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Abstract. We introduce a new class of models for emergent dynamics. It is based on
a new communication protocol which incorporates two main features: short-range kernels
which restrict the communication to local geometric balls, and anisotropic communication
kernels, adapted to the local density in these balls, which form topological neighborhoods.
We prove flocking behavior — the emergence of global alignment for regular, non-vacuous
solutions of such models. The (global) regularity and hence unconditional flocking of the
one-dimensional model is proved via an application of a De Giorgi-type method. To handle
the singular kernels used for geometric and topological communication, we develop a new
analysis for local fractional elliptic operators, interesting for its own sake, encountered in
the construction of our class of models.
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1. Introduction and statement of main results

1.1. A brief overview on emergent dynamics. A fascinating aspect of collective dy-
namics is self-organization: long-range, higher order organized patterns emerge from an
underlying dynamics driven by short-range interactions. This type of emergent dynamics is
found in a wide variety of biological, social, and technological contexts. We investigate this
phenomena in the context of canonical models for flocking and swarming. The key feature in
these models is ‘environmental averaging’, where N agents — of birds, insects, fish etc., align
their velocities {vi(t)}Ni=1 ∈ Rn (or their orientations {sωi(t)}Ni=1 with fixed speed s), by aver-
aging local gradients over the environment of neighboring agents [39, 1, 49, 60, 3, 22, 23, 43]:

vi(t+ ∆t) =
∑
j∈Ni

aij(t)vj(t),
∑
j

aij(t) = 1.

Rearranging terms using a frequency λ = 1/∆t which is being kept fixed while letting ∆t ↓ 0
for the rest, we arrive at the dynamical system

(1.1) v̇i = λ
∑
j∈Ni

aij(t)(vj − vi),
∑
j

aij(t) = 1.

The essential notion of a ‘neighborhood’ depends on the active weights Ni={j :aij(t) > 0}. A
general class of such models utilize a pairwise interaction, φ(xi,xj), using an communication
kernel φ(·, ·) > 0,

(1.2) v̇i = λ
∑
j∈Ni

φ
(
xi(t),xj(t)

)
(vj − vi), ẋi = vi

Different models distinguish themselves with different choices of communication kernels.
The most notable examples found in the literature employ radial communication kernels,
ψ(|xj − xj|) which are normalized by proper scaling factor degi(t),

(1.3a) aij(t) =
ψij(t)

degi(t)
, ψij(t) := ψ(|xj(t)− xj(t)|).

Thus, the collective dynamics in these models is driven by geometric neighborhoods, where
agent “i” interacts with those neighbors dictated by the support of ψ,

(1.3b) Ni = {j
∣∣ |xj(t)− xi(t)| ∈ suppψ}.

Observe that the geometric neighborhoods are, in general, time dependent, Ni = Ni(t).
The collective dynamics (1.3) is driven by pairwise distances taken in one of two generic
configurations — the whole space {xi} ∈ Rn or over the torus {xi} ∈ Tn. The problem of
handing boundaries is mostly open.

The communication kernels φ(·, ·) or ψ(·) are in general unknown: their approximate
shape is either derived empirically [18, 2, 17, 16, 21, 11], or learned from the data [8, 41], or
postulated based on phenomenological arguments, combining the first two, [61, 5, 4]. Here
are three prototype radial examples. A first example is a simple averaging over finite-range
ball corresponding to ψ(r) = χ

R0
(r) as in Vicsek model [60, 61],

(1.4)


xi(t+ ∆t) = xi(t) + vi(t+ ∆t),

vi(t+ ∆t) = s

∑
j:|xj−xi|<R0

vj(t)∣∣∣∑j:|xj−xi|<R0
vj(t)

∣∣∣ + perturbation.
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A second example is of a communication kernel with a decreasing profile, found in Cucker-
Smale model [22, 23],

(1.5)


ẋi = vi,

v̇i =
λ

N

N∑
j=1

ψ(|xi − xj|)(vj − vi), ψ(r) =
1

(1 + r2)β
.

We remark that setting a uniform degree degi =
N

λ
with λ =

N

maxi
∑

k ψik
yields the

Cucker-Smale scaling in (1.5),

(1.6) aij =
ψij
degi

=
ψ(|xi − xj|)

N
.

Note that
∑

j 6=i aij 6 1 can be complemented aii := 1 −
∑

j 6=i aij > 0 to form the convex

combination sought in (1.1). This uniform scaling has the drawback that it distorts the
dynamics far from equilibrium. Motsch and Tadmor advocated in [43] the more general
normalization based on a graph degree,

(1.7) degi(t) =
N∑
k=1

ψ(|xi(t)− xk(t)|),
∑
j

ψij
degi

= 1,

as appropriate scaling adapted to both scenarios — close to equilibrium where ψij ≈ ψ0, as
well as far from equilibrium where degi adapts itself to the number of significant near-by
neighbors. The Motsch-Tadmor scaling amounts to non-radial interactions

(1.8) aij = φ(xi,xj), φ(xi,xj) =
ψ(|xi − xj|)∑
k ψ(|xi − xk|)

.

Finally, we mention the example of a Coulomb-like singular interaction kernels ψ(r) = r−β,

(1.9)


ẋi = vi,

v̇i =
λ

N

N∑
j=1

vj − vi
|xi − xj|β

.

The role of the singularity here is to emphasize interactions with nearby neighbors over those
farther away. Peszek and co-workers [15, 46, 47] proved that with strong enough singularity
β > 1, no collisions occur in finite time, proving that classical solutions of (1.9)β exist
globally in time, while for β < 1 collisions are possible.

Since the precise form of ψ is in general not known, it is therefore imperative to understand
how general classes of ψ’s affect the large-time, large-crowd dynamics. It is here that we
make a distinction between long-range and short-range interactions.

Long-range interactions. Here, all agents are located inside the support of ψ so that
every agent is in direct communication with every other agent. In particular, if

(1.10)

∫ ∞
ψ(r) dr =∞

then all agents cannot escape a finite ball, thus forming a ‘flock’:

(1.11a) there exists a finite D∞ such that diam{xi(t)}Ni=1 < D∞ for all t > 0,
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and consequently, the alignment dynamics (1.1),(1.3) enforces the agents to ‘aggregate’
around a limiting velocity, u∞ ∈ Rn, yielding the following flocking behavior:

(1.11b) there exists u∞ ∈ Rn such that max
i
|vi(t)− u∞|

t→∞−→ 0.

The unconditional flocking stated in (1.11) for long-range interactions (1.10) holds for all
initial configurations. It goes back to Cucker-Smale [22, 23] in their study of symmetric
interactions (1.6) with the special influence function ψ(r) = (1 + r2)−β for β 6 1/2. It was
later extended by Ha and Tadmor [31] for general long-range ψ’s (1.6),(1.10), by Ha and Liu
[30] (see also [29]) based on a Lyapunov functional for the symmetric scaling (1.6),(1.10) and
by Motsch and Tadmor [44] for general, possibly non-symmetric interactions (1.2).

Short-range interactions. In more realistic scenarios, the communication among agents
is driven by local influence function, so that ψ vanishes when two agents which are far
apart try to communicate: suppψ ⊂ B2R0 and 2R0 < diam{xi(t)}Ni=1. Thus, in short-
range interactions agent “i” interacts with Ni � N neighbors inside the local ball Ni =
{j
∣∣ |xj − xi| 6 2R0}. In this case agents do not necessarily communicate with every other

agent and flocking behavior requires their configuration to be at least connected. Indeed,
in [44] it was proved that the flocking behavior (1.11) of (1.1) follows from propagation of
connectivity of the underlying graph associated with the symmetric adjacency matrix, {aij}

(1.12)

∫ ∞
κ2(∆a)(t) dt =∞, (∆a)ij(t) := −(1− δij)aij(t) + δij

∑
k 6=i

aik(t).

Here, κ2 is the Fiedler number — the second eigenvalue associated with the graph Laplacian
∆a. In the case of geometric-based neighborhoods (1.6), Naij = ψ(|xi(t) − xj(t)|), we
have κ2(∆a)(t) & ψ(V0t) for t � 1, and we recover the flocking behavior of long-range
interactions (1.10): they maintain uniform connectivity since the neighborhoods Ni involve
the whole crowd and remain independent of time. The question of flocking behavior with
short range interactions is more subtle, however, since the graph connectivity associated
with {ψ(|xi(t)− xj(t)|)ij} may break down at a finite time e.g., [44]: in this case, the time-
dependent covering ∪Ni=1Ni(t) may be unstable for a finite N , and one needs to assume the
persistence of connectivity for all time [34] or at least close enough to a constant state, so
close that it does not allow connectivity to be lost [59, 35]. We therefore turn to study the
mean-field behavior associated with large crowds, N � 1.

Large crowd dynamics. Assuming that the empirical measure associated with (1.2),
µN(t,x,v) =

∑
imiδxi(t)(x)⊗ δvi(t)(v), admits a mean-field limit µN → f(t,x,v) for ‘large-

crowds’ as N → ∞, the latter is governed by the Vlasov-type kinetic equation, consult
appendix 5.1 below

(1.13a) ft + v · ∇xf +∇v ·Q(f, f) = 0,

where Q(·, ·) is the bi-linear form which captures all the underlying binary interactions with
a general pairwise communication kernel φ = φ(x,y),

(1.13b) Q(f, f)(t,x,v) =

∫
R2n

φ(x,y)(w − v)f(t,y,w)f(t,x,v) dw dy.
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In the radial case, φ(x,y) =
ψ(|x− y|)
deg(t,x)

, where deg(t,x) ≡ 1/λ corresponds to uniform

Cucker-Smale scaling (1.6), and deg(t,x) :=

∫
R2n

ψ(|x − y|)f(t,y,w) dw dy realizes the

Motsch-Tadmor scaling (1.7).
The passage to the limit for bounded radial kernels was justified by Ha and Tadmor [31]

using a formal BBGKY limiting procedure, by Ha and Liu [30] in the sense of a proper weak
limit and was established in Carrillo et al [12] using a kinetic variant of exponential flocking.
The mean field limit for singular kernels ψ(r) = r−β for β < 1

2
was proved in [45].

Seeking a monokinetic ansatz, f(t,x,v) = ρ(t,x)δ(v − u(t,x)), one recovers the macro-
scopic density and momentum (ρ, ρu) from the first two v-moments of (1.13): the large
crowd alignment-based dynamics (1.1),(1.6) or (1.1),(1.8) is captured by the following hy-
drodynamic description, [31, 13],

(1.14a)


ρt +∇ · (ρu) = 0,

ut + u · ∇xu = λ(t,x)

∫
Rn
ψ(|x− y|)(u(t,y)− u(t,x))ρ(t,y) dy.

Here λ(t,x) captures both scaling:

(1.14b) λ(t,x) =

 λ, λ ≡ Const. corresponding to (1.6),
1

deg(t,x)
, deg(t,x) = ψ ? ρ(t,x) corresponding to (1.8).

The particular case of uniform scaling of Cucker-Smale (which we set λ ≡ 1) leads to
symmetric interactions that will be at the center of attention in this present paper,

(1.15)


ρt +∇ · (ρu) = 0,

ut + u · ∇xu =

∫
Rn
ψ(|x− y|)(u(t,y)− u(t,x))ρ(t,y) dy.

Its rigorous derivation was established by Figalli and Kang in [26].
The dynamics (1.15) is subject to prescribed initial conditions, (ρ0,u0), with two main
configurations: either compactly supported density diam {supp ρ0} 6 D0 in Rn or over the
torus Tn.

Remark 1.1 (beyond the pressureless equations). System (1.15) is governed by the
competition between nonlinear convection and alignment based on symmetric interactions.
Symmetry is derived from the uniform Cucker-Smale scaling and additional pressure term is
avoided due to the mono-kinetic ansatz. As noted earlier, a more realistic scaling is offered by
Motsch-Tadmor (1.8). Karper, Mellet and Trivisa [37, 38] combined a long range CS scaling
deg(x) = 1/λ with short range MT scaling (1.7), while passing to hydrodynamic limit in the
presence of strong local alignment and strong noise: the resulting monokinetic ansatz is then
replaced by a Maxwellian distribution f(t,x,v) = ρ(t,x) exp{−1

2
|v− u(t,x)|2}, resulting in

the additional forcing of macroscopic pressure −∇ρ,

ut + u · ∇xu +∇xρ =

∫
Rn
ψ(|x− y|)(u(t,y)− u(t,x))ρ(t,y) dy.

We shall focus on the the pressures-less model (1.15), leaving the treatment of pressure
to future work. As in the agent-based description, the hydrodynamic behavior of flocking
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depends on the features of the communication kernel, ψ, where we distinguish between two
main classes — long-range and short-range communication kernels.

Hydrodynamic flocking — long range interactions. We quantify the long range in-
teractions, assuming a communication kernel φ with enough tail mass such that,

(1.16) V0 < M0

∫ ∞
D0

min
s6r

ψ(s) dr, M0 :=

∫
ρ0(x) dx,

where D0 and V0 are the initial finite diameters of non-vacuum density and velocity, (ρ0,u0).
The flocking behavior of (1.14) is captured by the statement “smooth solutions must flock”.

Theorem 1.2 ([57, 33]). If (ρ(t, ·),u(t, ·)) ∈ (L∞∩L1)×W 1,∞ is a global strong solution of
(1.14) subject to initial data (ρ0,u0) such that (1.16) holds, then (ρ,u) converges to a flock
at an exponential rate, namely — (compare (1.11)),

(1.17a) the support of ρ(t, ·) remains within a finite diameter D∞,

and there exist a limiting velocity u∞ and η > 0 such that

(1.17b) max
x
|u(t,x)− u∞| 6 2V0e

−ηt → 0.

In the particular case that ψ satisfies the ‘fat tail’ condition (1.10) then (1.16) holds for all
V0’s, and unconditional flocking follows for all finite initial diameters.

Remark 1.3 (on the limiting velocity u∞). In the symmetric case, (1.15), the limiting
velocity is given in terms of the conserved total mass and momentum

u∞ =
P0

M0

, M =

∫
ρ(t,x) dx ≡M0, P =

∫
ρu(t,x) dx ≡ P0.

The characterization of u∞ in the general non-symmetric case (1.14a), is wide open.

The conditional statement for long range interactions shifts the burden of proving their
flocking behavior to the regularity theory. Here we make a further distinction between
bounded and singular ψ’s.

For bounded kernels, global regularity in dimension n = 1 holds if and only if the initial
configuration satisfies the threshold condition, u′0 > −ψ ? ρ0, [14]. A sufficient threshold
condition in dimension n = 2 was given by He and Tadmor [33] (see also [57]) via spectral
condition on the 2×2 symmetric tensor S := 1

2
(∇u+∇>u): its initial trace ∇x ·u0 > −ψ?ρ0

(—a precise extension of the 1D case), and the spectral gap κ2(S0) − κ1(S0) . M0. The
question of threshold regularity for dimension n > 3 is wide open. Global regularity (and
hence flocking behavior) of (1.15) for any dimension but for small data was proved in [28]
in higher order Sobolev spaces1, |u|Hs+1 < ε0(|ρ0|Hs).
The regularity and flocking behavior of the hydrodynamic limit (1.15) with singular kernels
was studied by Poyato and Soler [48] for weakly singular kernels in the range 0 < β < n,
and by the authors [55, 53, 54] and Do et. al. [25] for strongly singular kernels, β = n + α,

1Throughout the paper we denote by Hs(Tn) the L2-based Sobolev space of regularity s, and by Hs
0(Tn)

the space of mean-zero functions. We use | · |X to denote classical norms, and a shorter notation for the
Lebesgue spaces, | · |p = | · |Lp .
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0 < α < 2. In the latter case, the system (1.15) is endowed with a fractional parabolic
diffusion structure, −(−∆)α/2, associated with the periodic kernel

(1.18) ψ(x) :=
∑
k∈Zn

1

|x + 2πk|n+α
, 0 < α < 2.

Strong singularity made it possible to prove, at least in the one-dimensional case, uncondi-
tional flocking behavior, independent of any initial threshold. We quote here the main result
of [55, 54] as it will also be echoed in the statements of this present paper.

Theorem 1.4. Consider the system (1.15), (1.18), 0 < α < 2 on the 1-dimensional torus T,
subject to (ρ0, u0) ∈ Hs−1+α ×Hs, s > 4 away from the vacuum. It admits a unique global
solution, (ρ, u) ∈ L∞([0,∞);Hs−1+α ×Hs), which converges exponentially fast to a flocking
traveling wave, ρ̄ = ρ∞(x− tu∞) ∈ Hs−1+α with a speed u∞, so that

(1.19) |u(t, ·)− u∞|Hs + |ρ(t, ·)− ρ̄(t)|Hs−1 6 Ce−ηt, t > 0, u∞ :=
P0

M0

.

The question of regularity for strongly singular kernels φ(r) = r−(n+α) in n > 1 dimensions
is wide open, with the only exceptions of recent small initial data results in [52] for Hölder
spaces, V0 . (1 + |ρ0|W 3,∞ + |u0|W 3,∞)−n with 0 < α < 2, and in [24] for small Besov data
|u0|B2−α

n,1
+ |ρ0 − 1|B1

n,1
6 ε with α ∈ (1, 2).

