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Abstract
In this work, we propose an asymptotic-preserving Monte Carlo method for the Boltzmann equation that is more
efficient than the currently available Monte Carlo methods in the fluid dynamic regime. This method is based on the
successive penalty method [39], which is an improved BGK-penalization method originally proposed by Filbet-Jin
[16]. Here we introduce the Monte-Carlo implementation of the method, which, despite of its lower order accuracy,
is very efficient in higher dimensions or simulating some complicated chemical processes. This method allows the
time step independent of the mean free time which is prohibitively small in the fluid dynamic regime. We study
some basic properties of this method, and compare it with some other asymptotic-preserving Monte Carlo methods in
terms of numerical performance in different regimes, from rarefied to fluid dynamic regimes, and their computational
efficiency.
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1. Introduction

1.1. Background: numerical methods for the Boltzmann equation
In the study of flows which span a wide range of flow regimes, i.e. in atmospheric re-entry problems, the density

distribution f (t, x, v) of a dilute gas at position x, with velocity υ and at time t, is governed by the Boltzmann equation
[5, 9]:

∂ f
∂t

+ υ · ∇x f =
1
ε

Q ( f , f ) , x ∈ Rdx , v ∈ Rdv . (1.1)

In Eqn. (1.1), the bilinear collision operator Q ( f , f ) describes the binary collisions of the particles and is defined by

Q ( f , f ) (υ) =

∫
Rdυ

∫
Sdυ−1

σ (|υ − υ1|, ω)
[
f
(
υ′

)
f
(
υ′∗

)
− f (υ) f (υ∗)

]
dωdυ∗, (1.2)

where ω is a unit vector on the sphere Sdυ−1. The collision operator Q ( f , f ) can also be rewritten as

Q ( f , f ) (υ) = Q+ ( f , f ) + f Q− ( f ) , (1.3)

where Q+ denotes the gain term and Q− is the loss term:
Q+ ( f , f ) =

∫
Rdυ

∫
Sdυ−1

σ (|υ − υ1|, ω) f
(
υ′

)
f
(
υ′∗

)
dωdυ∗

Q− ( f ) =

∫
Rdυ

∫
Sdυ−1

σ (|υ − υ1|, ω) f (υ∗) dωdυ∗.
(1.4)
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The velocity
(
υ′, υ′∗

)
represent the post-collisional velocities whose relation to the pre-collisional velocities (υ, υ∗) are

given by  υ′ = 1
2 (υ + υ∗ + |υ − υ∗|ω) ,

υ′∗ = 1
2 (υ + υ∗ − |υ − υ∗|ω) .

(1.5)

In Eqn. (1.2), σ is the nonnegative collision kernel which depends on the model of forces between particles, and we
also define the total cross section σT as (see [5] for more details)

σT (|υ − υ∗|) =

∫
Sdυ−1

σ (|υ − υ∗|, ω) dω. (1.6)

Meanwhile, one can refer to Chapman and Cowling [10] for the details of several models, such as the inverse power
force model and the Lennard-Jones model. In the case of inverse kth power force between particles, it has the form

σ (|υ − υ∗|, θ) = bα (θ) |υ − υ∗|α, (1.7)

where α = (k − 5) / (k − 1). In numerical simulation of rarefied gases, the variable hard sphere (VHS) model is often
used, in which, bα (θ) = Cα, where Cα is a positive constant. The case α = 0 corresponds to the Maxwellian gas,
while the case α = 1 represents the hard sphere gas.

With f , the macroscopic density ρ, mean velocity u, and temperature T , can be obtained by taking the moments:

ρ =
∫
Rdυ f dυ, u =

1
ρ

∫
Rdυ υ f dυ, T =

1
dυρ

∫
Rdυ |υ − u|2 f dυ. (1.8)

Moreover, the collision operator (1.2) satisfies some important properties:

• Conservation laws: ∫
Rdυ

Q ( f , f ) φ (υ) dυ = 0, for φ (υ) = 1, υ, |υ|2;

which gives conservation of mass, momentum and total energy.

• Boltzmann’s H theorem [36]:
d
dt

∫
f log f dυ =

∫
Q ( f , f ) log f dυ ≤ 0,

which implies that any system reaches its equilibrium state at which the entropy −
∫

f log f dυ is maximum.
The equilibrium distribution function has the form of a local Maxwellian distribution:

M (ρ, u,T ) (υ) =
ρ

(2πT )dυ/2
exp

(
−
|u − υ|2

2T

)
. (1.9)

The Knudsen number ε in (1.1), as a parameter of great significance in the kinetic theory, is the ratio of the local
mean free path ` in gases to the characteristic length scale. For a small value of ε, the Chapman-Enskog expansion
connects the Boltzmann equation (1.1) with hydrodynamic equations, i.e., the compressible Navier-Stokes equations
(the first order approximation) and the compressible Euler equations (the zeroth order approximation). By taking
ε→ 0, f →M, then one can obtain the hydrodynamic Euler equations

∂tρ + ∇x · (ρu) = 0,
∂t (ρu) + ∇x · (ρu ⊗ u + pI) = 0,
∂tE + ∇x ·

[
(E + p) u

]
= 0,

(1.10)

where E is the total energy, p is the pressure,

E =
1
2
ρu2 +

dυ
2
ρT, p = ρT.

In addition, the heat flux q can be defined by

q =
1
2

∫
Rdυ

(υ − u) [υ − u]2 f dυ. (1.11)
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1.2. Computational difficulties: high-dimensions and stiffness

It is well accepted that the Boltzmann equation is valid for a wide range of ε, while the Navier-Stokes equations
fail to reproduce accurate flowfields when ε is moderate or large [5, 9]. For example, in a typical space shuttle reentry
problem, the mean free path ranges from 10−8 to O (1) meters, which means ε can vary from O (1) to a extremely
small value. In this case, numerical methods for the Navier-Stokes equations are not suitable and at best can resolve
the flowfields when ε � 1. Hence, numerically solving the Boltzmann equation becomes of great importance.

Basically, there are two main challenges in solving most kinetic problems numerically. The first is the high
dimensions, and the second is multiple scales and numerical stiffness. For kinetic problems with high dimensions,
it is evidential that the direct simulation Monte Carlo method (DSMC) is more efficient than the finite-difference
methods [5]. Although conventional DSMC or other numerical methods are effective when the Knudsen number ε
is large or moderate, the computational cost can be extremely expensive if ε vanishes. The reason is that numerical
methods are generally required to resolve the small kinetic scale or time scale of O (ε), and it can be considerably
time-consuming when ε→ 0. For a normal engineering problem, even running on clusters, it is common that one run
of DSMC may take weeks or months.

In the past decades, a very promising numerical approach, the so-called Asymptotic-Preserving schemes, has been
proposed and developed for kinetic equations efficient in the hydrodynamic regimes. The AP schemes allow a kinetic
solver to capture the hydrodynamic behavior, as ε → 0, without numerical resolving ε [16, 23, 24]. Specifically, as
summarized by Jin [23], a scheme is AP if

• it preserves the discrete analogy of the Chapman-Enskog expansion;

• it computes the implicit collision terms explicitly, or more efficiently than an implicit solver based on Newton
iterations.

A typical AP scheme uses either implicit-explicit (IMEX) time discretization or the exponential Runge-Kutta
(ExpRK) method. In order to handle the implicit collision term efficiently, a BGK-penalization method was introduced
by Filbet and Jin [16], utilizing the factor that the BGK collision operator

P ( f ) = β (M− f ) , (1.12)

can be explicitly inverted. As a result, one can obtain a Boltzmann solver uniformly stable with respect to ε, and yet
can be implemented explicitly. Later, Yan and Jin [39] proposed a successive penalty AP scheme which was positivity-
preserving and has strong AP properties. Their method had been implemented in the finite difference framework in
[39].

