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Abstract

In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin
scheme for the radiative heat transfer equations with random inputs and dif-
fusive scalings. In this problem the random inputs arise due to uncertainties
in cross section, initial data or boundary data. We use the generalized poly-
nomial chaos based stochastic Galerkin (gPC-SG) method, which is combined
with the micro-macro decomposition based deterministic AP framework in or-
der to handle efficiently the diffusive regime. For linearized problem we prove
the regularity of the solution in the random space and consequently the spectral
accuracy of the gPC-SG method. We also prove the uniform (in the mean free
path) linear stability for the space-time discretizations. Several numerical tests
are presented to show the efficiency and accuracy of proposed scheme, especially
in the diffusive regime.
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1 Introduction

The radiative heat transfer equations model the energy transfer in the form of
electromagnetic radiation and its interaction with background material temper-
ature. They have applications in a wide variety of subjects, including optics,
astrophysics, inertial confinement fusion, and high temperature flow systems.
Their mathematical models are well described in many references, see for ex-
amples [1, 2, 17, 18].

The behavior of radiation transfer is greatly influenced by the properties of
the background material. As a result, intensive interaction between the radi-
ation and material with a small photon mean free path will lead to diffusive
radiative behavior. To numerically simulate the system in the diffusive regime,
numerical parameters–mesh sizes and time steps in particular–need to be fine
enough–compared with the mean free time or path, which is often prohibitively
expensive in real applications. In the last two decades, asymptotic-preserving
(AP) methods [5] have been shown to be a competitive way to handle small or
multiple scales in kinetic equations, see the review [6]. AP schemes were first
developed for linear transport equations in diffusive regimes, see for stationary
transport equations [14, 13] and time-dependent transport equations [10, 12, 15].
AP schemes have also been developed for radiative heat transfer equations, see
[11, 20]. AP schemes preserve the asymptotic limits from the microscopic models
to the macroscopic ones. They automatically become good macroscopic solvers
when the small scales (mean free path here) are not numerically resolved.

In practical applications, the radiative heat transfer problems almost always
involve uncertainties due to modeling and experimental errors. For example
the black body intensity is often modeled empirically thus may contain uncer-
tainty. Uncertainties could also arise from initial or boundary data, and other
coefficients in the equations. The goal of this paper is to develop an efficient
numerical method that allows one to conduct uncertainity quantification. Here
one has to handle the difficulties due to uncertainties as well as possibly small or
multiple scale characterized by the Knudesen number–the dimensionless mean
free path.

Only in recent years there started to have works addressing these issues of un-
certainty quantification for kinetic equations, in the framework of the stochastic
asymptotic-preseriving (sAP) schemes. The notion of sAP was first introdueced
Jin, Xiu and Zhu in [10] for hyperbolic and kinetic equations with random coef-
ficients and diffusive scalings. It requires a scheme (say the stochastic Galerkin
scheme) for the kinetic equations, when the small parameter goes to zero while
other numerical parameters are held fixed, becomes a good scheme (say again
the stochastic Galerkin) for the limiting equation. See an extension of sAP
scheme to the semiconductor Boltzmann equation [8], and a gPC-SG scheme
for the Boltzmann equation with uncertainties [3]. The goal of this paper is to
develop a sAP scheme for the radiative heat transfer equations with random in-
puts. Here the complication comes from the nonlinear coupling with a diffusion
equation.

We use the generalized polynomial chaos expansion based stochastic Galerkin
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(gPC-SG) method [21] for the underlying equation. This yields a deterministic
system for the coefficients of the gPC expansion, which turns out to be a vector
version of the deterministic radiative heat transfer equations. This allows us to
use the deterministic solver–we use the micro-macro decomposition based AP
scheme introduced by Klar and Schmeiser [11]–which can be easily shown to be
sAP, thus the number of the gPC modes, or the degree of orthogonal polynomi-
als used in the gPC approximation–does not have to depend on the mean free
path. To efficiently handle the nonlinearity, we use a linearization procedure so
the main part of the implicit time stepping has only the cost and complexity
of solving a linear diffusion equation implicitly. Furthermore, for the linearized
system we give a regularity result which leads to the proof of spectral conver-
gence of the gPC-SG scheme in the random space. We also establish a linear
stability– uniform in the mean free path– for the time and space discretizations.
Several numerical tests with different random inputs in cross-section, initial
and boundary data will be conducted to verify the accuracy and asymptotic
properties of the proposed scheme.

The rest of the paper is organized as follows. In Section 2 we introduce the
radiative heat transfer equations with random input and their formal asymptotic
limit in the diffusive regime. In Section 3, we derive our sAP scheme, present the
fully discrete scheme and analyze its AP property. In Section 4, a uniform linear
stability proof for the sAP method is presented. Section 5 focuses on the proof
of regularity and spectral convergence in the random space for the linearized
problem. Finally, we present several numerical examples with randomness in
cross-section, initial and boundary data and compare the resulting quantities
with the stochastic collocation method in Section 6.

2 The Radiative Heat Transfer Equations with
Random Input and Diffusion Limit

Let x ∈ D ⊂ R3 be the space variable, Ω ∈ S2 be the direction variable, S2 the
unit sphere of R3, z ∈ Rd(d ≥ 1) be the random variable and t ∈ R+ the time.

We denote by I = I(x,Ω, z, t) the radiative intensity and by θ(x, z, t) the
material temperature. Introducing the Knudsen number ε, the radiative heat
transfer equations in nondimensional form are

ε2M∂tI + εΩ · ∇xI = B(θ)− I (1a)

ε2∂tθ = ε2∆xθ − (B(θ)− 〈I〉) (1b)

with the total intensity

〈I〉(x, z, t) =
1

|S|2

∫
S2

I(x,Ω, z, t)dΩ, (2)

and the black body intensity
B(θ) = σθ4, (3)
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where M is the Mach number (= 1 for this paper) and σ = σ(x, z) > 0 is the
cross-section depending on the space variable and the random variable.

The initial conditions and reflection transmission boundary conditions are
prescribed as following:

I.C.

{
I(x,Ω, z, 0) = II(x,Ω, z),

θ(x, z, 0) = θI(x, z)

B.C.


I(x̂,Ω, z, t) = α(n(x̂) · Ω)I(x̂,Ω′, z, t) + [1− α(n(x̂) · Ω)]IB(x̂,Ω, z, t),

for n(x̂) · Ω < 0

θ(x̂, z, t) = θB(x̂, z, t)

(4)

where x̂ ∈ ∂D with outward unit normal n(x̂) and Ω′ = Ω− 2n(x̂)(n(x̂) · Ω) is
the reflection of Ω on the tangent plane to ∂D. The reflectivity α, 0 ≤ α ≤ 1,
depends on the incidence angle.

The random dimensionality d is determined by the number of random vari-
able z used in the input a(x, z) (which may come from cross section, initial or
boundary data and etc.), which is typically modeled by a series involving linear
combinations of z, i.e.,

a(x, z) ≈
d∑
i=1

âi(x)zi (5)

The most widely used such kind of approximation is the Karhunen-Loeve ex-
pansion. (See [21])

To approximate the solution, we use the gPC expansion via an orthogonal
polynomials series. That is, for random variable z ∈ Rd, one seeks

θ(x, z, t) ≈ θN (x, z, t) =

K∑
k=1

θ̂k(x, t)Φk(z),

g(x, µ, z, t) ≈ gN (x, µ, z, t) =

K∑
k=1

ĝk(x, µ, t)Φk(z),

h(x, z, t) ≈ hN (x, z, t) =

K∑
k=1

ĥk(x, t)Φk(z)

(6)

where

{
Φk(z), 1 ≤ k ≤ K, K =

(
d+N
d

)}
are from PdN , the d-variate orthog-

onal polynomials of degree up to N ≥ 1, and orthonormal∫
Φi(z)Φj(z)ρ(z)dz = δij , 1 ≤ i, j ≤ K = dim(PdN ). (7)

Here ρ(z) is the probability density function of z and δij the Kronecker delta
function.
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In the diffusion limit ε→ 0+, for each z, system (1) can be formally approx-
imated by a nonlinear diffusion equation with random input by the following
asymptotic procedure: write

I = I0 + εI1 + ε2I2 + · · ·
θ = θ0 + εθ1 + ε2θ2 + · · ·

Substituting this ansatz into system (1) and collecting the terms of the same
order in ε:

O(1) : I0 = 〈I0〉 = B(θ0) (8a)

O(ε) : Ω · ∇xI0 = −I1, 〈I1〉 = 0 (8b)

By taking 〈·〉 on (1a) and combining with (1b), one obtains the energy conser-
vation equation

∂t(θ + 〈I〉) +∇x ·
(
〈ΩI〉
ε
−∇xθ

)
= 0, (9)

which, using (8a) gives the leading order

∂t(θ0 + 〈I0〉) +∇x · (〈ΩI1〉 − ∇xθ0) = 0.

Using (8b) then yields

∂t(θ0 +B(θ0)) = ∇x · (∇xθ0 +D∇xB(θ0)), (10)

with D = 〈Ω⊗ Ω〉 = 1
3Id (where Id denotes the 3 by 3 identity matrix), or

(1 +B′(θ0))∂tθ0 = ∇x · [(B′(θ0)/3 + 1)∇xθ0]. (11)

When (1− ρ)(IB −B(θB)) = 0 almost everywhere on ∂D× S−, θI ∈W 2,∞(D)
and II = B(θI) − εΩ · ∇xB(θI), there will be no boundary layer. Then, when
z is viewed as a parameter, for each realization of z, for every ∆t > 0, the
solution (I, θ) of system (1) with initial and boundary conditions (4) converges
as ε→ 0+ to (B(θ0), θ0). The limiting temperature θ0 is the unique solution of
(11) with initial and boundary conditions:

θ0(x, z, 0) = θI(x, z), θ0(x̂, z, t) = θB(x̂, z, t), for x̂ ∈ ∂D (12)

See [11] for a proof.

