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Abstract

We develop Random Batch Methods for interacting particle systems with large
number of particles. These methods use small but random batches for particle interac-
tions, thus the computational cost is reduced from O(N2) per time step to O(N), for
a system with N particles with binary interactions. On one hand, these methods are
efficient Asymptotic-Preserving schemes for the underlying particle systems, allowing
N -independent time steps and also capture, in the N → ∞ limit, the solution of the
mean field limit which are nonlinear Fokker-Planck equations; on the other hand, the
stochastic processes generated by the algorithms can also be regarded as new models
for the underlying problems. For one of the methods, we give a particle number inde-
pendent error estimate under some special interactions. Then, we apply these methods
to some representative problems in mathematics, physics, social and data sciences, in-
cluding the Dyson Brownian motion from random matrix theory, Thomson’s problem,
distribution of wealth, opinion dynamics and clustering. Numerical results show that
the methods can capture both the transient solutions and the global equilibrium in
these problems.

1 Introduction

In natural and social sciences, there are many collective behaviors resulted from a huge
number of interrelated individuals. Examples include swarming or synchronization described
by the Vicsek model [1], flocking in school of fishes [2], groups of birds [3], chemotaxis of
bacteria [4], consensus clusters in opinion dynamics [5], to name a few.

We are interested in first order systems of the following form

dXi = −∇V (Xi) dt+
∑
k:k≤J

αN,k
∑

C⊂{1,...,N}:i∈C ,|C |=k
Ki(C ) dt+ σdBi, i = 1, . . . , N,

(1.1)

where J is independent of N and αN,k are some constants. In other words, the interaction
acting on each particle is the superposition of the ones for which the number of particles
involved is independent of N . Here, Xi ∈ Rd are the labels for particles, −∇V (·) is some
given external field, Ki(·)’s are the interaction kernels and {Bi}’s are independent standard
Brownian motions. Such systems could be the overdamped limit of Langevin equations,
where dXi comes from the friction term so that Xi is the location of the ith particle and the
terms on the right hand side are forces. Of course, Xi can also have other interpretations
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depending on applications, like the velocity [3], the opinion or wealth (see section 5). We will
loosely call Xi’s the locations of particles, −∇V the external force and K(·) the interacting
forces for convenience in this paper, unless there are clear meanings. If σ = 0, there is no
diffusion effect. If σ > 0, we have diffusion, and the equation is a stochastic differential
equation (SDE) in Itô’s sense [6]. We will mostly focus on J = 2, so that the systems are of
binary interactions (i.e. each particle interacts with others separately). System (1.1) in the
case of binary interaction can be written as

dXi = −∇V (Xi) dt+
1

N − 1

∑
j:j 6=i

K(Xi −Xj) dt+ σdBi, i = 1, . . . , N. (1.2)

We will present our algorithms and analysis for binary interactions (system (1.2)). Ex-
tensions to (1.1) are straightforward, though more involved (see section 2.3 and Remark
3.2). Although there are examples of many body interactions like Kac interaction in spin
glasses [7, 8] for (1.1), we remark that the binary interaction is much more important and
ubiquitous in nature, like Coulomb’s interaction between electrons and nuclei, due to the
superposition principles for forces. As another remark, we have assumed the additive noise
for simplicity to illustrate our methodology. However, the discussion in this paper also ap-
plies for multiplicative noise (i.e. σ depends on x). (We in fact have one such example in
Section 5.2.1.)

There may be two things we care about regarding (1.1) and (1.2), depending on appli-
cations. The first thing is the dynamics, for example, in the opinion dynamics, we would
like to know how the consensus of opinions are developed. Another thing is the equilibrium
distribution of the N particles. If N is large, simulation of (1.1) and (1.2) is very expensive
since for each time step during the evolution, the computational cost is of O(NJ). One
possible method for studying large and complex systems where small individuals interact
with each other is the mean field approximation [9, 10, 11]. In this approximation, the effect
of surrounding particles is approximated by a consistent averaged force field so that one
obtains a one body problem. For example, regarding (1.2) that we will focus on, in the
N →∞ regime, the distribution µ of the particles formally satisfies the following nonlinear
Fokker-Planck equation (see [12, 13, 14, 15, 16, 17, 18])

∂tµ = ∇ · (∇V (x)µ)−∇ · (µK ∗ µ) +
1

2
σ2∆µ. (1.3)

It is expected that µ is close to the empirical measure for (1.2)

µN (t) :=
1

N

N∑
i=1

δ(x−Xi(t)), (1.4)

which is a random measure. In fact, under certain assumptions on V and K, it can be
shown that the uniform mean field limit holds ([19]). Both the marginal distribution of X1

in (1.2), denoted as µ
(1)
N , and (1.4) are close to µ.

On the other hand, one often cares more about the mean field equations like (1.3) and
its invariant measure π, but the mean field equation and π are hard or expensive to solve
or compute. Using the mean field approximation, one can generate some artificial particle
systems of the form (1.1) or (1.2). In this sense, the interacting particle systems (1.1) and
(1.2) are Monte-Carlo particle methods for the mean field equation and π. Clearly, when
N (the number of numerical particles) is large, one still wants to reduce the computational
cost. Hence, no matter whether studying system (1.2) (and (1.1) ) is due to its own interest
or due to numerical simulation of the mean field equation, it is highly desirable to design
some efficient algorithms to solve the particle system (1.2).

Nowadays, in the era of big data, many stochastic algorithms have been developed to
reduce the computational cost while keep certain accuracy. Hence, one may borrow some
ideas from these areas for the physical problems. The stochastic gradient descent (SGD)
algorithm is developed to reduce the computational cost and for better exploring the high
dimensional parameter space [20, 21] for supervised learning [22]. In SGD, a small batch
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of samples are chosen each time to form the noisy gradient. A similar algorithm is the
stochastic coordinate descent where only a few coordinates are updated each time [23, 24].
The idea of random batches also appears in the stochastic gradient Langevin dynamics (a
Markov Chain Monte Carlo method (MCMC)), which can be applied for Bayesian inference
[25, 26, 27]. Pretty much like SGD, the method uses random batch of data to update
the parameters one needs to estimate. Besides, many random algorithms also appear for
matrices, such as constructing approximate matrix decompositions by randomized Singular
Value Decompositions [28].

Motivated by the stochastic algorithms in machine learning and statistics, we develop
Random Batch Methods (RBM) for interacting particle systems (1.2) and (1.1). The idea
is quite simple: for a small duration of time, one randomly divides the particles into small
batches and the interactions are only turned on inside each batch (see Section 2 for details).
Numerical experiments in later sections show that RBMs work quite well for a wide range
of applications with binary interactions from physical, biological to data sciences. These
algorithms reduce the computational cost per time step from O(N2) to O(N) for binary
interactions (1.2) (O(NJ) to O(N) for (1.1)). They not only recover the equilibrium well in
variaous problems, but also approximate dynamics of measures with very singular interaction
kernels (see for example section 4.2). Moreover in section 3, under suitable conditions on
the external potential, interaction force and batch size, we prove for one of the RBMs that
the numerical error has a bound that only depends on the time step, independent of N and
time. The key for the proof is Lemma 3.1, which guarantees that on average the random
force is consistent with the full interaction.

The methodology of randomly choosing some objects has also been widely used in kinetic
theory community. For example, the Direct Simulation Monte Carlo (DSMC) method pro-
posed by Bird ([29, 30]) uses randomly chosen simulation molecules to solve the Boltzmann
equation with finite Knudsen number (see the work by Wagner [31] for the proof of conver-
gence). Moreover, Nanbu’s simulation method directly derived from the Boltzmann equation
has gained success and been proved to converge [32, 33]. In [34], biological swarm models
with random pair interactions have been studied and proven to converge to Kac-Boltzmann
equation. In the reverse way to [34], the work by Albi and Pareschi ([35]) uses stochastic
binary interaction algorithms for flocking and swarming dynamics. The algorithms in [35]
are intrinsically doing similar things as our RBMs do; their Algorithm 4.3 is particularly
alike RBM-1 (see section 2) with p = 2. See a more recent application by Carrillo et al [36].
In this sense, our RBMs are generalizations of symmetric Nanbu (Algorithm 4.3) in [35].
However, the numerical particle system in [35] was motivated by the mean-field limit, in a
way similar to the DSMC methods of binary collisions for the Boltzmann equation. It was
aimed at solving the mean-field equation (corresponding to the right vertical line in Fig. 1).
RBMs are motivated by the idea of mini-batch methods from machine learning. They are
Monte-Carlo type approximations directly to the (physical) particle systems (1.2). They
correspond to the left horizontal line in Fig. 1. Moreover, one of the RBMs will be proved
(under special conditions) to converge, when time steps go to zero, to the particle system
(1.2). The construction of RBMs, as well as the proof of their convergence, are obtained
without the knowledge of the mean-field limit. Of course when N →∞ its density measure
also converges to the mean-field limit equation, as will be proven using the Wasserstein
distance. Therefore, the RBMs are a class of Asymptotic-Preserving schemes for particle
systems (1.2) or (1.1), in the sense of [37] (see Fig. 1). Lastly, the idea of turning on inter-
actions inside the batches can be easily extended. For example, one can change the batch
size to adjust the noise levels. Moreover, they can also be extended to (1.1) involving more
complex interactions.