Hydrodynamic flocking — short range interactions. The class of singular kernels
ψ = r−β offers a communication framework which emphasizes short-range interactions over
long-range interactions, yet their global support reflects global communication. In fact,
weakly singular kernels, β < n, satisfy the fat tail condition (1.10) which characterizes global
communication, and unconditional flocking follows by considering their cut-off min{M, r−β}.
The class of strongly singular kernels, however, β = n + α, 0 < α < 2, demonstrates
hydrodynamic flocking for thinner tails, beyond the framework of (1.10). Still, the infinite
support of this class of strongly singular kernels reflects global communication which in turn
is responsible for hydrodynamic flocking.

This brings us back to the original question alluded to at the beginning, namely — un-
derstanding self-organization driven by a purely local communication protocol. This is the
question we address in our present work, in the context of unconditional alignment for the
hydrodynamics system (1.15),

(1.20) ψ(r) =
h(r)

rn+α
with a smooth cutoff

1

Λ
χ
R0

(r) 6 h(r) 6 Λχ
2R0

(r).

It provides a first fundamental step in our understanding of emergent phenomena in collec-
tive dynamics driven by local communication kernels, where 2R0 � supp ρ0.

Let us first point out that the regularity of (1.15) with the localized kernel (1.20) holds in
exact same cases as for the full kernel due to the fact that the difference (1 − h(r))r−(n+α)

contributes a smooth source term. In particular, global regularity of the n = 1-dimensional
case follows from theorem 1.4, see [40]. It has been however an open question whether
the emergence of hydrodynamic flocking survives this kind of localization. The situation is
analogous to the scenario of discrete crowd with short range communication, (1.2), which may
fail to flock due to finite-time loss of graph connectivity, (1.12). At the level of hydrodynamic
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description, lack of connectivity manifests itself as ‘thinning’ of crowd in low density sub-
regions of supp ρ(t, ·), which in turn may prevent hydrodynamic flocking (1.17). Indeed, in
the extreme case of a vacuous sub-region, it does not exert any alignment on its neighborhood
hence the dynamics is reduced to inviscid Burgers-type blowup [58], thereby demonstrating
necessity of the no-vacuum assumption. This brings us to the following local version of the
statement “smooth solutions must flock” for non-vacuous solutions of alignment dynamics
associated with a general class of local singular communication kernels.

Proposition 1.5 (Smooth solutions must flock — local kernels). Consider the class
of local singular kernels, ψ(|x− y|), such that

(1.21) ψ(r) =
h(r)

rn+α
, 0 < α < 2,

1

Λ
χ
R0

(r) 6 h(r) 6 Λχ
2R0

(r).

Let (ρ(t, ·),u(t, ·)) be a global strong solution of the corresponding alignment dynamics over
the torus Tn 

ρt +∇ · (ρu) = 0,

ut + u · ∇xu =

∫
Tn
ψ(|x− y|)(u(y)− u(x))ρ(y) dy.

Assume that

(1.22)
c√

1 + t
6 ρ(t, ·) 6 C, C > c > 0.

Then the solution converges to a flock at algebraic rate, namely — there exist a limiting
velocity u∞ and η > 0 such that

(1.23)

∫
Tn
|u(t,x)− u∞|2ρ(t,x) dx 6

1

2M0 tη
, u∞ =

P0

M0

.

Proposition 1.5 follows from a flocking statement for a general local symmetric singular
kernels2, φ(x,y) = φ(y,x) ' |x − y|−(n+α)χ

R0
(|x − y|), consult theorem 3.1 below. It

provides a general framework for the flocking behavior of smooth, non-vacuous solutions
for alignment dynamics driven by local, singular communication kernels. Here, the precise
decay rate of the density min ρ(t, ·) is at the heart of matter: our requirement for an apriori

bound ρ(t) >
c√

1 + t
is too restrictive to verify the best available one-dimensional ‘thinning’

rate one can get on the density is, [53], ρ(t) >
c

1 + t
.

To address this difficulty, we now introduce a new local communication protocol, interesting
for its own sake, which tames the required decay rate of the density by adapting itself to
thin sub-regions.

1.2. A new paradigm for collective dynamics – topological kernels. We introduce
a new communication protocol based on the principle that

information between agents spreads faster in regions of lower density

(see Section 2.1 for more detailed discussion). To realize this principle we begin by revisiting
the underlying agent-based description.

Agent-based dynamics with local topological interactions. Given a pair of agents
located at xi,xj ∈ Rn, we fix their intermediate region of communication Ω(xi,xj) ⊂ Rn.

2We denote A ' B if there exist constants 0 < c < C such that cB 6 A 6 CB.
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In the one-dimensional case, it is taken simply as the closed interval Ω(x, y) = [x, y]; in the
multi-dimensional case, we choose a conical region outlined in section 2.2. The communica-
tion between agents now depends on both — their geometric distance in Rn (and respectively
in Tn),

(1.24a) r(xi,xj) = |xi − xj|,

and by probing the environment — agents react to the average density in their region of
communication

(1.24b) d(xi,xj) :=

(
#{xk |xk ∈ Ω(xi,xj)}

N

) 1
n

.

We end up with alignment dynamics based on an anisotropic (yet symmetric) communication
φ(xi,xj) = ψ1(r(xi,xj))× ψ2(d(xi,xj))

(1.25)


ẋi = vi,

v̇i =
λ

N

N∑
j=1

φ(xi,xj)(vj − vi), φ(xi,xj) = ψ1(r(xi,xj))× ψ2(d(xi,xj)).

Remark 1.6. (Topological neighborhoods). We have at our disposal the choices of kernels
ψ1 and ψ2. For the geometric part, we use the singular kernel (1.20),

(1.26a) ψ1(r) =
h(r)

rn+α−τ ,
1

Λ
χ
R0

(r) 6 h(r) 6 Λχ
2R0

(r).

The smooth cut-off h(r) guarantees that communication is localized within isotropic balls
of radius 6 2R0. For the density-probing part we also use a singular kernel which enhances
communication in regions of low density,

(1.26b) ψ2(d) =
1

dτ
,

Indeed, the singularity of ψ2 means that agent xi gives strong preference for the commu-
nication with its nearest agents, {xj | d(xi,xj) ∼ N−

1
n}, over the increased interference in

communication with agents farther away, {xj | d(xi,xj) . 1}. The net effect of probing
low density using such singular kernels is that communication is dictated by the number of
nearest agents rather than geometric proximity, [32, 6, 7]. Accordingly, we refer to d(xi,xj)
as topological (quasi-)distance. This is consistent with the established terminology in experi-
mental literature, which refers to such topological communication in flocking birds [18, 2, 16]
and in human interaction in pedestrian dynamics [50].

Hydrodynamic alignment with local topological interactions. We consider the align-
ment dynamics

(1.27a)


ρt +∇ · (ρu) = 0,

ut + u · ∇xu =

∫
Rn
φ(x,y)(u(y)− u(x))ρ(y) dy, φ(x,y) = ψ1(r)× ψ2(dρ).

Here, the communication kernel φ(x,y) = ψ1(r) × ψ2(dρ) depends on two main features:
ψ1(r(x,y)) reflects the dependence on geometric distance in Rn (and respectively in Tn),
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r(x,y) = |x − y|, and ψ2(dρ(x,y)) reflects the use of ”mass” as a topological measure of
distance between agents

(1.27b) dρ(x,y) :=

[∫
Ω(x,y)

ρ(t, z) dz

] 1
n

with Ω(x,y) given in (2.3).

Formally, the passage from the agent-based description (1.25) to (1.27) can be accomplished
by the topological distance (1.24b) in terms of a proper limit of the empirical distribution
µNt (x,v) = 1

N

∑
j δxj(t)(x)⊗ δvj(t)(v)

d(x,y) =
(
µNt (Ω(x,y))

) 1
n 7→ dρ(x,y) as N →∞,

which in turn, recovers the full communication kernel φ(x,y) = ψ1(r(x,y))ψ2(dρ(x,y)).
Taking the v-moments of the kinetic formulation (1.13) we arrive at the alignment dynamics
(1.27a); consult appendix 5.1. With the choice of singular kernels (1.26) we finally end up
with the hybrid geometric-topological kernel given by

(1.27c) φ(x,y) =
h(r(x,y))

(r(x,y))n+α−τ ×
1

(dρ(x,y))τ
, τ > 0, 0 < α < 2.

Here τ represents the strength of the topological component within the kernel with ‘total’
singularity of order n + α : φ(x,y) ' |x − y|−(n+α). Note that the kernel is properly
local, non-convolutive, and though φ is symmetric φ(x,y) = φ(y,x), the total action of
K(x,y, t) := φ(x,y)ρ(y) is not. The proper notion of the non-symmetric singular alignment
action, Lφ(f) =

∫
φ(x,y)(f(y) − f(x))ρ(y) dy, is discussed in section 2.4. As before, the

flocking behavior of the so-called (τ, α)-model (1.27) will proceed in two main steps.

Step 1: Smooth solutions must flock. Consider the topological model based on the
singular (τ, α)-kernel (1.27) on Tn. We prove unconditional alignment, |u(t, ·)− u∞|∞ → 0,
of any global smooth solution (ρ,u) with non-vacuous lower-density bound3

ρ(t,x) >
c

(1 + t)β0
, β0 := min

{
1,

n

2n− τ

}
.

Observe that the case of purely geometric interactions, τ = 0 ‘recovers’ the restricted
lower-bound ρ(t, ·) & 1/

√
1 + t encountered before in (1.22). But with the presence of

topological kernel of order τ > n, unconditional flocking for smooth solutions follows from
the relaxed lower-bound ρ(t, ·) & 1/(1 + t).

The proof, given in theorem 3.2 below, traces the propagation of information between the
extreme values of (the components of) u(t, ·), which are most susceptible to breakup since
they can no longer rely on distant communication. Instead, we introduce a new method
of sliding averages, in which we measure how far u(t,x) deviates from its average over the
local balls B(x, r), r 6 R0, using a density-weighted Campanato class. For some algebraic
sequence of times tn → ∞, these deviations are proved to be small. At the same time, we
show that overwhelmingly, u(t,x) stays close to its extreme values near the critical points
where these values are attained. To achieve this, we estimate, in terms of the mass-measure
dmt = ρ dx, the conditional probability of an unlikely event of u being far from its extremes:
it is here that the topological-based alignment in the (τ, α) interaction kernel (1.27c) plays
a key role. We end up with a (finite) overlapping chain of non-vacuous balls to connect any
two points and by chain estimates, the fluctuations of u(t, ·) are shown to decay uniformly in

3And with an additional integrability condition, consult theorem 3.2 for precise details.
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time. This explains the emergence of global alignment from short-range interactions which,
to the best of our knowledge, is the first result of its kind.

Step 2: Global regularity: drift-diffusion beyond symmetric kernels. It remains to
show that (1.27) admit global smooth solutions. In section 4 we prove the global regularity
of the one-dimensional (τ, α) model over T with topological interaction kernel of any order
0 6 τ 6 α (and with a small initial data condition if τ > α). Once such result is established
the lower bound on the density ρ(t, ·) & 1/(1 + t) follows automatically in 1D, consult
Lemma 4.6, and hence we obtain unconditional flocking for a range of (τ, α)-models.

To elaborate in more detail, we note that both density and momentum equations in (1.27a)
fall under a general class of parabolic drift-diffusion equations,

ut + b · ∇xu =

∫
K(x,y, t)(u(y)− u(x)) dy + f,

with (a priori) rough coefficients, b, and with a proper singular local kernels

1

Λ|x− y|1+α
χ
R0

(|x− y|) 6 K(x,y, t) 6
Λ

|x− y|1+α
χ

2R0
(|x− y|)

Regularity theory for equations of this type had a rapid development in recent years due
to breakthroughs in understanding of the non-local structure of the fractional Laplacian,
see Caffarelli et al [9, 10], Silverstre et al [56, 51], Mikulevicius and Pragarauskas [42], and
local jump processes in Chen et. al. [19] and the references therein. Any of these regularity
results requires, however, the symmetry of the kernel K(·, ·, t) which we lack in the present
framework: thus, the velocity u in our topological model (1.27a) is governed by drift-diffusion
associated with kernel K(x,y) = φ(x,y)ρ(y); while φ(·, ·) is symmetric, K is not. Similarly,
the same dynamics expressed in terms of the momentum, m := ρu or the density, consult
(4.17) and respectively (4.16), encounters the non-symmetric kernel K(x,y) = φ(x,y)ρ(x).

Lack of symmetry in the K- kernels associated with the (τ, α)-topological model (1.27)
poses a fundamental difficulty which prevents us from using the known results about the
regularizing effect in such transport-diffusion. Instead, we adapt the De Giorigi method to
settle the critical case α = 1, employ fractional Schauder estimates to address the α > 1 case,
and apply Silvestre’s result [56] to handle the case 0 < α < 1. Our most general regularity
result is stated as follows, see Theorem 4.1 for the full statement.

Theorem 1.7 (Regularity of the 1D (τ, α)-model.). Given non-vacuous initial data
(ρ0, u0) ∈ H3+α/2 × H4, then the 1D (τ, α)-model (1.27) admits a unique global in time
solution, (ρ, u), in the class

ρ ∈ L∞loc(R+;H3+α
2 ), u ∈ L∞loc(R+;H4) ∩ L2

loc(R
+;H4+α

2 ), τ 6 α, 0 < α < 2.

Combined with the general alignment result at Step 1 we obtain unconditional regularity
and alignment of the (τ, α)-system in the range of parameters 1 6 τ 6 α < 2.

Theorem 1.8 (Unconditional flocking for 1D local topological kernels). Consider
the one-dimensional system (1.27) on T with local (τ, α)-kernel with topological singularity
of order 1 6 τ 6 α < 2. Then any non-vacuous smooth initial data ρ0 > 0, u0 gives rise to
a unique global solution which aligns, |u(t, ·)− u∞|∞ → 0.
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2. New protocol. Topological models

In this section we outline basic principles behind our new class of models and introduce
the corresponding agent-based, kinetic, and hydrodynamic descriptions.

2.1. Agent-based description. In the standard agent-based models (1.2) ‘all agents are
made equal’. In our new protocol, the dynamics depends on the density of agents and
therefore the “mass” of agents needs to be taken into account. We assume that each agent
(xi,vi) has a intrinsic fixed “mass” mi. The meaning of mass depends on the context: one
can think of mi as an intrinsic parameter that quantifies the alignment power of agent at
xi to influence others. Thus, the bigger mi is, the more direct influence agent “i” has on
others. At the same time it is natural to assume that “massive” agents are more resistant to
the influence by others. This latter property will be encoded into our new communication
protocol φ(xi,xj)

(2.1)


ẋi = vi,

v̇i = λ
∑
j∈Ni

mjφ(xi,xj)(vj − vi).

Here, xi ∈ Rn, i = 1, 2, . . . , N , denote positions of agents, vi ∈ Rn their velocities, x =
(x1, . . . ,xN), and mj is the “mass” of agent “j”. The model we have in mind is based on
the following two principles:

1. Geometric neighborhoods. Every agent has a finite range of communication —
the communication of agent located at xi is limited within a Euclidean ball of radius
2R0 centered at xi and denoted B(xi, 2R0).

2. Topological neighborhoods. The communication between every two agents is
influenced by the level of interference between them — the more crowded it is, leads
to a decreasing level of communication. To this end, we argue that two agents located
at xi and xj probe how crowded is an intermediate (closed) region of communication4

Ω(xi,xj), see e.g., figure 1,

mij =
∑

k:xk∈Ω(xi,xj)

mk.

The new protocol then results in a communication kernel, φ(xi,xj) = ψ1(r(xi,xj))×ψ2(d(xi,xj))
which involves both — the geometric distance, r = |xi − xj|, and the topological distance

d(xi,xj) := m
1/n
ij . Our model now reads

(2.2)


ẋi = vi,

v̇i = λ
N∑
j=1

mjψ1(|xi − xj|)× ψ2(d(xi,xj))(vj − vi), d(xi,xj) =
( ∑

xk∈Ω(xi,xj)

mk

) 1
n
.

The special case of equi-distributed mass, mj = 1/N , is recorded in the Introduction
(1.24),(1.25).

4In particular, xi,xj ∈ ∂Ω(xi,xj).
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b b
yx

Ω(x,y)

Figure 1. Communication domains between agents

2.2. Region of communication. The topological distance d(x,y) requires us to specify a
domain of communication, Ω(x,y), which is probed by agents located at x and y. In the one-
dimensional case, it is simply the closed interval, Ω(x, y) = [x, y]. In the multi-dimensional
case, it is reasonably argued that the ‘intermediate environment’ between agents could be
an n-dimensional region inside the ball enclosed by x and y, namely B(x+y

2
, r) with radius

r := |x−y|
2

. For example, one can simply set Ω(x,y) to be that ball. As we shall see below,
however, the fine structure of the local regions of communication, Ω(xi,xj), is important
in order to retain unconditional flocking. To this end, we set a more restrictive conical
region Ω(x,y), see Figure 1. First, we consider two basic locations x = (−1, 0, ..., 0) and
y = (1, 0, ..., 0) and set the region of revolution generated by a parabolic arch connecting x
and y:

Ω0 := {z = (t, z−)
∣∣ |z−| < 1− t2,−1 6 t 6 1}.