3 A Stochastic AP Scheme

For small values of ε, problem (1) is numerically stiff. We develop a stochastic
Galerkin method based on the deterministic AP scheme proposed by Klar and
Schmeiser (See [11]).

For simplicity, we consider the one-dimensional case x ∈ [0, 1] and define
µ = cos(Ω · x), µ ∈ [−1, 1]. Thus, the angular averaging is defined as:

〈f〉 =
1

2

∫ 1

−1

f(µ)dµ.
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3.1 A Micro-macro Decomposition

As in [11], we rewrite the radiative intensity in the form

I(x, µ, z, t) = B(θ(x, z, t)) + εg(x, µ, z, t) + ε2h(x, z, t), (13)

with 〈g〉 = 0. This is a micro-macro decomposition of I into its mean value
〈I〉 = B(θ) + ε2h and the remainder εg.

The equations (1a), (1b) are now rewritten as a system for g, h and θ by
using (13), taking the angular average of (1a), and subtracting it from (1a):

ε2∂th+B′(θ)(∂xxθ + h) + ∂x〈µg〉 = −h, (14a)

ε2∂tg + µ∂xB(θ) + ε∂x(µg − 〈µg〉) + ε2∂x(µh) = −g, (14b)

∂tθ = ∂xxθ + h, (14c)

with initial conditions

g(x, µ, z, 0) =
1

ε
[II(x, µ, z)− 〈II〉(x, z)], (15a)

h(x, z, 0) =
1

ε2
[〈II〉(x, z)−B(θI(x, z))], (15b)

θ(x, z, 0) = θI(x, z). (15c)

Using the boundary conditions (4) with the condition 〈g〉 = 0, evaluated at the
boundary x̂ = 0 and x̂ = 1, we obtain the equation∫ 0

−1

(1 + α)gdµ+

∫ 1

0

(1− α)

(
IB −B(θB)

ε
− εh

)
dµ = 0, at x̂ = 0, (16a)∫ 1

0

(1 + α)gdµ+

∫ 0

−1

(1− α)

(
IB −B(θB)

ε
− εh

)
dµ = 0, at x̂ = 1. (16b)

As long as the boundary is not purely reflective, i.e.,

0 ≤ α < 1

the value of h(x̂, z, t) can be computed from (16) in terms of the outflow data
g(x̂, µ, z, t) as following:

h =
1

ε

∫ 0

−1

1 + α

1− α
gdµ+

1

ε2

∫ 1

0

(IB −B(θB))dµ, at x̂ = 0, (17a)

h =
1

ε

∫ 1

0

1 + α

1− α
gdµ+

1

ε2

∫ 0

−1

(IB −B(θB))dµ, at x̂ = 1. (17b)

Then, boundary conditions for g and θ are given by

g(µ) = αg(−µ) + (1− α)

(
IB −B(θB)

ε
− εh

)
, µ > 0, at x̂ = 0, (18a)
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g(µ) = αg(−µ) + (1− α)

(
IB −B(θB)

ε
− εh

)
, µ < 0, at x̂ = 1, (18b)

θ(x̂, z, t) = θB(x̂, z, t). (19)

When α = 1, the purely reflecting case, the reflecting boundary conditions are

g(x̂, µ) = g(x̂,−µ), (20a)

θ(x̂, z, t) = θB(x̂, z, t), (20b)

h(x̂) solved from (14a). (20c)

3.2 The gPC-SG Method for the Micro-Macro System
and the Limiting Diffusion Equation

We now derive a stochastic AP scheme for the micro-macro system (14). One
inserts the approximation θN , gN and hN in (6) into the governing equations
and enforces the residue to be orthogonal to the polynomial space spanned
by {Φ1, · · · ,ΦK}. Thus, we obtain a set of deterministic equations for the

expansion coefficients {θ̂k}, {ĝk} and {ĥk}.
Denote

θ̂ = (θ̂1, · · · , θ̂K)T , ĝ = (ĝ1, · · · , ĝK)T , ĥ = (ĥ1, · · · , ĥK)T ,

C(x, t) = (cij(x, t))0≤i,j≤K with

cij(x, t) =

∫
θ3
Nσ(x, z)Φi(z)Φj(z)ρ(z)dz.

(21)

Then

ε2∂tĥ + 4C(x, t)(∂xxθ̂ + ĥ) + ∂x〈µĝ〉 = −ĥ, (22a)

ε2∂tĝ + 4µC(x, t)∂xθ̂ + ε∂x(µĝ − 〈µĝ〉) + ε2∂x(µĥ) = −ĝ, (22b)

∂tθ̂ = ∂xxθ̂ + ĥ. (22c)

Correspondingly, the initial and boundary data can be projected by the
gPC-SG method,

θ̂I = (θ̂I1 , · · · , θ̂IK )T ,where θIk(x) =

∫
θI(x, z)Φk(z)ρ(z)dz (23)

and similarly for ÎI , θ̂B and ÎB .
Thus, (15), (17), (18), (19) or (20) give the initial and boundary conditions

for (22) as following:

ĝ(x, µ, 0) =
1

ε
[ÎI(x, µ)− 〈ÎI〉(x)], (24a)

ĥ(x, 0) =
1

ε2
[〈ÎI〉(x)−B(θ̂I(x))], (24b)

θ̂(x, 0) = θ̂I(x). (24c)
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For 0 ≤ α < 1,

ĥ =
1

ε

∫ 0

−1

1 + α

1− α
ĝdµ+

1

ε2

∫ 1

0

(ÎB −B(θ̂B))dµ, at x̂ = 0, (25a)

ĥ =
1

ε

∫ 1

0

1 + α

1− α
ĝdµ+

1

ε2

∫ 0

−1

(ÎB −B(θ̂B))dµ, at x̂ = 1, (25b)

ĝ(µ) = αĝ(−µ) + (1− α)

(
ÎB −B(θ̂B)

ε
− εĥ

)
, µ > 0, at x̂ = 0, (25c)

ĝ(µ) = αĝ(−µ) + (1− α)

(
ÎB −B(θ̂B)

ε
− εĥ

)
, µ < 0, at x̂ = 1, (25d)

θ̂(x̂, t) = θ̂B(x, t), x̂ = 0, 1. (25e)

For α = 1 at x̂ = 0, 1,

ĝ(x̂, µ) = ĝ(x̂,−µ), (26a)

θ̂(x̂, t) = θ̂B(x, t), (26b)

ĥ(x̂) solved from (22a). (26c)

Similarly as in section 3.2, we can obtain a set of deterministic equations by
using K term truncated gPC-SG for θ for the limiting diffusion equation (11):

(I + 4C(x, t))∂tθ̂ = ∂x

[(
I +

4

3
C(x, t)

)
∂xθ̂

]
(27)

where C(x, t), I and θ̂ are the same as in (21).

3.3 The Time Discretization

Introduce a time step ∆t > 0 and discrete time tn = n∆t. We now employ
the semi-implicit time discretization in [11] to the gPC-SG system (22), where
backward differences are used for the zeroth order terms (for ε� 1) and forward
differences for higher order terms:

ε2

∆t
(ĥn+1 − ĥn) + 4Cn(∂xxθ̂

n+1
+ ĥn+1) + ∂x〈µĝn+1〉 = −ĥn+1, (28a)

ε2 ĝn+1 − ĝn

∆t
+ 4µCn∂xθ̂

n+1
+ ε∂x(µĝn − 〈µĝn〉) + ε2∂x(µĥn) = −ĝn+1,

(28b)

θ̂
n+1
− θ̂

n

∆t
= ∂xxθ̂

n+1
+ ĥn+1. (28c)

From the equations (28a), (28b), ĥn+1 and ĝn+1 can be expressed in terms of

θ̂
n+1

. Using the result in (28c), setting

κ = 1 +
ε2

∆t
(29)
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and letting I be the K ×K identity matrix, give

(κI + 4Cn)
θ̂
n+1
− θ̂

n

∆t
= ∂x

[
(κI +

1

3κ
4Cn)∂xθ̂

n+1
]

+ εq̂n, (30a)

ĝn+1 = − 1

κ
4µCn∂xθ̂

n+1
+ εp̂n, (30b)

with p̂n =
1

κ

[ ε
∆t

ĝn − ∂x(µĝn − 〈µĝn〉)− εµ∂xĥn
]
, (30c)

ĥn+1 = [κI + 4Cn]−1

[
1

κ
∂x

(
4

3
Cn∂xθ̂

n+1
)
− 4Cn∂xxθ̂

n+1
+ εq̂n

]
, (30d)

with q̂n =
ε

∆t
ĥn − ∂x〈µp̂n〉. (30e)

Thus, an elliptic equation for θ̂
n+1

needs to be first solved, and ĝn+1 and ĥn+1

can be obtained subsequently.

3.4 Positivity of the Diffusion Coefficient Matrices

One problem with the gPC truncation (6) is the loss of positivity for θN . Then
one may be concerned with the positivity of the diffusion coefficient matrices
in (27) and (30a). Below we prove, under suitably mild assumptions, these
matrices are poitive definite.