The rest of the paper is organized as follows. In section 2, we propose the Random
Batch Method without replacement (RBM-1) and with replacement (RBM-r), and give
some discussions. In section 3, we obtain an error estimate, which only depends on time
step but not on N and time, of the marginals for RBM-1 in the Wasserstein distance under
some assumptions for the external and interacting forces. Though performed for binary
interactions, the analysis should work for (1.1) as well. In section 4, we do numerical tests
to verify the theoretic results in section 3 and use the Dyson Brownian motion to compare
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the RBMs. In particular, in section 4.2, we compute the law of the Dyson Brownian motions
from random matrix theory where the interaction kernel is singular. Our method can caputre
the evolution of distribution and the equilibrium semicircle law, and the two algorithms
(RBM-1 and RBM-r) give comparable results. In section 5, we use the RBMs to solve
some interesting application problems with binary interactions. In section 5.1, we focus
on Thomson’s problems where we solve the dynamics on sphere. In section 5.2, we design
stochastic dynamics for evolution of wealth and opinions. Lastly, we apply our randomized
algorithms for efficient clusters in section 5.3. The paper is concluded in section 6.

2 The Random Batch Methods

In this section, we propose the RBMs by using random batches for the summation of the
interacting force in (1.2). The extensions to (1.1) should be similar but are more involved,
and we will give some discussion about this in section 2.3. For the setup, we pick a short
duration of time τ and consider the discrete time

tm = mτ. (2.1)

Suppose we compute up to time T and the number of iteration for the stochastic algorithm
is

NT =

⌈
T

τ

⌉
. (2.2)

Clearly to simulate the ODE system (1.2) directly, the complexity is O(NTN
2). If N is

large, this is expensive. Motivated by the stochastic algorithms in the machine learning
community, we will use a randomized strategy.

2.1 The first algorithm (RBM-1)

A natural idea is that at each time tm, we divide the N = np particles into n small batches
with size p (p � N , often p = 2) randomly, denoted by Cq, q = 1, . . . , n, and then interact
particles within each batch (For conveience, we have assumed that p divides N . In general,
the last batch does not have to have size p.) The algorithm is called RBM-1 (shown in 1).
Each iteration contains two main steps: (1) Randomly shuffling and dividing the particles
into n batches; (2) evolving with interactions only turned on inside batches.

Algorithm 1 (RBM-1)

1: for m in 1 : [T/τ ] do
2: Divide {1, 2, . . . , pn} into n batches randomly.
3: for each batch Cq do
4: Update Xi’s (i ∈ Cq) by solving the following SDE with t ∈ [tm−1, tm).

dXi = −∇V (Xi)dt+
1

p− 1

∑
j∈Cq,j 6=i

K(Xi −Xj)dt+ σdBi. (2.3)

5: end for
6: end for

Clearly, the update equation (2.3) can be rewritten as

dXi = −∇V (Xi)dt+
1

N − 1

∑
j:j 6=i

K(Xj −Xi)dt+ σdBi + χm,i(X(t)) dt, (2.4)

where

χm,i(X(t)) =
1

p− 1

∑
j∈Cq,j 6=i

K(Xi −Xj)− 1

N − 1

∑
j:j 6=i

K(Xi −Xj). (2.5)
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For a given x = (x1, . . . , xN ) ∈ RNd that is independent of the random division, we have
(see Lemma 3.1 for the proof)

Eχm,i(x) = 0. (2.6)

This is a key observation which eventually leads to the convergence of the algorithms in
expectation. As a remark, the position X = (X1, . . . , XN ) itself depends on the random
division. Hence, in general,

Eχm,i(X(t)) 6= 0.

Regarding the complexity, note that random division into n batches of equal size can
be implemented using random permutation. The latter can be realized in O(N) operations
by Durstenfld’s modern revision of Fisher-Yates shuffle algorithm [38]. (In MATLAB, one
can use ’randperm(N)’ to generate a random permutation. Then, the first p elements are
considered to be in the first batch, the second p elements are in the second batch, etc).
Hence, if one is to simulate up to time T , the complexity is O(pNTN). If p = 2, the
complexity is O(NTN). The cost is reduced significantly.

RBM-1 is in spirit similar to the stochastic gradient descent in machine learning ([20, 21]).
Recently, there are some analysis of SGD in the mathematical viewpoints and applications
to physical problems [39, 40, 41, 42]. RBM-1 can be used both for simulating the evolution
of the measure (1.4) or (1.3) and for sampling from the equilibrium state π.

2.2 The Random Batch Method with replacement

RBM-1 requires the random division, and the elements in different batches are different. This
is in fact the sampling without replacement. If one allows replacement, we have RBM-r′.

Algorithm 2a (RBM-r′)

1: for m in 1 : [T/τ ] do
2: for k from 1 to N/p do
3: Pick a set Ck of size p randomly with replacement.
4: Update Xi’s (i ∈ Ck) by solving the following SDE for time τ .

dY i = −∇V (Y i)dt+
1

p− 1

∑
j∈Ck,j 6=i

K(Y i − Y j)dt+ σdBi,

Y i(0) = Xi,

(2.7)

i.e., solve (2.7) with initial values Y i(0) = Xi, and set Xi ← Y i(τ).
5: end for
6: end for

RBM-r′ can be reformulated as Random Batch Method with replacement (RBM-r) that
has some flavor of the stochastic coordinate descent method [23, 24]. Here, the pseudo-time
s is introduced for convenience and sm = mτ . Roughly, tm corresponds to smN/p.

Algorithm 2b (RBM-r)

1: for m in 1 : [T/τ ] ∗ (N/p) do
2: Pick a set C of size p randomly.
3: Update Xi’s (i ∈ C) by solving the following with pseudo-time s ∈ [sm−1, sm).

dXi = −∇V (Xi) ds+
1

p− 1

∑
j∈C,j 6=i

K(Xi −Xj) ds+ σ dBi. (2.8)

4: end for
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For such type of methods, we expect to have

ÑT =
1

p
NNT (2.9)

iterations to get comparable behaviors. However, each step is very cheap: one only needs
O(p2) work. Hence, we still expect the complexity to be O(pNNT ).

Though the same as RBM-r′, RBM-r does not have explicit concept of time, since the
positions of the particles are not changing simultaneously. Intuitively, RBM-r can only give
sampling for the invariant measure for the nonlinear Fokker-Planck equation (1.2) while
unable to simulate the dynamics of the distribution. However, as RBM-r′ indicates, N/p
iterations correspond to time τ and thus a single step in RBM-1, so it might still approximate
the evolution of distributions. In fact, the example later confirms this and m(N/p) iterations
indeed give acceptable approximation for the distribution at time mτ . As a last comment,
we may sometimes choose random time step; for example τ ∼ Exp(∆t) (the exponential
distribution with parameter ∆t) such that Eτ = ∆t. Intuitively, this may help to increase
the noise level and avoid being trapped in some local minimizers of V .

2.3 Some discussions about the algorithms

In this subsection we make some discussion about our algorithms and complementary re-
marks.

1. For system (1.1), the RBMs can be similarly developed. The batch size should be larger
than or equal to J (p ≥ J). After the random batch is chosen, the interactions only
happen inside the randomly chosen batch. One should also adjust the coefficients, such
that an analogy of Lemma 3.1 holds. In other words, the expectation of the random
forces should equal to those in (1.1). The complexity clearly is reduced from O(NJ)
to O(N).

2. The sizes of batch do not have to be equal. One can even choose the sizes randomly.
One can also adjust the batch size to adjust the noise level.