For an arbitrary pair of points x,y ∈ Rn, let Ω(x,y) denote the region scaled and translated
from Ω0:

(2.3) Ω(x,y) := {z
∣∣ |z− z−| < 1− r2t2−}, r =

|x− y|
2

,

where z− := z(t−) is the projection of z on the diameter {z−(t) = x+y
2

+ t
2
(y−x), −1 6 t 6 1}

connecting x and y.
Observe that at the tips, Ω(x,y) has the opening of π

2
. For subsequent analysis,it can be

replaced by any angle < π, calibrated according to a particular application5. It is crucial,
however, that the region of communication is not locally smooth near the tips x,y, see
Claim 3.7 below, which excludes the ball B(x+y

2
, r) with conical opening of 90◦.

2.3. From kinetic to hydrodynamic description. The large crowd dynamics of our
geometric-topological agent-based model (2.2) is captured by the kinetic formulation (1.13)

(2.4a) ft + v · ∇xf +∇v ·Q(f, f) = 0,

with a general symmetric communication kernel φ(x,y)

(2.4b) Q(f, f)(t,x,v) =

∫
R2n

ψ1(r(x,y))× ψ2(dρ(x,y))(w − v)f(t,y,w)f(t,x,v) dw dy.

The passage (2.2) ; (2.4) is outlined in the Appnedix 5.1. By taking its v-moments, we
can read off the system of equations for macrolocal density ρ(t,x) =

∫
Rn f(t,x,v) dv and

5Thus, for example, (2.3)can be enlarged to Ω(x,y) := {z
∣∣ |z− z−|α < 1− r2t2−} for any 0 < α < 2.
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momentum ρu =
∫

vf(t,x,v) dv,

(2.5)


ρt +∇ · (ρu) = 0,

(ρu)t +∇x · (ρu⊗ u +R) =

∫
Rn
φ(x,y)(u(y)− u(x))ρ(x)ρ(y) dy,

Here φ is a symmetric communication kernel and R is the second-order Reynolds stress tensor

R(t,x) =

∫
Rn

(v−u)⊗(v−u)f(t,x,v) dv. The formal closure of the system at the first-order

moments is achieved by considering a mono-kinetic ansatz, f(t,x,v) = ρ(t,x)δ(v−u(t,x)),
concentrated at the macroscopic velocity u: Such an ansatz creates zero stress R = 0, and
we end up with the hydrodynamic description expressed in terms of the (ρ,u)-pair

(2.6)


ρt +∇ · (ρu) = 0,

ut + u · ∇xu =

∫
Rn
φ(x,y)(u(y)− u(x))ρ(y) dy.

A distinctive feature of the right hand side of the u-equation is that it has a commutator
structure ∫

Rn
φ(x,y)(u(y)− u(x))ρ(y) dy = [Lφ,u](ρ) := Lφ(ρu)−Lφ(ρ)u,

where Lφ is the integral operator given by

(2.7) Lφ(f) :=

∫
Rn
φ(x,y)(f(y)− f(x)) dy.

Strong solutions to the system (2.6) satisfy energy equality

(2.8a)
d

dt

∫
ρ|u|2 dx = −

∫
φ(x,y)|u(x)− u(y)|2ρ(x)ρ(y) dx dy,

which will be a key component in establishing alignment. We note on passing that in view
of the symmetry of the kernel φ, we have conservation of mass and momentum:

M =

∫
Rn
ρ(t,x) dx ≡M0, P =

∫
Rn
ρu(t,x) dx ≡ P0.

Hence, the rate of decay of the energy of the left of (2.8a) is the same rate of decay of the
fluctuations

(2.8b)
d

dt

∫
|u(t,x)− u(t,y)|2ρ(t,x)ρ(t,y) dx dy = 2cM0

d

dt

∫
ρ|u|2 dx.

Observe that for all global regular solutions u ∈ L1
locW

1,∞ the density retains sign,

ρ0(x) > 0⇒ ρ(t,x) > 0 for all t > 0.

and in absence of pressure, each component u of u satisfies the maximum principle

(2.9) maxu(·, t) 6 maxu0, minu(·, t) > minu0.

Finally, we have the Galilean invariance

(2.10) u→ u(x + tU, t)−U, ρ→ ρ(x + tU, t).
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2.4. Topological kernels and operators they define. In what follows we restrict our-
selves to the periodic domain Tn. This choice is motivated by the fact that the density in
(2.6) defines parabolicity of the equation. With finite mass M <∞ such parabolicity cannot
be controlled uniformly on the open space.

In the definitions below we assume that ρ is a bounded density with no vacuum

(2.11) 0 < c 6 ρ(t,x) 6 C <∞, x ∈ Tn.

Let us fix a range scale R0 < π/4. Let |x − y| < 2R0. We define the topological distance
between x and y, in accordance with how much mass is located in the communication domain
between the points:

dρ(x,y) =

[∫
Ω(x,y)

ρ(t, z) dz

] 1
n

.

Here Ω(x,y) is the region of communication enclosed between x and y. Let us note that
although the distance function d defines an equivalent topology on Tn, it is not a proper
metric, except for the one-dimensional case where it accumulates the mass along the interval
Ω(x, y) = [x, y],

(2.12) dρ(x, y) =

∣∣∣∣∫ y

x

ρ(t, z) dz

∣∣∣∣ ,
Also note that all the distances are bounded by the total mass M , and dρ(x,y) > c|x− y|.
Moreover, since Ω(x,y) = Ω(y,x), the distance is symmetric dρ(x,y) = dρ(y,x).

Let us now define a class of singular topological kernels we will be studying:

(2.13) φ(x,y) = ψ1(r(x,y))× ψ2(dρ(x,y)), ψ1(r) = r−(n+α−τ)h(r), ψ2(dρ) = d−τρ .

Here h(r) is a smooth cutoff function supported on [0, 2R0] which coincides with χ
R0

(r) on
[0, R0); since R0 <

π
4

the kernel is properly supported on the cube [−π, π]n and is viewed
as a function on the torus Tn (no need to periodization as in (1.18)). We refer to (2.13) as
(τ, α)-kernel: the exponent τ > 0 measures a portion of the topological part in the kernel
with overall singularity of order n + α, 0 < α < 2. Note that we allow τ to be larger than
n+α, and thus n+α− τ < 0, which corresponds to the case of an overwhelming dominance
of the topological component over the Euclidean one.

The corresponding alignment operator is given (formally) by the commutator form

(2.14) Cφ(ζ, f) = [Lφ, f ](ζ) := Lφ(ζf)−Lφ(ζ)f =

∫
Tn
φ(x,y)(f(y)− f(x))ζ(y) dy.

We note that a proper care has to be given in order to properly define these operators
for strongly singular case α > 1. Our immediate goal below is therefore to develop formal
definitions and initial facts about the operator Lφ in multi-D settings (more details specific
for 1D situation will follow in Section 4.1). Due to the non-convolutive and anisotropic nature
of the kernel, most of the standard facts do not apply and will need to be readdressed. Our
plan is to define Lφf as a distribution first. Then we state a formal justification of pointwise
evaluations of Lφf(x) and Cφ(ζ, f)(x). Technicalities of the proofs will be collected in
section 5.2 in the Appendix.
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Definition 2.1. We define an operator Lφ : Hα/2 → H−α/2 by the following action: for any
f ∈ Hα/2 and g ∈ Hα/2

(2.15) 〈Lφf, g〉 = −1

2

∫
T2n

φ(x,y)(f(x)− f(y))(g(x)− g(y)) dy dx.

Note that formally such action could be obtained from (2.7), if (2.7) made sense pointwise,
by the usual symmetrization. Clearly, from the Gagliardo-Sobolevskii definition of Hα/2, we
have

|〈Lφf, g〉| . |f |Hα/2|g|Hα/2 .

Due to the symmetry of the kernel, the operator Lφ is clearly self-adjoint, and its range is

in H
−α/2
0 . By the standard operator theory this implies the following statement.

Lemma 2.2. The restricted operator Lφ : H
α/2
0 → H

−α/2
0 is invertible.

Proof. Clearly, −〈Lφf, f〉 ∼ |f |2
H
α/2
0

. Hence |Lφf |H−α/2 > |f |Hα/2 which shows that the

operator has closed range and is injective. If the range is not all of H
−α/2
0 , then there is a

g ∈ Hα/2
0 for which 〈Lφf, g〉 = 0 for all f ∈ Hα/2. Taking f = g we arrive at a contradiction.

Thus, Lφ is invertible. �

First, let us consider the case 0 < α < 1. In this weakly singular case, pointwise evaluation
of the integral expressions in (2.7) and (2.14) presents no problem as long as f ∈ C1.
The rigorous argument goes by “unwinding” the symmetric defining formula (2.15). To
demonstrate it, let us denote by Lφf(x) the integral on the right hand side of (2.7). Clearly,
Lφf ∈ C(Tn). Let us fix a point x0 ∈ T. Let g be the standard non-negative Friedrichs’
mollifier supported on the ball of radius 1. Denote gε = 1

εn
g((x− x0)/ε). It suffices to show

that

〈Lφf, gε〉 → Lφf(x0).

Since for 0 < α < 1, Lφf(x) is a continuous function we can break up the integral without
ambiguity:

〈Lφf, gε〉 = −1

2

∫
T2n

(f(x)− f(y))(gε(x)− gε(y))φ(x,y) dy dx

=

∫
T2n

(f(y)− f(x))gε(x)φ(x,y) dy dx = 〈Lφf, gε〉 → Lφf(x0).

The higher case 1 6 α < 2 is more subtle. Let us show that when ρ and f are smooth, the
element Lφf ∈ H−α/2 gains regularity. Formally, this first step is necessary to even discuss
pointwise values Lφf(x). So, let us make the following observation:

∇xdρ(x + z,x) =
1

n(dρ(x + z,x))n−1

∫
Ω(x+z,x)

∇ρ(y) dy

=
1

n(dρ(x + z,x))n−1

∫
∂Ω(x+z,x)

~νρ(y) dy.

(2.16)
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Clearly, if |∇ρ|∞ < ∞, then |∇xdρ(x + z,x)| . |z|. Next, we rewrite the defining formula
(2.15) in terms of the difference operator δzf(x) := f(x + z)− f(x),

〈Lφf, g〉 = −1

2

∫
T2n

δzf(x)δzg(x)ψ1(|z|)ψ2(dρ(x + z,x) dx dz

= −1

2

∫ 1

0

∫
T2n

δzf(x)∇g(x + θz) · z ψ1(|z|)ψ2(dρ(x + z,x) dx dz dθ.

Integrating by parts, we obtain

〈Lφf, g〉 =
1

2

∫ 1

0

∫
T2n

δz∇f(x) · zg(x + θz)ψ1(|z|)ψ2(dρ(x + z,x)) dx dz dθ

+
1

2

∫ 1

0

∫
T2n

δzf(x)g(x + θz)δzρ(x)ψ1(|z|)ψ′2(dρ(x + z,x))∇dρ(x + z,x) · z dx dz dθ.

Note that the singularity of ψ1 ψ2 (of order n + α) is now masked by the second-order
vanishing terms of of δzf, δzρ and ∇dρ, so we end up with an integrable singularity of order
α− 1. Consequently,

|〈Lφf, g〉| . (|f |C2 + |f |C1 |ρ|C1)|g|L∞ .
This is of course not an optimal bound, but it shows that the regularity of Lφf improves.
One can continue in similar fashion. Assuming g = ∂kxh, for some h ∈ L∞, one obtains

|〈Lφf, ∂
k
xh〉| . (|f |Ck+2 , |ρ|Ck+1)|h|L∞ .

Thus, Lφf ∈ (C−k)∗ ⊂ Ck−ε, for any ε > 0.
Lemmas 5.1 and 5.2 stated in the Appendix make a formal justification for representation

formulas (2.7) and (2.14) which are to be understood in the principal value sense. They come
with estimates that will be crucial in the proof of the global regularity in 1D, see Section 4.

3. Smooth solutions must flock

The goal of this section will be to prove that any global, non-vacuous smooth solution to
the topological model (2.6) aligns to its average velocity vector u∞ which can be determined
from the conservation of momentum and mass: u∞ = P0/M0.

3.1. Flocking of local symmetric kernels. We begin with a general class of local sym-
metric singular communication kernels, φ = φ(x,y) such that

(3.1a) φ(x,y) & |x− y|−(n+α)χ
R0

(|x− y|), 0 < α < 2,

and consider the corresponding alignment dynamics

(3.1b)


ρt +∇ · (ρu) = 0,

ut + u · ∇xu =

∫
Rn
φ(x,y)(u(y)− u(x))ρ(y) dy,

The two primary examples we have in mind are the the topological kernel (2.13), φ(x,y) =
ψ1(r(x,y)) × ψ2(d(x,y)), and the particular case of the geometric kernel (1.20), φ(x,y) =
ψ1(r(x,y)). We emphasize, however, that (3.1) allows for a rather general class of symmetric
φ’s, localized along the diagonal with geometric singularity of order n+ α: we do not dwell
on the fine structure originating with the topological portion of the singular kernel.
This generality comes with the subtlety of making a proper sense of the integral operator,
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Lφ(f) :=

∫
Rn
φ(x,y)(f(y)− f(x)) dy, which in turn defines the alignment term through its

commutator structure, [53]

∫
Rn
φ(x,y)(u(y)−u(x))ρ(y) dy := Lφ(ρu)−Lφ(ρ)u. As before,

this is achieved by symmetrization, defining Lφ : Hα/2 → H−α/2 by

(3.2) 〈Lφf, g〉 = −1

2

∫
T2n

(f(x)− f(y))(g(x)− g(y))φ(x,y) dy dx, f, g ∈ Hα/2,

and noting that the restricted operator Lφ : H
α/2
0 → H

−α/2
0 is invertible.

At this point we record the fundamental statement, balancing the decay rate of fluctuations
in (3.1b), driven by alignment Lφ associated with any symmetric kernel φ(·, ·): using the
definition (2.15) we recast (2.8) in the form

d

dt

∫
T2n

|u(t,x)−u(t,y)|2ρ(t,x)ρ(t,y) dx dy = −2M0

∫
T2n

〈[Lφ,u](ρ),u〉ρ dy

= −2M0

∫
T2n

φ(x,y)|u(t,x)− u(t,y)|2ρ(t,x)ρ(t,y) dx dy.

(3.3)

The main aspect of our investigation in this section is the derivation of lower-bounds of the
enstrophy on the right of (3.3) for short-range φ’s.

It is clear that a necessary condition for flocking |u(t, ·)−u∞| → 0 requires the density to
be bounded away from vacuum, or else the flow may break apart into two or more separate
‘islands’, traveling in their own velocity which is disconnected from the influence of others.
Indeed, when ρ(·, t) vanishes on a compact set, the momentum equation (3.1b) is reduced
to the pressureless Burgers system ut + u · ∇xu = 0 which in turn leads to a finite-time
blow-up, see [58]. Precisely how far from vacuum the density must be in order to fulfill an
alignment dynamics for general local kernels φ is investigated below.

Theorem 3.1 (General local singular kernels). Let φ be a symmetric, local, singular
kernel (3.1a) and let (ρ(t, ·),u(t, ·)) be a global strong solution of the corresponding alignment
dynamics, (3.1b), with a properly defined alignment term (3.2). Assume that

C > ρ(t, ·) > c√
1 + t

, C > c > 0.

Then the solution converges to a flock at algebraic rate, namely — there exist a limiting
velocity u∞ and η > 0 such that

(3.4)

∫
Tn
|u(t,x)− u∞|2ρ(t,x) dx 6

1

2M0 tη
, u∞ =

P0

M0

.

Proof. We begin by setting up the general Hilbert structure for a variational formulation of
the problem. Let us assume that

0 < c(t) < ρ = ρ(t,x) < C(t).

Let us denote by L2
ρ the space of L2(Tn)-fields u with scalar product given by

〈u,v〉ρ =

∫
Tn

u(x) · v(x)ρ(t,x) dx.

Note that the metric of the space L2
ρ changes in time.
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Next, we consider the family of eigenvalue problems parametrized by time: we seek eigen-
pairs, κ(t) and u(t, ·) ∈ Uα

ρ(t,·),

(3.5)

∫
Tn
φ(x,y)(u(y)− u(x))ρ(t,y) dy = κ(t)u(x), u ∈ Uα

ρ := L2
ρ ∩Hα/2.

Note that the left hand side is precisely the action of the commutator Cφ(ρ,u). For a
fixed smooth ρ, and any symmetric singular singular kernel φ, the corresponding alignment
operator

u→ Cφ(ρ,u) := [Lφ,u](ρ) =

∫
Rn
φ(x,y)(u(y)− u(x))ρ(y) dy,

mapsHα/2 intoH−α/2. Moreover, the symmetric definition of Lφ (2.15) yields that−Cφ(ρ,u)
is non-negative, −(Cφ(ρ,u),u) > 0. Hence κ1 = 0 is the minimal eigenevalue corresponding
to the constant solution u ≡ 1, and this allows us to seek the second minimal eigenvalue as
a solution to the variational problem6

(3.6) κ2(t) = inf
u∈Uαρ

−〈Cφ(ρ,u− u),u− u〉ρ
|u− u|2L2

ρ

, u :=

∫
uρ∫
ρ

so that 〈u− u,1〉ρ = 0

or — stated explicitly in terms of |u− u|2L2
ρ

=
1

2M0

∫
T2n

|u(y)− u(x)|2ρ(x)ρ(y) dx dy,

(3.7) κ2(t) = 2M0 × inf
u∈Uαρ

∫
T2n

φ(x,y)|u(y)− u(x)|2ρ(t,y)ρ(t,x) dx dy∫
T2n

|u(x)− u(y)|2ρ(t,x)ρ(t,y) dx dy
.