Lemma 3.1. Assume

0 < σm ≤ σ(x, z) ≤ σM, ∀ x, z. (31)

Suppose θ3
N (x, t, z) ≥ −c, c > 0 for all x, t, z such that 4

3cσM ≤ 1, then the
matrix I + 4

3C(x, t) in (27) is positive definite.

Proof. Let b = (b̂1, · · · , b̂K)T be an arbitrary non-zero real vector, and b(z) =∑K
j=1 b̂jΦj(z) be a random variable constructed by the b vector. By using

the definition of ci,j(x, t) in (21) and the assumption (31), we have for any
x ∈ D, t > 0,

bT
(

I +
4

3
C(x, t)

)
b =

K∑
i=1

K∑
j=1

b̂i

(
δij +

4

3
cij(x, t)

)
b̂j

=

K∑
i=1

K∑
j=1

δij b̂ib̂j +
4

3

K∑
i=1

K∑
j=1

b̂ib̂j

∫
θ3
Nσ(x, z)Φi(z)Φj(z)ρ(z)dz

=

K∑
i=1

b̂2i +
4

3

∫
θ3
Nσ(x, z)

 K∑
i=1

K∑
j=1

b̂ib̂jΦi(z)Φj(z)

 ρ(z)dz

=

K∑
i=1

b̂2i +
4

3

∫
θ3
Nσ(x, z)b(z)2ρ(z)dz.
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Now if θ3
N ≥ −c, with 4

3cσM ≤ 1,

bT (I +
4

3
C(x, t))b ≥

K∑
i=1

b̂2i −
4

3
cσM

∫
b(z)2ρ(z)dz

=

K∑
i=1

b̂2i −
4

3
cσM

∫  K∑
i=1

K∑
j=1

b̂ib̂jΦi(z)Φj(z)

 ρ(z)dz

=

K∑
i=1

b̂2i −
4

3
cσM

K∑
i=1

K∑
j=1

b̂ib̂j

(∫
Φi(z)Φj(z)ρ(z)dz

)

=

K∑
i=1

b̂2i −
4

3
cσM

K∑
i=1

K∑
i=1

b̂ib̂jδij = (1− 4

3
cσM)

K∑
i=1

b̂2i ≥ 0.

To conclude, (I + 4
3C(x, t)) is positive definite, so is the matrix κI + 1

3κ4Cn

in (30a).

Remark 3.1. Although we may not know the positivity of θN , due to the
spectral accuracy, |θN | is small when θN is negative. Thus c is a small number
and consequently the condition 4

3cσM ≤ 1 is a very reasonable assumption.

3.5 The Fully Discrete Scheme

We discretize space using staggered grids with ∆x = 1/imax :

xi = i∆x, i = 0, · · · , imax,

and
xi−1/2 = (i− 1/2)∆x, i = 0, · · · , imax + 1.

The variable θ̂ and ĥ are defined at the grid points xi, and ĝ is defined at the

points xi−1/2. The approximations at time tn are denoted by θ̂
n

i , ĥ
n
i and ĝni−1/2

respectively. Let

Cn
i+1/2 =

1

2
(Cn

i+1 + Cn
i )

the space-discretized version of system (30) reads

(κI + 4Cn
i )

1

∆t
(θ̂
n+1

i − θ̂
n

i ) =
1

∆x
[(κI +

4

3κ
Cn
i+1/2)

θ̂
n+1

i+1 − θ̂
n+1

i

∆x

− (κI +
4

3κ
Cn
i−1/2)

θ̂
n+1

i − θ̂
n+1

i−1

∆x
] + εq̂ni ,

i = 1, · · · , imax − 1, (32a)

ĝn+1
i−1/2 = − 1

κ
4Cn

i−1/2µ
θ̂
n+1

i − θ̂
n+1

i

∆x
+ εp̂ni−1/2, i = 1, · · · , imax, (32b)

with p̂ni−1/2 =
1

κ
[
ε

∆t
ĝni−1/2 −

µ

∆x
(ĝni − ĝni−1)
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+ 〈 µ
∆x

(ĝni − ĝni−1)〉 − εµ

∆x
(ĥni − ĥni−1)], i = 1, · · · , imax, (32c)

ĥn+1
i = (κI + 4Cn

i )−1[− 4

(∆x)2
Cn
i (θ̂

n+1

i+1 − 2θ̂
n+1

i + θ̂
n+1

i−1 ) + εq̂ni

+
4

3κ∆x
(Cn

i+1/2

θ̂
n+1

i+1 − θ̂
n+1

i

∆x
−Cn

i−1/2

θ̂
n+1

i − θ̂
n+1

i−1

∆x
)],

i = 1, · · · , imax − 1, (32d)

with q̂ni =
ε

∆t
ĥni − 〈

µ

∆x
(p̂ni+1/2 − p̂ni−1/2)〉, i = 1, · · · , imax − 1. (32e)

The free streaming operator in (32c) is discretized in an upwinding fashion:

ĝni =

{
ĝni−1/2 for µ > 0,

ĝni+1/2 for µ < 0.

A K(imax + 1) × K(imax + 1) block diagonal system resulting from the
implicit discretization of the parabolic equation (32a) (the same as in the diffu-
sion equation) needs to be solved there. There are many fast algorithms for the
inversion (See [4]).

It remains to discretize the boundary conditions. ĝn+1
−1/2 for µ > 0 (ĝn+1

imax+1/2

for µ < 0) is determined from the boundary conditions (25) and (26) in the
following way:

In (25a) and (25b), the outflow data for ĝ are approximated by ĝn+1
1/2 , µ < 0

(ĝn+1
imax−1/2, µ > 0). Then ĥn+1

0 and ĥn+1
imax

are determined by (if the respective

boundary point is not purely reflective, i.e. 0 ≤ α < 1):

ĥn+1
0 =

1

ε

∫ 0

−1

1 + α

1− α
ĝn+1

1/2 dµ+
1

ε2

∫ 1

0

(În+1
0 −B(θ̂

n+1

0 ))dµ, (33a)

with În+1
0 = ÎB(0),

ĥn+1
imax

=
1

ε

∫ 1

0

1 + α

1− α
ĝn+1
imax−1/2dµ+

1

ε2

∫ 0

−1

(În+1
imax
−B(θ̂

n+1

imax
))dµ, (33b)

with În+1
imax

= ÎB(1).

This value is then used in the right hand side of (25c) and (25d), where the
outflow data on the right hand side are again approximated like above and the
left hand side is replaced by (ĝn+1

−1/2 + ĝn+1
1/2 )/2 ((ĝn+1

imax−1/2 + ĝn+1
imax+1/2)/2):

ĝn+1
−1/2(µ) + ĝn+1

1/2 (µ)

2
= αĝn+1

1/2 (−µ) +
1− α
ε

(În+1
0 (µ)−B(θ̂

n+1

0 ))

− (1− α)εĥn+1
0 , µ > 0, (34a)

ĝn+1
imax−1/2(µ) + ĝn+1

imax+1/2(µ)

2
= αĝn+1

imax−1/2(−µ) +
1− α
ε

(În+1
imax

(µ)−B(θ̂
n+1

imax
))

− (1− α)εĥn+1
imax

, µ < 0. (34b)
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The boundary for θ̂ is given by (25e):

θ̂
n+1

0 = θ̂B(0, tn+1), θ̂
n+1

imax
= θ̂B(1, tn+1). (35)

For α = 1,

ĝn+1
− 1

2

(µ) = ĝn+1
− 1

2

(−µ), µ > 0; ĝn+1
imax+ 1

2

(µ) = ĝn+1
imax+ 1

2

(−µ), µ < 0, (36a)

θ̂
n+1

0 = θ̂B(0, tn+1), θ̂
n+1

imax
= θ̂B(1, tn+1), (36b)

ĥn+1
0 = −(κI + 4Cn

0 )−1

[
4Cn

0

−θ̂
n+1

3 + 4θ̂
n+1

2 − 5θ̂
n+1

1 + 2θ̂
n+1

0

(∆x)2

+〈 µ
∆x

(ĝn1/2 − ĝn−1/2)〉 − ε2

∆t
ĥn0

]
, (36c)

ĥn+1
imax = −(κI + 4Cn

imax)−1

[
4Cn

imax

−θ̂
n+1

imax−3 + 4θ̂
n+1

imax−2 − 5θ̂
n+1

imax−1 + 2θ̂
n+1

imax

(∆x)2

+〈 µ
∆x

(ĝnimax+1/2 − ĝnimax−1/2)〉 − ε2

∆t
ĥnimax

]
. (36d)

The values of ĝn+1
−1/2, µ > 0, and ĝn+1

imax+1/2, µ < 0, computed from these

equation (34) or (36), are needed in the next time step.

3.6 The AP property

When ε→ 0, one gets κ = 1. Thus, (32a) becomes

(I + 4Cn
i )

1

∆t
(θ̂
n+1

i − θ̂
n

i ) =
1

∆x

[
(I +

4

3
Cn
i+1/2)

θ̂
n+1

i+1 − θ̂
n+1

i

∆x

−(I +
4

3
Cn
i−1/2)

θ̂
n+1

i − θ̂
n+1

i−1

∆x

]
,

(37)

which is a fully discretized scheme for (27), using implicit time discretization
and center difference space discretization. Thus the fully discrete scheme is
stochastic-AP, in the sense defined in [10].