3. After the batches are obtained, one can do parallel computing to update the positions
of X for RBM-1. However, one has to do regrouping after one time interval which
stops the parallelism. There is no big efficiency improvement unless solving the SDEs
is expensive. Regarding complexity, there is no big difference in complexity. For RBM-
r, to get p indices, one needs to generate p random numbers from [0, 1], and the total
complexity is O(N) for N/p iterations. For RBM-1, as in Durstenfld’s implementation
of random permutation, one needs to generate N random numbers from [0, 1] while do
some swapping operations for each element. (This may be different from the intuition
established from drawing balls from a bag. For randomly dividing N balls, one can
choose p from N balls first, then p from N − p, . . .. It seems that the complexity
becomes smaller and smaller as the total number of balls is becoming smaller and
smaller. This is indeed not the case because in computer one can use arrays to store
the ’balls’ and one only needs to generate the indices without touching these ’balls’.)

In summary, there is no big difference in complexity for the two algorithms. The
advantage of RBM-1 might be its ability for parallelism during one interval while the
advantage of RBM-r is its simplicity so that it is likely more flexible for extensions.

4. In Lemma 3.1, for x independent of the random division, we prove that

Var(χm,i(x)) =

(
1

p− 1
− 1

N − 1

)
Λ(x),

where Λ(x) is independent of p. This means for larger p, the variance is smaller and
the noise level is lower. This noise somehow reflects the fluctuation of the empirical

measure µ̃
(1)
N around µ

(1)
N .
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5. If K is a singular forcing (like Coulomb), we can do splitting method and have

dXi =
1

p− 1

∑
j∈C,j 6=i

K(Xi −Xj) dt,

dXi = −∇V (Xi) dt+ σdBi.

(2.10)

If p = 2, the singular forcing term can be often solved analytically. This is another
advantage of the stochastic algorithm: for the N -particle system, if the forcing K is
singular so that the problem is stiff, explicit scheme needs very small time step while
implicit scheme is hard to invert. Using the stochastic algorithm plus time splitting,
the evolution can be solved exactly, thus avoiding stability constraint.

6. Suppose one aims at the law of particles in (1.2) with very large N . By mean field
limit, one can choose to solve (1.3) directly. A possible way is to use particle method
for (1.3) where the number of particles is much smaller than N and the masses for
the particles in the numerical method can even be different (the particle blob method
[43]). For the interacting particle system of this numerical purpose, our randomized
algorithms also apply well. In this regard, we provided an efficient numerical particle
method for the mean-field (or kinetic) equations. In fact this is exactly the starting
point of the binary algorithms in [35].

7. To better simulate the invariant measure in the case of σ = 0, one may add the
Brownian motion εNdB

i where εN decreases with N . For example, we may set

εN =
1

Nγ
, γ > 0.

8. If the initial distribution is far from the equilibrium and we aim to get the global
equilibrium, one may need many iterations for convergence to the equilibrium. A
possible way is to use the Gibbs distribution corresponding to V

ν(dx) ∝ exp(−V (x)) dx

for initialization to reduce the number of iterations. This distribution can be sampled
using the Markov chain Monte Carlo (MCMC) methods [44, 45]. Of course, for special
V such as quadratic functions, the initial distribution can be sampled directly without
MCMC.

3 An error analysis for RBM-1

In this section, we study RBM-1 proposed in Section 2.1. In particular, we will check how
close it is to the fully coupled system (1.2). We leave the study of RBM-r to the future.
However, as commented above, we expect RBM-r to also work when RBM-1 works. Recall
that each iteraction consists of random division and evolution. The mechanism that makes
RBMs work is Lemma 3.1 and small step size. The philosophy is as following. Suppose that
the system has certain chaotic property. When τ is small enough, the accumulative behavior
along many time steps will be roughly comparable to the average behavior, which is (1.2)
thanks to Lemma 3.1. This is similar to Law of Large Numbers, but on time.

We assume the following conditions on the confining and interacting potentials:

Assumption 3.1. Suppose V is strongly convex on Rd so that x 7→ V (x) − r
2 |x|2 is convex,

and ∇V , ∇2V have polynomial growth (i.e. |∇V (x)| + |∇2V (x)| ≤ C(1 + |x|q) for some
q > 0). Assume K(·) is bounded, Lipschitz on Rd with Lipschitz constant L and has bounded
second order derivatives. Moreover,

r > 2L. (3.1)
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The condition r > 2L is to ensure that the evolution group for the deterministic part of
(1.2) is a contraction. In particular, if

Ẋi = −∇V (Xi) +
1

N − 1

∑
j:j 6=i

K(Xi −Xj), Ẏ i = −∇V (Y i) +
1

N − 1

∑
j:j 6=i

K(Y i − Y j),

then

d

dt

N∑
i=1

|Xi − Y i|2 ≤ −(r − 2L)

N∑
i=1

|Xi − Y i|2. (3.2)

Of course, for such systems, one must have σ > 0 to have a nontrivial equilibrium. Otherwise,
all the particles will go to a single point.

Our goal is to prove that the distribution generated by RBM-1 is close to the distribution
of the marginal distribution of the N particle system in the Wasserstein distance. We recall
that the Wasserstein-2 distance is given by [46]

W2(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Rd×Rd

|x− y|2dγ
)1/2

, (3.3)

where Π(µ, ν) means all the joint distributions whose marginal distributions are µ and ν
respectively.

In order to achieve this goal, we consider the synchronous coupling between (1.2) and
(2.3). We denote Xi the solution obtained by the N interacting particle system while X̃i the
solution obtained by RBM-1. Correspondingly, B̃i will denote the Brownian motion used in
RBM-1. Note that both (1.2) and (2.3) have exchangeability. This means, for example, the
joint distribution of Xi’s is symmetric. Consequently, X̃i and X̃j (for all i and j) have the
same distribution. We construct the coupling as follows. For i = 1, 2, . . . , N ,

X̃i(0) = Xi(0) =: Xi
0 ∼ ν,

Bi(t) = B̃i(t).
(3.4)

With this coupling, we define the error process

Zi(t) := X̃i(t)−Xi(t). (3.5)

Let ξm−1 denote the random division of batches at tm−1, and define

Fm−1 = σ(Xi
0, B

i(t), ξj ; t ≤ tm−1, j ≤ m− 1). (3.6)

In other words, Fm−1 is the σ-algebra generated by the initial values Xi
0 (i = 1, . . . , N),

Bi(t), t ≤ tm−1, and ξj , j ≤ m− 1. Hence, Fm−1 contains the information for how batches
are constructed for t ∈ [tm−1, tm). We also introduce

Gm−1 = σ(Xi
0, B

i(t), ξj ; t ≤ tm−1, j ≤ m− 2). (3.7)

If we use σ(ξm) to mean the σ-algebra generated by ξm, then Fm−1 = σ(Gm−1 ∪ σ(ξm−1)).
Throughout this section, C will denote generic constants whose concrete value can change
from line to line. We use ‖ · ‖ to represent the L2 norm:

‖v‖ =
√
E|v|2. (3.8)

We now state the theorem.

Theorem 3.1. Suppose Assumption 3.1 holds. With the coupling constructed above,

sup
t≥0
‖Z1(t)‖ ≤ C

√
τ

p− 1
+ τ2, (3.9)

where C is independent of N, p and t. Consequently, let µ
(1)
N (t) be the first marginal for

(1.2) and µ̃
(1)
N be the first marginal for system (2.3). Then

sup
t≥0

W2(µ
(1)
N (t), µ̃

(1)
N (t)) ≤ C

√
τ

p− 1
+ τ2 ≤ C√τ . (3.10)
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We need some preparation for the proof. Lemma 3.1 is a type of consistency lemma for
RBMs while Lemma 3.2 somehow shows the stability of RBM-1.

Lemma 3.1. Consider p ≥ 2 and a given fixed x = (x1, . . . , xN ) ∈ RNd. Then, for all i,

Eχm,i(x) = 0, (3.11)

where the expectation is taken with respect to the random division of batches. Moreover, the
variance is given by

Var(χm,i(x)) =

(
1

p− 1
− 1

N − 1

)
Λ(x), (3.12)

where

Λ(x) :=
1

N − 2

∑
j:j 6=i

K(xi − xj)− 1

N − 1

∑
k:k 6=i

K(xi − xk)

2

. (3.13)

Proof. We use I(i, j) = 1 to indicate that i, j are in the same batch. We rewrite

fm,i :=
1

p− 1

∑
j:∈Cq,j 6=i

K(xi − xj) =
1

p− 1

∑
j:j 6=i

K(xi − xj)1I(i,j)=1.

We first show that

E1I(i,j)=1 =
p− 1

N − 1
.

As is well-known, there are

M(n) :=
(pn)!

