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Abstract. In this paper, we develop a mean-field model for describ-
ing the dynamics of spin transfer torque in multilayered ferromagnetic
media. Specifically, we use the techniques of Wigner transform and mo-
ment closure to connect the underlying physics at different scales, and
reach a macroscopic model for the dynamics of spin coupled with the
magnetization within the material. This provides a further understand-
ing of the linear response model proposed by Zhang, Levy, and Fert in
[42], and in particular we get an extra relaxation term which helps to
stabilize the system. We develop efficient numerical methods to over-
come the stiffness appearing in this new mean-field model, and present
several examples to analyze and show its validity.

1. Introduction

Spintronics, i.e., the active control and manipulation of spin degrees of
freedom, plays a key role in advancing technologies and the design of new
electronic devices. The discovery of the Giant Magnetoresistance effect
(GMR) by A. Fert and P. Grünberg [5, 21] has enabled the development of
new technologies. This phenomenon has been observed in magnetic multi-
layered media (e.g., [5]), and has been used to detect domain-wall motion
([32]), a mechanism that is important in operating spintronic memories and
logic devices ([15]). When an electron current flows in a ferromagnetic ma-
terial, conservation of spin yields a transfer of spin angular momentum to
the magnetization, an effect known as spin-transfer torque (STT), and this
has been used in technological applications such as the magnetoresistance
random access memories (MRAMs), race-track memories (e.g., [9]), and the
control of the dynamics of domain walls (e.g., [31, 15]). In this article we are
primarily interested in the magnetization reversal process in ferromagnetic
media as a result of this spin-transfer torque (see Figure 1).

The magnetization reversal process in a spintronic device involves a mul-
titude of physical processes, including spin polarization, spin transport and
diffusion within ferromagnetic multilayers, and spin-magnetization interac-
tions (e.g., [24, 35, 9]). Experiments have been done in a large number
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of magnetic materials, ranging from metals (e.g., Fe, Co, Ni, [24, 9]) and
their alloys to semiconductors (e.g., diamond and organic semiconductors,
[22, 36]). The first models for STT were developed independently by Berger
and Slonczewski ([8, 38]). More recent results can be characterized into two
groups, according to whether the spin dynamics is included in the model
or not: In [43, 40, 13], the magnetization dynamics is considered with the
STT term being described as external torques depending on the magneti-
zation and its derivatives; while in [42, 34], the magnetization dynamics is
coupled to the spin dynamics on an equal footing. Under the assumption
that spatial variation of the spin is neglectable, the coupled system can be
reduced to the magnetization dynamics with additional torque terms [43].
However, this assumption may not be true in general and the coupled system
is highly nonlinear, hence the representability of spin dynamics in terms of
magnetization-related torques is not guaranteed.

In the STT context, very few attempts have been made to describe the
spin dynamics at the microscopic level, with the exception of [13, 34]. Only
the magnetization dynamics was considered in [13], with additional torques
derived from a microscopic model. In [34], the authors derived the spin
dynamics from a kinetic model, but failed to recover the spin dynamics
obtained from the linear response theory [42]. These issues are our main
motivation to study the connection between models of spin dynamics at dif-
ferent physical scales, and to derive mean-field models for the spin dynamics
coupled to magnetization dynamics.

The dynamics of the magnetization is typically described by the Landau-
Lifshitz-Gilbert (LLG) equation [26, 19]. To describe the electron transport,
we start from a Schrödinger equation in the spinor form, and use the wigner
transform to obtain a kinetic model. From this, we obtain a mean-field
model by carrying on a moment closure approximation of the kinetic model,
including Bloch collision terms. To compare the mean-field model with
the one in [42], we restrict ourselves to the case of metals by applying the
quasi-static approximations on the spin current, in which an additional term
that stabilizes the system is obtained. Under the assumption that the spin-
magnetization coupling is weak, the mean-field model recovers the model
in [42]. We develop a time-splitting computational method to solve the
equation of spin dynamics, and use the Gauss-Seidel projection method
[41] to solve the magnetization dynamics. We illustrate the magnetization
reversal process with several examples.

The paper is organized as follows: In Section 2, we derive the mean-field
model by applying the Wigner transform on the spinor dynamics, and the
moment closure on the resulting kinetic equations with Bloch collision terms;
we also compare it to the one in [42]. We describe the numerical methods
for solving the mean-field model coupled to LLG in Section 3, and present
several examples on magnetization switching in ferromagnetic multilayer in
Section 4. Conclusive remarks are made in Section 5.
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2. A mean-field model for spin dynamics

Figure 1 is the standard device for ferromagnetic multilayers, where t-
wo ferromagnetic layers (FM1 and FM2) are sandwiched by a nonmagnetic
metallic spacer (NM). Denote domains occupied FM1, FM2 and NM by
ΩFM1,ΩFM2 and ΩNM with the thickness D1, D2 and D3, respectively. Let
Σ = ΩFM1 ∪ ΩFM2 and Ω = Σ ∪ ΩNM. Spin currents are applied perpen-
dicular to the device to make ease of magnetization switching. In such a
system, there are two types of electrons essentially [43, 33]: one is below
the Fermi level, which is responsible for magnetization dynamics and the
other is around the Fermi sea, which is responsible for spin dynamics. It
is impossible to unambiguously separate these two types of electrons, so a
surrogate ”s-d” Hamiltonian is employed to describe the spin-magnetization
interaction.

2.1. Spin dynamics. In this section, we drive the mean-field model for spin
dynamics. We first start with the spinor dynamics in quantum mechanics.