Earlier, Pareschi and Caflisch [31] formulated a hybrid Monte Carlo method that performed well in the fluid
dynamic regime for the space homogeneous Boltzmann equation. The method was based on an analytic representa-
tion of the solution and implicit time differencing derived from a generalized Wild expansion [17, 37]. Meanwhile,
Pareschi and Russo [32] introduced the Time-Relaxed schemes, which was a linear penalty method with P ( f ) = β f ,
and the schemes absorbed the stiff part into the time derivative ∂t f to remove the stiffness. Using the bilinearity of the
remaining term Q̃ ( f , f ) = Q ( f , f ) + β f , the distribution function can be represented by finite terms in the Wild Sum
[17, 37]. It was reported that higher order accuracy in time can be achieved by keeping more expansion terms were
kept. Then Pareschi and Trazzi [33] extended this class of AP schemes to two dimensions in space, and demonstrated
its better performance in efficiency compared with the conventional DSMC method as ε → 0. Later, Degond et al.
[12] introduced a moment-guided Monte Carlo method to reduce the variance. They solved the kinetic equation and
the fluid equations respectively, and matched the moments of both solutions. Preliminary numerical results showed
reductions of fluctuations in all regimes compared to DSMC. Recently, DiMarco and Pareschi [13] demonstrated
that the Maxwellian truncation criterion used in [17] was equivalent to the Filbet-Jin BGK penalization for space
homogeneous case.

An alternative construction of AP schemes was proposed by DiMarco and Pareschi [13]. The methods were
based on a decomposition of the collision operator into an equilibrium and a nonequilibrium part, and then the stiff
part was absorbed in an explicit Runge-Kutta (ExpRK) framework. Recently, Li and Pareschi [29] introduced more
sophisticated ExpRK methods for the full Boltzmann equation, which were deterministic methods. It was presented
in their work [29] that higher order time discretization methods performed better in numerical tests due to their higher
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order accuracy. One should note that in their methods WENO schemes were applied to ensure sufficiently high-order
accuracy in space, while in the particle-based algorithms mentioned above, such as DSMC and TRMC (a Monte Carlo
implementation of the time relaxed schemes), applying high-order space discretization methods was extremely limited
in space non-homogeneous cases.

The goal of this work is to propose a new asymptotic-preserving direct simulation Monte Carlo method (AP-
DSMC) based on the successive penalty AP time-discretization [39]. This line of research is of significance not only
in rarefied gas and reentry problems [22, 26, 27, 30, 38] governed by the Boltzmann equation, but also in some more
complicated transport phenomena, whose master equations are the quantum Boltzmann equation [15] and the Landau
equation [25] in plasma physics. For the space homogeneous Boltzmann equation, it was realized in [39] that the
successive penalization step can be written as a convex combination of the density distribution of the previous time
step, a positive collision operator and the local Maxwellian. This forms the basis for a Monte-Carlo implementation
[31]. Since the coefficients of this convex combination are all positive, for any time step, this method has a numerical
stability (as well as the number of sampling particles) independent of the Knudsen number, thus is much more efficient
than the conventional DSMC methods. This is highly desirable for the reentry problems and any other kinetic problems
that involve multiple time and spatial scales. Some of the theoretical properties of this scheme, such as positivity and
asymptotic-preservation, are also explored.

We also compare this method with some other asymptotic-preserving Monte-Carlo methods, including the time-
relaxed Monte-Carlo [32] (TRMC) and the exponential Monte-Carlo method [13] (denoted as ExpRK in the follow-
ing). Our numerical experiments indicate that they give comparable results for most regimes, except the heat flux
for moderately small ε. Thus the focus will be the computational cost. Their computational cost varies depending
on the coefficients in the aforementioned convex combination. Since the AP-DSMC method proposed in this paper
puts less weight on the most expensive Maxwellian sampling, it is computationally more efficient in the intermediate
regime where the time step is of the order of mean free path. In addition, with under-resolved solutions, especially
considering the values of heat flux, results by AP-DSMC agree with the reference solutions better than ExpRK, which
can be attributed to the ability of reproducing more accurate distribution functions with AP-DSMC in the intermediate
regime.

The rest of the paper is organized as follows. In section 2, we briefly review the two existing Monte Carlo methods
with asymptotic preserving properties for the Boltzmann equation. In section 3 we introduce the new AP-DSMC based
on the successive penalty method in the first order formulations and study the properties and computational efficiency
of this method as well as ExpRK and TRMC. Finally in section 4, several numerical results for the new AP-DSMC
are presented which show the good performance in capturing the macroscopic behavior in various flow regimes.
Several other methods are compared in efficiency and capability of capturing unsteady profiles. Some simple physical
problems involving real gas are computed here to demonstrate the capability of our new methods in engineering
applications. The paper is concluded in section 5.

2. Some asymptotic preserving Monte Carlo methods for the Boltzmann equation

In this section, two existing asymptotic preserving Monte Carlo methods are briefly described, which will be used
to compare with the new method proposed in this paper.

2.1. The TRMC methods

Pareschi and Russo [32] derived the time-relaxed Monte Carlo methods based on the time-relaxed approach pro-
posed in [17] that utilized the Wild Sum [37]. Briefly speaking, letting F (τ, υ) = f eβt/ε and τ = 1 − e−βt/ε, the
homogeneous Boltzmann equation in general with a linear penalty term β f /ε can be rewritten into

∂F
∂τ

=
1
β

Q̃ (F, F) ,

F (τ = 0, υ) = f0,
(2.1)

where for a general distribution function f , we define

Q̃ ( f , f ) = Q ( f , f ) + β f , (2.2)
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and the positive constant β is an upper bound of the coefficient of the loss term Q− in (1.4):

β ≥ Q−. (2.3)

Then the solution to problem (2.1) using the Wild Sum can be truncated to yield the following method:

f n+1 =

m∑
p=0

ap fp + am+1M, m ≥ 1, (2.4)

where the functions fp are given by the recurrence formula

fp+1 =
1

p + 1

p∑
h=0

1
β

Q̃
(

fh, fp−h

)
, p = 0, 1, .... (2.5)

Take the so-called first order TRMC (TRMC1) as an example, one can use a0 = 1−τ, a2 = τ3, and a1 = 1−a0−a2.
We refer to Pareschi and Russo [32], Pareschi and Trazzi [33] for more details. In this paper, both ExpRK method and
this method are used to compare with our new AP-DSMC.

Remark 2.1. Note that, according to [32, 33], by including more terms in (2.4), one can get a more time accurate
approximate distribution function for the homogeneous Boltzmann equation (2.1). Here we just give an example called
TRMC2, which is second order accurate in time:

f n+1 = a0 f n + a1 f1 + a2 f2 + a3M, (2.6)

where a0 = 1 − τ, a1 = τ (1 − τ), a3 = τ4 and a2 = 1 − a0 − a1 − a3, with

f1 =
Q̃ ( f n, f n)

β
, f2 =

Q̃ ( f n, f1)
β

.

The formulation (2.6) of TRMC2 is similar to TRMC1 except f2. According to [32], the probabilistic interpretation
of f2 is that a group of particles sampled from f n undergo dummy collisions with another group of particles sampled
from f1. It is reported [33] that TRMC2 needs more computational time than TRMC1 with the same numerical setup.
In addition, Pareschi and Russo [32] gave the positivity proof of the TRMC methods.

