in this work the case p = 1 — in other words,

we assume that N is even, and that at each time step, the N particles are or-
ganized in N/2 pairs, with a random reshuffling of the pairs at the beginning

of each time step. We obtain a convergence estimate for the Wigner transform

of the single-particle reduced density matrix of the particle system at time t
that is both uniform in N > 1 and independent of the Planck constant h̵. The

key idea is to use a new type of distance on the set of quantum states that is
reminiscent of the Wasserstein distance of exponent 1 (or Monge-Kantorovich-

Rubinstein distance) on the set of Borel probability measures on Rd used in

the context of optimal transport.

1. Introduction

Consider the quantum Hamiltonian for N identical particles with unit mass
located at positions x1, . . . , xN ∈ Rd:

(1) HN ∶=
N

∑
m=1

− 1
2
h̵2∆xm + 1

N−1 ∑
1≤l<n≤N

V (xl − xn) ,

where h̵ is the reduced Planck constant. The N - particles in this system interact via
a binary (real-valued ) potential V assumed to be even, bounded and sufficiently
regular (at least of class C1,1 on Rd). The coupling constant 1

N−1
is chosen in order

to balance the summations in the kinetic energy (involving N terms) and in the
potential energy (involving 1

2
N(N − 1) terms).

We seek to compute the solution ΨN ≡ ΨN(t, x1, . . . , xN) ∈ C of the Schrödinger
equation

(2) ih̵∂tΨN(t, x1, . . . , xN) = HNΨN(t, x1, . . . , xN) , ΨN ∣
t=0

= Ψin
N

where t ≥ 0 is the time while xm ∈ Rd is the position of the mth particle. When
solving (2), the computation is exceedingly expensive due to the smallness of h̵
which demands small time steps ∆t and small mesh sizes of order h̵ for the con-
vergence of the numerical scheme, due to the oscillation in the wave function ΨN

with frequency of order 1/h̵ (see [2, 18]). On top of this, any numerical scheme
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for (2) requires computing, at each time step, the sum of the interaction potential
for each particle pair in the N -particle system, i.e. the sum of 1

2
N(N − 1) terms.

For large values of N , the cost of this computation, which is of order O(N2), may
become significant at each time step. The purpose of the Random Batch Method
(RBM) described below is precisely to reduce significantly the computational cost
of computing the interacting potential from O(N2) to O(N).

Throughout this paper, we assume for simplicity that N ≥ 2 is an even integer.
Let σ1, σ2, . . . , σj , . . . be a random sequence of mutually independent permutations
distributed uniformly in SN . Each permutation σ ∈ SN defines a partition of
{1, . . . ,N} into N/2 batches of two indices (pairs) as follows:

{1, . . . ,N} =

N/2

∐
k=1

{σ(2k − 1), σ(2k)} .

Pick a time step ∆t > 0, set

Tt(l, n) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if {l, n} = {σ[ t
∆t ]+1(2k−1), σ[ t

∆t ]+1(2k)} for some k = 1, . . . , N
2
,

0 otherwise,

and consider the time-dependent Hamiltonian

(3) HN(t) ∶=
N

∑
m=1

− 1
2
h̵2∆xm + ∑

1≤l<n≤N

Tt(l, n)V (xl − xn) .

In other words, at each time step, the particle labels m = 1, . . . ,N are reshuffled
randomly, then grouped pairwisely, and the potential applied to the mth particle
by the system of N − 1 other particles is replaced with the interaction potential of
that particle with the other — only one in this case — particle in the same group
(batch).

The motivation of the RBM is that the computation of the solution Ψ̃N ∈ C of
the time-dependent, random batch Schrödinger equation

(4) ih̵∂tΨ̃N(t, x1, . . . , xN) = HN(t)Ψ̃N(t, x1, . . . , xN) , Ψ̃N ∣
t=0

= Ψ̃in
N

is much less costly than computing the solution ΨN of the N -body Schrödinger (2)
for large values of N . Clearly, for each time step the cost of computing the interac-
tion potential is reduced from O(N2) to O(N). We remark that the computational
cost of reshuffling the N labels is O(N) by Durstenfeld’s algorithm [11]. Of course,
one needs to prove that (4) is a “good approximation of ΨN” for a sufficiently small
time-step ∆t.

Our goal in the present paper is to show that the RBM converges in some sense
as ∆t→ 0, with an error estimate that is both

(a) independent of N , and
(b) uniform in h̵ ∈ (0,1).

Obviously, one wishes to use the RBM for finite, albeit possibly large, values of
N . It is therefore an obvious advantage to have an error estimate for the RBM
that is independent of N , instead of an asymptotic rate of convergence that would
be valid only in the limit as N → +∞. Specifically, the error bound obtained in this
way is small even for moderate values of N . This explains the need for condition
(a). Moreover, the RBM is known to converge in the case of classical dynamics
(see [17]). It is therefore natural to seek an error estimate for the quantum RBM
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method which does not deteriorate in the semiclassical regime, and this accounts
for condition (b).

Our main results on this problem are gathered in the next section, especially in
Theorem 2.1.

There are many variants of the RBM presented above. For instance, one could
divide the N particles in batches of p (instead of only 2, but with p≪ N) particles
to enhance the accuracy, or reduce the variance of the method (assuming of course
that N is a multiple of p for simplicity). Likewise, one could replace the PDE (4)
with some numerical approximation thereof — for instance one could approximate
the solution of (4) by alternating direction method, where, at each time-step, one
replaces the resolution of (4) by that of N/2 Schrödinger 2-body equations for each
particle pair belonging to the same batch.

The RBM for the classical dynamics of large particle systems has been proposed
and analyzed in [17]. However, obtaining error bounds which satisfy the conditions
(a)-(b) listed above on random batch algorithms for quantum particle systems re-
quires completely new ideas, especially on the problem of metrizing the state space
as the number N of interacting particles tends to infinity. For that reason, the
present paper discusses only the simplest possible formulation of the RBM, specifi-
cally the approximation of the solution of (2) by that of (4) with batches of only 2
particles, in order to focus our attention on the essential features of this problem.

The origins of the random batch method introduced in [17] for classical interact-
ing particle systems can be found in stochastic programming (see for instance the
discussion of the stochastic gradient method in [22]), and more specifically in the
applications of that method in the context of machine learning (see [1, 24] and the
references therein). A detailed presentation of stochastic approximation methods
can be found in [19], while [3] provides a nice introduction to the dynamical aspects
of these methods. In [17], and also in the problem under study in this paper, an
error estimate of the RBM is established for unsteady, time-dependent problems,
while in stochastic optimization methods such as the stochastic Gradient descent
methods, one uses pseudo-time and the goal is to prove convergence toward the
steady state.

2. Mathematical Setting and Main Result

We have introduced the N -body quantum dynamics and its random batch ap-
proximation via the Schrödinger equations (2) and (4). However, it will be more
convenient to couch the analysis leading to our error estimates in terms of the
corresponding von Neumann equations, which we recall below.

Henceforth we denote H ∶= L2(Rd;C) and HN = H⊗N ≃ L2((Rd)N ;C) for each
N ≥ 2. The algebra of bounded operators on H is denoted by L(H), while L1(H) ⊂

L(H) and L2(H) are respectively the two-sided ideals of trace-class and Hilbert-
Schmidt operators on H. The operator norm of A ∈ L(H) is denoted ∥A∥. A density
operator on H is a trace-class operator R on H such that

R = R∗
≥ 0 and traceH(R) = 1 .
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An example1 of density operator on H is the H-orthogonal projection on Cψ for
ψ ∈ H satisfying ∥ψ∥H = 1, henceforth denoted ∣ψ⟩⟨ψ∣. The set of density operators
on a separable Hilbert space H is henceforth denoted D(H).

The N -body von Neumann equation is the following differential equation with
unknown t↦ R(t), an operator-valued function of t:

(5) ih̵∂tRN(t) = HNRN(t) −RN(t)HN =∶ [HN ,RN(t)] , RN(0) = RinN .

Since V ∈ C(Rd) is bounded real-valued, the N -body quantum HamiltonianHN has
a self-adjoint extension to HN , so that the solution of (2) is ΨN(t, ⋅) = e−itHNΨin

N ,
while the solution of (5) is given by

(6) RN(t) = e−itHN /h̵RinN e
itHN /h̵ .