3.7 The Velocity Discretization

For velocity discretization, we employ the discrete-ordinate method. The dis-
crete velocity points are chosen to be the Legendre-Gauss quadrature points.
Then the integral in (32c) and (32e) can be computed by using Gauss quadrature
rule. This kind of discretization maintains the AP property, see [9].
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4 A Uniform Stability Analysis

4.1 Some notations and useful identities

For every grid function u = (ui) we define:

‖u‖2 =
∑
i

uTi ui∆x. (38)

For every velocity dependent grid function µ ∈ [−1, 1] → φ(µ) = (φi+1/2(µ)),
we define:

‖|φ‖| =
∑
i

〈φTi+1/2φi+1/2〉∆x. (39)

Now we give some notations for the finite difference operators:

D−φi+1/2 =
φi+1/2 − φi−1/2

∆x
, (40a)

D+φi+1/2 =
φi+3/2 − φi+1/2

∆x
, (40b)

Dcφi+1/2 =
φi+3/2 − φi−1/2

2∆x
, (40c)

D0φi =
φi+1/2 − φi−1/2

∆x
(= D−φi+1/2), (40d)

δ0ui+1/2 =
ui+1 − ui

∆x
, (40e)

∆cφi =
φi+1 − 2φi + φi−1

(∆x)2
. (40f)

We recall some useful formulas derived in [16]:

(µ+D− + µ−D+)φi+1/2 = µDcφi+1/2 −
∆x

2
|µ|D−D+φi+1/2, (41a)∑

i

(D+φi+1/2)T (D+φi+1/2)∆x ≤ 4

(∆x)2

∑
i

(φi+1/2)Tφi+1/2∆x, (41b)

|
∑
i

〈(µ+D+ + µ−D−)(ψi+1/2)Tφi+1/2〉∆x| ≤ α‖|φ‖|2 +
1

4α
‖||µ|D+ψ‖|2,

(41c)∑
i

(ui)
TD0φi∆x = −

∑
i

(δ0ui+1/2)Tφi+1/2∆x, (41d)∑
i

(ψi+1/2)TD−φi+1/2∆x = −
∑
i

(D+ψi+1/2)Tφi+1/2∆x, (41e)∑
i

(φi+1/2)TDcφi+1/2∆x = 0, (41f)

〈µφ〉T 〈µφ〉 ≤ 1

2
〈|µ|φTφ〉, φ ∈ L2([−1, 1]). (41g)
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4.2 The Stability Analysis for the gPC-SG for the Limit-
ing Diffusion Equation

First we prove that the gPC-SG scheme (37) for the nonlinear diffusion equation
(27) is unconditionally stable.

Denote φ̂
n+1

i+1/2 = (I+ 4
3Cn

i+1/2)δ0θ̂
n+1

i+1/2, multiply θ̂
n+1

i on both sides of (37)
and sum over i ∈ Z:

RHS =
∑
i

(θ̂
n+1

i )TD0φ̂
n+1

i = −
∑
i

(δ0θ̂
n+1

i+1/2)T φ̂
n+1

i+1/2

= −
∑
i

(δ0θ̂
n+1

i+1/2)T (I +
4

3
Cn
i+1/2)δ0θ̂

n+1

i+1/2 ≤ 0 .

The second equality used in (41d) and the last inequality follows from that
I + 4

3Cn
i+1/2 is symmetric, positive and definite.

LHS =
∑
i

(θ̂
n+1

i )T (I +
4

3
(C)ni+1/2)

1

∆t
(θ̂
n+1

i − θ̂
n

i )

=
1

2∆t

[∑
i

(θ̂
n+1

i )T
(

I +
4

3
(C)ni+1/2

)
θ̂
n+1

i −
∑
i

(θ̂
n

i )T
(

I +
4

3
(C)ni+1/2

)
θ̂
n

i

+
∑
i

(θ̂
n+1

i − θ̂
n

i )T
(

I +
4

3
(C)ni+1/2

)
(θ̂
n+1

i − θ̂
n

i )

]

≥ 1

2∆t

[∑
i

(θ̂
n+1

i )T
(

I +
4

3
(C)ni+1/2

)
θ̂
n+1

i −
∑
i

(θ̂
n

i )T
(

I +
4

3
(C)ni+1/2

)
θ̂
n

i

]
.

Therefore,∑
i

(θ̂
n+1

i )T
(

I +
4

3
(C)ni+1/2

)
θ̂
n+1

i ≤
∑
i

(θ̂
n

i )T
(

I +
4

3
(C)ni+1/2

)
θ̂
n

i .

which implies

‖θ̂
n+1
‖2 ≤ ‖θ̂

n
‖2.

Thus, scheme (37) is unconditionally stable.

4.3 Linear Stability Uniformly in ε

For B(θ) = σ(x, z)θ, where σ(x, z) > 0, we prove the linear stability of the
scheme. (30) now becomes

ε2

∆t
(ĥn+1 − ĥn) + C(∂xxθ̂

n+1
+ ĥn+1) + ∂x〈µĝn+1〉 = −ĥn+1, (42a)

ε2 ĝn+1 − ĝn

∆t
+ µC∂xθ̂

n+1
+ ε∂x(µĝn − 〈µĝn〉) + ε2∂x(µĥn) = −ĝn+1, (42b)
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θ̂
n+1
− θ̂

n

∆t
= ∂xxθ̂

n+1
+ ĥn+1, (42c)

where

(C(x))i,j =

∫
σ(x, z)Φi(z)Φj(z)ρ(z)dz. (43)

Since σ(x, z) > 0, C(x) is a symmetric, positive and definite matrix as proved
in [22].

Theorem 4.1. Denote

λ0 = max
k,i

λi,k, λi,k > 0 are the eigenvalues of Ci

Let Ci = (Li)
TLi be the Cholesky decomposition with Li a lower triangular

matrix with positive diagonal entries. If ∆t satisfies the following CFL condition

∆t ≤ 1

3 + λ0
((∆x)2 + 2ε∆x), (44)

then the sequences θ̂
n
, ĝn and ĥn defined by (21) satisfy the energy estimate

‖Cθ̂
n+1

+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂
n+1
‖2

≤‖Cθ̂
n

+ ε2ĥn‖2 + ‖|εĝn‖|2 + ‖Lθ̂
n
‖2

(45)

for every n, and hence the scheme (42) is stable.

The proof follows the deterministic analogy in [7] with the addition of the
temperature equation here. It is given in the Appendix.

Remark 4.1. Although the CFL condition (44) still depends on ε, it has a
lower bound:

∆t ≤ 1

3 + λ0
(∆x)2,

as ε→ 0. In this sense it is a uniform in ε stability.

5 Regularity in the Random Space and Spectral
Accuracy Analysis for Linear Problems

In this section, for simplicity we assume z ∈ Iz is a one-dimensional random
variable, where Iz has finite support (e.g. uniform and Beta distributions).
We prove that for linear collision operator B(θ) = σ(x, z)θ, the solutions to
the radiative transfer equations with random inputs preserve the regularity in
the random space of the initial data. Then based on the regularity, we con-
duct spectral accuracy analysis and error estimates for the stochastic Galerkin
method.
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5.1 Regularity in the Random Space

The l-th order formal differentiation of the radiative transfer equations with
respect to z is

ε2∂t(∂
l
zI) + εµ∂x(∂lzI) = ∂lz(σ(x, z)θ)− ∂lzI, (46a)

ε2∂t(∂
l
zθ) = ε2∂xx(∂lzθ)− (∂lz(σ(x, z)θ)− 〈∂lzI〉). (46b)

Define norm (∫
D

∫
Iz

〈I(t, x, µ, z)2〉ρ(z)dzdx

)1/2

= ‖|I‖|Γ,(∫
D

∫
Iz

θ(t, x, z)2ρ(z)dzdx

)1/2

= ‖θ‖Γ.

Theorem 5.1. Assume σ(x, z) depends on z linearly, and

0 < σm < σ < σM < +∞, max
z
|∂zσ| ≤ γ1, max

x
|∂xxσ| ≤ γ2.

If for integer m ≥ 0,

‖|∂lzII‖|2Γ + ‖
√
σ∂lzθI‖2Γ ≤ β, for all l = 0, · · · ,m.

Then

‖|∂lzI(t, ·, ·, ·)‖|2Γ + ‖
√
σ∂lzθ(t, ·, ·)‖2Γ ≤ Cγ,lβl!e

γl

ε2
t, l = 0, · · · ,m,

where γ is a constant depending on γ1, γ2 and cm, Cγ,l = Cγ,l−1+1 is a constant
depending on γ and l.

Proof. Multiplying ∂lzI to both sides of (46a), taking 〈·〉 and integrating over
D × Iz, one gets

LHS = ε2

∫
D

∫
Iz

〈(∂lzI)∂t(∂
l
zI)〉+ ε

∫
D

∫
Iz

〈µ(∂lzI)∂x(∂lzI)〉

=
ε2

2
∂t

∫
D

∫
Iz

〈(∂lzI)2〉+
ε

2

∫
D

∫
Iz

〈µ∂x(∂lzI)2〉 =
ε2

2
∂t

∫
D

∫
Iz

〈(∂lzI)2〉,

RHS =

∫
D

∫
Iz

〈∂lzI〉∂lz(σθ)−
∫
D

∫
Iz

〈(∂lzI)2〉.