2.2. The ExpRK method
Secondly, we briefly review the explicit exponential Runge-Kutta methods [13]. Still, we present the treatment on

the homogeneous Boltzmann equation here. The basic idea is

1. Penalize Q by P (Eqn. (1.12));

∂ f
∂t

=
1
ε

(
Q̃ ( f , f ) − βM

)
+
β

ε
(M− f ) , (2.7)

2. Absorb the stiff part into the time derivative term;

∂
[
( f −M) eβt/ε

]
∂t

=

[
1
ε

(
Q̃ ( f , f ) − βM

)
− ∂tM

]
eβt/ε. (2.8)

3. Solve the scheme with an explicit Runge-Kutta method, using Mn+1 = Mn (due to the conservation of the
moments for space homogeneous Boltzmann equation); (i.e. explicit Euler method)

f n+1 =Mn + a
[

f n −Mn + µ

(
Q̃ ( f n, f n)

β
−Mn

)]
= a f n + µa

Q̃ ( f n, f n)
β

+
[
1 − (1 + µ) a

]
Mn.

(2.9)

where a = e−β4t/ε, with

µ =
β4t
ε
, (2.10)

and the termMn can be computed by Pullin’s method [34].
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The positivity of f n+1 is guaranteed since both Mn and Q̃ ( f n, f n) are positive by their definitions: (1.9) and (2.2)
respectively. One can also refer to [13, 29] for more details.

Remark 2.2. Pullin’s method can be described as follows:

1. Compute the momentum mū and the energy E′ of N related particles;

mū =
1
N

N∑
i=1

mui, E′ =

N∑
i=1

[
ei +

1
2

m|ui − ū|2
]
, (2.11)

where ui is the velocity for the i-th particle, ei denotes internal energy,
∑N

i=1 ei =
∑N

i=1 ϑi

2 RT, where ϑi = 0 for
monatomic gas particles, and ϑi = 2 for diatomic gas particles. Here ei is not considered in this work, and E′

is the total mass center energy of all particles.
2. Sample same number of particles from a Maxwellian distribution with the same momentum mū and energy E;
3. Replace the original particles with the sampled ones.

Note that the artificial diffusion nature of Pullin’s method was reported in [7] and [30].

3. A generalized AP-DSMC scheme and its properties

In this section, a general form of the AP-DSMC scheme is introduced and the corresponding properties are dis-
cussed. This method is based on the work of Yan-Jin [39], which is an improvement of the original Filbet-Jin BGK
penalization method [16]. We choose one of these methods as our new AP-DSMC and give its computational proce-
dures.

3.1. The successive penalty method for Monte Carlo computations

3.1.1. Time splitting of the full Boltzmann equation
Here, a simple time splitting scheme is applied to Eqn. (1.1) and then we have

∂ f
∂t

+ υ · ∇x f = 0,

∂ f
∂t

=
1
ε

Q ( f , f ) ,

(3.1)

which consists of solving the first transport equation for one time step to generate the initial data for the collision step
for one time step. Here, we discretize the transport equation in time by the forward Euler method:

f ∗ − f n

4t
= −υ · ∇x f n. (3.2)

Since the numerical difficulties are mainly within the collision step, or the space homogeneous equation here, we
spend most of efforts on this part in the sequel.

3.1.2. The BGK-penalization in the space homogeneous equation
With the BGK penalization term P ( f ) = β (M− f ), where β is defined in (2.3), one writes

∂ f
∂t

=
1
ε

(Q ( f , f ) − P ( f ))︸                   ︷︷                   ︸
less stiff

+
1
ε

P ( f )︸ ︷︷ ︸
stiff

. (3.3)
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As discussed in [16, 39], the first term on the right hand side (RHS) is less stiff and the second one contains more
stiffness. Again, we apply the time splitting for simplicity:

∂ f
∂t

=
1
ε

(Q ( f , f ) − P ( f )) ,

∂ f
∂t

=
1
ε

P ( f ) ,

(3.4)

where the first equation is solved explicitly, to get

f ∗∗ − f ∗

4t
=

1
ε

(Q ( f ∗, f ∗) − P ( f ∗)) . (3.5)

The same time discretization as [39] is used here for the equation with more stiff term and we divide the time step
into L subintervals. Then 

f n+1,1 − f ∗∗

4t/L
=

1
ε

Pn+1,1,

f n+1,2 − f n+1,1

4t/L
=

1
ε

Pn+1,2,

· · ·

f n+1 − f n+1,L−1

4t/L
=

1
ε

Pn+1.

(3.6)

Due to the conservation property of operator P, we haveMn+1,1 =Mn+1,2 = · · · =Mn+1 =M∗∗, then (3.6) can be
rewritten as 

f n+1,1 = c f ∗∗ + (1 − c)M∗∗,

f n+1,2 = c f n+1,1 + (1 − c)M∗∗,
· · ·

f n+1 = c f n+1,L−1 + (1 − c)M∗∗,

(3.7)

where

c =

(
1 +

β4t
εL

)−1

. (3.8)

One can obtain a general formula for any L ∈ Z+ as follows:

f n+1 = cL f ∗∗ +
(
1 − cL

)
M∗∗. (3.9)

This splitting is referred as SPL.
Furthermore, since M∗∗ = M∗, so when L = 2, this split version can be rewritten into a much more clear and

unified form  f ∗ = f n − υ4t · ∇x f n,

f n+1 =M∗ + c1 ·
[
( f ∗ −M∗) + c2 ·

(
Q̃ ( f ∗, f ∗) /β∗ −M∗

)]
,

(3.10)

where the coefficients c1 = cL (= (1 + µ/2)−2 for L = 2), c2 = µ. For L > 2 cases, one can obtain the similar form as
(3.10) with different value of c in (3.8).

Moreover, (3.10) can be further reformulated as

f ∗ = f n︸︷︷︸
original distribution

+ υ4t · (−∇x f n)︸           ︷︷           ︸
transport

,

f n+1 = b0 f ∗︸︷︷︸
not colliding

+ b1Q̃ ( f ∗, f ∗) /β∗︸             ︷︷             ︸
colliding

+ b2M
∗︸︷︷︸

relaxation

.

(3.11)
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Note that the term Q̃ ( f ∗, f ∗) /β∗, according to the definition of Q̃ in Eqn. (2.2), can be regarded as a distribution
function [32], and can be approximated by the Nanbu-Babovsky’s method [3]. Besides, in Eqn. (3.11), the weights
are defined as 

b0 = c1,

b1 = c1c2,

b2 = 1 − c1 − c1c2.

Therefore the computational procedure can be summarized as:

1. Compute f ∗ from transport;
2. Compute the weights b0, b1, and b2;
3. Compute the collision term Q̃∗/β∗ with the prescribed collisional law;
4. Compute the relaxation termM∗ with the method introduced by Pullin [34] (See Remark 2.2);
5. Sample f n+1 from the no-colliding part, colliding part and relaxation part by corresponding probability b0, b1

and b2 respectively.

Remark 3.1. As mentioned in Eqn. (2.3), β is a positive constant. Numerically, it is considered as a variable and
updated at each time step (i.e. βn at the n-th time step) if necessary in order to obtain a better estimation of β [15].

3.2. Procedures of the new AP-DSMC scheme
Below we give details of the AP-DSMC algorithm.

3.2.1. Initialization
First of all, a finite number of simulation particles is employed in the AP-DSMC to represent the N-particle (N →

∞) system governed by the Boltzmann equation, and the distribution function f is approximated by a sufficiently
large number of samples in our new scheme. In general, the weight factor wp ∈ Z indicates that wp real molecules
are represented by one simulation particle. The computational domain is often divided into a great number of cells
{m = 1, ...,MNC}, where MNC is the total number of cells, to locate particles and sample the local macroscopic
quantities. Given the initial condition ( ρ, υ and T ) in cell m, one can obtain the number of particles Nm by

Nm = b
ρVm

wp
c, (3.12)

here bxc is the largest integer which is less than or equal to x, and Vm is the volume of cell m. Then, the local
Maxwellian distribution functionM (υ,T ) is applied to generate Nm particles and their initial velocities,{

υn
i, j, i = 1, ...,N, j = 1, ..., dυ

}
.