(p!)nn!

ways of dividing pn distinguishable objects into n batches of size p.
For a given (i, j) pair, to compute E1I(i,j)=1, the probability that i, j are in the same

batch, we compute the number of ways to group (i, j) together. We first choose p−2 objects
from np− 2 to group with i, j and then form a batch. Then, divide the remaining into n− 1
batches. Hence, the number of ways to make i, j in the same batch is

(
np−2
p−2

)
M(n− 1) and

thus

E1I(i,j)=1 =

(
np−2
p−2

)
M(n− 1)

M(n)
=

p− 1

N − 1
.

This then proves that

Efm,i =
1

N − 1

∑
j:j 6=i

K(xi − xj),

and thus the claim for the expectation (3.11) follows.
Now, let us consider the variance. We first compute the second moment of ξm,i:

Ef2
m,i =

1

(p− 1)2

∑
j:j 6=i

(K(xi − xj))2P(I(i, j) = 1)

+
1

(p− 1)2

∑
i,j:j 6=k,j 6=i,k 6=i

K(xi − xj)K(xi − xk)P(I(i, j)I(j, k) = 1).

By similar argument,

P(I(i, j)I(j, k) = 1) =

(
np−3
p−3

)
M(n− 1)

M(n)
=

(p− 1)(p− 2)

(N − 1)(N − 2)
.

9



Hence,

Var(χm,i(x)) = Ef2
m,i − (Efm,i)2

=

(
1

p− 1
− 1

N − 1

)( 1

N − 1

∑
j 6=i

(K(xi − xj))2

− 1

(N − 1)(N − 2)

∑
i,j:j 6=k,j 6=i,k 6=i

K(xi − xj)K(xi − xk)
)

=

(
1

p− 1
− 1

N − 1

)
1

N − 2

∑
j:j 6=i

K(xi − xj)− 1

N − 1

∑
k:k 6=i

K(xi − xk)

2

.

Lemma 3.2. Suppose the coupling constructed in (3.4) and Assumption 3.1 hold. Then,
for any q ≥ 2, there exists a constant Cq independent of N such that for any i

sup
t≥0

(E|Xi(t)|q + E|X̃i(t)|q) ≤ Cq. (3.14)

Moreover, for t ∈ [tm−1, tm),

‖Zi(t)− Zi(tm−1)‖ ≤ Cτ,

|E(Zi(t)− Zi(tm−1)χm,i(X̃(tm−1)))| ≤ ‖Λ‖∞
τ

p− 1
+ C

(
τ2 + sup

s∈[tm−1,t]

‖Zi‖τ
)
,

(3.15)

where C is independent of N, p and m.

Proof. Consider system (1.2) first. By Itô’s calculus,

d

dt
E|Xi|q = qE|Xi|q−2

−Xi · ∇V (Xi) +
1

N − 1

∑
j:j 6=i

Xi ·K(Xi −Xj)


+

1

2
q(q + d− 2)σ2E|Xi|q−2.

Note that

Xi · ∇V (Xi) = (Xi − 0) · (∇V (Xi)−∇V (0)) +Xi · ∇V (0) ≥ r|Xi|2 +Xi · ∇V (0).

Recalling also that K is bounded,

d

dt
E|Xi|q ≤ −qrE|Xi|q + q(‖K‖∞ + |∇V (0)|)E|Xi|q−1 +

1

2
q(q + d − 2)σ2E|Xi|q−2.

(3.16)

By Young’s inequality,

E(|Xi|q−1) ≤ (q − 1)ν

q
E(|Xi|q) +

1

qνq−1
,

the second term on the right hand side of (3.16) is therefore controlled. If q = 2, the last
term on the right hand side of (3.16) is controlled by a constant. Otherwise, one can apply
Young’s inequality similarly to control it with E(|Xi|q). Clearly, when choosing ν fixed but
small enough, E|Xi|q can be uniformly bounded in time for any q ≥ 2, and the bound is
independent of N .

For X̃i, we first consider a given random division so that the equation is given by

dX̃i = −∇V (X̃i)dt+
1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i − X̃j) dt+ σdBi,

10



where Cθ is the random batch that contains i from the random division at tm−1, or ξm−1.
Now, consider that t ∈ [tm−1, tm). Conditioning on Fm−1 and applying Itô’s calculus on
[tm−1, tm), one also has

d

dt
E(|X̃i|q|Fm−1) = qE

[
|X̃i|q−2(−X̃i · ∇V (X̃i)+

X̃i · 1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i − X̃j)))|Fm−1

]
+

1

2
q(q + d− 2)σ2E(|X̃i|q−2|Fm−1).

Using similar estimates,

d

dt
E(|X̃i|q|Fm−1) ≤ −r1E(|X̃i|q|Fm−1) + C1,

for some r1 > 0 and constant C1 that are deterministic. Taking expectation about the
randomness in Fm−1 on both sides, one then obtains the same inequality as for X. The
claim for X̃ also follows.

Now, by the coupling, Zi satisfies on t ∈ [tm−1, tm)

dZi = −(∇V (X̃i)−∇V (Xi))dt+
1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i−X̃j) dt− 1

N − 1

∑
j:j 6=i

K(Xi−Xj) dt.

Since ∇V has polynomial growth, the claim for ‖Zi(t) − Zi(tm−1)‖ is then an easy conse-
quence of the q-moment estimates just proved.

Moreover, since

|∇V (X̃i)−∇V (Xi)| ≤
∫ 1

0

|(X̃i −Xi) · ∇2V ((1− z)X̃i + zXi)| dz,

we find that this controlled by C(|X̃i|q1 + |Xi|q1) for some q1 > 0. Hence,

E((Zi(t)− Zi(tm−1)) · χm,i(X̃(tm−1))) ≤ ( sup
s∈[tm−1,t]

‖Zi(s)‖)C(‖K‖∞ + L)τ

+ E
∫ t

tm−1

χm,i(X̃(s)) · χm,i(X̃(tm−1)) ds.

For the second term,

Eχm,i(X̃(s)) · χm,i(X̃(tm−1)) = E
(

(χm,i(X̃(s))− χm,i(X̃(tm−1))) · χm,i(X̃(tm−1))
)

+ E(χ(X̃(tm−1)))2 ≤ C‖K‖∞Lτ + E(E(χ(X̃(tm−1))2|Gm−1)). (3.17)

Applying Lemma 3.1,

E(E(χ(X̃(tm−1))2|Gm−1)) = (
1

p− 1
− 1

N − 1
)E(Λ(X̃(tm−1))) ≤ 1

p− 1
‖Λ‖∞,

the claim follows.

Note that conditioning on the random division ξm−1, the indices are not symmetric. We
now provide estimates regarding the conditional expectations.

Lemma 3.3. Consider process X̃. For t ∈ [tm−1, tm) and all i, it holds that

‖E(X̃i(t)− X̃i(tm−1)|Fm−1)‖ ≤ Cτ, (3.18)

and

‖E(|X̃i(t)− X̃i(tm−1)|2|Fm−1)‖ ≤ Cτ, (3.19)

where C is independent of ξm, m and N .

11



Proof. By Lemma 3.2, one has
E|X̃i(t)|q ≤ C, ∀i,

and C is independent of N,m.
Now, consider an experiment so that the equation is written as

dX̃i(t) = −∇V (X̃i) dt+
1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i − X̃j) + σdBi,

where Cθ again is the random batch that contains i from the random division at tm−1, or
ξm−1. It follows that

E(X̃i(t)− X̃i(tm−1)|Fm−1) =−
∫ t

tm−1

E(∇V (X̃i)|Fm−1) ds

+

∫ t

tm−1

E

 1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i − X̃j)|Fm−1

 ds.

Note that K is bounded and |∇V (x)| ≤ C(1 + |x|q) for some q > 0. Hölder’s inequality for
conditional expectations gives

‖E(∇V (X̃i)|Fm−1)‖ = (E|E(∇V (X̃i)|Fm−1)|2)1/2

≤
(
E
(
E(|∇V (X̃i)|2|Fm−1)

))1/2

= ‖∇V (X̃i)‖.

Together with Lemma 3.2, this implies the first claim.
For the second claim, Itô’s formula implies that

d

dt
E
[
(X̃i(t)− X̃i(tm−1)2|Fm−1

]
= 2E

(X̃i(t)− X̃i(tm−1)
)
· (−∇V (X̃i) +

1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i − X̃j))|Fm−1

+ σ2.