2.1.1. From one-body Schrödinger equation to kinetic description. A simple
model for spin dynamics is given by the following one-body Schrödinger
equation

(1) i~
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t),

where ψ = (ψ+, ψ−)T is called the spinor, and the effective one-body Hamil-
tonian is of the form [33]

(2) H(x, t) =

(
− ~2

2m
∇2

x + V (x)

)
I− J

2
σ̂ ·m(x, t),

where ~ is the rescaled Planck constant, m is the effective mass of an elec-
tron, V (x) is the external potential, I is the identity matrix, J is the spin-
magnetization coupling constant, and m is the background magnetization.
The Pauli matrices σ̂ = σxî+ σy ĵ + σzk̂ where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The last term is the “s-d” Hamiltonian, which mimics the spin-magnetization
interaction. The “s-d” Hamiltonian is obtained by neglecting the self-induced
electromagnetic fields generated by the conduction electrons. It seems in the
community of spintronics that this is an adequate approximation, e.g., [43,
33].

Next we give a kinetic description of spinor dynamics via the following
Wigner transform of ψ,

(3) W (x,v, t) = (
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)eim~ v·y dy,

where the Wigner function W (x,v, t) is a 2× 2 matrix function, and ψ∗ is
the complex conjugate transpose of ψ. For simplicity, the Wigner transform



4 J. CHEN, C. J. GARCÍA-CERVERA, AND X. YANG

(3) is defined using a single wave function. Due to the linearity of the
Schrödinger equation, the normalization constant for the wave function does
not affect the derived model. Meanwhile, the model can be modified to take
into account either finitely many or infinitely many wave functions; see [29]
for example. We stress that all these will not change the models derived in
the current work.
W (x,v, t) is connected to the macroscopic quantities via its moments:

the charge density: n(x, t) =

∫
R3

Tr(W ) dv,(4)

the charge current: jn(x, t) =

∫
R3

vTr(W ) dv,(5)

the spin density: s(x, t) =

∫
R3

Tr(σ̂W ) dv,(6)

the spin current: Js(x, t) =

∫
R3

v ⊗ Tr(σ̂W ) dv.(7)

They are scalar, vector, vector, and matrix functions of x and t, respectively.
Here Tr represents the trace operator over the spin space. Differentiating
(3) with respect to t yields

(8) i~∂tW (x,v, t) = (
m

2π~
)3

∫
R3

[
(i~∂tψ(x− y

2
, t))⊗ψ∗(x+

y

2
, t)eim~ v·y

+ψ(x− y
2
, t)⊗ (i~∂tψ∗(x+

y

2
, t))eim~ v·y]dy.

After some calculations (provided in Appendix A), one can reach the fol-
lowing Liouville equation from (1),

(9) ∂tW (x,v, t) + v · ∇xW (x,v, t)− e

m
E · ∇vW (x,v, t)

− i

2~
[
Jσ̂ ·m(x, t),W (x,v, t)

]
= 0,

where e is the electron charge and E = ∇V/e.
In general ~ is a small parameter, which would naively indicate that the

last left-hand term of (9) is the dominating one. However, the last two
terms are actually comparable if one pays careful attention to their orders
in physical units,

e

m

|E|
|v|
≈ 1.6× 10−19 × 107

9.109× 10−31 × 104
≈ 1.757× 1014s−1,(10)

J

~
≈ 1.602× 10−20

1.055× 10−34
≈ 1.518× 1014s−1,(11)

where the physical constants are e = 1.6 × 10−19C, ~ = 1.055 × 10−34J · s
and m ∼ me = 9.109×10−31kg. For the device we considered here, typically
|E| ≈ 105 ∼ 107V/m, |v| ≈ 104 ∼ 106m/s, and J ≈ 1.602× 10−20J (0.1eV).
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2.1.2. From the kinetic model to the mean-field model and its hydrodynamic
limit. In order to derive the mean-field model, we need to add collision
terms in (9). For simplicity we consider the s-wave form used in the physical
studies, e.g., [34],

(12) ∂tW (x,v, t) + v · ∇xW (x,v, t)− e

m
E · ∇vW (x,v, t)

− i

2~
[
Jσ̂ ·m(x, t),W (x,v, t)

]
= −

(
∂W (x,v, t)

∂t

)
colli

,

where

(13)

(
∂W

∂t

)
colli

=
W −W

τ
+

2

τsf
(W − I

2
TrW ).

Here W = 1
4π

∫
dΩvW (x,v, t) is the angular average over the v space. Since

an electron carries both charge and spin, we describe the no-spin-flip colli-
sion and the spin-flip collision by momentum-independent relaxation time
approximations with the characteristic time scale of electron collision τ and
the characteristic time scale of spin flipping τsf, respectively. Note that τ
is much smaller than τsf [18, 25], which implies that no-spin-flip collisions
happen much faster than spin-flip collisions. Typically, τ is of 10−15s (fs)
and τsf is of 10−12s (ps).

Since {Î, σ̂} forms a complete set of 2× 2 matrices, one can decompose

(14) W = wI + σ̂ · r,

where w is the spin-independent part and r is the spin-dependent vector.
Equation (12) can be separated into two equations, one for w

∂tw + v · ∇xw −
e

m
E · ∇vw = −w − w

τ
,(15)

and the other for r

(16) ∂t(σ̂ · r) + v · ∇x(σ̂ · r)− e

m
E · ∇v(σ̂ · r) +

J

~
σ̂ · (m× r)

= −(σ̂ · r)− (σ̂ · r)

τ
− 2

τsf
(σ̂ · r),

where we have used the fact that − i
2~ [Jσ̂·m(x, t),W (x,v, t)] = J

~ σ̂·(m×r).
We also notice that (4)-(7), and (14) lead to

n(x, t) = 2

∫
R3

w dv, jn(x, t) = 2

∫
R3

wv dv,(17)

s(x, t) = 2

∫
R3

r dv, Js(x, t) = 2

∫
R3

v ⊗ r dv.(18)



6 J. CHEN, C. J. GARCÍA-CERVERA, AND X. YANG

Taking the first and second moment of (15) produces

∂tn(x, t) +∇ · jn(x, t) = 0,(19)

∂tjn(x, t) +

∫
R3

(v ⊗ v) · ∇w(x,v, t) dv +
e

m
En(x, t) = −jn(x, t)

τ
.(20)

Taking the first and second moment of (16) produces

∂ts(x, t) +∇ · Js(x, t) +
J

~
m× s = −s(x, t)

τsf
,(21)

∂tJs(x, t) +

∫
R3

(v ⊗ v) · ∇r(x,v, t) dv +
e

m
E ⊗ s(x, t)

+
J

~
εjklmk(Js)il(x, t) = −Js(x, t)

τ
.(22)

Note that (19)-(20) and (21)- (22) do not form closed systems for {n(x, t), jn(x, t)}
and {s(x, t), Js(x, t)} yet since (20) and (22) depend on the second moment
of w and r which in general are not functions of density and current.