In particular, if RinN ∈ D(HN), then RN(t) ∈ D(HN) for each t ≥ 0.
Likewise, if RinN = ∣Ψin

N ⟩⟨Ψin
N ∣, then RN(t) = ∣ΨN(t)⟩⟨ΨN(t)∣ for each t ≥ 0. Con-

versely, if RN(t) is a rank-one density operator, its range is of the form CΨN(t) with
∥ΨN(t)∥HN = 1, and this defines a unique ΨN(t) so that RN(t) = ∣ΨN(t)⟩⟨ΨN(t)∣
up to multiplication by a complex number of modulus one. In other words, RN(t)
is in one-to-one correspondence with the quantum state associated to ΨN(t), that
is to say, in accordance with the Born interpretation, with the complex line in HN
spanned by ΨN(t). This explains the connection between (2) and (5).

Likewise, the random batch von Neumann equation is the differential equation
with unknown t↦ R̃N(t), an operator-valued function of t:

(7) ih̵∂tR̃N(t) = [HN(t), R̃N(t)] , R̃N(0) = RinN .

The formula giving R̃N(t) is

R̃N(t) = U(t,0)R̃N(0)U(0, t)

where, for each 0 ≤ s ≤ t,

U(s, t) ∶= e−
i(s−[s/∆t]∆t)

h̵ HN ([ s
∆t ]∆t)

[t/∆t]−1

∏
j=[s/∆t]

e
i∆t
h̵ HN (j∆t)e

i(t−[t/∆t]∆t)
h̵ HN ([ t

∆t ]∆t) ,

U(t, s) ∶= U(s, t)∗ .

Henceforth we denote for simplicity

(8) U(t, s)A ∶= U(t, s)AU(s, t)

for each A ∈ L(H); hence

(9) R̃N(t) = U(t,0)RinN , t ≥ 0 .

Since our purpose is to find an error estimate for the RBM that is independent
of the particle number N , we first need to define in terms of RN(t) and R̃N(t)
quantities of interest to be compared that are independent of N . For instance
one cannot hope to use the trace-norm of R̃N(t) − RN(t) since both R̃N(t) and
RN(t), and the trace-norm itself for elements of L1(HN) significantly depend on
N . (There are other reasons for not using the trace-norm in this context, which

1Throughout this paper, we use Dirac’s bra-ket notation. A square integrable function ψ ≡
ψ(x) ∈ C viewed as a vector in H is denoted ∣ψ⟩, while the notation ⟨ψ∣ designates the linear

functional

H ∋ φ↦ ∫
Rd

ψ(x)φ(x)dx =∶ ⟨ψ∣φ⟩ ∈C .
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will be explained later.) A common practice when considering large systems of
identical particles is to study the reduced density operators. Assume that RinN has
an integral kernel rin ≡ rin(x1, . . . , xN ; y1, . . . , yN) satisfying the symmetry

(10) rin(x1, . . . , xN ; y1, . . . , yN) = rin(xσ(1), . . . , xσ(N); yσ(1), . . . , yσ(N))

for a.e. (x1, . . . , xN ; y1, . . . , yN) ∈ R2dN and each permutation σ ∈ SN . Then, for
each t ≥ 0, the N -body density operator RN(t) solution of (5) satisfies the same
symmetry, i.e. it has an integral kernel of the form r(t;x1, . . . , xN ; y1, . . . , yN) such
that

(11) r(t;x1, . . . , xN ; y1, . . . , yN) = r(t;xσ(1), . . . , xσ(N); yσ(1), . . . , yσ(N))

for a.e. (x1, . . . , xN ; y1, . . . , yN) ∈ R2dN , all t ≥ 0 and each permutation σ ∈SN . The
1-particle reduced density operator of RN(t) ∈ D(HN) is RN,1(t) ∈ D(H) defined
by the integral kernel

(12) r1(t, x, y) ∶= ∫
(Rd)N−1

r(t;x, z2, . . . , zN ; y, z2, . . . , zN)dz2 . . . dzN .

(This operation is legitimate for a trace-class operator R on HN : indeed, R has an
integral kernel r(x1, . . . , xN ; y1, . . . , yN) such that

(z1, . . . , zN) ↦ r(x1 + z1, . . . , xN + zN ;x1, . . . , xN)

belongs to C(RdN
z1,...,zN

;L1(RdN
x1,...,xN

)) according to Footnote 1 on p. 61 in [14].)

Even if RinN satisfies the symmetry (10), in general R̃N(t) does not satisfy the
symmetry analogous to (11) for t > 0 (with r replaced with r̃, an integral kernel for

R̃N(t)) because the random batch potential

∑
1≤l<n≤N

Tt(l, n)V (xl − xn)

is not invariant under permutations of the particle labels, at variance with the
N -body potential

1

N − 1
∑

1≤l<n≤N

V (xl − xn) .

For that reason, the 1-particle reduced density operator of R̃N(t) is R̃N,1(t) ∈ D(H)

defined for all t > 0 by the integral kernel

(13) r̃1(t, x, y) ∶=
1

N

N

∑
j=1
∫
(Rd)N−1

r̃(t;Zj,N [x], Zj,N [y])dẐj,N ,

with the notation

Zj,N [x] ∶= z1, . . . , zj−1, x, zj+1 . . . , zN , dẐj,N = dz1 . . . dzj−1dzj+1 . . . dzN .

(Obviously (13) holds with r1 and r in the place of r̃1 and r̃ respectively because
of the symmetry (11).)

Our main result on the convergence of the RBM for the N -body von Neumann
equation (5) (or for the N -body Schrödinger equation (2)) is stated in terms of the

Wigner functions of the density operators RN(t) and R̃N(t). We first recall the
definition of the Wigner function of an operator S ∈ L2(H): let s ≡ s(x, y) be an
integral kernel for S. Then s ∈ L2(Rd ×Rd) and the Wigner function of S is the
element of L2(Rd ×Rd) defined by the formula

Wh̵[S](x, ⋅) ∶=
1

(2π)d
F(y ↦ s(x + 1

2
h̵y, x − 1

2
h̵y)) for a.e. x ∈ Rd ,
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where F designates the Fourier transform on L2(Rd). If the argument of F is
integrable in y, then

Wh̵[S](x, ξ) ∶=
1

(2π)d ∫
Rd
s(x + 1

2
h̵y, x − 1

2
h̵y)e−iξ⋅ydy .

When S = ∣ψ⟩⟨ψ∣ with ψ ∈ H, the Wigner function of S is often denoted Wh̵[ψ].
The reader is referred to [20] for more details on the Wigner function.

For each integer M ≥ 1, we also introduce the dual norm

∣∣∣f ∣∣∣−M ∶=sup

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣∬
Rd×Rd

f(x, ξ)a(x, ξ)dxdξ∣

RRRRRRRRRRRRRRR

a ∈ Cc(R
d
×Rd

) , and

max
∣α∣,∣β∣≤M
∣α∣+∣β∣>0

∥∂αx ∂
β
ξ a∥L∞(Rd×Rd)≤1

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

With the material introduced above, we can state our main results in the follow-
ing theorem.

Theorem 2.1. Assume that N ≥ 2 and that V ∈ C(Rd) is a real-valued function
such that

V (z) = V (−z) for all z ∈ Rd , lim
∣z∣→+∞

V (z) = 0 , and ∫
Rd

(1+∣ω∣2)∣V̂ (ω)∣dω < ∞ .

Let RinN ∈ D(HN), and let RN(t) and R̃N(t) be defined respectively by (6) and (9).

Let RN,1(t) and R̃N,1(t) be the single-particle reduced density operators defined in

terms of RN(t) and R̃N(t) by (12).
Then there exists a constant γd > 0 depending only on the dimension d of the

configuration space such that, for each t > 0, one has

(14)
∣∣∣Wh̵[ER̃N,1(t)] −Wh̵[RN,1(t)]∣∣∣−[d/2]−3

≤ 2γd∆te
6tmax(1,

√
dL(V ))Λ(V )(2 + 3tΛ(V )max(1,∆t) + 4

√
dL(V )t∆t) .

where E is the mathematical expectation and ∆t the reshuffling time-step in the
definition of the random batch Hamiltonian (3), while

L(V ) ∶= 1
(2π)d ∫

Rd
∣ω∣2∣V̂ (ω)∣dω , Λ(V ) ∶= 1

(2π)d ∫
Rd

d

∑
µ=1

∣ωµ∣∣V̂ (ω)∣dω ,

where ων is the ν-th component of ω.