Similarly,∥∥∥∥∥∥E
(X̃i(t)− X̃i(tm−1)

)
·

−∇V (X̃i) +
1

p− 1

∑
j∈Cθ,j 6=i

K(X̃i − X̃j)

 |Fm−1

∥∥∥∥∥∥
is uniformly bounded by Hölder’s inequality for conditional expectations. The second claim
also follows.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. With the coupling (3.4), the continuous process Zi satisfies for t ∈
[tm−1, tm) that

dZi =− (∇V (X̃i)−∇V (Xi))dt

+
1

N − 1

∑
j:j 6=i

(K(X̃i − X̃j)−K(Xi −Xj))dt+ χm,i(X̃(t))dt.

Using the strong convexity of V and Lipscthitz continuity of K,

1

2
dE

N∑
i=1

(Zi)2 ≤ −(r − 2L)E
N∑
i=1

(Zi)2 dt+

N∑
i=1

EZi(t) · χm,i(X̃(t)) dt,

12



where X̃ = (X̃1, . . . , X̃N ) ∈ RNd. Due to the exchangeability,

R(t) :=
1

N

N∑
i=1

EZi(t) · χm,i(X̃(t)) = EZ1(t) · χm,1(X̃(t)).

For notational convenience, we introduce

u(t) :=
1

N
E

N∑
i=1

(Zi)2 = ‖Z1(t)‖2.

Then,
d

dt
u(t) ≤ −2(r − 2L)u(t) + 2R(t).

We now estimate R(t). We rewrite it as

R(t) =EZ1(tm−1) · χm,1(X̃(tm−1)) + E(Z1(t)− Z1(tm−1)) · χm,1(X̃(tm−1))

+ EZ1(tm−1) · (χm,1(X̃(t))− χm,1(X̃(tm−1)))

+ E(Z1(t)− Z1(tm−1)) · (χm,1(X̃(t))− χm,1(X̃(tm−1)))

=:I1 + I2 + I3 + I4.

(3.20)

By Lemma 3.1, we have

I1 = E
(
Z1(tm−1) · E(χm,1(X̃(tm−1))|Gm−1)

)
= 0.

This is the consistency that ensures convergence. Note that Gm−1 does not contain the
information of random division at tm−1 and this is why we can get I1 = 0.

By Lemma 3.2, the second term on the right hand side of (3.20) is bounded by

I2 ≤ C
τ

p− 1
+ C‖Z1(t)‖τ + Cτ2,

where C is independent of N and p.
By Lemma 3.2 again,

I4 ≤ ‖Z1 − Z1(tm−1)‖‖χm,1(X̃(t))− χm,1(X̃(tm−1))‖ ≤ Cτ2,

where C is again independent of N and p.
For I3 in (3.20), we denote

δX̃(t) = X̃(t)− X̃(tm−1).

Note that

I3 = EZ1(tm−1) · ∇χm,1(X̃(tm−1)) · δX̃(t) +
1

2
EZ1(tm−1) · (δX̃⊗2(t) : ∇2χm,1(ηm)),

(3.21)

where ηm is some point between X̃(t) and X̃(tm−1) by the Lagrange Remainder Theorem.
Let us recall that

χm,1(x) =
1

p− 1

∑
j∈Cθ,j 6=i

K(x1 − xj)− 1

N − 1

∑
k:k 6=1

K(x1 − xk). (3.22)

Conditioning on Fm−1 and applying Hölder’s inequality, one has

|EZ1(tm−1) · ∇χm,1(X̃(tm−1)) · δX̃(t)|
= |E

(
Z1(tm−1) · E(∇χm,1(X̃(tm−1)) · δX̃(t)|Fm−1)

)
|

≤ ‖Z1(tm−1)‖‖E(∇χm,1(X̃(tm−1)) · δX̃(t)|Fm−1)‖

13



µ̃
(1)
N

µ
(1)
N

µ

µ̃

N !1

N !1

⌧
!

0

⌧
!

0

Figure 1: Illustration for the convergence of the RBMs

Applying Lemma 3.3 (equation (3.18)) and Lemma 3.2, this is controlled by

C‖Z1(tm−1)‖τ ≤ C‖Z1(t)‖+ Cτ2.

The last term in (3.21) can be estimated using Lemma 3.3 (equation (3.19)) directly.
Hence,

R(t) ≤ C‖Z1(t)‖τ + C
τ

p− 1
+ Cτ2

and thus
d

dt
u(t) ≤ −2(r − 2L)u(t) + C

τ

p− 1
+ C

√
u(t)τ + Cτ2.

This equality therefore implies that

sup
t≥0

E|X̃1 −X1|2 = sup
t≥0

u(t) ≤ C τ

p− 1
+ Cτ2.

The closeness between µ
(1)
N and µ̃

(1)
N in W2 distance is a simple application of definition

(3.3).

Finally, it is straightforward to conclude that RBM-1 can approximate the mean field
measure (solution to (1.3)) since the mean field result is well known (see, for example, [19]).
In fact, as shown in Fig. 1, the triangle inequality yields the following.

Corollary 3.1. Suppose Assumption 3.1 holds, then

W2(µ̃
(1)
N (t), µ(t)) ≤ C(

√
τ +N−1/2+ε) (3.23)

for any ε > 0.

The error bound between µ̃
(1)
N and µ

(1)
N is C

√
τ uniformly in time with C independent

of N . The error bound between µ
(1)
N and µ is given by CN−1/2+ε ([19]). As shown in the

figure, if one takes N → ∞ first, one may get some measure µ̃(t), which is the mean field
limit of the RBM-1 method. Analyzing this measure will be an interesting problem for the
future.

As shown in Fig. 1, the RMBs are a class of Asymptotic-Preserving schemes [37] for
particle system (1.2), in that they approximate the particle system (1.2) with an error of
O(τ) independent of N , and as N →∞, they become good approximations to the limiting
mean-field equation (1.3).

Remark 3.1. We also point out that the constant C in Theorem 3.1 stays bounded as
σ → 0. The proof in Theorem 3.1 is valid for σ = 0, when there is no Brownian motion. In
this case, the first part in Theorem 3.1 in fact says that we can approximate the trajectories
of the particles. This is a much stronger approximation.

Remark 3.2. The analysis here should also work for (1.1), provided some analogies of
Lemma 3.1 hold (as discussed in section 2.3). For techanical needs, one will assume r large
enough so that the semigroup given by the deterministic flow is again a contraction. The
detailed analysis is quite involved and we choose not to do it here.
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Figure 2: Error of RBM-1 versus time step. Blue circle is for N = 50, black star is for
N = 500, red square is for N = 2000.

Remark 3.3. If the deterministic flow does not have the contraction property, we may
only be able to prove the convergence of our methods on finite time interval [0, T ]. More-
over, the mean field limit by Dobrushin’s estimate holds on finite time interval [47, 16, 14].
Consequently, it is possible to show that

W2(µ̃
(1)
N (t), µ(t)) ≤ C(T )(

√
τ +N−1/2), ∀t ∈ [0, T ], (3.24)

for general interaction potentials, where the coefficient depends on T now.

4 Numerical verification

In this section, we run some numerical tests to evaluate the RBMs and verify our theory
in section 3. The first example is a simple artificial example to test the dependence of the
errors on N and τ . The second example is the Dyson Brownian motion.

4.1 A simple test example

We now use the following simple test example to check how the error in RBM-1 depends
on N , τ and T (T is the time point where we compute the numerical solutions). Here, the
spatial dimension is 1 (d = 1)

Ẋi = −βXi +
1

N − 1

∑
j:j 6=i

Xi −Xj

1 + |Xi −Xj |2 . (4.1)

The interaction is clearly smooth, bounded and with bounded derivatives. Moreover, it has
a long-range interaction.

In principle, to evaluate E(T ) =
√
E|X̃1(T )−X1(T )|2, we need to run many indepen-

dent experiments and use empirical mean for the approximation. Doing this is clearly very
expensive. Alternatively, we only run one experiment and use

Ê(T ) :=

√√√√ 1

N

N∑
i=1

|X̃i(T )−Xi(T )|2 (4.2)

to approximate E(T ).
In Fig. 2, we show the numerical results for T = 1. The initial distribution is taken from

ρ0(x) =

√
4− x2

2π
,
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Figure 3: Error for RBM-1 versus time.

by the Metropolis-Hastings MCMC algorithm [44]. The reference solution Xi(T ) is obtained
by solving the fully coupled system using the forward Euler scheme with τ = 2−15. The
solution X̃i(T ) is generated by RBM-1 with p = 2. Each step is solved by the forward Euler
method with τ from 2−7 to 2−4. We considered N = 50, 500, 2000 respectively. We plot the
error Ê(T ) versus τ for these three N values. The first picture in Fig. 2 is for β = 0 while
the second picture in Fig. 2 is for β = 1. Clearly, the error is insensitive to the change of N .
When N is small, like N = 50, the fluctuation in the error is kind of clear. When N is large,
in the log-log scale, the curve is already close to straight lines with slope approximately 0.5,
meaning that the error indeed decays like

√
τ .