There exists a vast literature on closure-related problems for different e-
quations, such as the Boltzmann equation [27], the relaxation-time Wigner
equation [1], and the Wigner-Fokker-Plank equation [3, 2]. The BBGKY
hierarchy is a standard procedure to derive a system of equations for the
moments of the distribution and a truncation is required for higher order
moments to close the system. For example, with the Maxwellian velocity
distribution as the equilibrium state, one obtains the Euler system by clos-
ing the classical Boltzmann equation with a quadratic collisional term [27];
see also related works in [11, 10, 7, 6, 39, 20, 28]. However, our problem
is like a linear neutron transport equation with a linear collision term with
two relaxation time scales τ and τsf, which is then coupled to the magnetiza-
tion dynamics. Therefore, the classical closures cannot be directly applied.
The kinetic equation for chemotaxis is similar to the kinetic model for spin
dynamics in the sense that both equations have similar forms with similar
linear relaxation collision terms. In the modeling of chemotaxis, the tumble-
and-run pattern of E. coli also exhibits two time scales, one for tumbling
and the other one for running. Therefore, the closure assumption here is
motivated by the closure conditions proposed by Hillen for the modeling
of chemotaxis to get hyperbolic models and it has been shown to satisfy
a minimization principle [23]. We truncate the higher order moments at
an approximate level and project them into the subspace spanned by lower
order moments.

We project the second moment into the space spanned by the density and
current functions, i.e., to approximate w(x,v, t) by a linear function of v,
(23)
w(x,v, t) = f(v)

(
γ0n(x, t) + γ1m · s(x, t) + γ2 · vn1(x, t) + γ3v ·m1(x, t)

)
,

where where f(v) is a normalized Gaussian function to make w decay at
infinity of momentum space.
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By (23), Equation (20) becomes

(24) ∂tjn(x, t) + γ0v2∇xn(x, t) + γ1v2∇xs(x, t)m

+
e

m
En(x, t) = −jn(x, t)

τ
,

where v2 = 1
4π

∫
|v|2dΩv.

Similarly, we can assume

r(x,v, t) = g(v)
(
γ′0mn(x, t) + γ′1s(x, t) + γ′2vn1(x, t) + γ′3v(m ·m1(x, t))

)
,

where g(v) is a normalized Gaussian function to make r decay at infinity of
momentum space. Equation (22) then becomes

(25) ∂tJs(x, t) + γ′0v
2∇xn(x, t)⊗m+ γ′1v

2∇xs(x, t)

+
e

m
E ⊗ s(x, t) +

J

~
εjklmk(Js)il(x, t) = −Js(x, t)

τ
.

Note that the last term on the left-hand-side of (25) is independent of the
closure strategy we use.

In summary, we obtain a closed moment system for {n(x, t), jn(x, t), s(x, t), Js(x, t)},
which provides a mean-field description for the spin dynamics,

∂tn(x, t) +∇xjn(x, t) = 0,(26)

∂tjn(x, t) + γ0v2∇xn(x, t) + γ1v2∇xs(x, t)m

+
e

m
En(x, t) = −jn(x, t)

τ
,(27)

∂ts(x, t) +∇xJs(x, t) +
J

~
m× s(x, t) = −s(x, t)

τsf
,(28)

∂tJs(x, t) + γ′0v
2∇xn(x, t)⊗m+ γ′1v

2∇xs(x, t)

+
e

m
E ⊗ s(x, t) +

J

~
εjklmk(Js)il(x, t) = −Js(x, t)

τ
.(29)

2.1.3. Comparison to the linear response theory in [42]. Quasi-static approx-
imation of jn(x, t) in (27) produces

(30) jn(x, t) = − e

m
τEn(x, t)− γ0v2τ∇xn(x, t)− γ1v2τ∇xs(x, t)m.

Similarly, quasi-static approximation of Js(x, t) in (29) yields
(31)

Js(x, t)A(m) = − e

m
τE ⊗ s(x, t)− γ′0v2τ∇xn(x, t)⊗m− γ′1v2τ∇xs(x, t),

where

A(m) =

 1 Jτ
~ m3 −Jτ

~ m2

−Jτ
~ m3 1 Jτ

~ m1
Jτ
~ m2 −Jτ

~ m1 1

 .
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The governing equations for n and s then become

∂tn(x, t) +∇xjn(x, t) = 0,

jn(x, t) = − e

m
τEn(x, t)− γ0v2τ∇xn(x, t)− γ1v2τ∇xs(x, t)m,

∂ts(x, t) +∇xJs(x, t) +
J

~
m× s(x, t) = −s(x, t)

τsf
,

Js(x, t)A(m) = − e

m
τE ⊗ s(x, t)− γ′0v2τ∇xn(x, t)⊗m− γ′1v2τ∇xs(x, t).