Notice that the above result holds for the most general N -particle initial density
operator RinN .

This error estimate satisfies both conditions (a) and (b). That it satisfies (a)
is obvious, since N appears on neither side of (14). That it satisfies (b) is seen
with the help of Theorem III.1 in [20]. Indeed, for each t ≥ 0, the operators RN(t)

and R̃N(t) define two bounded families of elements of D(H) indexed by N ≥ 2

and h̵ ∈ (0,1). Thus, Wh̵[ER̃N,1(t)] and Wh̵[RN,1(t)] are relatively compact in
the dual space A′ defined in Proposition III.1 of [20], and the limit points of these
families as h̵→ 0 are positive measures µ̃(t) and µ(t) on the phase space Rd ×Rd.

With relatively mild tightness assumptions on the behavior of Wh̵[ER̃N,1(t)] and
Wh̵[RN,1(t)] in the limit as ∣x∣ + ∣ξ∣ → ∞, these “Wigner measures” µ̃(t) and µ(t)

encode the behavior of the reduced density operators R̃N,1(t) and RN,1(t) in the
semiclassical regime. After checking how the dual norm ∣∣∣ ⋅ ∣∣∣−[d/2]−3 behaves on
weakly-* converging sequences in A′, one can therefore hope that (14) implies an
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estimate for the difference of the N -body reduced Wigner measure µ(t), and the
expected value of its random batch analogue µ̃(t), since the right hand side of (14)
does not involve h̵.

The error estimate (14) can also be stated directly in terms of the density op-

erators RN,1(t) and ER̃N,1(t): see formula (32) in section 4.1 below. This new
formulation of the error bound involves a new metric dh̵ on the set of density op-
erators on H, introduced in Definition 4.1. Using this new metric dh̵ instead of
the (more traditional) trace norm is the key to satisfying the uniformity conditions
(a) and (b) formulated in the introduction — i.e. the uniformity in the particle
number N and in the Planck constant h̵ respectively. The novelty of this approach
is that using the new metric dh̵ solves both the stiffness issue pertaining to the fast
oscillations at frequency of order 1/h̵, and the “curse of dimensionality”, i.e. the
fact that any numerical error in the evaluation of the interaction potential is am-
plified N times in the N -particle quantum Hamiltonian HN . To clarify completely
this point, we shall compare in detail the key estimates obtained in the proof of
Theorem 2.1 by using the new metric dh̵ with the corresponding bounds that one
would get with the trace norm (see section 4.2 below).

3. Proof of Theorem 2.1

The proof of Theorem 2.1 makes critical use of rather different key ingredients
(such as the mutual independence of the reshuffling permutations σj , semiclassical
estimates on the interaction terms, together with a careful choice of test operators
in the weak formulations of the N -body and random batch dynamics, and a quan-
titative version of the Calderon-Vaillancourt theorem), and as a result, is rather
involved. We shall therefore decompose our argument in seven steps. Each step
addresses one of the key issues in the error estimate obtained in Theorem 2.1.

3.1. Using the weak formulations of (2) and (4). For each A ∈ L(H) and all
k = 2, . . . ,N − 1, we set

J1A ∶= A⊗ I
⊗(N−1)
H , JkA ∶= I

⊗(k−1)
H ⊗A⊗ I

⊗(N−k)
H , JNA = I

⊗(N−1)
H ⊗A,

where IH designates the identity operator on the Hilbert space H.

With A ∈ L(H) to be specified later, let

BN(s) ∶= U(s, t)
1

N

N

∑
k=1

JkA.

By the Duhamel formula,

BN(t) = e−itHN /h̵BN(0)e+itHN /h̵

+
1

ih̵
∫

t

0
e−i(t−s)HN /h̵

[ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)] e+i(t−s)HN /h̵ds ,

with the notation

Vmn ∶= multiplication by V (xm − xn) .

Because of (6) and (9), one has

traceHN (R̃N(t)BN(t)) = trace(U(t,0)R̃N(0)U(t,0)∗U(t,0)BN(0)U(t,0)∗)

= traceHN (R̃N(0)BN(0))
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by cyclicity of the trace, and because U(t, s) is unitary on HN . On the other hand

traceHN (RN(t)BN(t)) = trace(e−itHN /h̵RinN e
+itHN /h̵BN(t))

= traceHN (RinN e
+itHN /h̵BN(t)e−itHN /h̵

)

so that

traceHN (RN(t)BN(t)) − trace(RinNBN(0))

=
1

ih̵
∫

t

0
trace(ΨNe

is
h̵ HN [ ∑

1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)] e−

is
h̵ HN)ds

=
1

ih̵
∫

t

0
trace(RN(s) [ ∑

1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds

again by cyclicity of the trace. Therefore

traceHN ((R̃N(t) −RN(t))BN(t))

= −
1

ih̵
∫

t

0
trace(RN(s) [ ∑

1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds .

With our choice of BN(t), this last identity is recast as

traceHN ((R̃N(t) −RN(t))
1

N

N

∑
k=1

JkA)

=
i

h̵

[ t
∆t ]

∑
j=1
∫

j∆t

(j−1)∆t
trace([ ∑

1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)]RN(s))ds

+
i

h̵
∫

t

[ t
∆t ]∆t

trace([ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)]RN(s))ds .

Hence, taking the expectation over random reshufflings, and using the definitions
(12) and (13) of reduced density operators, we arrive at the identity

traceH ((ER̃N,1(t) −RN,1(t))A) = traceHN ((ER̃N(t) −RN(t))
1

N

N

∑
k=1

JkA)

=
i

h̵

[ t
∆t ]

∑
j=1
∫

j∆t

(j−1)∆t
trace(RN(s)E [ ∑

1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds

+
i

h̵
∫

t

[ t
∆t ]∆t

trace(RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds .

3.2. Using the independence of σ1, σ2, . . .. For all S ∈ L(HN), denote

U0(t)S ∶= (eith̵∆/2)
⊗N

S (e−ith̵∆/2)
⊗N

.

Observe that

traceHN (RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])

= traceHN (RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j))]) ,

with
∆BN(s, j) ∶= BN(s) − U0(s − j∆t)BN(j∆t) ,
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since

traceHN (RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,U0(s − j∆t)BN(j∆t)])

= traceHN (RN(s) [ ∑
1≤m<n≤N

E (Ts(m,n) −
1

N−1
)Vmn,U0(s − j∆t)EBN(j∆t)]) = 0 .

The penultimate equality follows from the independence of the σj ’s, since

BN(j∆t) = BN(j∆t + 0)

involves only σj+1, . . . , σ[t/∆t]+1, while U0(s − j∆t) is deterministic and Ts(m,n)
only depends on σj . As for the last equality, it comes from the identity

ETs(m,n) =
1

N − 1
, for all 1 ≤m < n ≤ N and s ≥ 0 .

For this last identity, see the proof of Lemma 3.1 in [17], and especially the second
formula after (3.13) on p. 8 in [17].

Therefore
(15)

traceH ((ER̃N,1(t) −RN,1(t))A) = traceHN ((ER̃N(t) −RN(t))
1

N

N

∑
k=1

JkA)

=
i

h̵

[ t
∆t ]

∑
j=1
∫

j∆t

(j−1)∆t
traceHN

⎛

⎝
RN(s)E

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
ds

+
i

h̵
∫

t

[ t
∆t ]∆t

traceHN (RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds .

3.3. Semiclassical potential estimate. The previous formula makes it obvious
that our error analysis requires estimating commutators of various operators with
the interaction potential. Besides, all these terms involve a 1/h̵ prefactor. With a
view towards obtaining uniform as h̵ → 0 error estimates, one should avoid by all
means using bounds of the type

∥
1

h̵
[Vmn, S]∥ ≤

2

h̵
∥V ∥L∞(Rd)∥S∥ .

We shall use instead the following lemma (see [16] on p. 1048).

Lemma 3.1. Let f ≡ f(x) be an element of C1
0(R

d;C) such that f̂ and ∇̂f belong
to L1(Rd). Then, for each T ∈ L(H), one has

∥[f, T ]∥ ≤ Λ(f) max
1≤ν≤d

∥[xν , T ]∥ ,

with

Λ(f) ∶= 1
(2π)d ∫

Rd

d

∑
µ=1

∣ωµ∣∣f̂(ω)∣dω .

Proof. Let Eω ∈ L(H) be the operator defined by Eωψ(x) = e
iω⋅xψ(x) for all x ∈ Rd.