(47)
Multiplying σ∂lzθ to both sides of (46b) and integrating over D × Iz, one gets

LHS =ε2

∫
D

∫
Iz

(σ∂lzθ)∂t(∂
l
zθ) =

ε2

2
∂t

∫
D

∫
Iz

σ(∂lzθ)
2,

RHS =ε2

∫
D

∫
Iz

(σ∂lzθ)∂xx∂
l
zθ −

∫
D

∫
Iz

σ∂lzθ∂
l
z(σθ) +

∫
D

∫
Iz

σ∂lzθ〈∂lzI〉
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=− ε2

∫
D

∫
Iz

∂x(σ∂lzθ)∂x∂
l
zθ −

∫
D

∫
Iz

σ∂lzθ∂
l
z(σθ) +

∫
D

∫
Iz

σ∂lzθ〈∂lzI〉

=− ε2

∫
D

∫
Iz

σ(∂x∂
l
zθ)

2 − ε2

∫
D

∫
Iz

1

2
∂xσ∂x(∂lzθ)

2 −
∫
D

∫
Iz

σ∂lzθ∂
l
z(σθ)

+

∫
D

∫
Iz

σ∂lzθ〈∂lzI〉

=− ε2

∫
D

∫
Iz

σ(∂x∂
l
zθ)

2 + ε2

∫
D

∫
Iz

1

2
∂xxσ(∂lzθ)

2 −
∫
D

∫
Iz

σ∂lzθ∂
l
z(σθ)

+

∫
D

∫
Iz

σ∂lzθ〈∂lzI〉. (48)

Adding equation (47) and (48) gives

LHS =
ε2

2
∂t(‖|∂lzI‖|2Γ + ‖

√
σ∂lzθ‖2Γ),

RHS =− ε2

∫
D

∫
Iz

σ(∂x∂
l
zθ)

2 + ε2

∫
D

∫
Iz

1

2
∂xxσ(∂lzθ)

2

+

∫
D

∫
Iz

〈∂lzI〉∂lz(σθ)−
∫
D

∫
Iz

〈(∂lzI)2〉 −
∫
D

∫
Iz

σ∂lzθ∂
l
z(σθ) +

∫
D

∫
Iz

σ∂lzθ〈∂lzI〉

=− ε2

∫
D

∫
Iz

σ(∂x∂
l
zθ)

2 + ε2

∫
D

∫
Iz

1

2
∂xxσ(∂lzθ)

2 −
∫
D

∫
Iz

〈(∂lzI)2〉 − 〈∂lzI〉2

+

∫
D

∫
Iz

〈∂lzI〉∂lz(σθ)−
∫
D

∫
Iz

〈∂lzI〉2 −
∫
D

∫
Iz

σ∂lzθ∂
l
z(σθ) +

∫
D

∫
Iz

σ∂lzθ〈∂lzI〉

≤ε
2

2
γ2‖∂lzθ‖2Γ −

∫
D

∫
Iz

(〈∂lzI〉 − ∂lz(σθ))(〈∂lzI〉 − σ∂lzθ)

=
ε2

2
γ2‖∂lzθ‖2Γ −

∫
D

∫
Iz

(〈∂lzI〉 − σ∂lzθ − l∂zσ∂l−1
z θ)(〈∂lzI〉 − σ∂lzθ)

=
ε2

2
γ2‖∂lzθ‖2Γ −

∫
D

∫
Iz

(〈∂lzI〉 − σ∂lzθ)2 + l

∫
D

∫
Iz

∂zσ∂
l−1
z θ〈∂lzI〉

− l
∫
D

∫
Iz

∂zσ∂
l−1
z θσ∂lzθ

≤ε
2

2
γ2‖∂lzθ‖2Γ +

l

2

∫
D

∫
Iz

|∂zσ| · |∂l−1
z θ|2 + |∂zσ| · 〈∂lzI〉2

+ σ|∂zσ| · |∂l−1
z θ|2 + σ|∂zσ| · |∂lzθ|2

≤ε
2

2
γ2‖∂lzθ‖2Γ +

γ1l

2

∫
D

∫
Iz

〈∂lzI〉2 + σ|∂lzθ|2 +
γ1l

2

∫
D

∫
Iz

(σ + 1)|∂l−1
z θ|2

≤ε
2

2
γ2‖∂lzθ‖2Γ +

γ1l

2
(‖|∂lzI‖|2Γ + ‖

√
σ∂lzθ‖2Γ)

+
γ1l

2

∫
D

∫
Iz

σ + 1

σ
(〈|∂l−1

z I|2〉+ σ|∂l−1
z θ|2)
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≤ ε2

2σm
γ2‖
√
σ∂lzθ‖2Γ +

γ1l

2
(‖|∂lzI‖|2Γ + ‖

√
σ∂lzθ‖2Γ)

+
γ1l

2

σm + 1

σm

∫
D

∫
Iz

〈|∂l−1
z I|2〉+ σ|∂l−1

z θ|2

≤γl
2

[
(‖|∂lzI‖|2Γ + ‖

√
σ∂lzθ‖2Γ) + (‖|∂l−1

z I‖|2Γ + ‖
√
σ∂l−1

z θ‖2Γ)
]
. (49)

Thus

∂t(‖|∂lzI‖|2Γ + ‖
√
σ∂lzθ‖2Γ) ≤γl

ε2

[
(‖|∂lzI‖|2Γ + ‖

√
σ∂lzθ‖2Γ)

+(‖|∂l−1
z I‖|2Γ + ‖

√
σ∂l−1

z θ‖2Γ)
]
.

(50)

Now we use mathematical induction to prove the theorem. It clearly holds for
l = 0. Assume that

‖|∂l−1
z I‖|2Γ + ‖

√
σ∂l−1

z θ‖2Γ ≤ Cγ,l−1β(l − 1)!e
γ(l−1)

ε2
t,

using Gronwall’s inequality,

‖|∂lzI‖|2Γ + ‖
√
σ∂lzθ‖2Γ ≤e

γl

ε2
t(‖|∂lzII‖|2Γ + ‖

√
σ∂lzθI‖2Γ)

+
γl

ε2

∫ t

0

e
γl

ε2
(t−s)(‖|∂l−1

z I‖|2Γ + ‖
√
σ∂l−1

z θ‖2Γ)ds

≤e
γl

ε2
tβ +

γl

ε2
e
γl

ε2
t

∫ t

0

e−
γl

ε2
sCγ,l−1β(l − 1)!e

γ(l−1)

ε2
sds

=e
γl

ε2
tβ +

γl

ε2
e
γl

ε2
tCγ,l−1β(l − 1)!

∫ t

0

e−
γ

ε2
sds

=e
γl

ε2
tβ + Cγ,l−1βl!e

γl

ε2
t(1− e−

γ

ε2
t)

≤Cγ,lβl!e
γl

ε2
t

(51)
for Cγ,l = Cγ,l−1 + 1.

5.2 A Spectral Accuracy Analysis

Let I and θ be the solution to the radiation transfer equation (1). We define
the operator

PKI =

K∑
k=1

< I,Φk >ρ Φk, PKθ =

K∑
k=1

< θ,Φk >ρ Φk.

The error can be split into the projection error RIK , R
θ
K and SG error eIK , e

θ
K ,

I − IK = I − PKI + PKI − IK := RIK + eIK , (52a)

θ − θK = θ − PKθ + PKθ − θK := RθK + eθK , (52b)
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where

RIK = I − PKI, RθK = θ − PKθ, (53a)

eIK = PKI − IK , eθK = PKθ − θK . (53b)

The SG error can be rewritten explicitly as following

eIK = PKI − IK =

K∑
k=1

(< I,Φk >ρ −Îk)Φk = êI ·Φ,

eθK = PKθ − θK =

K∑
k=1

(< θ,Φk >ρ −θ̂k)Φk = êθ ·Φ,

where

êI = (< I,Φ1 >ρ −Î1, · · · , < I,ΦK >ρ −ÎK), (54a)

êθ = (< θ,Φ1 >ρ −θ̂1, · · · , < θ,ΦK >ρ −θ̂K), (54b)

Φ = (Φ1, · · · ,ΦK). (54c)

By standard error estimate for orthogonal polynomial approximations, and
Theorem 5.1, for 0 ≤ t ≤ T ,

‖|RIK‖|2Γ + ‖
√
σRθK‖2Γ ≤ C1K

−2m‖|∂mz I‖|2Γ + C2K
−2m‖

√
σ∂mz θ‖2Γ

≤ Cγ,mK−2mβm!e
γm

ε2
T .

(55)

It remains to estimate eIK , e
θ
K . Define the operators

Q(I, θ) = σθ − I, Q̃(I, θ) = 〈Q(I, θ)〉, (56a)

L1(I, θ) = ε2∂tI + εµ∂xI −Q(I, θ), (56b)

L2(I, θ) = ε2∂tθ − ε2∂xxθ + 〈Q(I, θ)〉. (56c)

Define inner product and norm

< u, v >ρ=

∫
Iz

u(z)v(z)ρ(z)dz, ‖u‖ρ =

(∫
Iz

u(z)2ρ(z)dz

)1/2

.

We first prove two elementary properties on operators L1,L2 and Q.

Lemma 5.1.

< L1(RIK , R
θ
K),Φk >ρ= − < Q(RIK , R

θ
K),Φk >ρ, k = 1, · · · ,K, (57a)

< L2(RIK , R
θ
K),Φk >ρ=< Q̃(RIK , R

θ
K),Φk >ρ, k = 1, · · · ,K. (57b)
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Proof. SinceRIK = I−PKI = I−
∑K
k=1 < I,Φk >ρ, and Φk ∈ span{ΦK+1,ΦK+2, · · · },

due to the orthogonal property of {Φk}, < RIK ,Φk >= 0 for k = 1, · · · ,K, thus
< ∂tR

I
K ,Φk >= 0 for k = 1, · · · ,K.