For the characteristic parameters of Permalloy [37], we obtain the aver-
aged velocity v̄ ∼ 5× 106m/s, and τ ∼ 10−15s. The quasi-static approxima-
tion corresponds to the parabolic scaling of (27) and (29), i.e., the long time
behavior of the system is dominated by relaxation. The equations above are
only valid in the diffusive regime. The moment system (26)-(29), however,
is valid not just in the diffusive regime, but also in other regimes, such as the
hyperbolic regime. This becomes important if fast spin dynamics is present
[30].

In [42], the authors derived a diffusion model for spin dynamics based on
the linear response theory. The constitutive relations they have are

jn = 2C0E − 2β′D0∇xsm,(32)

Js = 2βC0E ⊗m− 2D0∇xs(33)

under the assumption that n(x, t) is homogeneous in space and time and
s aligns up with m. Here C0 is the conductivity, D0 is the diffusivity,
β is the spin polarization parameter for conductivity, and β′ is the other
spin polarization parameter for diffusivity. The diffusion equation for spin
dynamics is

∂ts(x, t) = −∇xJs(x, t)− 2D0(x)
s(x, t)

λ2
sf

− 2D0(x)
s(x, t)×m

λ2
J

(34)

with

Js(x, t) =
βµB

e
jn ⊗m− 2D0(x)[∇s− ββ′(∇s ·m)⊗m],(35)

which is obtained by solving E in terms of jn in (32) first and then substi-
tuting it into (33).

Under the same assumption in [42], (30) and (31) become

jn = 2C0τE − 2β′D0(x)∇xsm,

JsA(m) = 2βC0E ⊗m− 2D0(x)∇xs,

where 2C0 = − e
mn(x, t), 2β′D0(x) = γ1v2τ , 2βC0m = − e

mτs, and 2D0(x) =

γ′1v
2τ . Note that the factor 2 comes from the fact that we include 2 in (17)

and (18), while 2 is kept explicitly in [42]; see (5) and (6) in [42]. Playing
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with the same trick to obtain (35), we get

Js(x, t)A(m) =
βµB

e
jn ⊗m− 2D0(x)[∇s− ββ′(∇s ·m)⊗m](36)

and

(37) A(m) =

 1 τ
τJ
m3 − τ

τJ
m2

− τ
τJ
m3 1 τ

τJ
m1

τ
τJ
m2 − τ

τJ
m1 1

 ,

where τJ = ~/J is the characteristic time scale of the spin-magnetization
coupling.

In the diffusive regime, the moment system becomes

∂ts(x, t) = −∇xJs(x, t)− 2D0(x)
s(x, t)

λ2
sf

− 2D0(x)
s(x, t)×m

λ2
J

,(38)

which is the same as (34) except that Js satisfies (36).
As τJ � τ , A(m) approaches I, the moment system in the diffusive

regime recovers the diffusion model derived from the linear response theory
[42], which corresponds to the limit of weak spin-magnetization coupling.
However, beyond that, these two models are different. In general, A(m) has
eigenvalues 1, 1± τ

τJ
i and detA(m) = 1+( ττJ )2. Since τ is the characteristic

time of the electron collision and λ =
√

2D0τ , we have

τ

τJ
=
λ2
J

λ2
,

where λ is the electron mean free path due to the electron collision. Physical
interpretation of this model will be given in a subsequent publication [12].
For a permalloy, λ = 4nm. Values of τJ and λJ =

√
2D0τJ depend on the

strength of spin-magnetization coupling, which will be tested in section 4.
For completeness, we set

s(x, 0) = 0, ∀x ∈ Ω,(39)

∂s

∂ν
= 0, on ∂Ω(40)

with ν the outward unit normal vector on ∂Ω.

2.2. Magnetization dynamics. The dynamics of the magnetization, in
the presence of a spin-transfer torque, is described by the LLG equation
([26, 19]),

(41)
∂m

∂t
= −γm× (He + Js) + αm× ∂m

∂t
,

where the magnetization m(x, t), normalized to |m| = 1, is defined over
Σ, and the spin s(x, t) is defined over Ω. Here γ = 1.76 × 1011(Ts)−1 is
the gyromagnetic ratio, J is the coupling strength between the spin and
the magnetization, and α is the dimensionless damping constant, which we
take to be 0.1 here. The first term on the right-hand-side describes the
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precession of the magnetization around the local effective field He plus spin
contribution Js, while the second term is known as the Gilbert damping.
Neumann boundary conditions are used for (41)

(42)
∂m

∂ν
= 0, on ∂Σ,

where ν is the outward unit normal vector on ∂Σ.
The effective field He has the form

(43) He = −2Ku

Ms
(m2e2 +m3e3) +

2Cex

Ms
∆m+ µ0 (Hs +H0) ,

and can be calculated as − δFLL
δm , where FLL is the Landau-Lifshitz energy

given by
(44)

FLL =
Ku

Ms

∫
Σ

(
m2

2 +m2
3

)
+
Cex

Ms

∫
Σ
|∇m|2 − µ0

2

∫
Σ
Hs ·m− µ0

∫
Σ
H0 ·m.

In (44), e2 = (0, 1, 0), e3 = (0, 0, 1), and µ0 = 4π× 10−7N/A2 is the perme-
ability of vacuum. Ku and Cex are materials constants, and Ms is the satura-
tion magnetization which is also material-dependent. For physical constants
characteristic of the permalloy, Ku = 5.0× 102J/m3, Cex = 1.3× 10−11J/m,
and Ms = 8.0 × 105A/m. H0 is the externally applied magnetic field and
Hs is the stray field, given by Hs = −∇u, where u satisfies the following
magnetostatic equation

∆u = div m, x ∈ Σ

∆u = 0, x ∈ Σ
c

(45)

with jump boundary conditions

[u]∂Σ = 0,[
∂u

∂ν

]
∂Σ

= −m · ν,(46)

where [·] represents the jump at ∂Σ. The solution to this equation is

(47) u(x) =

∫
Σ
∇N(x− y) ·m(y) dy,

where N(x) = −1/(4π|x|) is the Newtonian potential.