Since the numerator with φ(x,y) ' |x − y|−(n+α)χ
R0

(|x − y|) is equivalent for the Hα/2-
norm, the existence follows classically by compactness. This links the enstrophy on the right
of (3.3) to the Fiedler number, κ2(t), in complete analogy to the discrete case indicated in
(1.12) (consult [44, sec 2.2]).

We can now state an alignment estimate in terms of the shrinking L2
ρ-diameter of the

velocity, given by

(3.8) V2[u, ρ](t) :=

∫
T2n

|u(t,x)− u(t,y)|2ρ(t,x)ρ(t,y) dx dy.

By (3.3), (3.7) we have

(3.9)
d

dt
V2[u, ρ](t) 6 −κ2(t)V2[u, ρ](t).

The implication of (3.9) is of course the bound

(3.10) 2M0

∫
Tn
|u(t,x)− u∞|2ρ(t,x) dx = V2[u, ρ](t) 6 V2[u0, ρ0] exp

{
−
∫ t

0

κ2(s) ds

}
.

Consequently, the solution aligns in the L2
ρ-distance sense if

∫ ∞
0

κ2(s) ds = ∞ (again, in

complete analogy with the discrete setup (1.12)).

6By symmetry u = u∞ := P0/M0 but we keep the separate notation of u to signify orthogonality to the
0-eigen-space spanned by 1.
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We will derive the particular critical power law κ2(t) > c/(1 + t) which clearly fulfills
this requirement. It is here that we use the assumed lower-bound on the density, ρ(t, ·) &
1/
√

1 + t, the assumed singularity of our kernel φ(x,y) & |x− y|−(n+α)χ|x−y|<R0 and by the
uniform upper-bound of the density, |u− u|L2

ρ
. |u|L2 , in order to bound the spectral gap

(3.11) κ2(t) >
c

t
inf

u∈Uαρ

∫
|x−y|<R0

|u(x)− u(y)|2

|x− y|n+α
dx dy

|u|22
.

Technically, the infimum still depends on time since it is taken over the orthogonal comple-
ment of the line spanned by ρ(t), denoted [ρ(t)], in the classical L2(Tn). We now have to
show that this infimum still stays bounded away from zero. Geometrically this is due to the
fact that the space [ρ(t)]⊥ does not come close to the span of constants Rn in the sense of
Hausdorff distance. It is more straightforward to argue by contradiction, however.

Suppose there is a sequence of times tk ∈ R+, and uk ∈ L2
ρ(tk) ∩Hα/2 such that |uk|2 = 1

yet the homogeneous local Hα/2-norm tends to zero:

(3.12)

∫
|x−y|<R0

|uk(x)− uk(y)|2

|x− y|n+α
dx dy→ 0.

Note that the latter, in particular, implies compactness of the sequence {uk}k in L2. Hence,
up to a subsequence, uk → u∗ strongly in L2 and weakly in Hα/2. By the lower-weak-semi-
continuity, and (3.12), we conclude that u∗ ∈ Rn is a constant field, with |u∗| = 1 due to
|uk|2 → |u∗|2.

At the same time, since ρ(t) > 0 and
∫
ρ(tk,x) dx = M0, there exists a weak∗ limit of a

further subsequence ρ(tk)→ µ, where µ is a positive Radon measure on Tn with non-trivial
total mass µ(Tn) = M0. We now reach a contradiction by claiming the limit

0 =

∫
Tn

uk(x)ρ(tk,x) dx→
∫
Tn

u∗ dµ = M0u∗,

Indeed, the assumed uniform upper-bound of the density implies∫
Tn

uk(x)ρ(tk,x) dx−
∫
Tn

u∗ dµ(x)

=

∫
Tn

uk(x)ρ(tk,x) dx−M0u∗ =

∫
Tn

(uk(x)− u∗)ρ(tk,x) dx,

and the latter is clearly bounded by C|uk − u∗|2 → 0. We conclude that κ2(t) > c/t, and
the result follows from (3.10). �

Again the theorem does not make any use of topological alignment, and hence applies
to a general class of alignment models based on local symmetric kernels with geometric
singularity. Unconditional flocking is then achieved under a lower bound on the density,
ρ(t, ·) & (1 + t)−1/2. The difficulty is that this lower bound is too restrictive and is not given
a priori for any strong solution. This brings us to the local topological models which yield
unconditional flocking under more accessible lower-bounds on the density.
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3.2. Flocking for local models with topological kernels. We now turn our attention
to the (τ, α)-model which involves a communication kernel (2.13)

(3.13) φ(x,y) =
h(r(x,y))

(r(x,y))(n+α−τ)
× 1

(dρ(x,y))τ
, dρ(x,y) =

(∫
z∈Ω(x,y)

ρ(t, z) dz
)1/n

.

This is a particular case within the general class of local symmetric kernels (3.1a) with
singularity of order n + α. Here, the topological distance dρ contributes a τ -singularity.
The following theorem quantifies how this is used to tame the corresponding non-vacuous
requirement on the decay of the density.

Theorem 3.2 (Local topological kernels). Let (ρ,u) be a global smooth solution of the
(τ, α)-model (2.6),(3.13) based on the conical regions of topological communication Ω(x,y)
in (2.3). Assume that the density ρ(t, ·) satisfies, for all t > 0,

(3.14) ρ(t,x) >
c

(1 + t)β
, 0 6 β 6 β0 := min

{
1,

n

2n− τ

}
,

and, in addition if τ > n+ α, that

(3.15) |ρ(t, ·)| τ−n
α
< C.

Then the solution aligns with at least algebraic rate given by

(3.16) |u(t)− u∞|∞ =
o(1)

tγ
where γ =

1

2

(
1− β

β0

)
.

A few remarks are in order before we proceed to the proof.

Remark 3.3. (Flocking with no rate). Observe that in case of decay rate of order β = β0,
we still obtain unconditional flocking yet with no rate . When the decay rate is better than
the end point β0, the convergence rate of alignment is quantified in terms of the difference
β0 − β. This version will be useful, in particular, when the density enjoys a maximum
principle, as is the case in 1D and e ≡ 0, see Theorem 4.1. In this case β = 0 and hence
γ = 1

2
.

Remark 3.4. (The one-dimensional case). We highlight one notable application of this
theorem to 1D settings. In this case the lower bound on the density (3.14) holds for any
strong solutions with power 1, see Lemma 4.6. This fulfills (3.14) for any τ > 1. For the
topologically dominant case τ > 1 + α the assumption (3.15) can be satisfied through a
global control on |ρ(t)|∞ for a small initial data described in Lemma 4.7. We thus obtain an
unconditional alignment in the range of 1 6 τ 6 1 + α which proves Theorem 1.8 stated in
the Introduction. We note that the metric model, τ = 0, requires ρ(t, x) > c√

1+t
, which does

not seem to hold apriori.

Remark 3.5. (About τ = n). We make another remark concerning the apparent threshold
value of τ = n. Clearly from (3.14), if τ > n, then ρ > 1

1+t
is the weakest assumption under

which the theorem holds, while for τ < n a more stringent bound on ρ is required. This can
be explained by the fact the the density on the bottom of φ needs to compensate the density
on the top inside the diffusion term. Even more vividly the condition manifests itself after
taking limit as α→ 2. Such limits are standard in the elliptic theory and we will not provide
many details here. One can verify the following:

(3.17) lim
α→2

(2− α)Lφf(x) = ∇ ·
(
ρ−

τ
n∇f

)
:= D(f).



22 ROMAN SHVYDKOY AND EITAN TADMOR

The commutator which would appear in the corresponding limit model reads

(3.18) D(ρu)− uD(ρ) =
1

ργ−1
∆u +

2− γ
γ
∇u∇ρ, γ =

τ

n
.

We can see that τ = n is the threshold that determines whether the density appears on the
top or the bottom in front of the leading order term. For τ > n it amplifies dissipation in
thinner regions as intended in the topological model.

Remark 3.6. (A comparison with Motsch-Tadmor scaling). It is instructive to compare
the generic topological model with (n, α)-kernel

φ(x,y) = ψ1(|x− y|)× 1

mt(Ω(x,y))
, mt(Ω) :=

∫
Ω

ρ(t, z) dz,

with the Mostch-Tadmor scaling (1.14b) with local φ(r) = χ
R0

,

φ(x,y) = ψ1(|x− y|)× 1

mt(B(x, R0))
.

In the former, the pairwise interaction between two “agents” depends on the density in an
intermediate region of communication; in the latter, the communication of each “agent”
depends on how rarefied is the crowd in its own geometric neighborhood.

Proof. First we make one technical remark. With the assumptions at hand the following
comparison holds between the topological metric and the kernel:

(3.19)
1

dnρ(x,y)
6 C(t)φ(x,y),

for some algebraic C(t). Indeed, (3.19) is equivalent to a bound[∫
Ω(x,y)

ρ(t, z) dz

] τ
n
−1

|x− y|n+α−τ 6 C(t).

When τ < n, the lower bound (3.14) applies to give C(t) = Ctβ(1− τ
n

). In case n+α > τ > n
the inequality holds automatically with uniform C(t) = C since

∫
Ω(x,y)

ρ(t, z) dz 6 M0.

Finally, in case τ > n + α, we use (3.15) and apply the Hölder inequality, again obtaining
uniform C.

Now, let us fix a coordinate i and aim to prove (3.16) for ui. We denote u = ui for
notational simplicity. Using the Galilean invariance we can lift u if necessary and assume
that u(t) > 0. Note that the extrema of u(t), denoted u+(t) and u−(t), are monotonically
decreasing and increasing, respectively.

We will make frequent use of the mass measure denoted

dmt = ρ(t, z) dz.

Step 1: flattening near extremes. Let x+(t) be a point of maximum for u(t, ·) and x−(t)
a point of minimum. Let us fix a time-dependent 1 > δ(t) > 0 to be determined later, and
consider the sets

G+
δ (t) = {u < u+(t)(1− δ(t))}, G−δ (t) = {u > u−(t)(1 + δ(t))}.
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The effect of flattening is expressed in terms of conditional expectations of the above sets in
the balls B(x±(t), R0) with respect to the mass measure. Let us denote

Et[A|B] =
mt(A ∩B)

mt(B)
.

We show that

(3.20)

∫ ∞
0

δ(t)

C(t)
Et[G±δ (t)|B(x±(t), R0)] dt <∞.

To this end, let us compute the equation pointwise at the critical point (t,x+(t)) utilizing
the Rademacher Theorem: (∂tu)(t,x+(t) = ∂tu+(t) a.e.,

∂tu+(t) =

∫
φ(x+(t),y)(u(y)− u+(t))ρ(y) dy.

At point (x+(t), t) we estimate on the alignment term with the use of (3.19),

−∂tu+(t) =

∫
φ(x+,y)(u+(t)− u(y))ρ(y) dy

> C−1(t)

∫
B(x+,R0)

1

dnρ(x+,y)
(u+(t)− u(y))ρ(y) dy,

>
C−1(t)

mt(B(x+(t), R0))

∫
G+
δ (t)∩B(x+(t),R0)

(u+(t)− u(y))ρ(y) dy (since Ω(x+,y) ⊂ B(x+, R0))

>
C−1(t)δ(t)

mt(B(x+(t), R0))

∫
G+
δ (t)∩B(x+(t),R0)

ρ(y) dy × u+(t)

=
δ(t)

C(t)
Et[G+

δ (t)|B(x+(t), R0)]× u+(t).

The result follows by integration:∫ ∞
0

δ(t)

C(t)
Et[G+

δ (t)|B(x+(t), R0)] dt 6 ln
u+(0)

limt→∞ u+(t)
6 ln

u+(0)

u−(0)
.

Step 2: Campanato estimates. On this next step we obtain proper Campanato estimates
that measure deviation of u from its average values in terms of global enstrophy.

We denote the averages with respect to mass-measure by

ux,r =
1

mt(B(x, r))

∫
B(x,r)

u(t, z) dmt(z).

Fix x∗ ∈ Tn. By Hölder inequality, we have the following estimate:∫
|x−x∗|< r

10

|u(x)− ux∗,r|2ρ(x) dx 6
∫
|x−x∗|< r

10
|y−x∗|<r

1

mt(B(x∗, r))
|u(x)− u(y)|2ρ(x)ρ(y) dy dx

At this point we recall that the communication domain Ω(x,y) in (2.3) has corner tips of
opening π

2
degrees. Hence, we can make the following geometric observation.

Claim 3.7. If |x− x∗| < 1
10
r and |y − x∗| < r, then Ω(x,y) ⊂ B(x∗, r).
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x∗

x

y
Ω(x,y)

B(x∗, r/10)

B(x∗, r)

b

b

b

Figure 2. Ω(x,y) is trapped in the outer ball if x is close to the center.

In other words if y is in a ball and x is close enough to the center of that ball then
the domain Ω(x,y) is entirely enclosed in the ball also, see Figure 2. This implies that
mt(B(x∗, r)) > mt(Ω(x,y)) = dnρ(x,y). We thus can further estimate, with the use of
(3.19),∫

|x−x∗|< r
10

|u(x)− ux∗,r|2ρ(x) dx 6
∫
|x−y|< 11

10
r

1

dnρ(x,y)
|u(x)− u(y)|2ρ(x)ρ(y) dy dx

= C(t)

∫
φ(x,y)|u(x)− u(y)|2ρ(x)ρ(y) dy dx.

The energy balance (3.3) (see also (2.8)) yields the space-time bound on the (components
of) enstrophy on the right∫ ∞

0

∫
T2n

φ(x,y)|u(x)− u(y)|2ρ(x)ρ(y) dx dy <

∫
Tn
ρ0|u0|2 dx <∞,

hence we conclude with a time bound on the Campanato semi-norm,

(3.21)

∫ ∞
0

1

C(t)
[u]2ρ dt <∞, [u]2ρ := sup

x∗∈Tn,r<R0
2

∫
|x−x∗|< r

10

|u(x)− ux∗,r|2ρ(x) dx.

Combined with (3.20) we have obtained

I =

∫ ∞
0

1

C(t)

(
δ(t)Et[G±δ (t)|B(x±(t), R0)] + [u(t)]2ρ

)
dt <∞.

Clearly, there exists a constant C0 and a vanishing quantity o(1) such that∫ C0T

T

o(1)

t
dt > 2I for all T > 0.
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Figure 3.

Hence, for any T > 0 we can fix a t ∈ [T,C0T ] such that

[u(t)]2ρ <
o(1)C(t)

t

Et[G+
δ (t)|B(x+(t), R0)] + Et[G−δ (t)|B(x−(t), R0)] <

o(1)C(t)

tδ(t)

(3.22)

In view of the assumed lower bound on the density this implies in particular that

(3.23) sup
x∗, r<

R0
2

∫
|x−x∗|< r

10

|u(x)− ux∗,r|2 dx 6
o(1)C(t)

t1−β
=
o(1)

t2γ
.

Step 3: sliding averages. We will now reconnect the two averages ux+,r and ux−,r sliding
along the line connecting x+ and x−, and show that the variation of those averages on each
step is decreasing over time.

Denote the direction vector n = x+−x−
|x+−x−| and define a sequence of overlapping balls, Bk =

B(xk,
r
10

), k = 0, . . . , K, with centers given by xk = x− + 19r
100
kn, starting at x− and ending,

with K = [ |x+−x−|
19r/100

], at xK+1 = x+, see Figure 3.

Chebychev inequality, followed by (3.23) applied to the ball centered at x∗ = x0, yields
that for our fixed t ∈ [T,C0T ],

|{x ∈ B0 ∩B1 : |u(x)− ux0,r| > λ}| 6 1

λ2

∫
B0

|u(x)− ux0,r|2 dx 6
o(1)

λ2t2γ
.

We now fix scale r := R0/4: noticing that |Bk ∩ Bk+1| = c0R
n
0 for all k 6 K, we set

λ = 2

√
o(1)

√
c0tγR

n/2
0

so that

|{x ∈ B0 ∩B1 : |u(x)− ux0,r| > λ}| 6 1

4
|B0 ∩B1|.

By shifting the same argument to the variation around the averaged value ux1,r, centered at
x∗ = x1, we obtain

|{x ∈ B0 ∩B1 : |u(x)− ux1,r| > λ}| 6 1

4
|B0 ∩B1|.

Consequently the complements of the two sets must have a point in common in B0 ∩B1:

{x ∈ B0 ∩B1 : |u(x)− ux0,r| 6 λ} ∩ {x ∈ B0 ∩B1 : |u(x)− ux1,r| 6 λ} 6= ∅,
which implies that

|ux0,r − ux1,r| 6 2λ.
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Continuing in the same manner we obtain the same bound for all consecutive averages:

|uxk,r − uxk+1,r| 6 2λ.

Hence,

|ux−,r − ux+,r| 6 2(K + 1)λ . o(1)t−γ.

Note that K 6 400π/R0, so it is bounded by an absolute constant. Furthermore, in view of
(3.22), we can estimate

ux+,r >
1

mt(B(x+, r))

∫
B(x+,r)\G+

δ

u+(t)(1− δ(t)) dmt

> u+(t)(1− δ(t))(1− Et[G+
δ (t)|B(x+(t), R0)]) > u+(t)(1− δ(t))

(
1− o(1)C(t)

tδ(t)

)
.