The second term in < L1(RIK , R
θ
K),Φk >ρ and the first two terms in <

L2(RIK , R
θ
K),Φk >ρ are zero following similar argument. Therefore, we have,

for k = 1, · · · ,K,

< L1(RIK , R
θ
K),Φk >ρ= − < Q(RIK , R

θ
K),Φk >ρ,

< L2(RIK , R
θ
K),Φk >ρ=< Q̃(RIK , R

θ
K),Φk >ρ .

Lemma 5.2. Under the assumption of Theorem 5.1,

‖|Q(RIK , R
θ
K)‖|2Γ ≤ (1 + σM )Cγ,mK

−2mβm!e
γm

ε2
t.

Proof.

‖|Q(RIK , R
θ
K)‖|2Γ =

∫
D

∫
Iz

〈(σRθK −RIK)2〉ρ(z)dzdx

=

∫
D

∫
Iz

〈(RIK)2 − 2σRIKR
θ
K + σ2(RθK)2〉ρ(z)dzdx

≤
∫
D

∫
Iz

〈(RIK)2 + σ(RθK)2 + σ(RIK)2 + σ2(RθK)2〉ρ(z)dzdx

≤(1 + σM )(‖|RIK‖|2Γ + ‖
√
σRθK‖2Γ) ≤ (1 + σM )Cγ,mK

−2mβm!e
γm

ε2
t.

Since L1(I, θ) = 0,L2(I, θ) = 0 and PKL1(IK , θK) = 0, PKL2(IK , θK) = 0,
from (52) and Lemma 5.1, for k = 1, · · · ,K,

< L1(eIK , e
θ
K),Φk >ρ= − < L1(RIK , R

θ
K),Φk >ρ=< Q(RIK , R

θ
K),Φk >ρ,

(58a)

< L2(eIK , e
θ
K),Φk >ρ= − < L2(RIK , R

θ
K),Φk >ρ= − < Q̃(RIK , R

θ
K),Φk >ρ .

(58b)

Now taking the scalar product of êI in (54a) with

(< L1(eIK , e
θ
K),Φ1 >ρ, < L1(eIK , e

θ
K),Φ2 >ρ, · · · , < L1(eIK , e

θ
K),ΦK >ρ)

and taking 〈·〉 and integrating on D, with (56b) and (58a), give

ε2∂t‖|eIK‖|2Γ −
∫
D

〈< Q(eIK , e
θ
K), eIK >ρ〉 =

∫
D

〈< Q(RIK , R
θ
K), eIK >ρ〉. (59)

Then taking the scalar product of Cêθ in (54b) for C defined in (43) with

(< L2(eIK , e
θ
K),Φ1 >ρ, < L2(eIK , e

θ
K),Φ2 >ρ, · · · , < L2(eIK , e

θ
K),ΦK >ρ)
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and integrating on D, with (56c) and (58b), give

ε2∂t‖
√
ceθK‖2Γ − ε2

∫
D

< ∂xxe
θ
K , ce

θ
K >ρ +

∫
D

< Q̃(eIK , e
θ
K), ceθK >ρ

= −
∫
D

< Q̃(RIK , R
θ
K), ceθK >ρ .

(60)

Adding equation (59) and (60) yields

ε2∂t(‖|eIK‖|2Γ + ‖
√
σeθK‖2Γ)

=

∫
D

〈< Q(eIK , e
θ
K), eIK >ρ〉+

∫
D

〈< Q(RIK , R
θ
K), eIK >ρ〉

+ ε2

∫
D

< ∂xxe
θ
K , σe

θ
K >ρ −

∫
D

< Q̃(eIK , e
θ
K), σeθK >ρ

−
∫
D

< Q̃(RIK , R
θ
K), σeθK >ρ

=

∫
D

〈< Q(eIK , e
θ
K), eIK − σeθK >ρ〉+

∫
D

〈< Q(RIK , R
θ
K), eIK − σeθK >ρ〉

− ε2

∫
D

< ∂xe
θ
K , ∂x(σeθK) >ρ

=

∫
D

〈< Q(eIK , e
θ
K), eIK − σeθK >ρ〉+

∫
D

〈< Q(RIK , R
θ
K), eIK − σeθK >ρ〉

− ε2

2

∫
D

< ∂x(eθK)2, ∂xσ >ρ −ε2

∫
D

σ‖∂xeθK‖2ρ

≤
∫
D

〈< Q(eIK , e
θ
K), eIK − σeθK >ρ〉+

∫
D

〈< Q(RIK , R
θ
K), eIK − σeθK >ρ〉

+
ε2

2

∫
D

< (eθK)2, ∂xxσ >ρ

≤− ‖|eIK − σeθK‖|2Γ +

∫
D

〈‖Q(RIK , R
θ
K)‖ρ‖eIK − σeθK‖ρ〉+

ε2γ2

2
‖eθK‖2Γ

≤− ‖|eIK − σeθK‖|2Γ +
1

2
‖|Q(RIK , R

θ
K)‖|2Γ +

1

2
‖eIK − σeθK‖2Γ +

ε2γ2

2
‖eθK‖2Γ

≤1

2
‖|Q(RIK , R

θ
K)‖|2Γ +

ε2γ2

2σm
‖
√
σeθK‖2Γ

≤1

2
(1 + σM )Cγ,mK

−2mβm!e
γm

ε2
t +

ε2γ2

2σm
(‖|eIK ||2Γ + ‖

√
σeθK‖2Γ),

where the second inequality is by the definition of Q and Cauchy-Schwartz
inequality and the last inequality uses Lemma 5.2 and the assumption of The-
orem 5.1.

Thus applying Gronwall’s Lemma,
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‖|eIK‖|2Γ + ‖
√
σeθK‖2Γ

≤e
γ2

2σm
t(‖|eIIK‖|

2
Γ + ‖

√
σeθIK ‖

2
Γ)

+
1

2ε2
(1 + σM )Cγ,mK

−2mβm!e
γ2

2σm
t

∫ t

0

e( γm
ε2
− γ2

2σm
)sds

≤e
γ2

2σm
t(‖|eIIK‖|

2
Γ + ‖

√
σeθIK ‖

2
Γ) +

2σm(1 + σM )

σmγm− γ2ε2
Cγ,mK

−2mβm!e
γm

ε2
t

(61)

Now we are ready to prove the main spectral convergence theorem:

Theorem 5.2. Assume c depends on z linearly, and

0 < σm < σ < σM < +∞, max
z
|∂zσ| ≤ γ1, max

x
|∂xxσ| ≤ γ2

Assume ε <
√

2σmγ/γ2. If for integer m ≥ 0,

‖|∂lzII‖|2Γ + ‖
√
σ∂lzθI‖2Γ ≤ β, for all l = 0, · · · ,m

Then

‖|I−IK‖|2Γ +‖
√
σ(θ−θK)‖2Γ ≤

(
1 +

2σm(1 + σM )

σmγm− γ2ε2

)
Cγ,mK

−2mβm!e
γm

ε2
t (62)

where γ is a constant depending on γ1 and γ2, Cγ,l is a constant depending on
γ and l as in Theorem 5.1.

Proof. From (52a) and (52b), one has

‖|I−IK‖|2Γ+‖
√
σ(θ−θK)‖2Γ ≤

(
‖|RIK‖|2Γ + ‖

√
σRθK)‖2Γ

)
+
(
‖|eIK‖|2Γ + ‖

√
σeθK)‖2Γ

)
Note that

eIIK = PKI − IK |t=0 = 0, eθIK = PKθ − θK |t=0 = 0.

Then combining (55) with (61) gives (62).

Remark 5.1. The error in (62) shows that, for ε→ 0, one needs K >> eγt/ε
2

.
This justifies the need to the notion of AP such that practically, one can take
K (and other numerial parameters) independent of ε.

6 Numerical Tests

We consider the one-dimensional slab geometry introduced in the previous sec-
tion. Furthermore, we assume a nonreflecting boundary, i.e., α = 0. For the
velocity discretization, 16 Gauss quadrature points are used. The spatial grid
spacing is h = 0.01. We assume the same CFL condition as the deterministic
case (See [19]) and thus take ∆t = 0.001. We use the 4th order gPC-SG method
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and compare it with stochastic collocation method with 20 points sampling z,
both for the transfer equation and its limiting diffusion equation. In stochastic
collocation, one applies the deterministic AP solver to a set of selected sample
points and then approximates the solution via an interpolation procedure. (See
[21] for an overview of stochastic collocation methods.) The numerical results
are examined by two quantities, the mean value and the standard deviation of
θ. Given the gPC coefficients θ̂k of θ, the mean value and standard deviation
are calculated as

E[θ] ≈ θ̂1, Sd[θ] ≈

√√√√ K∑
k=2

θ̂2
k (63)

6.1 Test 1: 1D Randomness in Cross-Section

We first consider the randomness in the cross-section with the following initial
and boundary conditions:

II(x, µ, z, 0) = 0, θI(x, z, 0) = 0, x ∈ [0, 1]

θB(0, z, t) = 1, θB(1, z, t) = 0;

IB(0, µ, z, t) = 1 + 0.5z, µ > 0, IB(1, µ, z, t) = 0, µ < 0,

and random coefficient

σ(z) = 1 + 0.5z, z ∼ U [−1, 1].

The random space is just one dimension and z has a uniform distribution.
We first set ε = 0.1 to be a relatively large number. Compared with the

reference solution obtained by stochastic collocation method, one can see a
good agreement on both mean and standard deviation in Figure 1.