3. Numerical method

We describe in Figure 1 a standard device for ferromagnetic multilayers,
where two ferromagnetic layers (FM1 and FM2) are separated by a non-
magnetic metallic spacer (NM). We consider an electron current applied
perpendicular to the device. Heuristically, the electrons in the current are
polarized in the first layer, and exert an additional torque on the magneti-
zation in the second layer.
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3.1. Spatial discretization. The domain is discretized using a uniform
mesh. The magnetization and the spin accumulation are defined at the
center of the computational cells. Spatial derivatives are approximated using
standard centered differences away from the interface between ferromagnetic
and nonmagnetic layers, and using one-sided differences near the interface
[17].

3.2. Temporal discretization. Although explicit schemes may achieve
high order of accuracy both in space and time, the time step size is severely
constrained by the stability of the numerical scheme. Considering that the
precession timescale is of the order of a picosecond, numerical stability issues
can have a significant effect on the performance of the algorithm. In order to
overcome the stability constraint of explicit schemes, one usually resorts to
implicit schemes. However, due to the strong nonlinearities present in both
the gyromagnetic and damping terms in the LLG equation, a direct implicit
discretization of the system is not efficient and is difficult to implement.

Here we use the Gauss-Seidel Projection Method (GSPM) introduced in
[41] to solve (41). The GSPM is a semi-implicit scheme that requires only
the solution of linear systems of equations; the nonlinearity in the equations
is introduced a posteriori, resulting in an unconditionally stable method. For
the coupled spin-magnetization system (41)-(34), a splitting method for (34)
is proposed, which together with GSPM for (41) provides an unconditionally
stable scheme for the coupled system.

Note that the spectral splitting method (SSM) proposed in [17] can not
be directly applied for the computation of (38) due to the existence of A(m)
which introduces the inhomogeneous diffusion. On the other hand, explicit
solvers will significantly increase the computational cost since the time step
is limited by the diffusion. Therefore, we propose to use a homogeneous
diffusion as the penalization, which can be dealt with easily by SSM in [17],
and the difference between the homogeneous and inhomogeneous diffusion
is less stiff, and thus can be treated explicitly. The details of the algorithm
are given in (54) and (55). This is motivated by the penalization techniques
used for variable coefficient diffusion equations [14], phase field models [4]
and the Boltzmann equation [16].

This splitting procedure is then coupled to GSPM for magnetization dy-
namics (41). Stability of the splitting method is confirmed by numerical
examples.

For completeness, we include here a description of the GSPM, when spin
currents are present. It is convenient to rewrite equation (41) in the following
form:

(48)
∂m

∂t
= −m× (ε∆m+ f(m, s))− αm× (m× (ε∆m+ f(m, s))) ,

where ε = 2Cexγ/(Ms(1 + α2)), and

(49) f(m, s) =
γ

1 + α2

(
−2Ku

Ms
(m2e2 +m3e3) + µ0 (Hs +H0) + Js

)
.
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Equation (48) is obtained from (41) by evaluating the vector product of m
and (41), and solving for m× ∂m

∂t .
Given mn = m(tn) and sn = s(tn), in the GSPM we solve (48) in three

steps:
Step 1: Implicit Gauss-Seidel. Define

gni = (I − ε∆t∆h)−1(mn
i + ∆tfni ),

g∗i = (I − ε∆t∆h)−1(m∗i + ∆tf∗i ), i = 1, 2, 3

(50)

and

(51)

 m∗1
m∗2
m∗3

 =

 mn
1 + (gn2m

n
3 − gn3mn

2 )
mn

2 + (gn3m
∗
1 − g∗1mn

3 )
mn

3 + (g∗1m
∗
2 − g∗2m∗1)

 ,

where fni = fi(m
n, sn), and f∗i = fi(m

∗, sn), i.e., the most current values
for m are used in f∗. Note that the value of s is frozen at t = tn.
Step 2: Heat flow without constraints. Solve the Backward-Euler-type e-
quations

(52)

 m∗∗1
m∗∗2
m∗∗3

 =

 m∗1 + α∆t(ε∆hm
∗∗
1 + f∗1 )

m∗2 + α∆t(ε∆hm
∗∗
2 + f∗2 )

m∗3 + α∆t(ε∆hm
∗∗
3 + f∗3 )

 .

Step 3: Projection onto S2, in order to normalize the magnetization.

(53)

 mn+1
1

mn+1
2

mn+1
3

 =
1

|m∗∗|

 m∗∗1
m∗∗2
m∗∗3


Only linear systems of equations are solved, and therefore the complexity
of the splitting algorithm is comparable to that of solving the linear heat
equation using the Backward Euler method.

Following [17], we solve the spin diffusion equation (38) coupled to the
LLG (48) in three steps:

Step 1: Solve the Cauchy problem

ds̃

dt
= −2D0(x)

s̃

λ2
sf

− 2D0(x)
s̃×mn

λ2
J

,(54)

s̃(tn) = sn.

The solution to this problem can be found analytically.
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Step 2: Solve the following system of equations:

sn+1 − s̃(tn+1)

∆t
= ∇h · (2D0(x)∇hsn+1I)

+∇h ·
(

(2D0(x)∇hs̃(tn+1)(A−1(mn)− I)
)

−∇h
(

(ββ′2D0(x) ((mn,∇hsn)mn)

+
βµB

e
(jn ⊗mn))A−1(mn)

)
.(55)

Due to material heterogeneity in the z direction, FFTW is used only in the x
and y directions and the resulting system is therefore heptadiagonal, which
can be effectively solved using Gaussian elimination. Note that (55) reduces
to (26) in [17] if A(m) = I.