Hence,

u+(t)− ux+,r(t) . δ(t) +
o(1)C(t)

tδ(t)
.

The optimal bound is then achieved when δ(t) =
√

o(1)C(t)
t

. Recall that C(t) is either

uniform when τ > n, or C(t) = tβ(1−τ/n) if τ < n. Consequently, either δ(t) = o(1)t−1/2 or
δ(t) = o(1)t−γ, respectively. In either case, since γ 6 1

2
, we obtain δ(t) 6 o(1)t−γ.

A similar argument goes through for the bottom average. Thus, we end up with th desired
bound u+(t)− u−(t) . o(1)t−γ. �

4. Global well-posedness in 1D

In this section we will construct a more complete theory of one-dimensional topological
models:

(4.1)

{
ρt + (ρu)x = 0,

ut + uux = [Lφ, u](ρ), φ(x, y) = |x− y|−(1+α−τ) × d−τρ (x, y)
(t, x) ∈ R+×T.

What distinguished the 1D case is that classical geometric-based models using radial kernels
φ = |x− y|1+α, satisfy an extra conservation law:

(4.2) et + (ue)x = 0, e := ux + Lφρ.

The derivation of the conservative “e”-equation is straightforward with either smooth or
singular radial kernels, [14, 53]. It plays a key role in the regularity and hence unconditional
flocking of the 1D alignment with geometric-based communication, [14, 53, 55]. A priori,
there is no reason for (4.2) to hold in our case: the derivation of such law stumbles upon
the difficulty that the operator Lφ does not commute with derivatives. Nevertheless, it is
remarkable that the law (4.2) still survives for anisotropic topological kernels. To make our
analysis rigorous we need to develop calculus of the operator Lφ and collect several analytical
facts before we can proceed. This will be done in Section 4.1.

Once we justify (4.2), we can proceed in section 4.2 to the regularity of the 1D solution
along the lines of [53, 54]. Since the topological kernels lack translation invariance, we need
to revisit the question of propagation of regularity, section 4.4 and Hölder regularization of
the density on sections 4.5.1 and 4.5.3. Let us state the most complete global existence result
in 1D settings, which covers Theorem 1.7 as a particular case.
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Theorem 4.1. Let 0 < α < 2. Consider the 1D (τ, α)-model (4.1) subject to given initial
conditions (ρ0, u0) ∈ H3+α/2 ×H4, with non-vacuous density 0 < c0 < ρ0(x) < C0.

(i) Global existence. If either τ 6 α, or if τ > α and in addition the following
smallness condition holds,7

M τ
0

∣∣∣∣e0

ρ0

∣∣∣∣
∞
<
Rτ−α

0

τ − α
, e0 = u′0 + Lφρ0,

then there exists a global in time smooth solution (ρ, u) in the class

ρ ∈ L∞loc(R+;H3+α
2 ),

u ∈ L∞loc(R+;H4) ∩ L2
loc(R

+;H4+α
2 ).

(4.3)

(ii) Alignment. If τ > 1 or e0 = 0 then any smooth solution aligns, u(t)→ u∞. In the
case e0 = 0, this alignment comes with the rate

(4.4) |ρ(t)− ρ̄|∞ + |u(t)− u∞|∞ 6
o(1)√
t
, ρ̄ =

1

2π
M0, u∞ =

P0

M0

.

Remark 4.2. (Smooth solutions and alignment). If τ > α, then the additional smallness
assumption (i) is sufficient for a uniform upper bound, see Lemma 4.7, which fulfills the
assumption (3.15) of Theorem 3.2 and existence of smooth solution follows.
We note that the alignment for τ > 1 stated in case (ii) follows directly from theorem (3.2).
Indeed, the lower bound on the density (3.14) in this case requires the rate of 1/(1 + t)
which will be established for any regular solutions in Lemma 4.6. If e0 = 0 in case (ii) then
e(t, ·) ≡ 0, and (4.1) is reduced to

ρt + (ρu)x = 0,

ut =

∫
T
φ(x, y)(u(y)− u(x))ρ(y)dy.

Further, the structure of the density equation changes to a pure drift-diffusion, see (4.16),
ρt + uρx = ρLφ(ρ), which enforces the maximum principle: c0 < ρ(t, x) < C0. Hence,
Theorem 3.2 applies to give the claimed rate for u. We will postpone the discussion of
flocking till Section 4.6.

Remark 4.3. (Local existence). The local existence of solutions in Sobolev classes stated
in (4.3) follows along the lines of the result established in [53] based on the standard fixed
point argument. Additional details pertaining to the topological component will already be
a part of the main proof of Theorem 4.1 below. We therefore will omit the details.

The proof will be split into several stages. First, before we even embark into technicalities
of the argument, we develop necessary tools to work with the operator Lφ itself. It will
be done in the next section. Second, we establish a priori estimates on the density the
are necessary to sustain uniform parabolicity and conclude the alignment, see Section 4.3.
Third, we prove a propagation of regularity result, Proposition 4.8, which states that if
one can propagate some modulus of continuity of the density, then one can propagate any
higher order regularity for both u and ρ. Fourth, we show how to gain a Hölder modulus of
continuity from several sources. In the case 1 < α < 2 we reduce the problem to a known
Schauder estimate for fractional singular operators. For the case α = 1, we employ the

7 This is a scaling invariant condition, see Section 4.5.3



28 ROMAN SHVYDKOY AND EITAN TADMOR

DeGiorgi method along the lines of Caffarelli, Chan, and Vasseur work [9] with significant
upgrades related to the presence of drift, source, and asymmetry of the kernel involved. We
also treat the system as truly nonlinear, see also [27], and highlight scaling properties of the
system which become very important, see (4.52)-(4.53). In the case 0 < α < 1 we adopt
Silvestre’s result [56] which essentially works in our settings due to gained C1−α regularity
of the drift.

4.1. Leibnitz rules and regularization. We start with basic product formulas for the
derivative of Lφf provided f and ρ are smooth. First, let us observe that (2.16) in 1D case
takes a simpler form:

(4.5) ∂xdρ(x+ z, x) = (ρ(x+ z)− ρ(x)) sgn(z) = δzρ(x) sgn(z).

A formal computation with the use of (4.5) yields

(Lφf)′(x) = Lφ(f ′)(x) +

∫
∂dφ(dρ(x, y), x− y)(ρ(y)− ρ(x)) sgn(y − x)(f(y)− f(x)) dy.

The integral on the right hand side is again of the type Lφ′(f), where with some abuse of
notation we differentiated φ = φ(d) at d = dρ(t,x),

(4.6) φ′ = ∂dφ(dρ(x, y), x− y)(ρ(y)− ρ(x)) sgn(y − x).

The symmetric kernel φ′ is of the same order 1 + α. So, we can make sense of the integral
in the same way as we did for Lφ. Thus, the product formula we seek reads

(4.7) (Lφf)′ = Lφ(f ′) + Lφ′f.

Justification is straightforward. For any g ∈ C∞, we have

〈(Lφf)′, g〉 = −〈Lφf, g
′〉

=
1

2

∫
δzf(x)δzg

′(x)φ(dρ(x+ z, x), z) dx dz

= −1

2

∫
δzf

′(x)δzg(x)φ(dρ(x+ z, x), z) dx dz − 1

2

∫
δzf(x)δzg(x)ψ(x, z) dx dz

= 〈Lφ(f ′), g〉+ 〈Lφ′f, g〉.
Continuing in the same fashion we obtain

(4.8) (Lφf)′′ = Lφ(f ′′) + 2Lφ′f
′ + Lφ′′f,

where

(4.9) φ′′ = ∂ddφ(dρ(x, y), x−y)(ρ(y)−ρ(x))2 +∂dφ(dρ(x, y), x−y)(ρ′(y)−ρ′(x)) sgn(y−x).

Clearly, one obtains higher order Leibnitz rules in similar fashion provided ρ is regular
enough:

(4.10) (Lφf)(n) =
n∑
k=0

n!

k!(n− k)!
Lφ(k)f

(n−k).

We can now discuss a regularization property of the operator Lφ. In the classical case
when α1 = 0, we would have the natural gain of α derivatives: if Lφf ∈ Hs, then f ∈ Hs+α.
For the topological kernels this is not likely to be true. Instead, we can prove an α

2
-gain of

derivatives.

Lemma 4.4. Suppose f, ρ ∈ Hn, n = 0, 1, 2, . . . , and suppose Lφf ∈ Hn. Then f ∈ Hn+α
2 .
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Proof. Note that the case n = 0 is a simple consequene of Lemma 2.2. For n = 1, 2, . . . , we
have

|〈(Lφf)(n), f (n)〉| 6 |Lφf |Hn|f |Hn .

On the other hand, according to (4.10), when k = 0, the paring gives Hn+α/2-norm of f :

|f |2Hn . 〈Lφf
(n), f (n)〉 .

n∑
k=1

|〈Lφ(k)f
(n−k), f (n)〉|+ |Lφf |Hn|f |Hn .

Thus, it remains to estimate all the terms in the sum. Note that the highest order of
derivative of δzρ(x) in the kernel φ(k) is k− 1. So, if k 6 n− 1, then the highest order in the
entire sum is n − 1. Using that ρn−1 ∈ L∞, we can simply use the bound |φ(k)| . 1/|z|1+α

and estimate

|〈Lφ(k)f
(n−k), f (n)〉| . |f (n−k)|Hα/2|f (n)|Hα/2 . |f (n)|Hα/2 .

When k = n the only term that remains to estimate is the one containing the highest
derivative of the density:

I =

∫
δzρ

(n−1)(x)δzf(x)δzf
(n)(x)

sgn z

(dρ(x+ z, x))τ+1|z|1+α−τ dz dx

For n = 2, 3, ... we simply replace |δzf(x)| 6 |f ′|∞|z|, and estimate the rest by Cauchy-
Schwartz:

|I| 6 |f ′|∞|ρ|Hn−1+α/2|f |Hn+α/2 6 |ρ|Hn|f |Hn|f |Hn+α/2

For n = 1, we obtain

|I| 6
∫
|δzρ(x)|
|z|2

|δzf(x)|
|z|α−1

2

|δzf ′(x)|
|z| 1+α2

dz dx 6 |ρ|
W 4, 34
|f |

W 4, 14
|f |

H1+α2

6 |ρ|H1|f |H1|f |
H1+α2

,

where in the middle term we raised α to its highest value 2. This finishes the proof. �

4.2. An additional conservation law. The conservative “e”-equation (4.2) is a heart of
matter for the 1D regularity theory, along the lines of [53, 54, 55, 25]. We derive it using use
the product formula (4.7).

Lemma 4.5 (The conservation law of e). All topological (τ, α)-models obey the conser-
vation law

et + (ue)x = 0, e = ux + Lφρ, φ = ψ1(r)× ψ2(dρ)

Proof. Differentiating the velocity equation and using the product rule (4.7) we obtain

(4.11) u′t + u′u′ + uu′′ = Lφ((uρ)′)− u′Lφ(ρ)− u(Lφ(ρ))′ + Lφ′(uρ).

The finite difference in the integral representation of the last term is given by

u(y)ρ(y)− u(x)ρ(x) =

∫ y

x

(uρ)′(ζ)dζ = −
∫ y

x

ρt(ζ)dζ = −∂td(x, y) sgn(y − x).

Recall the formula for the distance dρ(x, y) =
∣∣∫ y
x
ρ(t, z) dz

∣∣, we obtain∫ y

x

ρt(ζ)dζ = ∂tdρ(x, y) sgn(y − x).
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Thus,

Lφ′(uρ) = −
∫
∂tdρ(x, y) sgn(y − x)φ′(x, y) dy.

Recalling the formula for φ′ (4.6) we obtain the relationship:

dρ(x, y) sgn(y − x)φ′(x, y) = ∂tφ(x, y)(ρ(y)− ρ(x)).

So, Lφ′(uρ) = −
∫
∂tφ(x, y)(ρ(y) − ρ(x)) dy. Putting it together with the Lφ((uρ)′) term

we obtain

Lφ((uρ)′) + Lφ′(uρ) = −∂tLφ(ρ).

Grouping together terms in (4.11) we arrive at

(u′ + Lφ(ρ))t + u′(u′ + Lφ(ρ)) + u(u′ + Lφ(ρ))′ = 0,

which is precisely the law (4.2). �

Paired with the mass equation we find that the ratio q = e/ρ satisfies the transport
equation

D

Dt
q = qt + uqx = 0.

Starting from sufficiently smooth initial condition with ρ0 away from vacuum we can assume
that |q(t)|∞ = |q0|∞ <∞. This gives a priori pointwise bound

(4.12) |e(t, x)| . ρ(t, x).

The argument can be bootstrapped to higher order derivatives (see [53, Sec. 2]) as follows.
The next order quantity q1 = qx/ρ is again transported

(4.13)
D

Dt
q1 = 0.

Solving for e′(·, t) we obtain another a priori pointwise bound

(4.14) |e′(t, x)| . |ρ′(t, x)|+ ρ(t, x).

Iterating we obtain

(4.15) |e(k)(t, x)| . |ρ(k)(t, x)|+ . . .+ ρ(t, x), k = 0, 1, 2 . . .

Using e allows one to rewrite the density equation in parabolic form:

(4.16) ρt + uρx + eρ = ρLφ(ρ)

Similarly, one can write the equation for the momentum m = ρu:

(4.17) mt + umx + em = ρLφ(m).

With a priori bounds on the density we establish in the next section, this allows view equa-
tions (4.16) – (4.17) as a fractional parabolic system with rough drift and bounded force,
which opens for possibility to apply recently developed tools of regularity theory for such
equations. This will be the subject of all subsequent discussion.
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4.3. Bounds on the density. Let us first make one trivial remark: if e0 = 0, then the
density equation becomes a pure drift-diffusion and hence by the maximum principle the
density remains within the confines of its initial bounds:

(4.18) min ρ0 6 ρ(t, x) 6 max ρ0.

In general, however, the e-quantity introduces a Riccati term that needs to be controlled by
the singularity of the kernel. First, we establish a bound from below.

Lemma 4.6. Let (ρ, u) be a smooth solution to (4.1) subject to initial density ρ0 away from
vacuum. Then there is a positive constant c = c(ρ0, e0) > 0 such that

(4.19) ρ(t, x) >
c

1 + t
, x ∈ T, t > 0.

Proof. Let us recall that the density equation can be rewritten as

(4.20) ρt + uρx = −qρ2 + ρLφ(ρ).

Let ρ− and x− be the minimum value of ρ and a point where such value is achieved.
Invoking Lemma 5.1 to justify the pointwise evaluation we obtain

d

dt
ρ− > −|q0|∞ρ2

− + ρ−

∫
T
φ(x−, y)(ρ(y, t)− ρ−) dy > −|q0|∞ρ2

−.

The lower bound (4.19) follows. �

The next lemma gives a range of conditions implying boundedness from above.

Lemma 4.7. Let (ρ, u) be a smooth solution of the (τ, α)-model (4.1), subject to initial
density ρ0 away from vacuum, 0 < c < ρ0 < C < ∞. Assume that either (i) τ 6 α, or else
if τ > α, that (ii) the initial condition satisfies

M τ
0 |q0|∞ <

Rτ−α
0

τ − α
, q0 =

e0

ρ0

.

Then the density is uniformly bounded in time:

(4.21) ρ(t, x) < C(M0, |q0|∞, φ), x ∈ T, t > 0,

provided

Proof. Evaluating the mass equation at extreme maximum we obtain

d

dt
ρ+ 6 |q0|∞ρ2

+ + ρ+

∫
|z|<R0

1

M τ
0 |z|1+α−τ (ρ(t, x+ + z)− ρ+) dz.

Consider the case α > τ . Let us further reduce the region of integration to ε < |z| < R0 for
any fixed ε > 0. By choosing ε small enough we can ensure that∫

ε<|z|<R0

1

|z|1+α−τ > 2|q0|∞M τ
0 .

Then for that fixed ε we have

d

dt
ρ+ 6 −|q0|∞ρ2

+ + Cρ+.
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The result follows. Otherwise, for any ε > 0 we obtain

d

dt
ρ+ 6 |q0|∞ρ2

+ + ρ+
1

M τ
0

∫
ε<|z|<R0

1

|z|1+α−τ (ρ(x+ + z, t)− ρ+) dz

6 |q0|∞ρ2
+ + ρ+

1

M τ
0

(
M0ε

−(1+α−τ) − ρ+
Rτ−α

0 − ετ−α

τ − α

)
Clearly, under the smallness assumption of the lemma, for ε > 0 small enough the quadratic
term gains a negative sign. The result follows. �

4.4. Propagation of regularity. Our goal in this section is to establish a general propa-
gation result that relies on existence of a modulus of continuity for the density.

Proposition 4.8. Consider a local solution to any (τ, α)-model, 0 < α < 2, τ > 0:

u ∈ L∞loc([0, T );H4) ∩ L2
loc([0, T );H4+α

2 )

e,Lφρ ∈ L∞loc([0, T );H3)

ρ ∈ L∞loc([0, T );H3+α
2 ).

Suppose there are constants c, C > 0 such that

(4.22) c 6 ρ(t, x) 6 C, (t, x) ∈ [0, T )× T.
Furthermore, suppose that ρ is uniformly continuous on T× [0, T ), i.e. there exits a modulus
of continuity ω : [0,∞)→ [0,∞), that is non-decreasing, bounded, and ω(0) = 0, such that

|ρ(t, x+ h)− ρ(t, x)| 6 ω(|h|)(4.23)

for any x, h ∈ T, t ∈ [0, T ]. Then the solution remains uniformly in the classes stated above
on [0, T ] and, hence, can be extended beyond T .