Then

[f, T ] = 1
(2π)d ∫

Rd
f̂(ω)[Eω, T ]dω

and

[Eω, T ]E∗
ω = ∫

1

0

d

dt
(EtωTE

∗
tω)dt = ∫

1

0
Etω[iω ⋅ x,T ]E∗

tωdt
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so that

∥[Eω, T ]∥ ≤ max
1≤ν≤d

∥[xν , T ]∥
d

∑
µ=1

∣ωµ∣ .

Hence

∥[f, T ]∥ ≤ max
1≤ν≤d

∥[xν , T ] 1
(2π)d ∫

Rd
∣f̂(ω)∣

d

∑
µ=1

∣ωµ∣dω ,

which implies the desired bound. �

We use this lemma to control the terms [Vmn,BN(s)] and [Vmn,∆BN(s, j)] for
each m,n = 1, . . . ,N . First, one has

(16) ∥[Vmn,BN(s)]∥ ≤ Λ(V )(max
1≤µ≤d

∥[xµm,BN(s)]∥ + max
1≤ν≤d

∥[xνn,BN(s)]∥) ,

and
(17)
∥[Vmn,∆BN(s, j)]∥ ≤ Λ(V )(max

1≤µ≤d
∥[xµm,∆BN(s, j)]∥ + max

1≤ν≤d
∥[xνn,∆BN(s, j)]∥) .

Hence
(18)

∥ ∑
1≤m<n≤N

[(Ts(m,n) −
1

N−1
)Vmn,BN(s)]∥ ≤ 2Λ(V )

N

∑
m=1

max
1≤µ≤d

∥[xµm,BN(s)]∥ ,

and

(19)

∥ ∑
1≤m<n≤N

[(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j)]∥

≤ 2Λ(V )
N

∑
m=1

max
1≤µ≤d

∥[xµm,∆BN(s, j)]∥ .

This estimate is one of the key points in our analysis. It is based on the fact that
the bounds (16) and (17) involve commutators with only the variables xm and xn
which appear in Vmn. This observation is at the origin of the independence of the
right hand side of (14) in N .

For each m = 1, . . . ,N , we henceforth denote by m̃(t) the unique index in
{1, . . . ,N} different from m and in the same batch as m at time t. In other words,
m̃(t) is defined by the following two conditions:

(20) m̃(t) /=m and Tt(m,m̃(t)) = 1 .

By the Duhamel formula

(21) ∆BN(s, j) =
1

ih̵
∫

s

j∆t

1
2

N

∑
l=1

U0(s − τ)[Vl,̃l(s),BN(τ)]dτ ,

so that, for each m = 1, . . . ,N and each µ = 1, . . . , d, one has

∥[xµm,∆BN(s, j)]∥ ≤
1

h̵
∫

j∆t

s

1
2

N

∑
l=1

∥[xµm,U0(s − τ)[Vl,̃l(s),BN(τ)]]∥dτ .

An elementary computation shows that

[xµm,U0(θ)S] = U0(θ)([x
µ
m, S] + θ[−ih̵∂xµm , S]) ;

hence
∥[xµm,U0(θ)S]∥ ≤ ∥[xµm, S]∥ + ∣θ∣∥[−ih̵∂xµm , S]∥ .
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Therefore

∥[xµm,∆BN(s, j)]∥

≤
1

2h̵
∫

j∆t

s

N

∑
l=1

(∥[xµm, [Vl,̃l(s),BN(τ)]]∥ + (τ − s)∥[−ih̵∂xµm , [Vl,̃l(s),BN(τ)]]∥)dτ

≤
1

2h̵
∫

j∆t

s

N

∑
l=1

(∥[Vl,̃l(s), [x
µ
m,BN(τ)]]∥ + (τ − s)∥[Vl,̃l(s), [−ih̵∂xµm ,BN(τ)]]∥)dτ

+
1

h̵
∫

j∆t

s
(τ − s)∥[−ih̵∂µVm,m̃(s),BN(τ)]∥dτ .

(In the formula above ∂µV denotes the partial derivative of V with respect to
its µ-th variable (i.e. the µ-th coordinate in the position variable). In other
words, ∂µVm,m̃(s) is the multiplication operator defined on HN by the formula
(∂µVm,m̃(s)ΨN)(x1, . . . , xN) = (∂µV )(xm−xm̃(s))ΨN(x1, . . . , xN) for all ΨN ∈ HN .)

Thus

(22)

N

∑
m=1

max
1≤µ≤d

∥[xµm,∆BN(s, j)]∥

≤
Λ(V )

h̵
∫

j∆t

s
∑

1≤l,m≤N

max
1≤λ,µ≤d

∥[xλl , [x
µ
m,BN(τ)]]∥dτ

+
Λ(V )∆t

h̵
∫

j∆t

s
∑

1≤l,m≤N

max
1≤λ,µ≤d

∥[xλl , [−ih̵∂xµm ,BN(τ)]]∥dτ

+2
√
dL(V )∆t∫

j∆t

s

N

∑
m=1

max
1≤µ≤d

∥[xµm,BN(τ)]∥dτ .

3.4. First order semiclassical estimates. In view of the inequality above, a key
issue is therefore to bound operators of the form

[xµm,BN(τ)] , [−ih̵∂xµm ,BN(τ)] ,

and

[xλl , [x
µ
m,BN(τ)]] , [xλl , [−ih̵∂xµm ,BN(τ)]] , [−ih̵∂xλ

l
, [xµm,BN(τ)]] .

This is done in the present section and the next. The bounds on the first two
quantities above follow the proof of Lemma 4.1 in [16], which is itself based on the
earlier analysis in Appendix B of [4], or Appendix C of [5].

We recall that

ih̵∂sBN(s) = [HN(s),BN(s)] , BN(t) =
1

N

N

∑
m=1

JmA.

Hence

ih̵∂s[x
µ
m,BN(s)] = [HN(s), [xµm,BN(s)]] + [[xµm,HN(s)],BN(s)] ,

and
[xµm,HN(s)] = [xµm,−

1
2
h̵2∆xm] = ih̵(−ih̵∂xµm) ,

so that

ih̵∂s[x
µ
m,BN(s)] = [HN(s), [xµm,BN(s)]] + ih̵[−ih̵∂xµm ,BN(s)] .

Thus

∥[xµm,BN(s)]∥ ≤ ∥[xµm,BN(t)]∥ + ∫
t

s
∥[−ih̵∂xµm ,BN(τ)]∥dτ .
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Likewise

ih̵∂s[−ih̵∂xµm ,BN(s)] = [HN(s), [−ih̵∂xµm ,BN(s)]] + [[−ih̵∂xµm ,HN(s)],BN(s)] ,

and

[−ih̵∂xµm ,HN(s)] = 1
2

N

∑
l=1

[−ih̵∂xµm , V (xl − xl̃(s))] = −ih̵∂µV (xm − xm̃(s)) ,

so that

ih̵∂s[−ih̵∂xµm ,BN(s)] = [HN(s), [−ih̵∂xµm ,BN(s)]] − ih̵[∂µV (xm − xm̃(s)),BN(s)] ,

Therefore

∥[−ih̵∂xµm ,BN(s)]∥ ≤∥[−ih̵∂xµm ,BN(t)]∥

+
√
dL(V )∫

t

s
(max
1≤κ≤d

∥[xκm,BN(τ)]∥ + max
1≤κ≤d

∥[xκm̃(τ),BN(τ)])dτ

Set

(23) M1(s) ∶=
N

∑
m=1

max
1≤µ≤d

∥[xµm,BN(s)]∥ +
N

∑
m=1

max
1≤µ≤d

∥[−ih̵∂xµm ,BN(s)]∥ .

Then, one has

M1(s) ≤M1(t) +max(1,2
√
dL(V ))∫

t

s
M1(τ)dτ

so that, by Gronwall’s lemma

(24) M1(s) ≤M1(t)e
(t−s)max(1,2

√
dL(V )) .

Finally, since

(25) BN(t) =
1

N

N

∑
k=1

JkA,

one has

[xµm,BN(t)] =
1

N
Jm[xµ,A] , [−ih̵∂xµm ,BN(t)] =

1

N
Jm[−ih̵∂µ,A] .