As a matter of fact, any prescribed distribution function g is allowed to generate particles on the condition that g can
be analytically represented. Since our simulations are particle-based, the dimensionless macroscopic quantities are
computed by the corresponding particles information, which is similar to that in [5]:

ρ =
Nmwp

Vm
, u j =

1
Nm

Nm∑
i=1

υi, j, dυT =
1

Nm

 Nm∑
i=1

dυ∑
j=1

υ2
i, j − Nm

dυ∑
j=1

u2
j

 . (3.13)

3.2.2. Convection
Transport all the particles by their velocity υn

i for one time step 4t:

xn+1
i = xn

i + υn
i · 4t. (3.14)

Relocate the transported particles by sorting all the particles to cells according to their positions, especially for a
Cartesian mesh. For example, for the 1D i-th cell, the two cell edge positions of this cell are posi and posi+1, and then
an arbitrary j-th particle can be considered locating in this cell if

posi < x j < posi+1. (3.15)
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3.2.3. Collision
The details of the computation of the collision part can be described as follows:

Algorithm 1. (First order AP-DSMC)

1. do n = 1, ntot

- compute an upper bound σmax of the cross section

- select a random pair (i, j) uniformly in Nn
c

- compute the relative cross section σi j

- if σmax · ξ < σi j (called the acceptance-rejection method)

• perform the collision and compute the post-collisional velocities according to the collisional law
• let υn+1

i = υ′i , and υn+1
j = υ′j

- select Nn
M particles among those that have not been selected, and compute the overall momentum and energy

- replace those Nn
M selected the same number of particles by sampling from the Maxwellian with the same

momentum and energy

- set υn+1
i = υn

i for all the particles that have not collided

end do

Here σi j = σT

(
|υi − υ j|

)
, σmax = max{σi j}, and β can be chosen as ρσmax. ξ is a random number uniformly in

[0, 1]. At the n-th step, Nn is the number of particles, Nn
c is the number of collision pairs to select, and Nn

M is the
number of particles to be replaced with that sampled from the Maxwellian with the same momentum and energy:

Nn
c =


bb1Nn/2c, tn = 0,

bb1Nn/2 + χn−1
Nc
c, tn = n · 4t,

and Nn
M =


bb2Nn/2c, tn = 0,

bb2Nn/2 + χn−1
NM
c, tn = n · 4t,

where 4t denotes the time increment, χn−1
x = xn−1 − bxn−1c computed in the previous time step tn−1.

Remark 3.2. For a typical DSMC method, the error depends on the following parameters:

1. Space and time discretizations, 4x and 4t;
2. The number of particles, N;
3. The number of samples with Monte Carlo methods, Ns.

The errors can be classified into two kinds: one is the truncation error due to the spatial [1, 20] and temporal [18]
discretizations; the other one is the statistical error which can be attributed to the finite number of samples, which
depends on N · Ns. One can refer to the exclusive references [11, 21] for further discussions on the statistical error in
DSMC.

3.3. Properties of the AP-DSMC scheme

3.3.1. Positivity preserving
For the direct simulation Monte Carlo simulation, the property of positivity preserving is required. In Eqn. (3.11),

assuming the weights are nonnegative, three terms need the proof of positivity preserving:

1. transport term, ( f n + υ4t · (−∇x f n));
2. colliding term, Q̃ ( f ∗, f ∗) /β∗;
3. relaxation term,M∗.
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Define the CFL condition as
4t ≤ 4x/υmax, (3.16)

where 4x is the local mesh size (or space step) and υmax is the truncation of the velocity domain. With a suitably
chosen spatial discretization for ∇x f (for example the upwind scheme), the transport term is positive if the CFL
condition (3.16) is satisfied.

As defined in Eqn. (2.2), we have
Q̃ = Q + β f

= Q+ + f
(
β − Q−

)
,

where Q+ is the gain term defined in (1.4) and is positive. With the condition (2.3), β − Q− ≥ 0. Hence, Q̃ is positive
and then the colliding term Q̃ ( f ∗, f ∗) /β∗ in (3.11) is positive. As for the relaxation term, it is obvious that M∗ is
positive according to its definition Eqn. (1.9).

Therefore, having nonnegative weights bi and a nonnegative initial distribution, our scheme AP-DSMC can pre-
serve the positivity during the whole computation.

3.3.2. Asymptotic preserving property
The scheme defined in Eqn. (3.11) is conservative and asymptotic preserving when the nonnegative weights bi

(0 < c ≤ 1 in (3.8), then bi ≥ 0) satisfy the following conditions:

1. Conservation.
2∑

i=0

bi = 1. (3.17)

2. Asymptotic preservation (AP).

lim
µ→∞

b0 = 0, lim
µ→∞

b1 = 0. (3.18)

Name the scheme as SPL once L in (3.9) is given. It can be deduced that SP1 can not be considered as an AP
scheme since lim

µ→∞
b1 = 1, which does not satisfy the condition (3.18). Meanwhile, it was shown in [39] that for L ≥ 2,

SPL is AP in the sense that
f n −Mn = O (ε) , for any n ≥ 1. (3.19)

3.3.3. Estimation of the computational efforts
In a typical DSMC method, the total number of collision pairs Nt during one time step 4t and the collision

frequency ν given by kinetic theory [5, 6]:

Nt =
1
2

Nν4t, (3.20)

where the collision frequency is

ν =
1
ε
ρσT . (3.21)

Here, with (1.6), σT is given by

σT =
1
ρ2

∫
Rdυ

σT (|υ − υ∗|) f (υ) f (υ∗) dυ∗. (3.22)

Two aspects should be clarified here: one is the computation of σT , and the other is the estimation of the com-
putational efforts. As a matter of fact, instead of direct calculation of σT , which is time consuming, several schemes
have been developed to reproduce the actual mean collision rate [5, 6]. Here, we choose two typical schemes, Bird’s
no time counter (NTC) scheme and Nanbu-Babovsky’s scheme, to unfold the discussion.
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• NTC scheme. In this scheme, the computation is driven (or proceeds) to the next time step when the required
number of dummy collision pairs Nc is selected. The selected pairs will be conducting examinations with the
acceptance-rejection method to make sure if the binary collisions happen. Here

Nc =
1
2

Nρσmax4t/ε,

and the probability of each intermolecular collision between the i-th particle and the j-th particle is P =
σi, j

σmax
,

where σmax = max{σi j} is the maximum collision cross section. Hence, after conducting a sufficient number of
collisions, the value of σT can be reproduced;

• Nanbu-Babovsky’s scheme. Usually, for the collision equation (the second equation in (3.11)), the time step
4t is divided into several subintervals (i.e. Lt) in order to ensure that each particle is selected as one of a dummy
collision pair at most once, while the transport equation (the first equation in (3.11)) still proceeds with 4t.
Here,

4tc =
4t
Lt

<
1
ν
, or Nc <

N
2

(3.23)

should be satisfied so that the required number of dummy collision pairs Nc will not exceed the actual number
of N/2 pairs during the time subintervals 4tc. Given a time step 4t for the computation, one can choose an
appropriate Lt:

Lt >
ρσmax4t

ε
.

The rest of procedures is same as the NTC scheme.