Step 3: Solve (48) by the GSPM described above.
The splitting method here is first-order accurate in time. In real applica-

tions, we usually choose ∆t = 10−13s, which is at the sub time scale of spin
flipping τsf, and h = 2nm to resolve domain walls and vortices in our ferro-
magnetic samples. It is worth mentioning that the temporal step size and
spatial grid size are comparable after nondimensionalization, which balances
the spatial and temporal accuracies.

4. Results

We examine the magnetization switching for (41) (38) with different τ/τJ
values under two different conditions: a) an applied current; b) an applied
current and an external magnetic field. Note that if τ/τJ = 0 in (37),
(38) recovers (34). Typical values for the remaining parameters are [37]:
D0 = 10−3m2/s for the magnetic layer, and D0 = 5 × 10−3m2/s for the
nonmagnetic layer, λsf = 10nm, J = 0.1eV, β = 0.9, β′ = 0.8. The simu-
lations presented here were carried out using h = 2nm, and ∆t = 10−13s.
No appreciable differences were found when smaller values of h or ∆t were
used.

4.1. Current-driven magnetization reversal. One of the main techno-
logical applications of spin-polarized transport is the magnetization reversal
in a multilayer in the absence of externally applied magnetic fields, as this
can allow an increase in the density of magnetic memories. Consider a
multilayer with in-plane dimensions 128nm × 64nm; see Figure 1. Choose
D1 = 200nm, D2 = 20nm, and D3 = 60nm. The multilayer is initialized
in a uniform state, and it is allowed to reach steady state. Subsequently,
a perpendicular current jn is applied for 10 nanoseconds, and then it is
removed.
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NM

FM1

FM2

Figure 1. A typical ferromagnetic multilayer device: Two fer-
romagnetic layers (FM1 and FM2) of thickness D1 and D3, re-
spectively, sandwiched by a nonmagnetic metallic spacer (NM) of
thickness D2.

Figure 2 shows a S state, and an intermediate vortex state that nucleates
inside the sample during the reversal of the S state. For clarity of presenta-
tion, we plot only the in-plane components of the magnetization, measured
at the center slice of the top layer.
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(a) S state
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(b) Vortex state

Figure 2. States during the magnetization switching: (a): S
state; (b): Vortex state.

The average magnetization in the top and bottom layers are plotted as
a function of time in Figure 3. For an appropriate current in (38), the
magnetization in the top layer was reversed as a consequence of the spin-
currents, in agreement with recent experiments.

As the applied current raises gradually, the magnetization of the top layer
experiences a transition from the S state to the vortex state, the reversed
S state, and the vortex state again, respectively. Critical currents for these
transitions are recorded in Table 1. It is clear that (38) has a larger effective
window for the S→S transition compared with (34). Since eigenvalues of
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(a) jn = 10.3
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(b) jn = 9.9

Figure 3. Results of (41) (38) for a perpendicular current jn
with different magnitudes when τ/τJ = 1. (a): jn = 10.3 ×
1010A/m2; (b): jn = 9.9× 1010A/m2.

A(m) are always greater than or equal to 1, A(m) plays an role as a con-
traction matrix, so critical currents required in (38) are always larger than
those required in (34). Table 2 further confirms the above observation. Be-
sides, critical currents increase as the top layer becomes thinner. A careful
examination shows that magnetization of the top layer becomes more uni-
axial as its thickness reduces, and magnetization switching happens mainly
by in-plane rotation with less out-of-plane rotation.

τ/τJ S S→Vortex S→S S→Vortex
0 ≤ 7.8 [7.9, 9.8] {9.9} ≥ 10.0
1 ≤ 9.7 [9.8, 10.1] [10.2, 10.4] ≥ 10.5
2 ≤ 9.9 [10.0, 12.8] [12.9, 18.5] ≥ 18.6

Table 1. Critical currents jn of magnetization switching for d-
ifferent τ/τJ values (unit: 1010A/m2).

Thickness(nm) τ/τJ = 0 τ/τJ = 1
60 {9.9} [10.2, 10.4]
56 [10.5, 10.6] [12.0, 12.2]
52 [10.8, 11.4] [12.7, 15.0]
48 [12.5, 13.1] [12.7, 17.1]

Table 2. Effective switching window (S→S transition) for differ-
ent τ/τJ values as a function of thickness of the top layer.

4.2. Reduction in the coercive field. Maximal GMR can be achieved if
the magnetization of both layers changes from parallel (antiparallel) state to
antiparallel (parallel) state. Therefore, understanding the reversal process
is of technological importance.
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Consider a multilayer of in-plane dimensions 128nm × 64nm, and thick-
nesses D1 = 60nm, D2 = 10nm, and D3 = 20nm. We compute the hysteresis
loop with and without spin currents. The hysteresis loop is computed in the
following way: Initially, an external field of magnitude H0 is applied in or-
der to saturate the sample, and the magnetization is allowed to reach an
equilibrium state. Once steady state is reached, the applied field is reduced,
and the magnetization is allowed to reach equilibrium again. This process
is repeated, decreasing the applied field each time by a fixed amount, until
a negative field of magnitude H0 is reached. In the hysteresis loop, we plot
the average equilibrium magnetization as a function of the applied field. In
our example, we consider H0 = 600Oe in the x direction.

Typically, in a multilayer, the magnetization can be found in one of two
states: The S state, and the C state. The magnetization reversal process
associated to the S state usually occurs by a rotation of the magnetization in
the interior of the domain, followed by the appearance of boundary layers,
which can be removed if the applied field is strong enough. In the C state,
the magnetization reversal process occurs by nucleating a magnetic vortex,
which is subsequently expelled.