Then we consider the case of a very small ε = 0.001. The efficiency of AP
method is notable as the same mesh is used with much smaller ε. And again one
can observe good agreement between gPC solutions and stochastic collocations.
Furthermore, we plot the “semi-exact” solutions which are obtained by solv-
ing the limiting nonlinear diffusion equation (9) by the gPC-SG method and
stochastic collocation respectively. Good agreements can be observed among
these four in Figure 2.

Figure 3 shows the errors at time t = 0.1 with respect to increasing gPC
order at different mesh ∆x = 0.001 (circles) and ∆x = 0.05 (squares). We
employ the 20-point stochastic collocation method as reference solution. The
time step is ∆t = 0.1∆x. One can observe fast exponential convergence with
respect to the gPC order no matter one uses a coarse mesh (∆x is much larger
than ε) or an intermediate mesh (∆x is of order ε).

In Figure 4, we show the differences of the mean and standard deviation be-
tween the solution to the limiting diffusion equation and the 4th-order gPC-SG
solution with respect to various values of ε up to time t = 0.1. The differ-
ences obviously decrease as ε gets smaller, thus showing the scheme captures
the diffusion limit very well. When ε is small enough, the difference saturates
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as the numerical errors from the spatial and temporal discretizations become
dominating. The solution to the limiting diffusion equation is obtained by the
20-point stochastic collocation method as reference.

Figure 1: Test 1. The mean (left) and standard deviation (right) of θ at time
t = 0.1, obtained by the 4th-order gPC-SG (circles) and the 20-point stochastic
collocation (crosses) with ε = 0.1.

Figure 2: Test 1. The mean (left) and standard deviation (right) of θ at time
t = 0.1, obtained by the 4th-order gPC-SG (circles) and the 20-point stochas-
tic collocation (crosses), along with the solutions of the random diffusion limit
obtained by the 4th-order gPC-SG (solid line) and the 20-point stochastic col-
location (dashed line) with ε = 0.001.
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Figure 3: Test 1. Error in mean (solid lines) and standard deviation (dashed
lines), with respect to the gPC order for ε = 0.001. (Circles: ∆x = 0.001 and
squares: ∆x = 0.05.)

Figure 4: Test1. Differences in the mean (solid lines) and standard deviation
(dashed line) between the 4th-order gPC-SG solution and the limiting diffusion
solution with respect to different values of ε. (Squares: ∆x = 0.05 and circles:
∆x = 0.025.)
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6.2 Test 2: 1D Randomness in Initial Data for ε = 0.001

We now consider the randomness in the initial data:

θI(x, z, 0) = 0.5 + 0.5z, II(x, µ, z, 0) = σ(0.5 + 0.5z)4, z ∼ U(−1, 1),

with a constant cross-section term and the same boundary data,

σ = 1

θB(0, z, t) = 1, θB(1, z, t) = 0;

IB(0, µ, z, t) = 1, µ > 0, IB(1, µ, z, t) = 0, µ < 0.

We only examine the case of a very small ε = 0.001 and observe good agreements
of the two quantities obtained by the gPC-SG method, the stochastic collocation
and the “semi-exact” solutions, as can be seen from Figure 5.

Figure 5: Test 2. The mean (left) and standard deviation (right) of θ at time
t = 0.1, ε = 0.001 obtained by the 4th-order gPC-SG (circles) and the 20-point
stochastic collocation (crosses), along with the solutions of the random diffusion
limit obtained by the 4th-order gPC-SG (solid line) and the 20-point stochastic
collocation (dashed line).
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6.3 Test 3: 1D Randomness in Boundary for ε = 0.001

We now consider the randomness in the boundary data:

θB(0, z, t) = 1 + 0.5z, z ∼ U(−1, 1), θB(1, z, t) = 0;

IB(0, µ, z, t) = σ(1 + 0.5z)4, µ > 0, IB(1, µ, z, t) = 0, µ < 0,

with the same constant cross-section term and the initial data

σ = 1, θI(x, z, 0) = II(x, µ, z, 0) = 0.

The mean and standard deviation obtained by the gPC-SG method, the
stochastic collocation and the “semi-exact” solution match well, as shown in
Figure 6.

Figure 6: Test 3. The mean (left) and standard deviation (right) of θ at time
t = 0.1, ε = 0.001 obtained by the 4th-order gPC-SG (circles) and the 20-point
stochastic collocation (crosses), along with the solutions of the random diffusion
limit obtained by the 4th-order gPC-SG (solid line) and the 20-point stochastic
collocation (dashed line).
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6.4 Test 4: 2D Randomness in Cross-Section for ε = 0.001

We then model the random input in cross-section but as a random field of two
dimension.

σ(x, z1, z2) =
3

4
+

1

4
cos(2πx) +

1

8
cos(4πx)z1 +

1

12
cos(6πx)z2,

z1 ∼ U(−1, 1), z2 ∼ U(−1, 1), z1, z2 are independent from each other.

This resembles the form of the well known Karhunen-Loeve expansion, which is
widely used for modeling random fields.[21]

The initial and boundary data are the same as test 1:

II(x, µ, z, 0) = 0, θI(x, z, 0) = 0, x ∈ [0, 1],

θB(0, z, t) = 1, θB(1, z, t) = 0;

IB(0, µ, z, t) = σ(x, z1, z2), µ > 0, IB(1, µ, z, t) = 0, µ < 0.

The mean and standard deviation of the solution are shown in Figure 7,
where a good agreement can be observed between the gPC-SG method of order
9 and the stochastic collocation over 202 Legendre-Gauss quadrature points.
The computing efficiency of the gPC-SG method in high dimensional space
becomes notable even in this 2D case. The number of sample points needed
grows exponentially with dimension but the order of gPC-SG does not. And
similar to previous cases, with small ε = 0.001, the results match well with the
“semi-exact” solution.

Figure 7: Test 4. The mean (left) and standard deviation (right) of θ at time
t = 0.1, ε = 0.001 obtained by the 9th-order gPC-SG (circles) and the 20-point
stochastic collocation (crosses), along with the solution of the random diffusion
limit obtained by the 9th-order gPC-SG (solid line) and the 20-point stochastic
collocation (dashed line).
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Appendix: Proof of Theorem 4.1:

Proof. Plug (42c) into (42a):

ε2 ĥn+1 − ĥn

∆t
+ C

θ̂
n+1
− θ̂

n

∆t
+ ∂x〈µĝ〉n+1 = −ĥn+1, (64a)

ε2 ĝn+1 − ĝn

∆t
+ µC∂xθ̂

n+1
+ ε∂x(µĝn − 〈µĝ〉n) + ε2∂x(µĥn) = −ĝn+1. (64b)

Then with space discretization introduced in section 3.5

(Ciθ̂
n+1

i + ε2ĥn+1
i )− (Ciθ̂

n

i + ε2ĥni )

∆t
+D0〈µĝn+1

i 〉 = −ĥn+1
i , (65a)

ĝn+1
i+1/2 − ĝni+1/2

∆t
+

1

ε
(Id− 〈·〉)(µ+D− + µ−D+)ĝni+1/2

= − 1

ε2
ĝn+1
i+1/2 −

1

ε2
µδ0(Ci+1/2θ̂

n+1

i+1/2 + ε2ĥni+1/2). (65b)

Step 1

Multiply (65a) by (Ciθ̂
n+1

i + ε2ĥn+1
i )T , sum over i ∈ Z,

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 − ‖Cθ̂

n
+ ε2ĥn‖2 + ‖Cθ̂

n+1
+ ε2ĥn+1 −Cθ̂

n
− ε2ĥn‖2)

+
∑
i

(Ciθ̂
n+1

i + ε2ĥn+1
i )TD0〈µĝn+1

i 〉∆x = −
∑
i

(Ciθ̂
n+1

i + ε2ĥn+1
i )T ĥn+1

i ∆x.

(66)
Multiply (65b) by (ĝn+1

i+1/2)T and take 〈·〉, sum over i:

1

2∆t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2)

+
1

ε

∑
i

〈(ĝn+1
i+1/2)T [(Id− 〈·〉)(µ+D− + µ−D+)ĝni+1/2]〉∆x

= − 1

ε2
‖|ĝn+1‖|2 − 1

ε2

∑
i

〈µĝn+1
i+1/2〉

T δ0(Ci+1/2θ̂
n+1

i+1/2 + ε2ĥni+1/2)∆x.

(67)

Use 〈ĝn+1
i+1/2〉 = 0 for every i,∑

i

〈(ĝn+1
i+1/2)T [(Id− 〈·〉)(µ+D− + µ−D+)ĝni+1/2]〉∆x

=
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x.

(68)
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Then (66) + ε2 × (67) gives

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 − ‖Cnθ̂

n
+ ε2ĥn‖2 + ‖Cθ̂

n+1
+ ε2ĥn+1 −Cθ̂

n
− ε2ĥn‖2)

+
∑
i

(Cθ̂
n+1

+ ε2ĥn+1)TD0〈µĝn+1
i 〉∆x+

ε2

2∆t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2)

+ ε
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x = −

∑
i

(Ciθ̂
n+1

i + ε2ĥn+1
i )T ĥn+1

i ∆x

− ‖|ĝn+1‖|2 −
∑
i

〈µĝn+1
i+1/2〉

T δ0(Ci+1/2θ̂
n+1

i+1/2 + ε2ĥni+1/2)∆x

(69)
Use discrete integration by parts:

∑
i

〈µĝn+1
i+1/2〉

T δ0(Ci+1/2θ̂
n+1

i+1/2+ε2ĥni+1/2)∆x = −
∑
i

〈µD0ĝn+1
i 〉T (Ciθ̂

n+1

i +ε2ĥni )∆x

Step 2

Rewrite (69) as following:

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 − ‖Cθ̂

n
+ ε2ĥn‖2 − ‖|εĝn‖|2

+ ‖Cθ̂
n+1

+ ε2ĥn+1 −Cθ̂
n
− ε2ĥn‖2 + ‖|εĝn+1 − εĝn‖|2)

+ ε
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x

=−
∑
i

(Ciθ̂
n+1

i + ε2ĥn+1
i )T ĥn+1

i ∆x− ‖|ĝn+1‖|2 +
∑
i

〈µD0ĝn+1
i 〉T (Ciθ̂

n+1

i −Ciθ̂
n

i )∆x

+
∑
i

〈µD0ĝn+1
i 〉T (−Ciθ̂

n+1

i − ε2ĥn+1
i + Ciθ̂

n

i + ε2ĥni )∆x.