• AP-DSMC. Our new scheme is driven to the next time step after all particles are dealt with during each time
step 4t. By the definition (3.11), one should treat the particles, as classified into three groups, in three different
ways:

1. no-colliding particles, bb0Nc: keep the velocity of particles unchanged to the next time step;
2. colliding particles, bb1Nc: select b 1

2 b1Nc dummy collision pairs and conduct the collision examinations
with the acceptance-rejection (See Algorithm 1);

3. relaxation particles, bb2Nc: replace them with new particles sampled from the corresponding Maxwellian
distribution preserving the number, momentum and energy conservations.

Note that since b1 < 1, which is satisfied unconditionally, the constraint (3.23) on the time step for the collision
equation is unnecessary in this scheme.

Numerically speaking, as the particle-based algorithms, the computational costs of the collision treatments of both
Bird’s NTC scheme and Nanbu-Babovsky’s scheme are proportional to Nt, while the cost of AP-DSMC is proportional
to (b1/2 + b2) N. In order to compare the difference of the above three schemes in computational efforts for ε→ 0 (or
in the hydrodynamic limit), we fixed the values of ρσmax4t and N. Then, for conventional DSMC methods,

Nt ∝ ε
−1,

while for AP-DSMC, the value of (b1/2 + b2) is bounded by 1 despite of the dependence of bi on ε. Hence, it can be
deduced that AP schemes will be much more efficient than conventional DSMC methods when ε is vanishing.

3.3.4. Main differences among the AP-DSMC schemes
Our numerical experiments in section 4 indicate that these methods give comparable numerical results in most

cases, except heat flux for moderately small ε. Thus the main issue here will be the computational cost. Since all
schemes under consideration can be put in the form of (3.11) with different coefficients (see Table 3.1), one should
first compare the cost of computing the collision term Q̃/β and the local MaxwellianM∗.

To this aim, we conduct a test on a regular laptop with the current Monte Carlo code. The same code is used with
different weights:

11



Table 3.1: Coefficients in several AP methods. (µ is defined in (2.10))
Name b0 b1 b2

SP1 (1 + µ)−1 µ (1 + µ)−1 0
SP2 (1 + µ/2)−2 µ (1 + µ/2)−2 1 − (1 + µ) (1 + µ/2)−2

SP3 (1 + µ/3)−3 µ (1 + µ/3)−3 1 − (1 + µ) (1 + µ/3)−3

ExpRK e−µ µe−µ 1 − (1 + µ) e−µ

TRMC1 e−µ (1 − e−µ) (2 − e−µ) e−µ (1 − e−µ)3

• RUN-M: letting b2 = 1 and b0 = b1 = 0 to conduct samplingM only;

• RUN-Q: setting b1 = 1 and b0 = b2 = 0 to sample Q̃/β only

The other numerical setups are specified as follows. The simulations are initialized with (ρ, υ,T ) = (1, 0, 1) and 50
particles in only one cell. Particle transportation and boundary conditions are not considered, and all particles are
forced to be involved in collision pairs selection. The computational time for RUN-M is t1 = 4 × 10−7s, and for
RUN-Q is t2 = 9.36 × 10−8s. Then t1/t2 ≈ 4.33. With a larger number of particles, it is found that the ratio t1/t2
increases, i.e. about 5.0 for 103 particles per cell, and when the number of particles per cell decreases to 10, the ratio
t1/t2 is about 4.0. Hence, it can be noticed that samplingM is more time-consuming in typical simulations, therefore
one should minimize b2 for all µ to save the computational cost, when other conditions in (3.17) and (3.18) are met.
Note for SPL,

b2 = 1 − b0 − b1 = 1 − b0 − µb0 = 1 − b0 (1 + µ) ,

thus one should maximize b0 = (1 + µ/L)−L, namely, choose L such that

L0 = argmin f (x, L) ,

= argmin
[
(1 + x/L)−L

]
, for ∀x ∈ R+.

(3.24)

Since (1 + x/L)L is monotonically increasing in L for any x ∈ R+, L0 in Eqn. (3.24) should be the smallest value
of its range to achieve the minimum. Clearly, L0 = 2 (corresponding to SP2) should be the optimal one in our class
of AP schemes in the viewpoint of computational efficiency, since the scheme with L0 = 1 (which refers to SP1) is
eliminated above.

Considering when the difference between the two values of b0 occurs, a new indicator Θ (µ) is defined in this
paper. Taking the comparison SPL with ExpRK as an example, we have:

Θ (µ) = (1 + µ/L)−L − e−µ, µ ∈ R+. (3.25)

Obviously, Θ (µ) is always positive. Fig. 1 plots the tendency of Θ (µ) with µ varying, and noticeable peaks are
observed in the region x ∈

[
100, 101

]
for both L = 2 and L = 3.

From the viewpoint of efficiency, for the hydrodynamic limit, all the AP schemes reduce to a Euler solver (b0 =

b1 = 0) and cost the same computational efforts. For near-continuum regime simulations, however, b0 is usually
non-trivial, and then the difference in computational efficiency for various AP schemes can be noticed. As a matter of
fact, it can be deduced from Fig. 1 that if in the regime ε � 1, 4t = O (ε), SP2 is more efficient than SP3, and SP3 can
save more cost than ExpRK. Note that the peak in Fig. 1 is not exact value of the difference in computational time. It
is just a qualitative demonstration. For simplicity, we name SP2 as AP-DSMC in the following.

Remark 3.3. It should be noticed that Fig. 1 only indicates when the difference between AP-DSMC and ExpRK
occurs, while the exact scale of difference is case dependent. In the following, it is evidential that for some cases the
difference between the two AP schemes can be over 20%.

4. Numerical simulations

In this section, six numerical tests are conducted in order to
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Figure 1: Θ (µ) with varying µ plots for both L = 2 (solid lines) and L = 3 (dash lines).

• test the AP-DSMC scheme and others.

• validate our code with the DSMC method [5] and second order Filbet-Jin method [16].

• define the differences among AP-DSMC and ExpRK in both efficiency and accuracy.

• prove the capability of our scheme in higher dimensional applications, i.e. 2D transient flows.

For all Filbet-Jin solutions, Nυ = 32 mesh points are uniformly distributed in each υ direction with υmax = 8 and
υmin = −8. Meanwhile, the van Leer type slope limiter [28] is applied on the computation of the transport step, and
4t = 4x

2υmax
(CFL = 0.5) is taken to guarantee the stability.

Note that in numerical test 1 to 3, the maximum collision rate σmax is chosen to be 1.0 so as to compare with the
results from the deterministic methods or conventional DSMC methods, while in numerical test 4 to 6, the comparisons
are conducted with other DSMC methods and σmax is updated at each time step if it increases.

4.1. Numerical Test 1: Statistical error test
At first, we report on the results of a stochastic error analysis with respect to the number of particles N.

4.1.1. The initial data
The initial data is a non-equilibrium distribution

f 0 (x, υ) =
ρ0 (x)

2πT 0 (x)
1
2

{
exp

(
−
|υ − u0 (x) |2

2T 0 (x)

)
+ exp

(
−
|υ + u0 (x) |2

2T 0 (x)

)}
(4.1)

where 

ρ0 (x) =
2 + sin (2πx)

3
,

u0 (x) =

 1
5 cos (2πx)

0

 ,
T 0 (x) =

3 + cos (2πx)
4

.

(4.2)
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To obtain the initial distribution in AP-DSMC, one can regard f 0 (x, υ) as the linear combination of two distribution

functions
1
2

f 0
1 (x, υ) and

1
2

f 0
2 (x, υ), where

f 0
1 (x, υ) =

ρ0 (x)
2πT 0 (x)

· exp
(
−
|υ − u0 (x) |2

2T 0 (x)

)
, f 0

2 (x, υ) =
ρ0 (x)

2πT 0 (x)
· exp

(
−
|υ + u0 (x) |2

2T 0 (x)

)
.