Hence

∥[xµm,BN(t)]∥ ≤
1

N
∥[xµ,A]∥ , ∥[−ih̵∂xµm ,BN(t)]∥ ≤

1

N
∥[−ih̵∂µ,A]∥ ,

so that

(26) M1(t) ≤ max
1≤µ≤d

∥[xµ,A]∥ + max
1≤µ≤d

∥[−ih̵∂µ,A]∥

and therefore

M1(s) ≤ (max
1≤µ≤d

∥[xµ,A]∥ + max
1≤µ≤d

∥[−ih̵∂µ,A]∥)e(t−s)max(1,2
√
dL(V )) .

The bound (26) is the second key point in obtaining a convergence rate in (14)
that is independent of N . Indeed, one might suspect that the summation over N
in the right hand sides of (18) and (19) leads to a bound of order O(N), but the
semiclassical propagation bound (26) and the careful choice of the initial condition
BN(t) in (25) show that this is not the case. To summarize, the duality argument
used in (16)-(19) and the semiclassical bound (23)-(26) allow treating separately
the action of each position variable x1, . . . , xN corresponding to each particle. In
section 4.2 below, we compare the estimates above with those obtained by using the
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operator norm instead of M1(t) to control BN(t). We shall see in particular that
using the operator norm to estimate BN(t) would mix all the variables x1, . . . , xN ,
thereby loosing the benefits of dealing a pairwise interaction potential as observed
in (16).

3.5. Second Order Semiclassical Estimates. One has

ih̵∂s[x
ν
n, [x

µ
m,BN(s)]] =[HN(s), [xνn, [x

µ
m,BN(s)]]]

+ [[xνn,HN(s)], [xµm,BN(s)]] + ih̵[xνn, [−ih̵∂xµm ,BN(s)]]

=[HN(s), [xνn, [x
µ
m,BN(s)]]]

+ ih̵[−ih̵∂xνn , [x
µ
m,BN(s)]] + ih̵[xνn, [−ih̵∂xµm ,BN(s)]] .

Notice that
[−ih̵∂xνn , [x

µ
m,BN(s)]] = [xµm, [−ih̵∂xνn ,BN(s)]] .

Likewise

ih̵∂s[−ih̵∂xνn , [x
µ
m,BN(s)]] =[HN(s), [−ih̵∂xνn , [x

µ
m,BN(s)]]]

+ [[−ih̵∂xνn ,HN(s)], [xµm,BN(s)]]

+ ih̵[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]]

=[HN(s), [−ih̵∂xνn , [x
µ
m,BN(s)]]]

− ih̵[∂νV (xn − xñ(s)), [x
µ
m,BN(s)]]

+ ih̵[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]] ,

and

ih̵∂s[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]] =[HN(s), [−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]]]

+ [[−ih̵∂xνn ,HN(s)], [−ih̵∂xµm ,BN(s)]]

+ ih̵[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]]

=[HN(s), [−ih̵∂xνn , [−ih̵∂xνn ,BN(s)]]]

− ih̵[∂νV (xn − xñ(s)), [−ih̵∂xµm ,BN(s)]]

+ ih̵[−ih̵∂xνn , [∂µV (xm − xm̃(s)),BN(s)]] .

Since

[−ih̵∂xνn , [∂µV (xm − xm̃(s)),BN(s)]] = [∂µV (xm − xm̃(s)), [−ih̵∂xνn ,BN(s)]]

+[[−ih̵∂xνn , ∂µV (xm − xm̃(s))],BN(s)]

and

[−ih̵∂xνn , ∂µV (xm − xm̃(s))] = − ih̵∂ν∂µV (xm − xm̃(s))(δn,m − δn,m̃(s))

= − ih̵∂ν∂µV (xn − xñ(s)) + ih̵∂ν∂µV (xñ(s) − xn) = 0 .

Indeed, V is even, so that ∂ν∂µV is also even. Hence

ih̵∂s[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]] =[HN(s), [−ih̵∂xνn , [−ih̵∂xνn ,BN(s)]]]

− ih̵[∂νV (xn − xñ(s)), [−ih̵∂xµm ,BN(s)]]

+ ih̵[∂µV (xm − xm̃(s)), [−ih̵∂xνn ,BN(s)]] .

Using the Duhamel formula, one finds that

∥[xνn, [x
µ
m,BN(s)]]∥ ≤ ∥[xνn, [x

µ
m,BN(s)]]∥ + ∫

t

s
∥[xµm, [−ih̵∂xνn ,BN(τ)]]∥dτ

+∫

t

s
∥[xνn, [−ih̵∂xµm ,BN(τ)]]∥dτ
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and

∥[−ih̵∂xνn , [x
µ
m,BN(s)]]∥ ≤∥[−ih̵∂xνn , [x

µ
m,BN(t)]]∥

+
√
dL(V )∫

t

s
max
1≤κ≤d

∥[xκn, [x
µ
m,BN(τ)]]∥dτ

+
√
dL(V )∫

t

s
max
1≤κ≤d

∥[xκñ(τ), [x
µ
m,BN(τ)]]∥dτ

+ ∫

t

s
∥[−ih̵∂xνn , [−ih̵∂xµm ,BN(τ)]]∥dτ ,

while

∥[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]]∥ ≤∥[−ih̵∂xνn , [−ih̵∂xµm ,BN(t)]]∥

+
√
dL(V )∫

t

s
max
1≤κ≤d

∥[xκn, [−ih̵∂xµm ,BN(τ)]]∥dτ

+
√
dL(V )∫

t

s
max
1≤κ≤d

∥[xκñ(τ), [−ih̵∂xµm ,BN(τ)]]∥dτ

+
√
dL(V )∫

t

s
max
1≤κ≤d

∥[xκm, [−ih̵∂xνn ,BN(τ)]]∥dτ

+
√
dL(V )∫

t

s
max
1≤κ≤d

∥[xκm̃(τ), [−ih̵∂xνn ,BN(τ)]]∥dτ .

Set

(27)

M2(s) ∶= ∑
1≤m,n≤N

max
1≤µ,ν≤d

∥[xνn, [x
µ
m,BN(s)]]∥

+ ∑
1≤m,n≤N

max
1≤µ,ν≤d

∥[−ih̵∂xνn , [x
µ
m,BN(s)]]∥

+ ∑
1≤m,n≤N

max
1≤µ,ν≤d

∥[−ih̵∂xνn , [−ih̵∂xµm ,BN(s)]]∥ .

Therefore

M2(s) ≤M2(t) + 6 max(1,
√
dL(V ))∫

t

s
M2(τ)dτ .

Since

BN(t) =
1

N

N

∑
k=1

JkA

one has

(28)

[xνn, [x
µ
m,BN(t)]] =

δmn
N

Jm[xν , [xµ,A]]

[−ih̵∂xνn , [x
µ
m,BN(t)]] =

δmn
N

Jm[−ih̵∂ν , [x
µ,A]]

[−ih̵∂xνn , [−ih̵∂xµm ,BN(t)]] =
δmn
N

Jm[−ih̵∂ν , [−ih̵∂µ,A]] .

Therefore

(29)

M2(t) ≤ max
1≤µ,ν≤d

∥[xν , [xµ,A]]∥ + max
1≤µ,ν≤d

∥[−ih̵∂ν , [x
µ,A]]∥

+ max
1≤µ,ν≤d

∥[−ih̵∂ν , [−ih̵∂µ,A]]∥ ,
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and

(30)

M2(s) ≤ max
1≤µ,ν≤d

∥[xν , [xµ,A]]∥e6(t−s)max(1,
√
dL(V ))

+ max
1≤µ,ν≤d

∥[−ih̵∂ν , [x
µ,A]]∥e6(t−s)max(1,

√
dL(V ))

+ max
1≤µ,ν≤d

∥[−ih̵∂ν , [−ih̵∂µ,A]]∥e6(t−s)max(1,
√
dL(V )) .

3.6. Implications of the semiclassical potential estimates. At this point, we
use (19), (22) and (18) together with the bounds obtained in the last two steps.