Proof. We argue along the lines of our proof of propagation of regularity in the case of
geometric singularity [53, 54]. The presence of topological kernel introduces additional com-
putations that rely of the calculus of Lφ developed in the previous parts of this section.

We have split the proof in seven steps. In steps 1–3 we establish control over first deriva-
tives under the assumption (4.23). So, the goal is to show that supt<T (|ρ′(t, ·)|∞ + |u′(t, ·)|∞) <
∞. Higher derivatives are estimated in steps 4–7.

Step 1: Control over ρ′. Let us differentiate (4.20):

(4.24) ∂tρ
′ + uρ′′ + u′ρ′ + e′ρ+ eρ′ = ρ′Lφρ+ ρLφρ

′ + ρLφ′ρ.

Using again u′ = e−Lφρ we rewrite

∂tρ
′ + uρ′′ + e′ρ+ 2eρ′ = 2ρ′Lφρ+ ρLφρ

′ + ρLφ′ρ.

Evaluating at the maximum of ρ′ and multiplying by ρ′ we obtain

(4.25) ∂t|ρ′|2 + e′ρρ′ + 2e|ρ′|2 = 2|ρ′|2Lφρ+ ρρ′Lφρ
′ + ρ′ρLφ′ρ.

In view of (4.12) and (4.14) we can bound

|e′ρρ′ + 2e|ρ′|2| 6 C(|ρ′|2 + |ρ′|).
Thus,

(4.26) ∂t|ρ′|2 = C(|ρ′|2 + |ρ′|) + 2|ρ′|2Lφρ+ ρρ′Lφρ
′ + ρ′ρLφ′ρ.
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Let us note that in view of Lemma 5.1 pointwise evaluation of all operators is justified. Due
to the bound from below on ρ, we estimate

(4.27) ρρ′Lφρ
′ > c1

∫
R

(ρ′(x+ z)− ρ′(x))ρ′(x+ z)

|z|1+α
h(z) dz > c2Dαρ

′(x).

where

Dαρ
′(x) =

∫
R

|ρ′(x)− ρ′(x+ z)|2

|z|1+α
h(z) dz.

According to [20], and complementing h to full unity, we obtain

(4.28) Dαρ
′(x) >

1

2
Dαρ

′(x) + C
|ρ′(x)|2+α

|ρ|α∞
− c|ρ′|22.

Because of the second term in (4.28), all the powers of ρ up to 2 +α are absorbed. The goal
now is to find bounds on all the terms remaining in the energy budget that are ε-multiples
of top power |ρ′|2+α

∞ . So, in particular at this stage we can rewrite (4.26) as

(4.29) ∂t|ρ′|2 = C + 2|ρ′|2Lφρ+ ρ′ρLφ′ρ−
1

2
Dαρ

′(x)− c|ρ′(x)|2+α.

We now carry out a relatively simple weakly singular case.

Step 1.1: The case 0 < α < 1. Let us estimate |ρ′|2Lφρ. To this end, we fix a small
parameter ε > 0 to be determined late. We then find a scale ` > 0 so that ω(`) < ε1+α. Note
that ` is independent of time. Next we consider another time-dependent scale r = ε

|ρ′|∞ . If

` > r, then we proceed as follows:

|Lφρ(x)| 6
∫
|z|<r
|ρ(x+ z)− ρ(x)|φ dz +

∫
r<|z|<`

|ρ(x+ z)− ρ(x)|φ dz

+

∫
|z|>`
|ρ(x+ z)− ρ(x)|φ dz

6 |ρ′|∞r1−α + ω(`)r−α + |ρ|∞`−α.

Hence, given all the choices of constants we have made,

|ρ′|2|Lφρ| . (ε1−α + ε)|ρ′|2+α + C(`).

For small ε the main term clearly gets absorbed into dissipation. If however ` < r, then

(4.30) |ρ′|∞ 6 ε/`

In this case we simply split the integral between |z| < 1 and |z| > 1, and find a bound

|ρ′|2|Lφρ| 6 C(`, ε),

which is uniform on [0, T ]. In either case, we are left with a constant C(`, ε).
It remains to estimate ρ′ρLφ′ρ. The nonlocal term takes form

Lφ′ρ = −α1p.v.

∫
(ρ(x+ z)− ρ(x))2 sgn z

dτ+1
ρ (x+ z, x)|z|1+α−τ

h(z) dz.

We proceed similar to the above. If r < `, then

|ρ′ρLφ′ρ| 6 |ρ′|3r1−α + |ρ′|ω2(`)r−1−α + |ρ′|C(`) 6 (ε1−α + ε1+α)|ρ′|2+α + |ρ′|C(`).



34 ROMAN SHVYDKOY AND EITAN TADMOR

By Young, the last term is absorbed, as well as the first two for small ε. The case ` < r is
handled as before with the advantage of time-independent bound (4.30). We arrive at

(4.31) ∂t|ρ′|2 6 c1 − c2Dαρ
′.

This finished the proof of control over ρ′.

Step 1.2: The case 1 6 α < 2. Here our choice of r and ` will be the same as above.
Moreover the case ` < r is straightforward due to (4.30). We proceed under the assumption
that r < `. We use decomposition (5.9) with further breakdown of the integral:

Lφρ(x) =

∫
|z|<r

(ρ(x+ z)− ρ(x)− ρ′(x)z)φ dz + ρ′(x)br(x)

+

∫
|z|>r

(ρ(x+ z)− ρ(x)) φ dz = I + ρ′(x)br(x) + J.

Using that

(4.32) |ρ(x+ z)− ρ(x)− ρ′(x)z| =
∣∣∣∣∫ z

0

(ρ′(x+ w)− ρ′(x)) dw

∣∣∣∣ 6√Dαρ′(x)|z|1+α
2 ,

we obtain |I| 6 r1−α/2
√

Dαρ′(x). Next, due to (5.10), |br(x)| 6 c|ρ′|∞r2−α. The J-term is
similar to the previous case, resulting in the bound

|J | 6 ω(`)r−α + |ρ|∞`−α.

Altogether we obtain

||ρ′|2Lφρ| 6 c1|ρ′|2∞r1−α/2
√

Dαρ′(x) + c2|ρ′|4∞r2−α + c3|ρ′|2∞(ω(`)r−α + `−α)

6
1

4
Dαρ

′(x) + c4|ρ′|4∞r2−α + c3|ρ′|2∞(ω(`)r−α + `−α)

6
1

4
Dαρ

′(x) + c4|ρ′|2+α
∞ (ε2−α + ε1+α) + c5|ρ′|2∞.

Clearly all the terms get absorbed leaving a uniform constant out.
For the next term ρ′ρLφ′ρ we have

−Lφ′ρ =

∫
(ρ(x+ z)− ρ(x))2 sgn z

dτ+1(x+ z, x)|z|1+α−τ
dz

=
1

2

∫
(ρ(x+ z)− ρ(x))2 − (ρ(x− z)− ρ(x))2

(dρ(x+ z, x))τ+1|z|1+α−τ sgn z dz

+
1

2

∫ (ρ(x− z)− ρ(x))2
(

(dρ(x+ z, x))τ+1 − (dρ(x− z, x))τ+1
)

(dρ(x+ z, x))τ+1(dρ(x− z, x))τ+1|z|1+α−τ dz =
1

2
(J1 + J2).

To estimate the first integral we compute

|(ρ(x+ z)−ρ(x))2 − (ρ(x− z)− ρ(x))2| = |ρ(x+ z) + ρ(x− z)− 2ρ(x)||ρ(x+ z)− ρ(x− z)|

6

∣∣∣∣∫ z

0

(ρ′(x+ w)− ρ′(x) + ρ′(x)− ρ′(x− w)) dw

∣∣∣∣ |ρ′|∞|z| 6√Dαρ′(x)|z|2+α/2|ρ′|∞.
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Hence, we obtain

J1 6 c1

∫
|z|<r

√
Dαρ′(x)|z|−α/2 dz +

∫
r<|z|<`

ω2(`)|z|−2−α dz + C(`)

6
√

Dαρ′(x)r1−α/2 + ω2(`)r−1−α + C(`).

(4.33)

Hence,

|ρ′||J1| 6 |ρ′|2
√

Dαρ′r
1−α/2 + |ρ′|(ω2(`)r−1−α + C(`))

6
1

4
Dαρ

′(x) + c|ρ′|4∞r2−α + |ρ′|(ω2(`)r−1−α + C(`)).

This finishes the computation as before. Finally, as to the J2-term, we utilize the same
estimates as in the proof of Lemma 5.1 to obtain

|(dρ(x+ z, x))τ+1 − (dρ(x− z, x))τ+1| 6 |ρ′|∞|z|τ+2.

So, we proceed with the usual splitting:

J2 6
∫
|z|<r
|ρ′|3 1

|z|α−1
dz +

∫
r<|z|<`

ω(`)2 1

|z|2+α
dz + C(`) 6 |ρ′|3r2−α + ω(`)2r−1−α + C(`).

|ρ′||J2| 6 |ρ′|4r2−α + |ρ′|(ω(`)2r−1−α + C(`)).

This finishes the bounds. Putting them together we obtain (4.31).

Step 2: Control over Lφρ. Before we embark into the second part, it is essential to
establish control over |Lφρ|∞. For the models with 0 < α < 1, this is straightforward from
|Lφρ|∞ . |ρ′|∞ and the established control over |ρ′|∞. For the case α > 1, we resort to
another energy-enstrophy estimate on ρ′′. The overall goal of this section will be to prove

Lφρ ∈ L2([0, T );L∞).

So, let us write the second derivative of density:

∂tρ
′′ + uρ′′′ + u′ρ′′ + e′′ρ+ 3e′ρ′ + 2eρ′′ =

2ρ′′Lφρ+ 3ρ′Lφ′ρ+ 3ρ′Lφρ
′ + 2ρLφ′ρ

′ + ρLφ′′ρ+ ρLφρ
′′.

(4.34)

Now, we use the test-function ρ′′/ρ. Via routine computation with the use of the density
equation, one can observe that〈

∂tρ
′′ + uρ′′′ + u′ρ′′,

ρ′′

ρ

〉
=

1

2
∂t

∫
1

ρ
|ρ′′|2 dx.

In view of the bounds on the density we note that
∫

1
ρ
|ρ′′|2 dx ∼ |ρ′′|22. So, it is sufficient to

bound the rest of the terms in terms of |ρ′′|22. Going back to the last three terms on the left
hand side, we use a priori control (4.15) and the established bound on the ρ′ to obtain〈

e′′ρ+ 3e′ρ′ + 2eρ′′,
ρ′′

ρ

〉
. 1 + |ρ′′|22.
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Here we used the pointwise bound |e′′| . |ρ′′|. We will have to deal with the right hand side
now. At this point we have (omitting all the terms that are already bounded)

∂t

∫
1

ρ
|ρ′′|2 dx . 1 + |ρ′′|22 +

∫
|ρ′′|2|Lφρ| dx+

∫
|ρ′′||Lφ′ρ| dx

+

∫
|ρ′′||Lφρ

′| dx+

∫
ρ′′Lφ′ρ

′ dx+

∫
ρ′′Lφ′′ρ dx+

∫
ρ′′Lφρ

′′ dx

= 1 + |ρ′′|22 + I1 + I2 + I3 + I4 + I5 + J.

(4.35)

Clearly, the last term J is dissipative:

J . −
∫

Dαρ
′′(x) dx−

∫
|ρ′′|2+α dx,

where in the latter we dropped 1
|ρ′|α∞

from inside the integral since this term is bounded from

below.
We now estimate I1. Let us fix an ε > 0 and use representation formula (5.9) with r = ε.

The drift term is bounded by ∼ ε2−α while the |z| > ε potion of the integral by |ρ′|∞ε1−α.
Since ε is fixed this produces only a term of the form Cε|ρ′′|22 out of I1. For the remaining
portion we have∣∣∣∣∫

|z|6ε
(δzρ(x)− ρ′(x)z)φ dz

∣∣∣∣ =

∣∣∣∣∫
|z|<ε

∫ z

0

ρ′′(x+ w)(z − w) dwφ dz

∣∣∣∣
6
∫
|z|<ε

1

|z|α

∫ z

0

|ρ′′(x+ w)| dw dz =

∫
|w|<ε

|ρ′′(x+ w)|
∫
|w|<|z|

1

|z|α
dz dw

=

∫
|w|<ε

|ρ′′(x+ w)||w|1−α dw

(4.36)

Note that the kernel |w|1−α is integrable. Using Minkowskii inequality, we finally obtain∣∣∣∣∫
|z|6ε

(δzρ(·)− ρ′(·)z)φ dz

∣∣∣∣
L

2+α
α

6
∫
|w|<ε

|ρ′′| 2+α
α
|w|1−α dw = |ρ′′| 2+α

α
ε2−α.

Continuing with the I1-term we obtain

|I1| 6 Cε|ρ′′|22 + ε2−α|ρ′′|22+α|ρ′′| 2+α
α
6 Cε|ρ′′|22 + ε2−α|ρ′′|32+α 6 C + Cε|ρ′′|22 + ε2−α|ρ′′|2+α

2+α,

where in the last steps we used that α > 1. This shows that the highest term is absorbed
into dissipation.

Moving on to I2, we reuse the previous estimates on Lφ′ρ which after replacing ρ′ with
constants simply reads |Lφ′ρ| 6

√
Dαρ′. Thus, |I2| 6 |ρ′′|22 + |ρ′|2

Hα/2 , and both terms are
absorbed. Next, in the I3-term the computation in the previous subsection implies that
Lφρ

′(x) is bounded by

Lφρ
′(x) = ((5.9), r = 1) 6 |ρ′′(x)|+

√
Dαρ′′(x).

Thus,

|I3| 6 Cε|ρ′′|22 + ε

∫
Dαρ

′′(x) dx,

which is under control with the dissipative term. Note that I4-term is similar since, once
again, the order of singularity of the kernel φ′ is the same due to obtained control over ρ′.
Lastly, the term I5 contains kernel ρ′′ which according to (4.9) consists of two parts, φ1 + φ2
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as listed in (4.9). The order of φ1 is again 1 +α, so this part it similar to I1. And finally, let
us observe that Lφ2ρ = Lφ′ρ

′. Hence this term is exactly equal to I3.
We thus have obtained the estimate

(4.37) ∂t

∫
1

ρ
|ρ′′|2 dx 6 C1 + C2|ρ′′|22 − c3|ρ′′|2Hα/2 ,

which implies that ρ′′ ∈ L∞L2 ∩ L2Hα/2 on the given time interval [0, T ]. By imbedding,
ρ′ ∈ C1/2 uniformly. Hence for α < 3

2
, the term Lφρ is bounded directly from (5.9). If,

however, α > 3/2, then of course ρ′′ ∈ L2L∞. This shows that Lφρ ∈ L2L∞ as well.

Step 3: Control over |u′|∞. Again the case 0 < α < 1 is straightforward from |Lφρ|∞ .
|ρ′|∞, and uniform bound on e, (4.12). For α > 1 we set out to make another round
of estimates. It is more economical to deal with the momentum equation (4.17) for this
purpose. Note that bounds on m′ and u′ are equivalent at this point.

So, we write

∂tm
′ + um′′ + u′m′ + e′m+ em′ = −ρ′Lφm− ρLφm

′ − ρLφ′m.

Evaluating at the maximum, replacing u′ = e − Lφρ, and using the already established
control over ρ′, we obtain, up to a constant

∂t|m′|2 6 C + |m′|2 + |m′|2|Lφρ|∞ + |m′||Lφm|+ |m′||Lφ′m| −Dαm
′.

Absorbing |m′|2 into the nonlinear lower bound on Dαm
′ we further obtain

∂t|m′|2 6 C + |m′|2|Lφρ|∞ + |m′||Lφm|+ |m′||Lφ′m| −
1

2
Dαm

′.

From the previous subsection, we know that |Lφρ|∞ is an integrable multiplier. So, it
presents no problems in application of Grönwall’s lemma. It remains to consider the remain-
ing two terms, which are similar due to the same singularity in the kernels φ and φ′. But as
is done several times previously, splitting the integral, this time with r = 1, we immediately
obtain

|m′||Lφm| 6 |m′|
√

Dαm′ + |m′| 6 εDαm
′ + |m′|2 + |m′|.

which is readily absorbed. We arrive at

∂t|m′|2 6 C + |m′|2f(t), f ∈ L2(0, T ),

and the desired result follows.

Step 4: Control over |u|H2 and |u|H3 . Let us note that at this stage we established
control over slopes and

e ∈ L∞([0, T );H2), ρ ∈ L∞([0, T );H2) ∩ L2([0, T );H2+α
2 ).

following from (4.37), and pointwise |e′′| . |ρ′′|. It is more than sufficient to establish control
over |u|H2 . It is also sufficient to establish control in u ∈ L∞H3 ∩ L2H3+α/2. We will not
show details of computations for this stage since those details are entirely similar to (and a
subcase of) what we will perform in the top regularity spaces. We thus assume that

e ∈ L∞H2, ρ ∈ L∞H2 ∩ L2H2+α
2 , u ∈ L∞H3 ∩ L2H3+α/2

and move on to the next stage.