Obviously, both f 0
1 and f 0

2 can be realized by sampling from Maxwellian distribution functions. Hence, in the
procedure of direct simulations, one can sample the initial condition (4.1) by the following three steps:

1. sample f 0
1 fromM

(
ρ0, u0,T 0

)
;

2. sample f 0
2 fromM

(
ρ0,−u0,T 0

)
;

3. sum up: f 0 =
1
2

f 0
1 +

1
2

f 0
2 .

In this test, the periodic boundary conditions at both ends of the computational domain are applied. In addition,
cases at ε = 1, 10−3, 10−6 are computed respectively, and the output time is 0.05 with σmax = 1.0, 4x = 10−2 and
4t = 10−3. The reference solutions are computed by the Filbet-Jin method with 4x = 10−2 and 4t = 6.25 × 10−4.

4.1.2. The convergence rate
In order to measure the errors from N to investigate the stochastic nature of the method, a L2 norm are defined

[12] by:

E2 (N) =

√√√
1
Ns

Ns∑
i=1

Nx∑
j=1

(
Φi, j (N) − Φ j

)2
, (4.3)

where Φi, j is the solutions computed at cell j and for the i-th run, Φ j is the reference solutions from the Filbet-Jin
method [16]. One can also use the results from the DSMC methods as the reference solutions according to Degond
et al. [12]. Here Ns is set to be 104 constantly.

Fig. 2 shows the statistical errors induced by the number of particles N for the first order AP-DSMC and ExpRK
in log-log scale. It can be observed that the errors measured by L2 norm do not change with the Knudsen number ε
and do decrease monotonically. The convergence rates of each of macroscopic variables approximately equal to 1/2
for both our new method and the ExpRK method. The results are consistent with those of the conventional DSMC
method in [5] and [12]. For the errors induced by N, Degond et al. [12] concluded that with some moment-guided
modifications, which apply higher resolution of the thermodynamical equilibrium, one can increase the convergence
rates to one. But those modifications are out of consideration in this work.

4.2. Numerical Test 2: Sod’s shock tube problem
Sod’s problem is wildly used to test the capability of capturing unsteady profiles and resolution of shock wave and

contact discontinuity. Now we conduct simulations of this problem with various Knudsen number from ε = 100 to
10−6. The aim is (1) to test the numerical capabilities of the new method; (2) to compare our new method with other
AP schemes. In this test, two initial data are considered to investigate the performance of AP schemes with resolved
solutions and under-resolved solutions.

4.2.1. The initial data
First, the data is initialized with the Maxwellian distributions with [16, 39] (named as RUN-1)(ρ, u,T )L = (1, 0, 1) , if 0 ≤ x < 0.5,

(ρ, u,T )R = (1/8, 0, 1/4) , if 0.5 ≤ x ≤ 1.
(4.4)

Here, DSMC, TRMC1, ExpRK, SP3 and AP-DSMC with σmax = 1.0, 50 particles per cell, Ns = 3 × 103,
4x = 2 × 10−3 and 4t = 1.25 × 10−4 are tested. The reference solutions are computed by the second order Filbet-Jin
method [16] with 4x = 10−3 and 4t = 6.25 × 10−5 for ε = 10−2 and ε = 10−4, and the Euler solver [28] with
4t = 2.32 × 10−4 and 4x = 10−3 for ε = 10−6. The output time is t = 0.2.
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Figure 2: Statistical errors (4.3) induced by the finite number of particles with AP-DSMC (denoted as A) and ExpRK (denoted as E). Solutions
at t = 0.05 for density. Knudsen number ε is set to 1, 10−3 and 10−6 respectively. Squares and gradients indicate errors for ε = 1, circles and
diamonds for ε = 10−3, deltas and left triangles for ε = 10−6.

With another data [13] initialized with the Maxwellian distributions in the following, the performance of AP
schemes with under-resolved solutions is compared. (named as RUN-2)(ρ, u,T )L = (1, 0, 5) , if 0 ≤ x < 0.5,

(ρ, u,T )R = (1/8, 0, 4) , if 0.5 ≤ x ≤ 1.
(4.5)

Here, TRMC2, ExpRK, and AP-DSMC with σmax = 1.0, 500 particles per cell, Ns = 104, 4x = 6.7 × 10−3

and 4t = 4.17 × 10−4 are tested. The reference solutions are computed by DSMC for ε = 10−3 and ε = 10−4 with
σmax = 1.0, 103 particles per cell, Ns = 104, 4x = 6.7 × 10−3 and 4t = 8.33 × 10−5. The output time is t = 0.05.

The Neumann boundary conditions in the x-direction are applied for both RUN-1 and RUN-2.

4.2.2. The unsteady profiles
In Fig. 3, comparisons of macroscopic quantities (such as density) by DSMC, ExpRK, AP-DSMC and refer-

ence solutions with RUN-1 are made. Results show good agreement for different flow regimes, including the near-
continuum regime

(
ε = 10−4

)
. Fig. 3 indicates that all the methods tested here can capture the positions and profiles of

the expansion wave, contact discontinuity and shock wave in all the flow regimes, including near continuum regime.
Other methods show the same results which are not plotted here for clarity. Note that even with the mesh size and
time step larger than ε when ε→ 0, ExpRK, SP3, AP-DSMC and TRMC1 have the asymptotic-preserving properties.
On the other hand, for this run, no obvious differences between AP-DSMC and ExpRK or TRMC1 in accuracy are
observed in all regimes. Therefore, next we will focus on the comparison in computational efficiency.

4.2.3. The computational efficiency test for RUN-1
Furthermore, the efficiency of these methods is studied. Fig. 4 shows the comparisons of the computational CPU

time of DSMC, ExpRK, TRMC1, SP3 and AP-DSMC. ε varies from 100 to 10−6.
When ε ∼ O (1), there is almost no difference between DSMC and other methods (only AP-DSMC and ExpRK are

plotted in this regime). However, the computational cost of DSMC starts to soar after ε decreases to 10−4 and becomes

15



X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
ExpRK
DSMC
AP-DSMC
ref: Nx=1000

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
ExpRK
DSMC
AP-DSMC
ref: Nx=1000

X

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
ExpRK
DSMC
AP-DSMC
ref: Nx=1000

Figure 3: The comparison of density at t = 0.2 and ε = 10−2 (left), ε = 10−4 (middle) and ε = 10−6 (right) for the Sod’s problem with RUN-1.
Solid lines indicate the reference solutions by the second order Filbet-Jin method [16] for ε = 10−2 and ε = 10−4, while the reference solutions are
computed by the Euler solver [28] for ε = 10−6. The squares are given by the ExpRK method, the diamonds are given by the DSMC method, and
the circles by the first order AP-DSMC method. For simplicity, only 1 of every 5 mesh points is plotted for these three methods.

unacceptably expensive when ε → 0. Since ExpRK, TRMC1, SP3 and AP-DSMC are asymptotic preserving, they
perform much better than DSMC near the continuum flow regimes. On the other hand, there are notable differences
in efficiency between AP-DSMC and exponential schemes (ExpRK and TRMC1) when ε � 1, even though they
share the same performance when ε � 1. It should be noticed that for ε = 10−4 and ε = 10−5, the value of
µ̄
(
= 1

ntout ·MNC
∑ntout

n=1
∑MNC

i=1 µn
i

)
, where ntout is the number of time steps, is in the range of [1, 10] where the value of

Θ (µ̄) defined in (3.25) is larger than 0. Note that µn
i is the value of µ defined in (2.10) at the n-th time step and the i-th

cell.
Table 4.1 gives the specific cost of the colliding part Tcoll (see Eqn. (3.11), colliding part), the relaxation part

TM and the total running time Ttot for different methods for ε = 10−5. ξ0 in Table 4.1 is positive and negligible. As
mentioned in section 3, the computational cost of DSMC and AP-DSMC depends on µ̄, and when µ̄ � 1, the cost
taken by DSMC becomes unacceptable, which complies with the discussion in section 3.3. In this case, µ̄ ≈ 7, so the
cost of DSMC is not extremely expensive. However, from Fig. 4, when ε decreases further, µ̄ increases, which causes
the computational cost of DSMC arise dramatically.