First, we find that

1

h̵
∣∫

t

[ t
∆t ]∆t

trace(RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds∣

≤
1

h̵
∫

t

[ t
∆t ]∆t

E∥[ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)]∥ds

≤
1

h̵
∫

t

[ t
∆t ]∆t

1
N−1 ∑

1≤m<n≤N

∥[Vmn,BN(s)]∥ds

+
1

h̵
∫

t

[ t
∆t ]∆t

1
2

N

∑
m=1

∥[Vm,m̃(s),BN(s)]∥ds ,

so that

1

h̵
∣∫

t

[ t
∆t ]∆t

trace(RN(s)E [ ∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,BN(s)])ds∣

≤
Λ(V )

h̵
∫

t

[ t
∆t ]∆t

1
N−1 ∑

1≤m<n≤N

(max
1≤κ≤d

∥[xκm,BN(s)]∥ + max
1≤κ≤d

∥[xκn,BN(s)]∥)ds

+
Λ(V )

h̵
∫

t

[ t
∆t ]∆t

1
2

N

∑
m=1

(max
1≤κ≤d

∥[xκm,BN(s)]∥ + max
1≤κ≤d

∥[xκm̃(s),BN(s)]∥)ds

≤
2Λ(V )

h̵
∫

t

[ t
∆t ]∆t

N

∑
m=1

max
1≤κ≤d

∥[xκm,BN(s)]∥ds ≤
2Λ(V )

h̵
∫

t

[ t
∆t ]∆t

M1(s)ds

≤ 2Λ(V )∆tetmax(1,2
√
dL(V ))M1(t)

h̵
.

Next

1

h̵

RRRRRRRRRRRR

∫

j∆t

(j−1)∆t
trace

⎛

⎝
RN(s)

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
ds

RRRRRRRRRRRR

≤
1

h̵
∫

j∆t

(j−1)∆t
E

XXXXXXXXXXXX

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXX

ds

≤
1

h̵
∫

j∆t

(j−1)∆t

1
N−1 ∑

1≤m<n≤N

∥[Vmn,∆BN(s, j)]∥ds

+
1

h̵
∫

j∆t

(j−1)∆t

1
2

N

∑
m=1

∥[Vm,m̃(s),∆BN(s, j)]∥ds ,
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so that

1

h̵

RRRRRRRRRRRR

∫

j∆t

(j−1)∆t
trace

⎛

⎝
RN(s)

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
ds

RRRRRRRRRRRR

≤
Λ(V )

h̵
∫

j∆t

(j−1)∆t

1
N−1 ∑

1≤m<n≤N

(max
1≤κ≤d

∥[xκm,∆BN(s, j)]∥ + max
1≤κ≤d

∥[xκn,∆BN(s, j)]∥)ds

+
Λ(V )

h̵
∫

j∆t

(j−1)∆t

1
2

N

∑
m=1

(max
1≤κ≤d

∥[xκm,∆BN(s, j)]∥ + max
1≤κ≤d

∥[xκm̃(s),∆BN(s, j)]∥)ds

≤
2Λ(V )

h̵
∫

j∆t

(j−1)∆t

N

∑
m=1

max
1≤µ≤d

∥[xκm,∆BN(s, j)]∥ .

Recall that
N

∑
m=1

max
1≤µ≤d

∥[xµm,∆BN(s, j)]∥

≤
Λ(V )

h̵
max(1,∆t)∫

j∆t

s
M2(τ)dτ + 2

√
dL(V )∆t∫

j∆t

s
M1(τ)dτ

≤ Λ(V )∆tmax(1,∆t)e6tmax(1,
√
dL(V ))M2(t)

h̵

+2
√
dL(V )∆t2etmax(1,2

√
dL(V ))M1(t) .

Therefore

1

h̵

RRRRRRRRRRRR

∫

j∆t

(j−1)∆t
trace

⎛

⎝
RN(s)

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

(Ts(m,n) −
1

N−1
)Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
ds

RRRRRRRRRRRR

≤ 2Λ(V )
2∆t2 max(1,∆t)e6tmax(1,

√
dL(V ))M2(t)

h̵2

+4
√
dΛ(V )L(V )∆t3etmax(1,2

√
dL(V ))M1(t)

h̵
.

Putting together all these elements of information leads to the bound
(31)

∣traceH ((ER̃N,1(t) −RN,1(t))A)∣ = ∣traceHN ((ER̃N(t) −RN(t))
1

N

N

∑
k=1

JkA)∣

≤ 2Λ(V )(1 + 2
√
dL(V )t∆t)∆tetmax(1,2

√
dL(V ))M1(t)

h̵

+2Λ(V )
2t∆tmax(1,∆t)e6tmax(1,

√
dL(V ))M2(t)

h̵2
.

Observe that the right hand side of (31) is independent of N . This explains why
the error estimate in (14) is independent of N .

3.7. Specializing to the case where A is a Weyl operator. In order to finish
the proof of Theorem 2.1, we restrict our attention to a convenient class of test
operators A, for which the quantities M1(t)/h̵ and M2(t)/h̵

2 are bounded as h̵→ 0.
We first recall the definition of a Weyl operator on H. For each a ∈ S ′(Rd ×Rd),

one defines a linear map OPWh̵ [a] ∶ S(Rd) ↦ S ′(Rd) by the following duality
formula:

⟨OPWh̵ [a]ψ,φ⟩S′(Rd),S(Rd) ∶= ⟨a,Wh̵[∣φ⟩⟨ψ∣]⟩S′(Rd),S(Rd) .
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We recall that S(Rd) is the Schwartz class of infinitely differentiable functions
defined on Rd which are rapidly decaying at infinity (i.e. O(∣x∣−n) as ∣x∣ → +∞)
and whose partial derivatives of all orders are also rapidly decaying at infinity. Then
S ′(Rd) is the set of tempered distributions (i.e. the topological dual of S(Rd)),
while ⟨T,φ⟩S′(Rd),S(Rd) designates the evaluation of the tempered distribution T
on the test function φ.

Elementary computations show that

i
h̵
[xν ,OPWh̵ [a]] = −OPWh̵ [∂ξνa] ,

i
h̵
[−ih̵∂xν ,OPWh̵ [a]] = OPWh̵ [∂xνa] .

Boulkhemair’s improvement [7] of the Calderon-Vaillancourt theorem states that,
for each integer d ≥ 1, there exists γd > 0 such that, for each a ∈ S ′(Rd × Rd)

satisfying the condition ∂αx ∂
β
ξ a ∈ L

∞(Rd ×Rd) whenever ∣α∣ and ∣β∣ ≤ [d/2] + 1,

max
∣α∣,∣β∣≤[d/2]+1

∥∂αx ∂
β
ξ a∥L∞(Rd×Rd) ≤ 1 Ô⇒ ∥OPWh̵ [a]∥ ≤ γd.

Therefore, choosing A = OPWh̵ [a] implies that

M1(t)

h̵
≤ 2γd max

∣α∣,∣β∣≤[d/2]+2
∥∂αx ∂

β
ξ a∥L∞(Rd×Rd) ,

and
M2(t)

h̵2
≤ 3γd max

∣α∣,∣β∣≤[d/2]+3
∥∂αx ∂

β
ξ a∥L∞(Rd×Rd) ,

so that

∣traceH ((ER̃N,1(t) −RN,1(t))OPWh̵ [a])∣

≤ 2Λ(V )(1 + 2
√
dL(V )t∆t)∆tetmax(1,2

√
dL(V ))M1(t)

h̵

+2Λ(V )
2t∆tmax(1,∆t)e6tmax(1,

√
dL(V ))M2(t)

h̵2

≤ 2∆te6tmax(1,
√
dL(V ))Λ(V )(2 + 3tΛ(V )max(1,∆t) + 4

√
dL(V )t∆t)

×γd max
∣α∣,∣β∣≤[d/2]+3

∥∂αx ∂
β
ξ a∥L∞(Rd×Rd) .

Since ER̃N,1(t) −RN,1(t) is a self-adjoint element of L1(H), there exists a com-
plete orthonormal sequence φk in H such that

ER̃N,1(t) −RN,1(t) = ∑
k≥1

ρk ∣φk⟩φk ∣

with

ρk ∈ R and ∑
k≥1

∣ρk ∣ < ∞ .

Therefore, if a ∈ S ′(Rd ×Rd) satisfies

max
∣α∣,∣β∣≤[d/2]+3

∥∂αx ∂
β
ξ a∥L∞(Rd×Rd) < ∞ ,

then

⟨Wh̵[ER̃N,1(t)] −Wh̵[RN,1(t)], a⟩
S′(Rd),S(Rd)

= ∑
k≥1

ρk⟨Wh̵[∣φk⟩⟨φk ∣], a⟩S′(Rd),S(Rd)

= traceH ((ER̃N,1(t) −RN,1(t))OPWh̵ [a]) .