In Fig. 3, we take N = 500. The reference solution is again computed by solving the fully
coupled system using the forward Euler scheme with τ = 2−15. The algorithm is performed
by taking τ = 2−7. If there is confining potential, the error stays bounded as T increases.
However, if there is no confining potential, the error clearly grows, consistent with Remark
3.3. This is indeed natural even for usual ODE discretization for the fully coupled system
(1.2). In fact, if there is no confining potential, the numerical error grows with T for the
forward Euler method.

4.2 The Dyson Brownian motion

Now, we consider a typical example in random matrix theory [48, 49] to test the difference
between RBM-1 and RBM-r. The random matrix we consider is a Hermitian matrix valued
Ornstein-Ulenbeck process

dA = −βA+
1√
N
dB, (4.3)

where the matrix B is a Hermitian matrix consisting of some Brownian motions. In partic-
ular, the diagonal elements are independent standard Brownian motions. The off-diagonal
elements in the upper triangular half are of the form 1√

2
(BR + iBI) where BR and BI are

independent standard Brownian motions. The lower triangular half elements are determined
using the Hermitian property. By Itô’s calculus [50, 48, 49], it can be shown that the eigen-
values of A satisfy the following system of SDEs (1 ≤ j ≤ N), called the Dyson Brownian
motion:

dλj(t) = −βλj(t) +
1

N

∑
k:k 6=j

1

λj − λk
dt+

1√
N
dBj , (4.4)

where {Bj}’s are independent standard Brownian motions. The Brownian motion effect is
small when N is large. This system therefore should have similar effects as system (1.2)
with σ = 0. The limiting equation for N →∞ is given by [51]

∂tρ(x, t) + ∂x(ρ(u− βx)) = 0, u(x, t) = π(Hρ)(x, t), (4.5)
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Figure 4: The RMB-1 simulation of the Dyson Brownian motion. The empirical densities at
various times are plotted. The red curve is the density distribution predicted by the analytic
solution (4.8). The black curve is the equilibrium semicircle law (4.7).

where ρ is the density for λ as N →∞, H(·) is the Hilbert transform on R, and π = 3.14 . . .
is the circumference ratio.

Below we consider

β = 1. (4.6)

It is shown that the corresponding limiting equation (4.5) has an invariant measure, given
by the semicircle law:

ρ(x) =
1

π

√
2− x2 (4.7)

To numerically test the behavior of our methods, we note an analytic solution to the
limiting equation (4.5)

ρ(x, t) =

√
2σ(t)− x2

σ(t)π
, σ(t) = 1 + e−2t. (4.8)

For each iteration, since the force is singular, we adopted the splitting strategy mentioned
in section 2.3. In particular, we define

Xij := Xi −Xj . (4.9)

The SDE solving step in RBM-1 is given by

•

Y im =
1

2
(Xi

m−1 +Xj
m−1) + sgn(Xij

m−1)

√
|Xij

m−1|2 + 4τ ,

Y jm =
1

2
(Xi

m−1 +Xj
m−1)− sgn(Xij

m−1)

√
|Xij

m−1|2 + 4τ .

•
Xi
m = Y im − τY im +

√
τ

N
zi, Xj

m = Y j(tm)− τY jm +

√
τ

N
zj .

Here, zi, zj ∼ N (0, 1).
In Fig. 4, we show the numerical results using RBM-1 in section 2.1. The initial data

(setting t = 0 in (4.8)) are sampled using the Metropolis Hastings algorithm [44]. We
plot the results at t = 0.5 and t = 5. The number of particles is N = 105 while we use
τ = 10−3 for time step. As can be seen, RBM-1 can successfully recover the evolution of
distribution and the equilibrium semicircle law (4.7), as desired. In Fig. 5, the results of
RBM-r are shown. Again, we take N = 105 and τ = 10−3. Within one iteration, the same
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Figure 5: The RBM-r simulation of Dyson Brownian motion. The ’time’ is regarded as
τ = 10−3 for N/2 iterations. The red curve is the density distribution predicted by analytic
solution (4.8). The black curve is the equilibrium semicircle law (4.7).

splitting scheme above is used. We find that RBM-r indeed has comparable results with
RBM-1. Though RBM-r seemingly cannot simulate the dynamics of the distributions, N/2
iterations in fact has comparable behavior for time τ . This interesting observation confirms
that RBM-r can capture the dynamics for some examples.

Since both stochastic algorithms give similar behaviors, in later examples, we only use
one of them to implement for each example. If we care more about the dynamical behavior,
we use RBM-1 (see the two examples in Section 5.2). Otherwise, we use RBM-r. (In fact,
the two algorithms do not show significant difference, even for evolutional problems.)

5 Applications

In this section, we apply RBMs to some examples from physics, social and data sciences.
On one hand, the positive results give more supports to the algorithms; on the other hand,
for some applications, the stochastic algorithms can be regarded as new models for the
underlying problems.

5.1 Charged particles on sphere

The traditional Thomson problem is to determine the stable configuration of N electrons
on a sphere. When N becomes large, this could lead to the so-called spherical crystals
([52, 53, 54]). The configuration may have some meta-states (local minimizers of the energy
surface). When the number of particles is large, the spherical crystals have defects due to
the topology of the sphere [53, 54].

In the N →∞ limit, hopefully, we will have a continuous distribution of charges on the
sphere ρ(·). The problem then corresponds to determining ρ such that the energy

E(ρ) =
1

2

∫∫
S×S

1

|x− y|ρ(x)ρ(y) dSxdSy (5.1)

is minimized. It is unclear how the energies corresponding to local minimizers are distributed
(if there are any).

Regarding charges with surface densities, let us make a mathematical remark. Suppose
S is a surface that divides the whole space Rd into two halves. Assume there is a continuous
distribution of charges on S with density ρ. Let ϕ±(x) be the limits of the potential on the
two sides of S, and ϕ(x) := ϕ+(x) + ϕ−(x). Then, one has

(−∆)
1/2
S ϕ+ s(ϕ) = ρ, (5.2)

where (−∆)
1/2
S is the 1/2 fractional Laplacian on S and s(ϕ) is some pseudo-differential

operators with a symbol of degree lower than 1. In other words, to the leading order, the
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1/2 fractional Laplacian of ϕ equals ρ. In the case that S is a plane or a circle in 2D plane,
s(ϕ) = 0. In general, s(ϕ) 6= 0. In fact, by the jump condition of electric fields,

ρ = E+ · n+ + E− · n− = −∂ϕ
+

∂n+
− ∂ϕ−

∂n−
. (5.3)

It is well-known that the Dirichlet to Neumann operator L is related to the 1/2-fractional
Laplacian by

Lϕ = −(−∆)
1/2
S f + r(f), (5.4)

where n is the normal vector pointing into the side where the harmonic extension is per-
formed and r(f) includes lower terms. In the case that S is a plane r(f) = 0 [55]. (In fact,

if S is the base of cylinders, L = −(−∆)
1/2
S as well. See [56]. ) In the case of the unit circle

in 2D plane, one can refer to [57]. For spheres in higher dimensions, s 6= 0. With (5.4) and
(5.3), (5.2) follows.

Remark 5.1. For the unit circle in 2D plane, one has a simple way to see (5.4) with
r(ϕ) = 0. Let f(z) be analytic inside Ω such that ϕ = Re(f(z)). On the boundary, z = eiθ

f− =
∑
k≥0 f̂ke

ikθ, so that f(z) =
∑
k≥0 f̂kz

n for z inside the disk. Clearly,

∂ϕ−

∂n−
= Re

(
∂f

∂n−

)
= −Re(zf ′(z))|z∈∂Ω = −Re

∑
k≥0

|k|f̂keikθ
 .

The claim is true for the interior domain. For the exterior domain, one has
∑
k≤0 and

∂ϕ+

∂n+ = Re( ∂f
∂n+ ) = Re(zf ′(z))|z∈∂Ω. The claim again holds.