38 ROMAN SHVYDKOY AND EITAN TADMOR

Step 5: Control over |ρ′′|∞. We note that this is an intermediate step necessary to
conclude the pointwise non-linear lower bound

(4.38) Dαρ
′′′(x) > c

|ρ′′′(x)|2+α

|ρ′′|∞
& |ρ′′′(x)|2+α

which will be used on the next stage. So, let us test (4.34) with ρ′′ evaluated at a point
of maximum. Given the quoted bounds available at this stage all the terms on the left are
bounded by C1 +C2|ρ′′|2∞. Replacing Lφρ on the right hand side in the first term with e−u′
we also find it bounded. So, given that ρ and ρ′ are also bounded it remains to estimate

J1 = ρ′′Lφ′ρ; J2 = ρ′′Lφρ
′; J3 = ρ′′Lφ′ρ

′; J4 = ρ′′Lφ′′ρ

with the help of dissipation term

ρ′′Lφρ
′′ . −Dαρ

′′(x)− |ρ′′(x)|2+α.

For J1 we recall the estimate from (4.33) and below with r = 1 so that |J1| 6 |ρ′′|
√

Dαρ′(x)+
|ρ′′| + C. However, trivially, |Dαρ

′(x)| 6 C|ρ′′|2 + C. Thus, |J1| 6 c1|ρ′′|2 + c2. As to J2 we
first invoke Lemma 5.1 to bound

|Lφρ
′(x)| 6 C|ρ′′(x)|+

∣∣∣∣∫ φ(x+ z, x)(ρ′(x+ z)− ρ′(x)− ρ′′(x)z) dz

∣∣∣∣ .
As before, |ρ′(x+ z)− ρ′(x)− ρ′′(x)z| 6 |z|1+α/2

√
Dαρ′′(x), hence, continuing,

6 C|ρ′′(x)|+
√

Dαρ′′(x)

∫
|z|−α/2 dz . |ρ′′(x)|+

√
Dαρ′′(x).

Thus, |J2| 6 Cε|ρ′′(x)|2 + εDαρ
′′(x), which is under control with dissipation.

Moving to J3, first clearly for 0 < α < 1, |Lφ′ρ
′| 6 C|ρ′′||ρ′| and we are done. For α > 1

we first estimate :

Lφ′ρ
′ =

∫
(δzρ

′(x)− ρ′′(x)z)δzρ(x)
sgn(z)

dτ+1
ρ (x+ z, x)|z|1+α−τ

dz

+ ρ′′(x)

∫
δzρ(x)

dτ+1
ρ (x+ z, x)|z|α−τ

dz 6 |ρ′|
√

Dαρ′′(x) + |ρ′′(x)||Lφ1ρ|,

where φ1 is exactly the (τ + 1, α)-kernel. Lemma 5.1 applies to yield |Lφ1ρ| 6 |ρ′′| + |ρ′|2.
This finishes estimate for J3. Lastly, J4 splits into further two terms according to (4.9). The
second part is exactly equal to Lφ′ρ

′, so it has been estimated already. And the first part
gives rise to the integral

J5 =

∫
(δzρ(x))3

dτ+2
ρ (x+ z, x)|z|1+α−τ

dz =

∫
(δzρ(x))2(δzρ(x)− ρ′(x)z)

dτ+2
ρ (x+ z, x)|z|1+α−τ

dz

+ ρ′(x)

∫
(δzρ(x))2 sgn z

dτ+2
ρ (x+ z, x)|z|α−τ

dz

the first being bounded as before by
√

Dαρ′(x) 6 |ρ′′|∞, while for the second the estimate
of (4.33) applies with τ replaced by τ + 1. This finishes all estimates.

Step 6: Control over |ρ|H3 , |e|H3 . The goal at this stage will be to upgrade the above
memberships to

(4.39) e ∈ L∞H3, ρ ∈ L∞H3 ∩ L2H3+α
2 .
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The computation here will be similar to that done for ρ′′, however different at various places.
First, in the top class we cannot use the point-wise bound |e′′′| . |ρ′′′| because initially e′′′

is no longer bounded. Second, we pick up many more terms from dissipation that require
more careful control.

Let us start with the following a priori bound

(4.40) |e′′′|2 6 C1|ρ′′′|2 + C2.

It goes by observing that the quantity

Q =
1

ρ

(
1

ρ

(
1

ρ

(
e

ρ

)′)′)′
satisfies the basic transport equation in weak form:

d

dt
Q+ uQx = 0.

Since the drift u is smooth at this stage, we conclude that

|Q(t)|2 6 |Q0|2 exp

{∫ t

0

|u′|∞ ds

}
6 C, t < T.

Unwrapping the derivatives in Q and using the already known bounds on lower order terms
we readily obtain (4.40).

Let us now focus on ρ′′′:

d

dt
ρ′′′ + uρ(4) + 3u′ρ′′′ + 3u′′ρ′′ + u′′′ρ′ + e′′′ρ+ 3e′′ρ′ + 3e′ρ′′ + eρ′′′

= ρ′′′Lφρ+ 3ρ′′(Lφρ)′ + 3ρ′(Lφρ)′′ + ρ(Lφρ)′′′.
(4.41)

Testing with 1
ρ
ρ′′′ we obtain〈

∂tρ
′′′ + uρ(4) + u′ρ′′′,

ρ′′

ρ

〉
=

1

2
∂t

∫
1

ρ
|ρ′′′|2 dx,

and in view of (4.39) and (4.40),〈
2u′ρ′′′ + 3u′′ρ′′ + u′′′ρ′ + e′′′ρ+ 3e′′ρ′ + 3e′ρ′′ + eρ′′′,

ρ′′

ρ

〉
6 C1 + C2|ρ′′′|22.

Replacing Lφ with e − u′ in the first three terms on the right hand side of (4.41) we can
again bound those similarly by C1 + C2|ρ′′′|22. We thus arrive at

(4.42)
d

dt

1

2
∂t

∫
1

ρ
|ρ′′′|2 dx 6 C1 + C2|ρ′′′|22 +

∫
ρ′′′(Lφρ)′′′ dx.

Let us expand according to (4.10):

(Lφρ)′′′ = Lφρ
′′′ + 3Lφ′ρ

′′ + 3Lφ′′ρ
′ + Lφ′′′ρ.

Clearly, due to (4.38),∫
ρ′′′Lφρ

′′′ dx . −
∫

Dαρ
′′′(x) dx 6 −1

2

∫
Dαρ

′′′(x) dx− c
∫
|ρ′′′(x)|2+α dx.
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The analysis of terms 〈ρ′′′,Lφ′ρ
′′〉 and 〈ρ′′′,Lφ′′ρ

′〉 is entirely the same as that of I4 and I5 of
(4.35), respectively, with replacement of ρ with ρ′. It remains to analyze I6 = 〈ρ′′′,Lφ′′′ρ〉.
Since the kernel φ′′′ is symmetric, we obtain

I6 =

∫
δzρ
′′′(x)δzρ(x)φ′′′(x+ z, x) dz dx.

Given the known bounds |ρ(j)|∞ < C, j = 0, 1, 2, all of the terms involved in representation

of φ′′′(x + z, x) are of the order 1
|z|1+α , except for

δzρ
′′(x) sgn z

(dρ(x+ z, x))τ+1|z|1+α−τ . However, since

|δzρ(x)| . |z|, by Cauchy-Schwartz,∣∣∣∣∫ δzρ
′′′(x)δzρ(x)

δzρ
′′(x) sgn z

(dρ(x+ z, x))τ+1|z|1+α−τ dz dx

∣∣∣∣
6

√∫
Dαρ′′′ dx

√∫
Dαρ′′ dx 6 ε

∫
Dαρ

′′′ dx+ Cεf(t),

where f(t) is an integrable function on [0, T ]. We arrive at

d

dt

1

2
∂t

∫
1

ρ
|ρ′′′|2 dx 6 C1f(t) + C2|ρ′′′|22 − |ρ′′′|2Hα/2 .

This finishes the desired result at this stage.

Step 7: Control over |u|H4 and |ρ|H3+α/2 . We now get the final estimate in top regularity
class for u, u ∈ L∞H4 ∩ L2H4+α/2. Let us note that since e ∈ H3 this would automatically
imply that Lφρ ∈ H3, and by Lemma 4.4 that ρ ∈ H3+α/2. We will use the u-equation
directly, as opposed to m-equation since the latter would inevitably require a bound on e(4)

which is not available. We thus differentiate the u-equation, and test with u(4):

(4.43)
1

2

d

dt
|u(4)|22 +

∫
(uu′)(4)u(4) dx =

∫
C

(4)
φ (ρ, u)u(4) dx.

For the term on the left hand side have, using the classical commutator estimate,∫
(uu′)(4)u(4) dx =

∫
[(uu′)(4) − uu(5)]u(4) dx+

∫
uu(5)u(4) dx

6 |(uu′)(4) − uu(5)|2|u(4)|2 −
1

2

∫
u′|u(4)|2 dx

6 C|u′|∞|u(4)|22.
The main bulk of the estimates will be performed on the right hand side. We expand

using the product rule:

C
(4)
φ (ρ, u) =

∑
k1+k2+k3=4

4!

k1!k2!k3!
Cφ(k1)(ρ

(k2), u(k3)).

We will use a short notation for triple products:

Tφ(f, g, h) =

∫
f(x, z)g(x, z)h(x, z)φ(x+ z, x) dz dx.

Also, denote

Ik1,k2,k3 :=
〈
Cφ(k1)(ρ

(k2), u(k3)), u(4)
〉
.
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Let us first consider the case k1 = 0. We thus have five terms at hand:

I0,0,4, I0,1,3, I0,2,2, I0,3,1, I0,4,0.

Clearly, I0,0,4 is dissipative. We have by symmetrization

I0,0,4 =
1

2
Tφ(ρ, δzu

(4), δzu
(4))+

1

2
Tφ(δzρ, δzu

(4), u(4)) 6 −c0

∫
Dαu

(4) dx+
1

2
Tφ(δzρ, δzu

(4), u(4)).

For the case 0 < α < 1 the second term is easy: the bound |δzρ| 6 c|z| desingularizes the
kernel, and hence, |Tφ(δzρ, δzu

(4), u(4))| 6 |u(4)|22. In the sequel, we will not make references
to the case 0 < α < 1 again and focus on more challenging range 1 6 α < 2. Thus, we have

Tφ(δzρ, δzu
(4), u(4)) = Tφ(δzρ− ρ′(x)z, δzu

(4), u(4)) + Tφ(ρ′(x)z, δzu
(4), u(4)).

By (4.32), and using that |Dαρ
′| 6 |ρ′′|∞ < C,

|Tφ(δzρ− ρ′(x)z, δzu
(4), u(4))| 6 C|u(4)|22.

In the second, we distribute power of z in the z-integral:

(4.44)

∣∣∣∣∫ zδzu
(4)φ dz

∣∣∣∣ 6 ∫ 1

|z|α−1
2

|δzu(4)(x)|
|z|α+1

2

dz 6 C
√

Dαu(4).

Thus,

Tφ(ρ′(x)z, δzu
(4), u(4)) 6 ε

∫
Dαu

(4) dx+ Cε|u(4)|22.

We thus obtain

I0,0,4 6 −c1

∫
Dαu

(4) dx+ C|u(4)|22.

To streamline our subsequent work, in the course of estimating the terms we note a few
recurring themes. Once used they will be reused subsequently without commenting. Any
quantity that is known to be bounded at this stage will be replaced by a constant C also
without commenting. So, let us consider the next term

I0,1,3 = Tφ(δzρ
′, δzu

′′′, u(4)) + Tφ(ρ′, δzu
′′′, δzu

(4))

6 |ρ′′|∞
〈√

Dαu′′′, u
(4)
〉

+ |ρ′|∞
〈√

Dαu′′′,
√

Dαu(4)
〉

6 Cε|u|2H3+α/2 + |u(4)|22 + ε|Dαu
(4)|1.

Since |u|2
H3+α/2 ∈ L1, the above estimate is sufficient for application of the Grönwall inequal-

ity. Next, for I0,2,2 we will not do symmetrization, instead, just add and subtract u(4)(y):

I0,2,2 =

∫
ρ′′(y)u(4)(y)Lφu

′′(y) dy + Tφ(ρ′′, δzu
′′, δzu

(4)).

We note that in view of (5.11) and (4.32) we obtain a bound

|Lφu
′′(y)| 6

√
Dαu′′′(y) + |u′′′(y)|.

Hence,

I0,2,2 6 |u(4)|22 + |u|2H3+α/2 + |u′′′|22 + ε|Dαu
(4)|1.

Next,

I0,3,1 =

∫
ρ′′′(x)Lφu

′(x)u(4)(x) dx+ Tφ(δzρ
′′′, δzu

′, δzu
(4)),
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noting that Lφu
′ ∈ L∞, and |δzu′| . |z| with (4.44) in mind,

I0,3,1 6 |ρ′′′|22 +

∫
Dαρ

′′′(x) dx+ |u(4)|22.

Finally,

I0,4,0 =

∫
ρ(4)(x+ z)δzu(x)u(4)(x)φ dz dx.

Writing ρ(4)(x+ z) = (δzρ
′′′(x))′z and integrating by parts, we obtain

I0,4,0 = −
∫
δzρ
′′′(x)u′(x+z)u(4)(x)φ dz dx−

∫
δzρ
′′′(x)δzu(x)u(4)(x)[φdρ(x+z) sgn z+φz] dz dx.

In the first integral after symmetrization we obtain

Tφ(δzρ
′′′, δzu

′, u(4))+Tφ(δzρ
′′′, u′, δzu

(4)) 6 |u′′|∞
〈√

Dαρ′′′, u
(4)
〉

+|u′|∞
〈√

Dαρ′′′,
√

Dαu(4)
〉
.

This leads to the desired bound. In the second integral, also symmetrizing we obtain∫
δzρ
′′′(x)δzu(x)δzu

(4)(x)[φdρ(x+ z) sgn z + φz] dz dx

+

∫
δzρ
′′′(x)δzu(x)u(4)(x)φdδzρ(x) sgn z dz dx

6 |u′|∞
〈√

Dαρ′′′,
√

Dαu(4)
〉

+ |u′|∞|ρ′|∞
〈√

Dαρ′′′, u
(4)
〉
.

This finishes our first installment of estimates.
Next we focus on terms I1,0,3, I1,1,2, I1,2,1, I1,3,0. Note that the kernel φr is of the same

order 1/|z|1+α. So, performing similar manipulations as before and using uniform bounds
on |ρ′, ρ′′, u′, u′′|∞ throughout we obtain

2I1,0,3 = Tφ′(δzρ, δzu
′′′, u(4)) + Tφ′(ρ, δzu

′′′, δzu
(4)) .

〈√
Dαu′′′, u

(4)
〉

+
〈√

Dαu′′′,
√

Dαu(4)
〉

2I1,1,2 = Tφ′(δzρ
′, δzu

′′, u(4)) + Tφ′(ρ
′, δzu

′′, δzu
(4)) .

〈√
Dαu′′, u

(4)
〉

+
〈√

Dαu′′,
√

Dαu(4)
〉

2I1,2,1 = Tφ′(δzρ
′′, δzu

′, u(4)) + Tφ′(ρ
′′, δzu

′, δzu
(4)) .

〈√
Dαρ′′, u

(4)
〉

+
〈√

Dαu′,
√

Dαu(4)
〉

2I1,3,0 = Tφ′(δzρ
′′′, δzu, u

(4)) + Tφ′(ρ
′′′, δzu, δzu

(4)) .
〈√

Dαρ′′′, u
(4)
〉

+
〈
ρ′′′,
√

Dαu(4)
〉
.

Note that all the terms on the right hand side are bounded by

ε|Dαu
(4)|1 + |u(4)|22 + f(t), f ∈ L1([0, T )).

Next, the kernel ρ′′ is still bounded by 1/|z|1+α due to |ρ′′|∞ < C. Yet, fewer derivatives fall
onto ρ and u inside I2,k,p , k + p = 2. We therefore skip these estimates as they repeat the
previous. As to I3,k,p , k + p = 1, let us expand the kernel:

φ′′′ = c1
(δzρ(x))3 sgn z

dτ+3
ρ (x+ z, x)|z|1+α−τ

+ c2
δzρ(x)δzρ

′(x)

dτ+2
ρ (x+ z, x)|z|1+α−τ

+ c3
δzρ
′′(x) sgn z

dτ+1
ρ (x+ z, x)|z|1+α−τ

.

It is clear that the first two parts are bounded by 1/|z|1+α, and hence, the estimates for
those terms follow as before. For the remaining part, after symmetrization we obtain∫

δzρ
′′(x)δzρ

(k)(x)δzu
(p)u(4) sgn z

(dρ(x+ z, x))τ+1|z|1+α−τ dz dx+

∫
δzρ
′′(x)ρ(k)(x)δzu

(p)δzu
(4) sgn z

dτ+1
ρ (x+ z, x)|z|1+α−τ

dz dx
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Using that |δzρ(k)(x)δzu
(p)| 6 C|z|2 in the first term, we obtain the bound by 〈

√
Dαρ′′, u

(4)〉.
In the second we use |ρ(k)(x)δzu

(p)| 6 C|z| and hence bound by 〈
√

Dαρ′′,
√

Dαu(4)〉.
Lastly, in the term I4,0,0 the kernel reads

φ(4) = c1
(δzρ(x))4

(dρ(x+ z, x))τ+4|z|1+α−τ + c2
(δzρ(x))2δzρ

′(x) sgn z

(dρ(x+ z, x))τ+3|z|1+α−τ + c3
δzρ
′′(x)δzρ(x) + (δzρ

′(x))2

(dρ(x+ z, x))τ+2|z|1+α−τ

+ c4
δzρ
′′′(x) sgn z

(dρ(x+ z, x))τ+1|z|1+α−τ .