18 F. GOLSE, S. JIN, AND T. PAUL

In other words

∣∣∣Wh̵[ER̃N,1(t)] −Wh̵[RN,1(t)]∣∣∣−[d/2]−3

≤ 2γd∆te
6tmax(1,

√
dL(V ))Λ(V )(2 + 3tΛ(V )max(1,∆t) + 4

√
dL(V )t∆t) .

4. Remarks on Theorem 2.1 and its Proof

4.1. Metrizing the set of density operators. Our analysis in the present paper
can be expressed in terms of the following metric on the set of density operators on
the Hilbert space H.

Definition 4.1. For R,S ∈ D(H), set D ∶= −i∂ and

dh̵(R,S)∶=sup

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣ traceH((R−S)A)∣

RRRRRRRRRRRRRRRR

A ∈ L(H) and for all 1 ≤ µ, ν ≤ d

h̵∥[xµ,A]∥+h̵∥[h̵Dµ,A]∥ + ∥[xν,[xµ,A]]∥

+∥[̵hDν , [x
µ,A]]∥+∥[̵hDν , [h̵Dµ,A]]∥≤5h̵2

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

The distance is analogous to several distances introduced earlier in the literature.
The first is obviously the Monge-Kantorovich(-Rubinstein) distance, also referred
to as the Wasserstein distance of exponent 1: see formula (7.1) in chapter 7 of [23].
However, the Monge-Kantorovich distance is defined on the set of Borel probability
measures on the Euclidean space Rd, and not on density operators on H.

An analogue of the Monge-Kantorovich distance has been proposed by Connes
on the set of states on a C∗-algebra endowed with an unbounded Fredholm module:
see Proposition 4 in [8], or §5 in the Introduction and §1 in chapter 6 of [9]. See
also the review paper [21] for a more thorough discussion of this distance. However,
the Connes distance is the noncommutative analogue of a Riemannian metric on
compact spin manifold, as explained in Proposition 1 of [8] — see also formula (2.9)
in [21] which does not involve a spin structure — and not on a phase space, i.e.
not on a cotangent bundle. The analogue of the Monge-Kantorovich or Wasserstein
distance of exponent 1, or of Connes’ distance in our setting would be

MK h̵
1 (R,S) ∶= sup

A∈L(H)
max1≤µ≤d(∥[xµ,A]∥,∥[h̵Dµ,A])≤h̵

∣ traceH((R−S)A)∣ .

Since the correspondence principle associates the Poisson bracket {⋅, ⋅} to i
h̵
[⋅, ⋅], and

since {xµ, ⋅} = −∂ξµ while {ξµ, ⋅} = −∂xµ , the constraint ∥[h̵Dµ,A] ≤ h̵ corresponds
to Lipschitz continuity in the position variable xµ, while the constraint ∥[xµ,A]∥ ≤ h̵
corresponds to Lipschitz continuity in the momentum variable ξµ. The distance dTN
used in [16] to prove the uniformity in the Planck constant h̵ of the mean-field limit
in quantum mechanics (see formula (43) and Theorem 1.1 in [16]) is essentially
based on the same idea as MK h̵

1 .
However, neither the variant MK h̵

1 of the Connes distance nor the distance dTN in
[16] can be used to obtain the convergence rate (14) for the random batch method,
and a new idea is needed at this point.

This new idea is to use iterated commutators in the constraints entering the
definition of dh̵ in order to fit the specifics of the random batch method. More
precisely, the need for iterated commutators comes from the key step using the
independence of the reshuffling permutations σ1, σ2, . . . leading to (15) and the
quantity ∆BN(s, j). Indeed, estimating ∆BN(s, j) systematically involves iterated
brackets, as shown in (21) and the subsequent formulas.
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It should be noted that, because the constraints in the definition of dh̵ involve
iterated commutators, this metric may not have an interpretation in the context
of optimal transport through the Kantorovich duality theorem (Theorem 1.3 in
[23]) as the Wasserstein (or Monge-Kantorovich) metric of exponent 1, or as the
Connes distance, for which an analogue of the Kantorovich duality theorem has
been recently worked out [10]. For this reason, it could be that the metric dh̵
considered here is of a different nature than either MK h̵

1 or the Connes distance.

The main properties of dh̵ are summarized in the following proposition.

Proposition 4.2. For each h̵ > 0, the function dh̵ is defined on D(H) × D(H) and
takes its values in [0,+∞]. Moreover
(i) the function dh̵ is an extended metric on D(H): it is symmetric in its two
arguments, satisfies the triangle inequality, and separates points in D(H);
(ii) there exists γd > 0 (depending only on the space dimension d) such that, for all
R,S ∈ D(H)

∣∣∣Wh̵[R] −Wh̵[S]∣∣∣−[d/2]−3 ≤ γddh̵(R,S) .

Proof. That dh̵ is symmetric in its arguments and satisfies the triangle inequality
is obvious from the definition. That dh̵ separates points in D(H) follows from (ii).
Indeed

dh̵(R,S) = 0 Ô⇒ ∣∣∣Wh̵[R] −Wh̵[S]∣∣∣−[d/2]−3 = 0 ,

so that

∬
Rd×Rd

Wh̵[R − S](x, ξ)a(x, ξ)dxdξ = 0

for all a ≡ a(x, ξ) ∈ S(Rd ×Rd) such that ∥∂αx ∂
β
ξ a∥L∞(R2d) ≤ 1 for all multi-indices

α,β ∈ Nd such that ∣α∣, ∣β∣ ≤ [d/2]+3, and therefore, by homogeneity and density of
S(Rd×Rd) in L2(Rd×Rd), for all a ≡ a(x, ξ) ∈ L2(Rd×Rd). Hence Wh̵[R] =Wh̵[S]
in L2(Rd ×Rd), and since the Fourier transform is invertible on L2(Rd ×Rd), this
implies that R and S have integral kernels a.e. equal, so that R = S. This proves
Property (i) taking Property (ii) for granted.

The proof of Property (ii) is essentially a repetition of the last step in the proof
of Theorem 2.1 (section 3.7). Indeed

∣∣∣Wh̵[R] −Wh̵[S]∣∣∣−[d/2]−3

= sup{∣∫
Rd×Rd

Wh̵[R − S](x, ξ)a(x, ξ)dxdξ∣ s.t. max
∣α∣,∣β∣≤[d/2]+3

∣∂αx ∂
β
ξ a(x, ξ)∣ = 1}

= sup{∣traceH ((R − S)OPWh̵ [a])∣ s.t. max
∣α∣,∣β∣≤[d/2]+3

∣∂αx ∂
β
ξ a(x, ξ)∣ = 1}

≤ γddh̵(R,S) ,

since

max
∣α∣,∣β∣≤[d/2]+3

∣∂αx ∂
β
ξ a(x, ξ)∣ = 1 Ô⇒ h̵∥[xµ,A]∥+h̵∥[h̵Dµ,A]∥ + ∥[xν,[xµ,A]]∥

+∥[̵hDν , [x
µ,A]]∥+∥[̵hDν , [h̵Dµ,A]]∥≤5γdh̵

2

by Boulkhemair’s variant [7] of the Calderon-Vaillancourt theorem. �

The error estimate in Theorem 2.1 could have been couched in terms of the
distance dh̵. Indeed, the inequality (31) at the end of the penultimate step in the
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proof of Theorem 2.1 can be recast as

(32)
dh̵(ER̃N,1(t),RN,1(t)) ≤10Λ(V )

2t∆tmax(1,∆t)e6tmax(1,
√
dL(V ))

+ 10Λ(V )(1 + 2
√
dL(V )t∆t)∆tetmax(1,2

√
dL(V )) .

Up to unessential modifications in the constants, the error estimate in Theorem 2.1
is a consequence of this inequality and Proposition 4.2 (ii).

4.2. On the choice of ∣∣∣ ⋅ ∣∣∣−[d/2]−3 or dh̵ to express the error bound. The idea
of using the metric dh̵ presented in the previous section might seem strange. One
might find it more natural to use more traditional metrics on density operators,
such as the trace norm, for instance. Indeed, for all t, s ∈ R, the map U(t, s) is an
isometry for the trace norm, because the map U(t, s) is a unitary operator on HN .