Interacting particle systems on sphere can be realized experimentally by beads on water
droplets immersed in oil [58]. By adjusting the environmental solution, the interacting kernel
K(·) can also be changed, which does not have to be the Coulomb interaction. For such
systems, the particles clearly have heat exchange with the enviroment so that the interacting
particle system may be described by certain Langevin equations on sphere:

dXi = V i dt,

mdV i = −γV i dt+ PS

 1

N

∑
j 6=i

F (Xi −Xj)

 dt+
√

2DdBiS
(5.5)

Here, PS is the projection onto the tangent space of the sphere while BiS is the spherical
Brownian motion to guarantee that the particle stays on the sphere. For theories of SDEs
on manifolds, one may refer to [59]. Here, D and γ must be related as in the classical
fluctuation-dissipation theorem [60].

In the overdamped limit and with suitable scaling, we then have interacting particle
system on sphere

dXi = PS

 1

N

∑
j 6=i

F (Xi −Xj)

 dt+
√

2D1dB
i
S (5.6)

Numerically discretizing such SDEs on sphere is an interesting topic which we leave for the
future. In this work, we consider the Coulomb interaction with σ1 = 0, and use RBM-r as
the stochastic strategy. The following simple scheme for the SDE on sphere is then adopted.

• Randomly picking two indices. Then, solve the following for time t ∈ [tm−1, tm)

dXi =
∑

j:I(i,j)=1

Xi −Xj

|Xi −Xj |3 dt, (5.7)
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Figure 6: Charged particles on sphere. The first row is for N = 60 while the second row
corresponds to N = 800. The first column shows the distributions at the end of simulation
while the second column shows how the energy changes with ’time’.

where I(i, j) = 1 means that i, j are in the same batch. This can be solved analytically.
In particular, defining

v̂m = (Xi
m−1 −Xj

m−1)/|Xi
m−1 −Xj

m−1|, (5.8)

one then has:

Xi
m = (Xi

m−1 +Xj
m−1) + v̂m(|Xi

m−1 −Xj
m−1|3 + 6τ)1/3,

Xj
m = (Xi

m−1 +Xj
m−1)− v̂m(|Xi

m−1 −Xj
m−1|3 + 6τ)1/3

(5.9)

• Project the obtained points back to the sphere by dividing its magnitude.

The reason for setting σ1 = 0 is that we would like to explore energy stable configurations.
We desire low temperature regime for the ground state. Besides, the stochastic algorithm
also introduces randomness so that we still have chance to get out of the local minimizers.

To check whether the method can give the desired ground state approximately, we ran-
domly choose initial points on the sphere and run the above stochastic algorithms for enough
iterations. We do many experiments and check whether we always obtain the same final
energy level.

In Fig. 6, we show the numerical results in two experiments. The number of particles are
chosen as N = 60 and N = 800 respectively. The initial points are chosen randomly. The
time step is chosen as τ = 10−4. As before, we regard the ’time’ to be τ after N/2 iterations.
For N = 60, we see that in the eventual near stable configuration, each particle has 5 or 6
neighbors, and this agrees with the known results by physicists [53, 54]. This configuration
is quite different from the fullerene C60 structure which is induced by the special properties
of Carbon atoms. For the N = 800 case, the particles are roughly distributed uniformly.
For both figures, there is only one stable energy level during the whole process. This means
the system was only trapped in the final stable configuration.
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Figure 7: Energy statistics. This histogram shows the terminal energy for 25 experiments.
The terminal ’time’ is T = 3.

To check whether there are other possible stable energy configurations, we collect in Fig.
7 the energies for N = 800 after 3 ∗ (N/2)/τ iterations (T = 3) in 25 experiments. The
simulation shows that one can find the ground state of the configuration almost surely using
the stochastic algorithm and it is not easy to be trapped in local minimizers, if there are
any. As studied by the physicists, there are many energy levels for the Thomson sphere.
However, the numerical results here seem to suggest that the stochastic algorithms can obtain
the ground state with high probability and the local minimizers of the energy landscape
probably has small energy barriers. Maybe, some interesting phenomena happen for large
N ’s which needs further investigation.

5.2 Two examples from economics and social science

In this section, we apply RBM-1 for two important models in social sciences, namely the
evolution of wealth [61] and opinion dynmaics [5]. The obtained stochastic processes not
only are algorithms for the original models, but also can be viewed as new models which
consider the fact that only a few individuals commute during a short time.

5.2.1 Stochastic dynamics of wealth

We consider the model proposed by Degond et al. [61], which tries to understand the
evolution of N market agents with two attributes: the economic configuration Xi and its
wealth Y j .

Ẋi = V (Xi, Y i),

dY i = − 1

N

∑
k:k 6=i

ξikΨ(|Xi −Xk|)∂yφ(Y i − Y k) dt+
√

2DY idBi.
(5.10)

The first equation describes the evolution of the economic configuration, which is driven by
the local Nash equilibrium and it is related to mean-field games [62, 11]. The second equation
describes the evolution of the wealth, which contains two mechanisms: the trading model
proposed by Bouchaud and Mezart [63], and the geometric Brownian motion in finance
proposed by Bachelier in 1900 [64]. The quantity

√
2D is the volatility. The function φ is

the trading interaction potential, while ξikΨ(|Xi−Xk|) is the trading frequency. Often one
assumes that ξik depends on the number of trading agents in the economic neighborhoods
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of i and k:

ξik = ξ(
ρi,Ψ + ρk,Ψ

2
), ρi,Ψ =

1

N − 1

∑
` 6=j

Ψ(|X` −Xi|). (5.11)

The mean field Fokker-Planck equation is given by

∂tf + ∂x(V (x, y)f) + ∂y(Ff) = D∂yy(y2f) (5.12)

where

F (x, y, t) = −
∫
x′≥0,y′≥0

ξ(
1

2
(ρΨ(x, t) + ρΨ(x′, t)))Ψ(|x− x′|)

× ∂yφ(y − y′)f(x′, y′, t) dx′dy′, (5.13)

and

ρΨ(x, t) =

∫
x′>0,y′>0

Ψ(|x− x′|)f(x′, y′, t)dx′dy′.

Now, if one considers the homogeneous case where the wealth dynamics is independent
of the position in the economic configuration space, then Ψ is a constant. In this case, the
dynamics is reduced to the interacting particle system, except that one has multiplicative
noise

dY i = − κ

N

∑
k:k 6=i

∂yφ(Y i − Y k) dt+
√

2DY idBi, (5.14)

where κ := Ψξ
(

1
2 (ρiΨ + ρk,Ψ)

)
is now a constant. The mean field equation is now given by

∂tρ(y) = −∂y(F (y)ρ(y)) +D∂yy(y2ρ(y)), (5.15)

where

F (y) = −κ
∫
y≥0

∂yφ(y − y′)ρ(y′)dy′.

The equilibrium distribution is given by

ρ∞(y) ∝ exp(−α(y)

D
),

where α satisfies

∂yα(y) = − 1

y2
F (y) +

2D

y
.

We now apply RBM-1 with p = 2 to (5.14) and have for t ∈ [tm−1, tm)

dY i = −κ∂yφ(Y i − Y θ) dt+
√

2DY idBi, i = 1, . . . , N, (5.16)

where θ is a random index that is grouped with i in the random division. In some sense, the
stochastic dynamics described by this algorithm can model what is happening in the real
world: each agent only trades with a small number of random agents at a time. Then, after
some time interval, the agents trade with others. Hence, (5.16) is not just an aglorithm but
also it can be viewed as a new model.

For numerical test, choose the quadratic trading interaction as in [61, section 3.4]

φ(y) =
1

2
y2.

This interaction function may not be practical as it increases with y (intuitively, as y →∞,
it should go to zero). The good thing is that with this interaction function, one can find the
equilibirum distribution of wealth for (5.14) as

ρ∞(y) =
(κη/D)κ/D+1

Γ(κ/D + 1)
y−(2+κ/D) exp(− κη

Dy
)1y>0. (5.17)
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Figure 8: Wealth distribution for stochastic dynamics

This distribution is the inverse Gamma distribution and agrees with the Pareto power law
for large y. Here, η is the mean wealth.

Now, we take κ = D = 1 and consider the random dynamics (5.16):

dY i = −(Y i − Y θ) dt+
√

2Y idBi, i = 1, . . . , N.

In Fig. 8, we plot the empirical distribution of the wealth with N = 105 agents. We
choose τ = 10−3 and do the simulation to T = 3. The SDE again is solved by the splitting
strategy. Note that the splitting scheme preserves the mean wealth. For the test, we choose
initial data as Xi = |Y i| with Y i ∼ N (0, 1). The reference curve is (5.17) with

η =

√
2√
π
. (5.18)

Clearly, the numerical results agree perfectly with the expected wealth distribution.