Table 4.1: Comparisons of computational CPU time (in hrs) taken by different methods for ε = 10−5 with RUN-1
Name Tcoll TM Ttot

DSMC 11.16 − 11.52
ExpRK 0.05 4.67 5.40

TRMC1 ξ0 4.68 5.33
SP3 0.32 4.06 5.15

AP-DSMC 0.45 3.35 4.55

It can be seen in Table 4.1 and Fig. 4 that

1. The computational costs taken by DSMC is about twice as much as that of all other methods, and the relaxation
part costs much more computational time than the collision part for all AP schemes;

2. ExpRK and TRMC1 share a similar efficiency in all the flow regimes; (hence TRMC1 will not be considered in
the following.)

3. AP-DSMC is more efficient than other methods in the near continuum regime, i.e. time used by AP-DSMC is
around 15% less than that by ExpRK.

4.2.4. The computational efficiency test for RUN-2
The aim of this part is to compare AP-DSMC with the second order time accurate time relaxed method (TRMC2)

in computational efficiency with similar results or numerical errors. Fig. 5 shows the density and heat flux (1.11)
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Figure 4: Comparisons of the computational efficiency of DSMC, ExpRK, TRMC1, SP3 and AP-DSMC when the Knudsen number varies from
ε = 100 to ε = 10−6 with RUN-1. Diamonds indicate DSMC, squares for ExpRK, deltas for TRMC1, diamonds for SP3 and circles for AP-DSMC.
T0 is the time taken by DSMC at ε = 100.

by AP-DSMC, ExpRK, TRMC2 and DSMC, when ε = 10−3 and ε = 10−4 with RUN-2. In this run, under-resolved
solutions are given, and it can be observed from Fig. 5 that density profiles agree with each other well for both ε while
the heat flux profiles reveal the differences in accuracy for ε = 10−4. Specifically, AP-DSMC captures better heat
flux profiles than ExpRK, which can be attributed to the different weights. On the other hand, although possessing
the exponential structures of the weights, the second order time discretization method, TRMC2, can obtain a similar
result as AP-DSMC. However, simulations by AP-DSMC need 2.62 hrs while TRMC2 requires 3.44 hrs. Note that,
higher order time discretization methods of ExpRK or TRMC can improve the numerical results, as concluded in
[13, 29], despite of taking more computational cost. In the following, TRMC2 or higher order time relaxed schemes
will be out of consideration since the issue of high order time discretizations is beyond the scope of this paper.

4.3. Numerical Test 3: Mixing regime problem

This case is from Filbet and Jin [16], where the Boltzmann equation with the Knudsen number ε depending on the
space variable in a wide range of mixing scales is considered.

4.3.1. The initial data
Here, the initial data is defined by (4.1), and ε is set to increase smoothly from ε0 to O (1), then jump back to ε0,

ε (x) =

 ε0 +
1
2

(tanh (16 − 20x) + tanh (−4 + 20x)) x ≤ 0.7

ε0 x > 0.7
(4.6)

with ε0 = 5 × 10−4. To avoid the influence from the boundary, we take periodic boundary condition in x.
The solutions given by our new AP-DSMC with σmax = 1.0, 50 particles per cell, Ns = 104, 4x = 2 × 10−3 and

4t = 1.25 × 10−4 is compared with the reference solutions by DSMC with σmax = 1.0, 50 particles per cell, Ns = 104,
4x = 10−3 and 4t = 6.25 × 10−5. The output time is 0.25, 0.5 and 0.75.

4.3.2. The unsteady profiles
Fig. 6 shows the comparison results (density, velocity and temperature). It can be observed that our method

agree with the reference method very well. This case demonstrates that AP-DSMC is capable of capturing the time
dependent macroscopic quantities when ε varies in space.
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Figure 5: The comparison of density (top) and heat flux (1.11) (bottom) at t = 0.05 when ε = 10−3 (left) and ε = 10−4 (right) with RUN-2.

4.4. Numerical Test 4: The stationary shock profile problem

In this test, the stationary shock profiles of the argon gas (at 293K) at different shock Mach numbers are simulated
by our new AP-DSMC. The reference solutions are computed by DSMC1S.FOR [5]. The aim of this case is to
investigate the ability of simulating the real gas flows by our method. The computational domain is [−22.3, 22.3], 3D
in velocity space is considered.

4.4.1. The initial data
The initial data in the upstream side (x < 0) is given by

ρ0 (x) = 1.0,

u0 (x) =


M
√
γT

0
0

 ,
T 0 (x) = 1.0,

(4.7)
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Figure 6: The comparison of density, velocity and temperature at t = 0.25 (top), t = 0.5 (middle) and t = 0.75 (bottom) for the mixed-regime
problem. Nx = 500 for AP-DSMC (circles) and Nx = 1000 for reference solution (solid lines). For simplicity, only 1 of every 5 mesh points is
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where M is the Mach number and γ =
dυ+2

dυ
= 5

3 is the specific ratio.
The data in the downstream side (x > 0) is computed by the Rankine-Hugoniot relations [5]. The boundary

conditions of both sides are farfield conditions. The Mach number is set to be 1.4, 2.0, and 8.0 respectively. The time
step is 1.344× 10−2 and Nx = 300. 50 particles per cell is given in the upstream. For both DSMC and AP-DSMC, the
output results are averaged by 8 × 105 samples. Here, ε = 1.0 and the mean free path is ` = 1.34 × 10−2m. Besides,
the VSS molecular model is applied and one can refer to [5] for more details.
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Figure 7: The stationary shock profile of argon gas at Mach number 1.4 (left), 2.0 (middle), and 8.0 (right). All the values are normalized by the
initial data. The solid or dash lines are the results by the DSMC1S.FOR, while the dashdot lines with circles or dot lines with deltas indicate the
computations by the AP-DSMC. For simplicity, only 1 of every 3 mesh points is plotted for these two methods.

4.4.2. The shock profiles
The results are normalized by the initial data as follows:

ζ∗ =
ζ − ζ0 (x < 0)

ζ0 (x > 0) − ζ0 (x < 0)
, (4.8)

where ζ = (ρ, u,T ) and ζ0 = ζ (t = 0).
Fig. 7 shows the stationary profile of the argon gas in x

`
∈ [−15, 15] at Mach number 1.4, 2.0, and 8.0, which are

computed by DSMC1S.FOR and our AP-DSMC. The results indicate very good agreement with each other.
On the other hand, one can notice that there are obvious separation of density and temperature in a shock. This is

because of the finite relaxation times for momentum and energy transport [19]. From the results, it can be determined
that our new method succeeds in capturing the finite relaxation times for the supersonic or hypersonic shocks.

4.4.3. The thickness of shock
To investigate the capability of the new method further, the experimental results is used as reference. Defining the

reciprocal front width [14] by
`

δ
= max

i

(
ρi+1 − ρi−1

24x

) 1
ρR − ρL

, (4.9)

where δ is the density front width determined from the maximum of ∂ρ
∂x .