Estimating the difference ER̃N,1(t)−RN,1(t) in trace norm can be done along the
same line as in section 3. Although this is not the simplest route to obtaining this
estimate, it will be easier to compare the inequalities at each step in this estimate
with the ones using dh̵. Indeed

∥ER̃N,1(t) −RN,1(t)∥1 = sup
∥A∥≤1

∣ trace((ER̃N,1(t) −RN,1(t))A)∣ ,

and using (15) shows that

∥ER̃N,1(t) −RN,1(t)∥1

≤
1

h̵
∫

t

[ t
∆t ]∆t

sup
∥A∥≤1

∣traceHN (RN(s)E [ ∑
1≤m<n≤N

Vmn,BN(s)])∣ds

+
1

h̵

[ t
∆t ]

∑
j=1
∫

j∆t

(j−1)∆t
sup
∥A∥≤1

RRRRRRRRRRRR

traceHN
⎛

⎝
RN(s)E

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

RRRRRRRRRRRR

ds ,

with the notation

Vmn ∶= (Ts(m,n) −
1

N−1
)Vmn .

Then

∥A∥ ≤ 1 Ô⇒ ∥
1

N

N

∑
k=1

JkA∥ ≤ 1 Ô⇒ ∥BN(s)∥ ≤ 1

for all s ∈ [0, t], and

(33)

∣traceHN (RN(s)E [ ∑
1≤m<n≤N

Vmn,BN(s)])∣

≤ ∑
1≤m<n≤N

∣traceHN (RN(s)[EVmn,BN(s)])∣

≤ 2N∥V ∥L∞(Rd)∥RN(s)∥1∥BN(s)∥ = 2N∥V ∥L∞(Rd) ,

since

Ts(m,n) = 0 Ô⇒ ∥Vmn∥ =
1

N − 1
∥V ∥L∞(Rd)

Ts(m,n) = 1 Ô⇒ ∥Vmn∥ =
N − 2

N − 1
∥V ∥L∞(Rd) .
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Likewise

(34)

RRRRRRRRRRRR

traceHN
⎛

⎝
RN(s)E

⎡
⎢
⎢
⎢
⎢
⎣

∑
1≤m<n≤N

Vmn,∆BN(s, j)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

RRRRRRRRRRRR

≤ ∑
1≤m<n≤N

∣traceHN (RN(s)E[Vmn,∆BN(s, j)])∣

≤ 2N∥V ∥L∞(Rd)∥∆BN(s, j)∥ ,

and (21) implies that

(35) ∆BN(s, j)∥ ≤
1

h̵
∆tN∥V ∥L∞(Rd) .

Putting all these estimates together results in the upper bound

∥ER̃N,1(t) −RN,1(t)∥1 ≤
2

h̵
∆t ⋅N∥V ∥L∞(Rd)

+
2

h̵
[
t

∆t
]∆tN∥V ∥L∞(Rd) ⋅

1

h̵
∆tN∥V ∥L∞(Rd)

≤
2N

h̵
∆t∥V ∥L∞(Rd) (1 +

Nt

h̵
∥V ∥L∞(Rd)) ,

which is neither uniform as N →∞ nor as h̵ → 0, and therefore satisfies neither of
our requirements (a) and (b) at the end of section 1.

It is instructive to compare the rather naive estimates above with the more subtle
corresponding estimate in the proof of Theorem 2.1.

For instance, comparing (33) with (16), or (34) with (17) shows clearly that (16)
or (17) involve only the commutators with the variables xµk that are present in the
potential V (xm −xn), i.e. only the two values k =m or k = n. This key observation
is at the core of section 3.3.

When summing over all possible pairs m,n either with m and n in the same
batch, or over all m,n with the coupling constant 1/N , one arrives at the bound
(18), which does not involve the N factor that is present in (33). One might suspect
that this N factor is hidden in the summation over m = 1, . . . ,N in the right hand
side of (18), but in fact this summation is included in the definition (23), and the
bounds (24) and (26) make it clear that no N factor can arise in this way. The key
observation is obviously the bound (26) which does not involve N , since

BN(t) =
1

N
∑
k=1

JkA

and [xµm, JkA] = [−ih̵∂xµm , JkA] = 0 for all µ = 1, . . . , d and all m = 1, . . . ,N unless
m = k. Finally, the definition of dh̵ implies that the test operator A satisfies both
∥[xµm,A]∥ = O(h̵) and ∥[−ih̵∂xµm , JkA]∥ = O(h̵) for all m = 1, . . . ,N and µ = 1, . . . , d,
so that M1(t) = O(h̵). This nice bound (small as h̵ → 0, independent of N) is
propagated by the random batch dynamics as explained in section 3.4. As a result,
the bound (18) does not involve the unpleasant N factor in (33), and the fact that
M1(t) = O(h̵) offsets the 1/h̵ factor multiplying the last time integral on the right
hand side of (15), at variance with the naive estimate above.

The same advantages of using the dh̵ metric instead of the trace norm are ob-
served in the treatment of the “generic” term, i.e. the integral over the time interval
((j − 1)∆t, j∆t) on the right hand side of (15). The naive estimate above, i.e. (34)
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and (35), lead to an even more disastrous bound of order N2/h̵ (there is one fac-
tor N that comes for the same reason as in (33), and an additional factor N/h̵
which comes from the estimate (35) in operator norm based on Duhamel formula
for ∆BN(s, j)). Instead, one repeats with ∆BN(s, j) the same argument as in the
treatment of (18). Since the term ∆BN(s, j) is itself the time integral of a com-
mutator involving the random batch potential, the same rarefaction in the relevant
commutators ∥[xκk ,B]∥ used to control ∥[Vmn,BN(τ)]∥ is observed, except that one
needs bounds for commutators of the form ∥[xκk ,∆BN(s, j)]∥ and not ∥∆BN(s, j)∥
itself. This is the reason why we need to control iterated brackets of order 2, which
is done in section 3.5. The bound (19) and the inequality (22) show that every-
thing can be controlled in terms of the quantity M2(τ) defined in (27). Here again,
one might suspect that the summation over m,n in (27) would produce the same
unpleasant N2 factor that appears when using (34) and (35), but the bounds (30)
and (29) clearly show that this is not the case.

Eventually M2(τ) = O(h̵2) (uniformly in N) because of the choice of the test
operator A in the definition of dh̵: here the key estimate is (28), which explains
why the sum of N2 terms in (27) produces a quantity that is bounded uniformly
in N . That M2(t) = O(h̵2) follows from the condition on A in the definition of
the metric dh̵, and this offsets the 1/h̵2 due to the integral over the time interval
((j−1)∆t, j∆t) in (15), and to the additional time integral in the Duhamel formula
(21) for ∆Bn(j, s).

Summarizing the discussion above, the metric dh̵ is especially designed in order
to handle both the large N and the small h̵ issues, i.e. requirements (a) and (b) in
the introduction.

5. Conclusion and Perspectives

The random batch method applied to the N -particle Schrödinger equation re-
duces the computational cost of the N -particle interaction potential per time-step
from O(N2) to O(N) operations.

We have given an error estimate (Theorem 2.1) for the simplest imaginable
random batch method applied to the quantum dynamics of N identical particles.
This error estimate has the advantage of being independent of the particle number
N and of the Planck constant h̵ (or more precisely of the ratio of the Planck constant
to the typical action of one particle in the system). On the other hand, the final
estimate is stated in terms of some dual (negative) Sobolev type norm on the
difference between the expected single body reduced density operators propagated
from the same initial state by the random batch dynamics and by the N -particle
dynamics. For the sake of simplicity, we have restricted our attention to the simplest
case of batches of two particles only.

The main new mathematical ingredient in the proof is the use of the metric dh̵
(see Definition 4.1 for the definition of this object, and Proposition 4.2 for its basic
properties), which is especially tailored to handle at the same time the difficulties
pertaining to the small h̵ regime (classical limit), and those pertaining to the largeN
regime (mean-field limit). The final statement (Theorem 2.1) of the error estimate
does not involve the metric dh̵, but is couched in terms of the Wigner transforms
[20] of the N -body and random batch density operators, a mathematical object
which is familiar in the context of quantum dynamics.
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Several extensions of this result should be easily obtained with the mathematical
tools used in the present paper. First one can obviously consider batches of p > 2
particles; the error analysis is expected to be similar. Also, in practice, the random
batch dynamics (4) or (7) is further approximated by some convenient numerical
scheme. Of course, the numerical schemes used on (4) or (7) should satisfy the
same requirements (a) and (b) (uniform convergence in N and in h̵) listed in the
introduction. For instance, time-splitting strategies for quantum dynamics converge
uniformly in h̵ (see [2] and [12]), and could be used together with random batch
strategies. The numerical treatment of the space variable x, however, seems much
more challenging.
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