In Figure 4, we plot hysteresis loops associated with a double layer ini-
tialized with S states in each layer, and loops associated with a double layer
with C states in each layer. For the given dimensions, and in the absence
of spin currents, a magnetic field of −300Oe is required to switch the mag-
netization of the top layer when both layers are in the S state. When both
layers are in the C state, in the absence of spin currents, a vortex nucleates
at approximately 100Oe. A field of approximately −100Oe is required to
expel the vortex, and successfully reverse the magnetization of the bottom
layer. Due to thickness difference, the bottom layer is easier to be switched,
which requires a weaker external field (−100Oe instead of −300Oe).
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(a) S/S
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(b) C/C

Figure 4. Hysteresis loops for a multilayer with thicknesses
D1 = 60nm, D2 = 10nm, and D3 = 20nm and without spin cur-
rents: (a): S/S; (b): C/C.

Figure 5 shows hysteresis loops simulated by (38) when jn = 15×1010A/m2

and τ/τJ = 1. Similar phenomena are observed for a smaller jn and
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τ/τJ = 0. Magnetization of the bottom layer initially tends to be a vortex
state and magnetization of the top layer is still uniaxially. Accumulation
of spin transfer torque eventually makes the magnetization reversal of the
bottom layer happen.
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Figure 5. Hysteresis loops for a multilayer with thicknesses
D1 = 60nm, D2 = 10nm, and D3 = 20nm and with larger spin
currents by Equation (38): (a): S/S; (b): C/C.

From Figure 4, the bottom layer is easy to be switched. Moreover, spin
current is applied from the bottom layer, which contributes to the effective
field. Therefore, magnetization of the bottom layer initially tends to be
a vortex state and magnetization of the top layer is still uniaxially. Spin
current acts as a torque for the top layer, so the magnetization reversal
happens in the top layer after the accumulation of spin transfer torque is
strong enough.

When jn = 10 × 1010A/m2 is applied from the top layer, magnetization
of both layers is plotted in Figure 6 for τ/τJ = 1. Spin current is applied
from the top layer, which contributes to the effective field, so magnetization
reversal of the top layer happens at first since this layer is only 20nm thick,
300Oe for both S/S and C/C states. Magnetization of the bottom layer is
still uniaxially since spin transfer torque is not strong enough. Afterwards,
spin transfer torque tends to drive magnetization of the bottom layer escape
from its initial state. A vortex state is observed since the bottom layer is
60nm thick. Eventually, magnetization reversal of the bottom layer hap-
pens around −600Oe. Maximum GMR can be easily achieved in this case
(300Oe).

4.3. Magnetic reversal for information manipulation and storage.
Based on the above results, we propose a possible procedure to operate
magnetization of both top and bottom layers for the purpose of information
manipulation and storage:

Step 0 : Initialize the device with S/S states for 5ns.
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Figure 6. Hysteresis loops for a multilayer with thicknesses
D1 = 60nm, D2 = 10nm, and D3 = 20nm and with inverse spin
currents by Equation (38): (a): S/S; (b): C/C.

Step 1 : Apply external magnetic field with strength 600Oe, and current
jn = 15 × 1010A/m2 from the bottom layer based on Figure 5 for
5ns.

Step 2 : Remove all external fields and let the device relax for 5ns.
Step 3 : Apply external magnetic field with strength 300Oe, and current

jn = 10× 1010A/m2 from the top layer based on Figure 6 for 5ns.
Step 4 : Remove all external fields and let the device relax for 5ns.
Step 5 : Repeat Steps 1 to 4 to check the reproducibility of above reversals.

Figure 7 shows the magnetization of above steps. Magnetization of top
and bottom layers is antiparallel in Step 0, parallel in Step 1 which is also
stable as verified in Step 2, antiparallel in Step 3 which is stable as verified
in Step 4. This process is reproduceable as verified in Step 5.

5. Conclusion

We have derived a macroscopic model to describe the spin dynamics s-
tarting from a Schrödinger equation in the spinor form using the Wigner
transform and a moment closure. This model, together with the magneti-
zation dynamics described by the Landau-Lifshitz-Gilbert equation, gives
a full description of the magnetization in ferromagnetic multilayers in the
presence of spin currents. Moreover, this model recovers the model in [42]
when the spin-magnetization coupling is weak. Its validation is analyzed
and shown by several examples. Successful application of our model (34)-
(36) to current-driven domain wall motions has also been conducted with
quantitative agreements with experimental data [12].

From a modeling viewpoint, we stress that our approach produces a con-
nection from quantum mechanics (1), to the Boltzmann equation (12), and
then to the moment system (26)-(29), and finally to the drift-diffusion equa-
tion (34)-(36). Although only the drift-diffusion equation has been exam-
ined carefully, other models, such as the moment system and the Boltzmann
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Figure 7. A sequence of magnetization reversals for manipula-
tion and storage of information.

equation, could be helpful to understand experimental results in other sce-
narios. For example, femtosecond spin dynamics in experiments [30] cannot
be well described by the drift-diffusion equation (34)-(36), and the moment
system (26)-(29) shall play an important role in this case.
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20 J. CHEN, C. J. GARCÍA-CERVERA, AND X. YANG

Appendix A

In this Appendix, we give the derivation of (9) from (1) by the Wigner
transform (3) in details. Plugging (1) into (8) produces

i~∂tW (x,v, t) = (
m

2π~
)3

∫
R3

(
− ~2

2m
∇2

xψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)eim~ v·y

+ψ(x− y
2
, t)⊗

( ~2

2m
∇2

xψ
∗(x+

y

2
, t)
)

eim~ v·y
)

dy

+ (
m

2π~
)3

∫
R3

((
V (x− y

2
)ψ(x− y

2
, t)
)
⊗ψ∗(x+

y

2
, t)eim~ v·y

+ψ(x− y
2
, t)⊗

(
−V (x+

y

2
)ψ∗(x+

y

2
y, t)

)
eim~ v·y

)
dy

− (
m

2π~
)3

∫
R3

((J
2
σ̂ ·m(x− y

2
, t)ψ(x− y

2
, t)
)
⊗ψ∗(x+

y

2
, t)eim~ v·y

+ψ(x− y
2
, t)⊗

(
−ψ∗(x+

y

2
, t)

J

2
σ̂ ·m(x+

y

2
, t)
)

eim~ v·y
)

dy.