Fig. 8 shows the comparisons between AP-DSMC with η = 12 and experimental data from [35], where η is the
exponent of the intermolecular force law [4]. The solid curve in Fig. 8 from [2] is a fitting curve of their experimental
results. Here 4t = 4 × 10−4, 4x = 10−3, the number of particles per cell is 50, and Ns = 2.5 × 105. In addition, the
VHS model is employed. It can be observed that our results not only capture the correct tendency with increasing
Mach number, but agree with the reference as well. This demonstrates the ability of the new method in simulating the
realistic physical or engineering problems.

4.5. Numerical Test 5: The hypersonic flows past a cylinder problem
In this test, two-dimensional AP-DSMC schemes are investigated, and σmax is updated at each time step. The aim

is to investigate the performances of AP-DSMC and ExpRK in two dimensional flows.
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4.5.1. The initial data
The freestream condition is

ρ = 1.0, T = 1.0, Twall = 2.0, (4.10)

where T and Twall are the freestream gas and the wall temperature, respectively. The diffusive reflection boundary
condition [5, 9] is applied on the wall. The velocity can be characterized by a Mach number M :

u (x) =

 M
√
γT

0
0

 . (4.11)

In this test, a monatomic gas is considered and γ = 5
3 . Besides, the Mach number is chosen as M = 10. Fig. 9

shows the geometric scale of the computational domain and the grid system used in this test. Specifically, the radius of
the cylinder is R = 0.0381m, and the center of the cylinder (or called forebody, here only 1/4 cylinder is considered)
is located at the origin. A spline connecting two control points A (−1.75R, 0) and B (0, 3.5R) is regarded as the outer
farfield boundary, and the domain is closed with two additional straight lines. In this case, a structured body-fitting
grid is applied, and the grid dimensions are 91 × 121. The space scale of the first grid near the wall is 1.5 × 10−4. In
addition, the simulations are initialized with at least 40 particles per cell and averaged by 1 × 104 samples. The time
step is 1.81 × 10−5. As a reference solution, DSMC is computed with 4t = 3.62 × 10−6, at least 40 particles per cell
and averaged by 2.5 × 104 samples.

4.5.2. Flowfields and wall information
Fig. 10 shows the contour of macroscopic quantities for AP-DSMC and ExpRK when ε = 10−3. It is observed

from the contour plots that results of AP-DSMC and ExpRK are almost identical, and both agree with the reference
solutions very well. However, in Fig. 11, the pressure and heat transfer coefficients on the walls defined by

CP =
p

ρ0u2
0

, CH =
ρqw

ρ0u3
0
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are plotted for both ε = 10−3 and ε−4. Here θ = −arctan y
x refers to the angle (see Fig. 9), p and ρqw denote the

pressure and heat flux on the wall, and ρ0 and u0 are the initial density and velocity magnitudes.
The results indicate that the pressure computed by both AP-DSMC and ExpRK are consistent with DSMC’s

simulations, while AP-DSMC performs better in computing the peak heat transfer when ε = 10−3 in this test. From
the plot (see Fig. 11) of the distribution function at point F in Fig. 9, AP-DSMC reproduces a more agreeable
distribution function than ExpRK, and noticeable difference between AP-DSMC and the reference method can be
narrowed by using a smaller time step and grid step to resolve the solutions.

On the other hand, it can be noticed that the peak heat flux value (at θ = 0) of ExpRK for ε = 10−3 complies
with that for ε = 10−4. It could be explained by the reason that ExpRK is more likely to reproduce a solution in the
Euler limit rather than the Navier-Stokes limit when ε � 1, therefore it fails to compute any heat flux, which in a
Maxwellian is always zero. The heat flux is due to a small deviation from a Maxwellian, that is hard to capture with
all schemes based on projection onto a Maxwellian.

Therefore, this test demonstrates that in the near-continuum regime, AP-DSMC performs better than ExpRK does,
especially when computing heat flux, in two-dimensional hypersonic flows simulations, and our new method is very
promising in engineering applications.

4.6. Numerical Test 6: The shock-wedge problem

In this test, two-dimensional unsteady AP-DSMC schemes are investigated, and σmax is updated at each time step.

4.6.1. The initial data
Fig. 12 shows the numerical setup of this test. Here, the wedge is at 25 degree and the initial shock position

is at x = 0.18. The computational domain is uniformly divided into 100 × 60 cells and the structured body-fitting
grid is applied. At least 20 particles per cell are placed initially and 103 samples are averaged. The time step is
6.25 × 10−4. The left boundary is inlet (or farfield) boundary condition while the other three are specular reflection
boundary conditions.

Initially, the computational domain is divided into two: (1) phase I (ρ1, u1, p1); and (2) phase II (ρ2, u2, p2). Phase I
is the stationary domain (ρ1, u1, p1) = (1, 0, 1) while phase II is the post-shock domain. Here, the shock Mach number
is Mas = 3.0, then ρ2/ρ1 = 3.0 and

p2

p1
= 1 +

2γ
γ + 1

(
Ma2

s − 1
)

= 11.0,
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Figure 10: The contour of macroscopic quantities (density (left), velocity (middle) and temperature (right)) for each comparison, ε = 10−3.

for γ = 5
3 . u2 can be calculated by the following equation:

u2 =
a1

γ

(
p2

p1
− 1

) √√√√ 2γ
γ+1

p2
p1

+
γ−1
γ+1

= 2.582, (4.12)

where a1 =
√
γ p1
ρ1

is the speed of sound in phase I. One can refer to [8] for more details.

4.6.2. Unsteady flowfields
Fig. 13 and Fig. 14 show the contour of density at ε = 10−2 and ε = 10−4, respectively. The output time is

t = 0.05, t = 0.1 and t = 0.15. Both AP-DSMC and ExpRK are tested here. From the contour, both methods capture
the moving shock wave and the reflected waves. To be more specific, the profiles of density of the near wall grids are
plotted in Fig. 15. It is shown that for both ε = 10−2 and ε = 10−4, the results of two methods are almost the same in
accuracy.

4.6.3. Efficiency in two-dimensional cases
Furthermore, the computational efficiency of both methods are compared here. Table 4.2 gives the CPU time taken

at ε = 10−2, 10−3, 10−4. It is clear that when ε diminishing, the deviations in time between ExpRK and AP-DSMC
are narrowed. For the case of ε = 10−2, AP-DSMC only took 74% time of ExpRK. Hence, this case confirm that the
computational efficiency of AP-DSMC can be over 20% more than ExpRK when the macroscopic quantities agree
with each other.

Table 4.2: Comparisons of computational CPU time (in hrs) taken by different methods
Name ε = 10−2 ε = 10−3 ε = 10−4

ExpRK 20.02 24.43 24.30
AP-DSMC 14.83 22.46 24.58
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5. Conclusions

In this paper we have introduced a new asymptotic preserving Monte Carlo method for the Boltzmann equation
based on the successive BGK penalty methods introduced in [39]. This scheme allows time step and particle numbers
independent of the Knudsen number, thus is much more efficient than the classical DSMC methods in the fluid
dynamical regimes. It is also slightly more efficient that other AP-DSMC methods based on exponential Runge-
Kutta methods since it puts less weight on the sampling of the local Maxwellian. In addition, with under-resolved
solutions, AP-DSMC performs better than ExpRK at a moderately small ε, especially for heat flux computations,
while higher order time discretization methods can improve the results, as concluded in [13, 29]. We also extended it
to 2D in space, and compared with the open source code DSMC1S.FOR by G.A. Bird, which demonstrates its ability
of solving problems involving the real gas properties, which is of importance in hypersonic flows. Various numerical
examples show that the method can capture the dynamics of the Boltzmann equation in all range of Knudsen numbers.

In the future, we will work on improving the numerical accuracy of our method with low-deviation techniques and
applying the method in more complicated engineering problems.
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