(70)
Use Young’s inequality:∑

i

〈µD0ĝn+1
i 〉T (−Ciθ̂

n+1

i − ε2ĥn+1
i + Ciθ̂

n

i + ε2ĥni )∆x

≤α‖ −Cθ̂
n+1
− ε2ĥn+1 + Cθ̂

n
+ ε2ĥn‖2 +

1

4α

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x.
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Thus, let α = 1
2∆t ,we have

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 − ‖Cθ̂

n
+ ε2ĥn‖2 − ‖|εĝn‖|2

+ ‖|εĝn+1 − εĝn‖|2) + ε
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x

≤−
∑
i

(Ciθ̂
n+1

i + ε2ĥn+1
i )T ĥn+1

i ∆x− ‖|ĝn+1‖|2

+
∑
i

〈µD0ĝn+1
i 〉T (Ciθ̂

n+1

i −Ciθ̂
n

i )∆x+
∆t

2

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x.

(71)

Multiply (42c) by (Ciθ̂
n+1

i )T , sum over i ∈ Z,

1

∆t

∑
i

(Ciθ̂
n+1

i )T (θ̂
n+1

i − θ̂
n

i )∆x =
∑
i

(Ciθ̂
n+1

i )T (∆cθ̂
n+1

i + ĥn+1
i )∆x. (72)

Since Ci is symmetric, positive and definite, one can use the Cholesky de-
composition

Ci = Li(Li)
T ,

where Li is a lower triangular matrix with positive diagonal entries. Then (72)
becomes

1

2∆t
(‖Lθ̂

n+1
‖2−‖Lθ̂

n
‖2+‖Lθ̂

n+1
−Lθ̂

n
‖2) =

∑
i

(Ciθ̂
n+1

i )T (∆cθ̂
n+1

i +ĥn+1
i )∆x.

(73)
Adding equation (71) and (73),

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂

n+1
‖2 − ‖Cθ̂

n
+ ε2ĥn‖2

− ‖|εĝn‖|2 − ‖Lθ̂
n
‖2 + ‖|εĝn+1 − εĝn‖|2 + ‖Lθ̂

n+1
− Lθ̂

n
‖2)

+ ε
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x

≤− ‖|ĝn+1‖|2 − ‖εĥn+1‖2 +
∑
i

〈µD0ĝn+1
i 〉T (Ciθ̂

n+1

i −Ciθ̂
n

i )∆x

+
∆t

2

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x+
∑
i

(Ciθ̂
n+1

i )T∆cθ̂
n+1

∆x.

(74)
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Denote φn+1
i+1/2 =

θ̂
n+1
i+1 −θ̂

n+1
i

∆x , then ∆cθ̂
n+1

i = D0φn+1
i , and∑

i

(Ciθ̂
n+1

i )T∆cθ̂
n+1

i ∆x

=
∑
i

(Ciθ̂
n+1

i )TD0φn+1
i ∆x

=−
∑
i

(φn+1
i )TCiφ

n+1
i ∆x = −‖Lφn+1‖2 ≤ 0.

(75)

Using Young’s Inequality,∑
i

〈µD0ĝn+1
i 〉T (Ciθ̂

n+1

i −Ciθ̂
n

i )∆x =
∑
i

〈µLiD0ĝn+1
i 〉T (Liθ̂

n+1

i − Liθ̂
n

i )∆x

≤α
∑
i

〈µLiD0ĝn+1
i 〉T 〈µLiD0ĝn+1

i 〉∆x+
1

4α
‖Lθ̂

n+1
− Lθ̂

n
‖2.

(76)
Let α = ∆t

2 , then (76) becomes

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂

n+1
‖2 − ‖Cθ̂

n
+ ε2ĥn‖2 − ‖|εĝn‖|2

− ‖Lθ̂
n
‖2 + ‖|εĝn+1 − εĝn‖|2) + ε

∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x

≤− ‖|ĝn+1‖|2 +
∆t

2

∑
i

〈µLiD0ĝn+1
i 〉T 〈µLiD0ĝn+1

i 〉∆x

+
∆t

2

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x.

(77)
Denote λi > 0 the largest eigenvalue of Ci. Then∑

i

〈µLiD0ĝn+1
i 〉T 〈µLiD0ĝn+1

i 〉∆x ≤
∑
i

λi〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x

≤ λ0

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x.

Thus

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂

n+1
‖2 − ‖Cθ̂

n
+ ε2ĥn‖2 − ‖|εĝn‖|2 − ‖Lθ̂

n
‖2

+ ‖|εĝn+1 − εĝn‖|2) + ε
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x

≤− ‖|ĝn+1‖|2 +
∆t

2
(λ0 + 1)

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x.

(78)
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Step 3

Now we separate the last term on the left hand side of (78) into two parts:∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝni+1/2)〉∆x

=
∑
i

〈(ĝn+1
i+1/2)T ((µ+D− + µ−D+)ĝn+1

i+1/2)〉∆x

+
∑
i

〈(ĝn+1
i+1/2)T (µ+D− + µ−D+)(ĝni+1/2 − ĝn+1

i+1/2)〉∆x

=A+B

(79)

where

A =
∑
i

〈µ(ĝn+1
i+1/2)TDcĝn+1

i+1/2〉∆x−
∆x

2

∑
i

〈(|µ|ĝn+1
i+1/2)TD−D+ĝn+1

i+1/2〉∆x

=
∆x

2

∑
i

〈|µ|(D+ĝn+1
i+1/2)TD+ĝn+1

i+1/2〉∆x,

(80)

B = −
∑
i

〈[(µ+D+ + µ−D−)ĝn+1
i+1/2]T (ĝni+1/2 − ĝn+1

i+1/2)〉∆x, (81)

and

|B| ≤ α‖|ĝn+1 − ĝn‖|2 +
1

4α
‖||µ|D+ĝn+1‖|2. (82)

If α = ε
2∆t , ‖|ĝ

n+1 − ĝn‖|2 can be cancelled out and one gets

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂

n+1
‖2 − ‖Cθ̂

n
+ ε2ĥn‖2 − ‖|εĝn‖|2 − ‖Lθ̂

n
‖2)

+ ε
∆x

2

∑
i

〈|µ|(D+ĝn+1
i+1/2)TD+ĝn+1

i+1/2〉∆x−
∆t

2
‖||µ|D+ĝn+1‖|2

≤− ‖|ĝn+1‖|2 +
∆t

2
(λ0 + 1)

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x.

(83)

Step 4

The last term on the left hand side of (83) is

∆t

2
‖||µ|D+ĝn+1‖|2 =

∆t

2

∑
i

〈|µ|2(D+ĝn+1
i+1/2)TD+ĝn+1

i+1/2〉∆x

≤ ∆t

2

∑
i

〈|µ|(D+ĝn+1
i+1/2)TD+ĝn+1

i+1/2〉∆x
(84)

for |µ| ≤ 1.
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Then the last term on the right hand side of (83)

∆t

2
(λ0 + 1)

∑
i

〈µD0ĝn+1
i 〉T 〈µD0ĝn+1

i 〉∆x

≤∆t

4
(λ0 + 1)

∑
i

〈|µ|(D+ĝn+1
i+1/2)TD+ĝn+1

i+1/2〉∆x.
(85)

Step 5

Using the results of (84) and (85) with (83), one gets

1

2∆t
(‖Cθ̂

n+1
+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂

n+1
‖2 − ‖Cθ̂

n
+ ε2ĥn‖2 − ‖|εĝn‖|2 − ‖Lθ̂

n
‖2)

≤− ‖|ĝn+1‖|2 +

[
∆t

4
(λ0 + 3)− ε∆x

2

]∑
i

〈|µ|(D+ĝn+1
i )TD+ĝn+1

i 〉∆x

≤− ‖|ĝn+1‖|2 +

[
∆t

4
(λ0 + 3)− ε∆x

2

]+∑
i

〈(D+ĝn+1
i )TD+ĝn+1

i 〉∆x

≤− ‖|ĝn+1‖|2 +

[
∆t

4
(λ0 + 3)− ε∆x

2

]+
4

∆x2
‖|ĝn+1‖|2.

(86)
This means that we have the final energy estimate

‖Cθ̂
n+1

+ ε2ĥn+1‖2 + ‖|εĝn+1‖|2 + ‖Lθ̂
n+1
‖2

≤ ‖Cθ̂
n

+ ε2ĥn‖2 + ‖|εĝn‖|2 + ‖Lθ̂
n
‖2,

if ∆t is such that [
∆t

4
(λ0 + 3)− ε∆x

2

]
4

(∆x)2
≤ 1.

This implies

∆t ≤ 1

3 + λ0
((∆x)2 + 2ε∆x).

(6.4) clearly implies that În+1, given by (13), is bounded by the intial data.
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