The equation (9) is obtained by simplifying the above three integrals indi-
vidually as described below.

Noticing that

∇xψ(x− y
2
, t) = −2∇yψ(x− y

2
, t),

∇xψ(x+
y

2
, t) = 2∇yψ(x+

y

2
, t)

brings

∇2
yψ ⊗ψ∗eim~ v·y = ∇y · (∇yψ ⊗ψ∗eim~ v·y)−∇yψ ⊗ ·∇yψ

∗eim~ v·y − i
m

~
v · ∇yψ ⊗ψ∗eim~ v·y,

ψ ⊗∇2
yψ
∗eim~ v·y = ∇y · (ψ ⊗∇yψ

∗eim~ v·y)−∇yψ ⊗ ·∇yψ
∗eim~ v·y − i

m

~
v ·ψ ⊗∇yψ

∗eim~ v·y,

where the first ψ acts on the variable x − y
2 and the second ψ acts on the

variable x+ y
2 .
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The divergence theorem along with the fact that ψ,ψ∗ vanish at ±∞
simplifies the first integral as

(
m

2π~
)3

∫
R3

2~iv ·
(
∇yψ(x− y

2
, t)⊗ψ∗(x+

y

2
, t)

−ψ(x− y
2
, t)⊗∇yψ

∗(x+
y

2
, t)

)
eim~ v·y dy

= (
m

2π~
)3

∫
R3

i~v ·
(
−∇xψ(x− y

2
, t)⊗ψ∗(x+

y

2
, t)

−ψ(x− y
2
, t)⊗∇xψ

∗(x+
y

2
, t)

)
eim~ v·y dy

= −i~v · ∇x

(
(
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)eim~ v·y dy

)
= −i~v · ∇xW (x,v, t).

Taylor expansion gives

V (x− y
2

) = V (x)− 1

2
y · ∇xV (x) +O

((
1

2

)2
)
,

V (x+
y

2
) = V (x) +

1

2
y · ∇xV (x) +O

((
1

2

)2
)
,

which simplifies the second integral as

(
m

2π~
)3

∫
R3

y · (−eE)ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)eim~ v·y dy

= (
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)

~
im

(−eE) · ∇veim~ v·y dy

=
ie~
m
E · ∇vW (x,v, t),

where E = ∇V/e. Similarly,

m(x− y
2
, t) = m(x)− 1

2
y · ∇xm(x) +O

((
1

2

)2
)
,

m(x+
y

2
, t) = m(x) +

1

2
y · ∇xm(x) +O

((
1

2

)2
)
,
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which simplifies the third integral as

− (
m

2π~
)3

∫
R3

(
(
J

2
σ̂ ·m(x, t)ψ(x− y

2
, t))⊗ψ∗(x+

y

2
, t)eim~ v·y

+ψ(x− y
2
, t)⊗ (−ψ∗(x+

y

2
, t)

J

2
σ̂ ·m(x, t))eim~ v·y

)
dy

= −
(J

2
σ̂ ·m(x, t)W (x,v, t)−W (x,v, t)

J

2
σ̂ ·m(x, t)

)
= −[

J

2
σ̂ ·m(x, t),W (x,v, t)].

Combining above three terms, we get (9).
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3. A. Arnold, J. L. López, P. Markowich, and J. Soler, An analysis of quantum Fokker-
Planck models: A Wigner function approach, Rev. Mat. Iberoamericana 20 (2004),
771–814.

4. V.E. Badalassi, H.D. Ceniceros, and S. Banerjee, Computation of multiphase systems
with phase field models, J. Comp. Phys. 190 (2003), no. 2, 371 – 397.

5. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. E-
tienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of
(001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61 (1988), 2472–2475.

6. C. Bardos, L. Erdös, F. Golse, N. Mauser, and H.-T. Yau, Derivation of the
Schrödinger-Poisson equation from the quantum N-body problem, C. R. Math. Acad.
Sci. Paris 334 (2002), 515–520.

7. C. Bardos, F. Golse, and C. D. Levermore, The acoustic limit for the Boltzmann
equation, Arch. Ration. Mech. Anal. 153 (2000), 177–204.

8. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current,
Phys. Rev. B 54 (1996), 9353–9358.

9. A. Brataas, A. D. Kent, and H. Ohno, Current-induced torques in magnetic materials,
Nat. Mater. 11 (2012), 372–381.

10. C. Cercignani, I. Gamba, J. Jerome, and C.-W. Shu, Device benchmark comparison-
s via kinetic, hydrodynamic, and high-field models, Comput. Methods Appl. Mech.
Engrg. 181 (2000), 381–392.

11. C. Cercignani, I.M. Gamba, and C.D. Levermore, High field approximations to a
Boltzmann-Poisson system and boundary conditions in a semiconductor, Appl. Math.
Lett. 10 (1997), 111 – 117.
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33. F. Piéchon and A. Thiaville, Spin transfer torque in continuous textures: Semiclassical
Boltzmann approach, Phys. Rev. B 75 (2007), 174414.

34. Y. Qi and S. Zhang, Spin diffusion at finite electric and magnetic fields, Phys. Rev.
B 67 (2003), 052407.

35. D.C. Ralph and M.D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320 (2008),
no. 7, 1190 – 1216.

36. S. Sanvito, Organic spintronics: Filtering spins with molecules, Nat. Mater. 10 (2011),
484–485.

37. A. Shpiro, P. M. Levy, and S. Zhang, Self-consistent treatment of nonequilibrium spin
torques in magnetic multilayers, Phys. Rev. B 67 (2003), 104430.

38. J.C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn.
Mat. 159 (1996), L1–L7.



24 J. CHEN, C. J. GARCÍA-CERVERA, AND X. YANG
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