5.2.2 Stochastic opinion dynamics

In this section, we consider some stochastic revisions of the opinion dynamics in [5], where
the following two models are mentioned

d

dt
Xi = α

1

N

∑
j 6=i

φ(|Xj −Xi|)(Xj −Xi) (5.19a)

and

d

dt
Xi = α

∑
j 6=i

φ(|Xj −Xi|)∑
k φ(|Xk −Xi|) (Xj −Xi). (5.19b)

Here, φ is called the influence function. These models are introduced for the emergence of
consensus of opinions.

Here, (5.19b) is not convenient for stochastic algorithms because of the denominator.
Instead, we consider RBM-1 applied to (5.19a), and have the following:

d

dt
Xi = αφ(|Xθ −Xi|)(Xθ −Xi) + εNdB

i, (5.20)

where θ, again as before, is a random index that is fixed for t ∈ [tm−1, tm). If εN = 0,
this is the stochastic algorithm of (5.19a) directly. The parameter εN is to represent the
random fluctuation on its opinions. If the number of agents is large, we believe this should
be small. In fact, this stochastic algorithm seems closer to what is happening in the world:
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Figure 9: Stochastic opinion dynamics versus time. Plots of three experiments of the stochas-
tic dynamics with the same initial data. No Brownian motion (εN = 0).

each person only talks to one or few people at a time. Combining its previous opinion, it
forms a new opinion.

Let us consider the influence function

φ(r) = χ[0,1] (5.21)

as in [5, Section 3.3].
In Fig. 9, we show the numerical results. The figure shows the results of three experi-

ments with the same initial data. We choose N = 103 and τ = 10−4, α = 40. Clearly, the
final stationary consensus is sensitive with respect to initial distribution. With the same
initial data, though the dynamics is stochastic, the main behavior is the same for the three
experiments. There are four main clusters of consensus. However, interestingly, in some
experiments (like the third picture), there are may be some individuals that do not belong
to any cluster, which seems to be the case in real world: some individuals are isolated at
the early stage, and after the main clusters of consensus form, they are not affected by these
groups since they are so different. The randomness introduced by the algorithms does not
quite affect the main clusters of consensus, and only a few individuals might behave differ-
ently due to the randomness. After certain time, when the clusters of consensus are formed,
the randomness does not play any roles any more: the individuals only talk to members in
their own clusters.

In Fig. 10, we show the numerical results for the stochastic opinion dynamics with
Brownian motion εN = 1

N1/3 . The N , τ , α parameters are the same. The evolution of
clusters of consensus is roughly the same with or without the Brownian motion. However,
Brownian motions indeed introduce fluctuation of opionions within the clusters. This means
that the fluctuation is not very important when the main clusters of opinions are formed.

5.3 Clustering through interacting particle system

In this section, we consider using the interacting particle system (1.2) for clustering, as
discussed in [65]. The idea is like this: consider N particles with a given adjacent matrix
A = (aij), aij ≥ 0. Then, we construct the interacting particle system as

d

dt
Xi = α

1

N − 1

∑
j:j 6=i

(aij − β)(Xj −Xi) (5.22)

where α and β are some parameters. This is designed such that the particles with positive
aij−β attract with each other so that they tend to gather together, while those with negative
aij − β repel each other so that they separate. The hoping is that the intrinsic clusters will
emerge automatically.

With the RBM-r, the computational cost is significantly reduced and this then becomes
a practical method. Each time, we pick a random set C that contains p = 2 elements. The
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Figure 10: Opinion dynamics versus time. The first figure has no Brownian motion. The
second is with εN = N−1/3. The two figures are with the same initial data.

Figure 11: Clustering: an adjacent matrix for the stochastic block model

dynamics we consider is then

d

dt
Xi = α(aiθ − β)(Xθ −Xi) (5.23)

where θ is again the random index that is constant on [tm−1, tm). Clearly, the random batch
can be picked from those with nonzeros of aij only to improve the efficiency.

The update formula is

Xi
m = [(Xi

m−1 +Xj
m−1) + (Xi

m−1 −Xj
m−1) exp(−2α(aij − β)τ)]/2;

Xj
m = [(Xi

m−1 +Xj
m−1)− (Xi

m−1 −Xj
m−1) exp(−2α(aij − β)τ)]/2.

5.3.1 cluster for stochastic block model

Let us consider the stochastic block model ([66, 67]). The model is like this: suppose there
are k clusters. For i, j in the same cluster, P(aij = 1) = p and P(aij = 0) = 1−p. Otherwise,
P(aij = 1) = q and P(aij = 0) = 1− q. The entries aij are assumed to be independent. We
assume that we only know the adjacent matrix in one experiment (if we know the matrices
for several experiments, we can then combine them to get more accurate clusters). Clearly,
the adjacent matrix is noisy. We are going to test whether or not we can still recover the
clusters using the noisy adjacent matrix.

In Fig. 11, we show the adjacent matrix from one experiment. In this example, we have
N = 1200 particles. The first 200 particles are designed to be in the first cluster, the next
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Figure 12: Clustering using a noisy adjacent matrix from the stochastic block model. The
plots show the positions of the particles at different ’time’ points. The desired clusters can
be recovered with few mistakes.

Figure 13: A sparse adjacent matrix: clustering and reordering

400 are in the second cluster and the last 600 are in the third cluster. The probabilities are
chosen as

p = 0.7, q = 0.3.

In the matrix, yellow dots mean 1 while blue dots mean 0. As expected, most of the entries
in the off-diagonal blocks are 0 with some yellow ’dust’ scattered inside them. Most of the
entries in the diagonal blocks are 1 with blue dots inside them.

In the experiment, we set β = 1
2 and α = 40, τ = 10−3. We initialize their positions

randomly on [0, 50]. The numerical results in an experiment are shown in Fig. 12. Again
the ”time” is regarded as τ after N/2 iterations. From the figure, it is clear that the clusters
can be recovered correctly though the adjacent matrix is noisy.

5.3.2 Reordering for sparse matrix

As another example, let us consider reordering sparse matrices as a byproduct of the clus-
tering. The point is that large aij entry tends to group the two indices together. If we use
the terminal Xi’s to sort, the reordered matrix can have large entries near the diagonal. If
there are several distinct clusters, we will then have diagonal block matrix.

Consider the matrix given by
A1 = BBT + I,

where B is the ’west0479’ matrix, which is a sparse matrix in the standard database of
MATLAB. Consequently, A1 is a sparse matrix. Since matrix A1 can have negative entries,
we define A = (aij) with aij = |A1(i, j)| to get a suitable adjacent matrix. Since A is sparse,
we do sampling over the nonzero entries only.

Fig. 13 shows the matrices min(P, 10) (”min” here means the entry-wise minimum),
where the meaning of P is as follows: in the first figure, P is A; in the second figure, P is
the reordered matrix using our strategy at T = 5; P in the third figure is the matrix with
approximated minimal degree ordering. Clearly, our strategy gathers all the big entries near
the diagonal, which means particles with strong interactions indeed form clusters.
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Regarding the ordering resulted from our clustering strategy, it might not be good using
the criterion from sparse matrix theory. For example, in the Cholesky decomposition, there
are 37896 nonzero entries. Meanwhile, by the approximated minimal degree ordering, there
are 14493 nonzero entries in the Cholesky decomposition. Anyhow, clustering big entries
near diagonals may be advantageous for some applications.

6 Conclusions

We have developed Random Batch Methods for interacting particle systems with large num-
ber of particles and they reduce the computational cost significantly for N(N � 1) particles
from O(NJ) to O(N) per time step. For RBM-1, the method without replacement, we have
given a particle number independent error estimate under some special interactions. We
have applied these methods to some representative problems of binary interactions in math,
physics, social science and data science, and numerical results have supported our theory
and expectations. The random algorithms are powerful for systems with large number of
individuals and high dimensions.

As well accepted, in stochastic gradient descent, adding momentum could help to find
flatter minimizers and improve results. In other words, the Langevin dynamics seems better
for optimization and sampling [68, 69]. Hence, considering the interacting particles with mass
might be better for sampling the invariant measure of the nonlinear Fokker-Planck equation.
This is left for future research. Besides, there are many interesting projections ahead, for
example, proof of convergences for more general external and interacting potentials, and for
RMBs with replacements. It is also interesting to develop similar particle methods for the
mean field equations, whenever they are available, as was done in [35] but for more general
mean field equations.
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