For the first three terms we argue exactly as before. For the last we have after symmetrization∫
δzρ
′′′(x)δzρ(x)δzu(x)u(4)(x) sgn z

dτ+1(x+ z, x)|z|1+α−τ
dz dx+

∫
δzρ
′′′(x)ρ(x)δzu(x)δzu

(4)(x) sgn z

(dρ(x+ z, x))τ+1|z|1+α−τ dz dx

6
〈√

Dαρ′′′, u
(4)
〉

+
〈√

Dαρ′′′,
√

Dαu(4)
〉
.

This finishes the proof. �

4.5. Hölder regularization of the density. In this section we focus on obtaining Hölder
regularity of the density by a various fractional techniques depending on the range of α.
Combined with Proposition 4.8 we immediately obtain global existence and conclude Theo-
rem 4.1.

4.5.1. Case 1 < α < 2 via Schauder. In this particular case the regularization will follow
from a kinematic argument based on the Schauder estimates as in [10, 36]. So, we start by
rewriting the relation between ρ, u, and e as follows

(4.45) ∂−1
x Lφρ = ∂−1

x e− u ∈ L∞.
In the purely metric case, τ = 0, this of course implies ρ ∈ C1−α immediately. For the
topological models the conclusion is not so straightforward, and in fact may not even be true
up to regularity 1− α.

First let us make an observation that Lφρ = ∂x(Fρ), where

Fρ(x) = − 1

τ − 1

∫
sgn(z)

(dρ(x+ z, x))τ−1|z|α−τ+1
h(z) dz

if τ 6= 1, and

Fρ(x) =

∫
sgn(z) ln dρ(x+ z, x)

|z|α
h(z) dz,

if τ = 1. Next, by symmetrization if τ 6= 1,

Fρ(x) = − 1

2(τ − 1)

∫
(dρ(x+ z, x))τ−1 − (dρ(x− z, x))τ−1

(dρ(x+ z, x))τ−1(dρ(x− z, x))τ−1|z|1+α−τ sgn(z)h(z) dz,

and correspondingly for τ = 1,

Fρ(x) =
1

2

∫
ln dρ(x+ z, x)− ln dρ(x− z, x)

|z|α
sgn(z)h(z) dz,

Now we use the expansion

(d(x+ z))τ−1 − (dρ(x− z))τ−1

= (τ − 1)[(dρ(x+ z))− dρ(x− z)]

∫ 1

0

[θdρ(x+ z, x) + (1− θ)dρ(x− z, x)]τ−2 dθ,
(4.46)



44 ROMAN SHVYDKOY AND EITAN TADMOR

and correspondingly, for τ = 1,

ln dρ(x+ z, x)− ln dρ(x− z, x)

= [dρ(x+ z, x)− dρ(x− z, x)]

∫ 1

0

dθ

θdρ(x+ z, x) + (1− θ)dρ(x− z, x)
.

Next,

[dρ(x+ z, x)− dρ(x− z, x)] sgn(z) =

∫ x+z

x

ρ(y) dy +

∫ x−z

x

ρ(y) dy =

∫ z

−z
ρ(x+ w) sgnw dw.

We can now subtract the total mass from the density without changing the result. However,
the function ρ −M0 is a mean-zero function. Hence, ρ −M0 = f ′, for some f . Continuing
we obtain

[dρ(x+ z, x)− dρ(x− z, x)] sgn(z) =

∫ z

−z
f ′(x+w) sgn(w) dw = f(x+ z) + f(x− z)− 2f(x),

which is the second order finite difference of f . We thus obtain

Fρ(x) =

∫
[f(x+ z) + f(x− z)− 2f(x)]K(x, z, t) dz,

where the kernel K(x, z, t) is given by

K(x, z, t) = (τ − 1)
h(z)

∫ 1

0
[θdρ(x+ z, x) + (1− θ)dρ(x− z, x)]τ−2 dθ

(d(x+ z, x))τ−1(d(x− z, x))τ−1|z|1+α−τ

when τ 6= 1, and

K(x, z, t) =
h(z)

|z|α

∫ 1

0

dθ

θdρ(x+ z, x) + (1− θ)dρ(x− z, x)
,

when τ = 1. For all τ > 0 the kernel satisfies the following four conditions:

(i)
Λ−1

|z|1+α
χ[0,R0](z) 6 K(x, z, t) 6

Λ

|z|1+α
χ[0,2R0](z) for some Λ > 0;

(ii) K(x,−z, t) = K(x, z, t);
(iii) |z|2+α|K(x+ h, z, t)−K(x, z, t)| 6 C|h|;
(iv) |∂z(|z|1+αK(x, z, t))| 6 C|z|−1.

Here the constants Λ, C > 0 depend only on the density itself and not its derivatives. Indeed,
(i) and (ii) are trivial. As to (iv), (we focus on τ 6= 1 case only, and we omit adimensional
constants) we have

(4.47) |z|1+αK(x, z, t) = h(z)
|z|τ

∫ 1

0
[θdρ(x+ z, x) + (1− θ)dρ(x− z, x)]τ−2 dθ

(dρ(x+ z, x))τ−1dρ(x− z, x))τ−1

Given that dρ(x+ z, x) ∼ |z|, it is clear that this expression along is uniformly bounded by
a constant. Hence, so it will remain if ∂z falls on h. The bound gains |z|−1 order when ∂z
falls on |z|τ . Next, observe that

∂zdρ(x± z, x) = ρ(x± z) sgn(z),

which is a uniformly bounded quantity. So, any derivative that falls on the distance inside
the expression (4.47) reduces the power of that term by 1, while the rest remains uniformly
bounded.
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To verify (iii) we can even prove a stronger inequality

|z|2+α|∂xK(x, z, t)| 6 C.

Indeed, in this case we recall (4.5) which implies that ∂xdρ(x ± z, x) remains uniformly
bounded. So, we have

|z|2+α∂xK(x, z, t) = h(z)|z|1+τ∂x

(∫ 1

0
[θdρ(x+ z, x) + (1− θ)dρ(x− z, x)]τ−2 dθ

(dρ(x+ z, x))τ−1(dρ(x− z, x))τ−1

)
.

In view of the above observation, the order of the partial of the entire expression in paren-
thesis is |z|−1−τ . This finishes the verification.

So, the initial relation (4.45) can be stated now as a fractional elliptic problem:

(4.48)

∫
[f(x+ z) + f(x− z)− 2f(x)]K(x, z, t) dz = g(x) ∈ L∞.

Under the assumptions (i) – (iv), it is known, see for example [10, 36], that any bounded
solution f to (4.48) satisfies f ∈ C1+γ for some positive γ > 0. This readily implies ρ ∈ Cγ

and concludes the argument.

4.5.2. Case 0 < α < 1 via Silvestre. The Hölder regularization result obtained in [56]
for forced drift-diffusion equations with pure fractional Laplacian, as note by the author,
applied to more general kernels, even in z: K(x, z, t) = K(x,−z, t). This condition, however
is necessary only for the range α > 1 to justify pointwise evaluation of the integral on smooth
function. For 0 < α < 1, such condition is not required and the proof goes through as is,
except for one point to be elaborated below. Another necessary condition is regularity of
the drift u ∈ C1−α.

Let us start with one specific point at the proof where more regularity of the kernel is
required. In the proof of the diminish of oscillation lemma, Lemma 3.1, namely in the
construction of the barrier, the author makes use of the fact that the application (−∆)α/2η
is a continuous function for smooth cut-off function η. More specifically, it is needed that
for values 0 6 η(x) 6 β small enough, (−∆)α/2η(x) 6 0. This certainly follows from the fact
that if η(x) = 0, then (−∆)α/2η(x) < 0. The value of β enters into the size of diminishing
amplitude of the solution, propagates through the proof, and enters in the penultimate
Hölder exponent. Hence, it must not depend on any parameter that deteriorates in time. In
general, β depends on some modulus of continuity of the kernel away from the singularity.
In our case, the kernel in the density equation is given by

K(x, z, t) = ρ(x)φ(x+ z, x),

and certainly such modulus depends on one of ρ, the very quantity we are trying to control.
However, since ρ(x) appears on the outside, we have LKρ = ρLφρ, and consequently, the
sign of LKρ is controlled only by the operator Lφρ. The kernel φ(x + z, x) does possess a
Lipschitz modulus, clearly, since d(x+z, x) is Lipschitz in x uniformly in time (with constant
depending only on |ρ|∞, which we control uniformly on a given time interval).

Second, we obtain regularity u ∈ C1−α, necessary to apply [56]. For this we use the
representation (4.45): u = ∂−1

x e − Fρ. Since ∂−1
x e ∈ W 1,∞, it remains to check that

Fρ ∈ C1−α. The verification again goes via an optimization over cut-off scale argument.
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Let τ 6= 1. Then, omitting constants,

Fρ(x+ h)−Fρ(x) =

∫
|z|>h

dρ(x+ h+ z, x+ h))τ−1 − dρ(x+ z, x))τ−1

dρ(x+ h+ z, x+ h))τ−1dρ(x+ z, x))τ−1

sgn(z)h(z)

|z|α−τ+1
dz

+

∫
|z|6h

(
1

(dρ(x+ h+ z, x+ h))τ−1
− 1

(dρ(x+ z, x))τ−1

)
sgn(z)

|z|α−τ+1
h(z) dz

In the latter integral we simply use the order of singularity |z|−α, which implies bound
by |h|1−α, as needed. In the first, we use Taylor formula (4.46) which yields a bound by
|h|/|z|1+α, with a uniform constant depending only on (4.22). This results again in |h|1−α,
as needed. This finishes the proof.

4.5.3. Case α = 1 via De Giorgi. In this section we present a regularization result for the
case α = 1. We state our result more precisely in the following proposition.

Proposition 4.9. Consider the case α = 1. Assume the density is uniformly bounded (4.22).

Then there exists a γ > 0 such that [ρ]γ 6
C

tγ
for all t ∈ (0, T ]. Here C depends on the bounds

on the density on [0, T ].

Let us make some preliminary remarks. Our proof is based on blending our model into
the settings of Caffarelli, Chan, Vasseur work [9] which adopts the method of De Giorgi to
non-local equation with symmetric kernels. We note however that the result of [9] is not
directly applicable to our model due to the presence of drift and force in the density equation,
and in addition we lack symmetry of the kernel. The forced case was considered in a similar
situation in Golse et al [27], where the control over the force is achieved via pre-scaling of
the equation. We will use a similar argumentation here as well. We proceed in five steps.

Step 1: Symmetric form of the density equation. Let us recall the density equation
in parabolic form:

(4.49) ρt + uρx = ρLφρ− eρ.
To get rid of the ρ prefactor we will perform the following procedure: divide (4.49) by ρ and
write evolution equation for the new variable w = ln ρ,

wt + uwx = Lφe
w − e.

Using that

ew(y) − ew(x) = (w(y)− w(x))

∫ 1

0

ρ(y)θρ(x)1−θ dθ,

we further rewrite the equation as

(4.50) wt + uwx = LKw − e.
where

K(x, y, t) = φ(x, y)

∫ 1

0

ρ(y)θρ(x)1−θ dθ

In view of the bounds on the density, the new kernel satisfies

(4.51)
1

Λ|x− y|1+α
χ|x−y|<R0 6 K(x, y) 6

Λ

|x− y|1+α
χ|x−y|<2R0 ,

and now is fully symmetric
K(x, y, t) = K(y, x, t).
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Clearly, Hölder continuity of w is equivalent to that of ρ, so we will work with (4.50) instead.
In what follows we treat the term −e as a passive source. However we cannot treat u

similarly since the derivative ux that will come up in the truncated energy inequality will
have to be recycled back through its connection with e. We therefore first discuss scaling
properties of the system.

Step 2: Rescaling. Let us adopt the point of view that our solution (u, ρ) is defined
periodically on the real line R. Elementary computation shows that if (u, ρ) is a solution
and R > 0, then the new pair

(4.52) uR = u

(
t0 +

t

Rα
, x0 +

x

R

)
, ρR = ρ

(
t0 +

t

Rα
, x0 +

x

R

)
satisfies the rescaled system

(4.53)


∂tρR +R1−α(ρRuR)x = 0,

∂tuR +R1−αuRu
′
R =

∫
R
ρR(y)(uR(y)− uR(x))φR(x, y) dy,

where the new kernel is given by

φR(x, y, t) =
1

R1+α
φ

(
x0 +

x

R
, x0 +

y

R
, t0 +

t

Rα

)
.

Note that for a given bound on the density c < ρ < C on a given time interval I, the new
kernel still satisfies

1

Λ|x− y|1+α
χ|x−y|6R0R 6 φR(x, y) 6

Λ

|x− y|1+α
χ|x−y|<2R0R,

on time interval Rα(I − t0), and the constant Λ is independent of R. Thus, if R > 1, the
bound from below holds on a wider space and time intervals. The corresponding e-quantity
rescales to

eR = R1−αu′R + LφRρR =
1

Rα
e

(
t0 +

t

Rα
, x0 +

x

R

)
,

and satisfies
∂teR +R1−α(uReR)x = 0.

Hence, eR/ρR is transported and as a consequence we obtain an priori bound

(4.54) |eR| .
1

Rα
ρR .

1

Rα
.

The rescaled density equation becomes

∂tρR +R1−αuRρ
′
R + eRρR = ρRLφRρR.

The corresponding w-equation reads

∂twR +R1−αuRw
′
R = LKRw − eR,

where the kernel KR satisfies the same bound (4.51) for all R > 1.
So, it is clear that the drift remains under control for α > 1, and is scaling invariant in

the case α = 1.

Step 3: First De Giorgi lemma. We return to the symmetrized version of the density
equation (4.50), where the only extra term the prevents us to directly apply [9] is the drift.
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Since, in addition the drift is not div-free and non-linearly depends upon ρ we will take extra
care of keeping protocol of relation between w and u after re-scalings.

First, we start by noting that it suffices to work on time interval [−3, 0] and prove uniform
Hölder continuity on [−1, 0]. Second, in view of (4.54) if necessary we can rescale the equation
by a large R > 1 and assume without loss of generality that |e|L∞(R×[−3,0)) = ε0 < 1, where
ε0 will be determined at a later stage and will in fact depend only on Λ.

The argument of [9] uses rescaling of the form ω = wR
C1

+ C2, where R > 1, and |C1| 6
C0 = max{1, |w|∞}, and w is the original solution. Let us note that the new quantity ω
satisfies

ωt + uRωx = LKRω + fR,C1 ,

|fR,C1|∞ 6
ε0

RC1

.
(4.55)

To keep control over the source we therefore impose the following assumption on all rescalings

(4.56) RC1 > 1.

We will now derive a truncated energy inequality for ω.
Let ψ be a Lipschitz function on R. We always assume that our Lipschitz functions have

slopes bounded by a universal constant. Testing (4.55) with (ω − ψ)+ we obtain

1

2

d

dt

∫
R
(ω − ψ)2

+ dx− 1

2

∫
(uR)x(ω − ψ)2

+ dx− 1

2

∫
uRψx(ω − ψ)+ dx

= −BR(ω, (ω − ψ)+) +

∫
fR,C1(ω − ψ)+ dx,

where

BR(h, g) =
1

2

∫
KR(x, y)(h(y)− h(x))(g(y)− g(x)) dy dx.

Continuing we obtain

(uR)x = eR −LφRρR = eR −LKRwR = eR − C1LKRω.

We also note that in view of our assumptions and the maximum principle we have a scaling
invariant bound |uRψx| 6 C. So, as long as in addition RC1 > 1, we obtain

1

2

d

dt

∫
R
(ω−ψ)2

+ dx+BR(ω, (ω−ψ)+) 6
C1

2
BR(ω, (ω−ψ)2

+) +C(|(ω−ψ)+|1 + |(ω−ψ)+|22).

Note that the B-term on the right hand side is cubic, while on the left hand side it is
quadratic. This will help hide the cubic term with the help of the following smallness
assumption:

(4.57) |(ω − ψ)+|∞ 6
1

2C0

.

Under this assumption we have

BR(ω, (ω − ψ)+)− C1

2
BR(ω, (ω − ψ)2

+) = BR,ω(ω, (ω − ψ)+),

where BR,ω is the bilinear form associated with the kernel

KR,ω(x, y) = KR(x, y)

[
1− C1

2
((ω − ψ)+(x) + (ω − ψ)+(y))

]
,
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which under (4.57) satisfies similar bounds as the original kernel and is symmetric. Contin-
uing with the energy inequality, we write ω − ψ = (ω − ψ)+ − (ω − ψ)− and obtain

BR,ω(ω, (ω − ψ)+) = BR,ω((ω − ψ)+, (ω − ψ)+)−BR,ω((ω − ψ)−, (ω − ψ)+)

+BR,ω(ψ, (ω − ψ)+).

The first is the main dissipative term for which we have a coercive bound

BR,ω((ω − ψ)+, (ω − ψ)+) > cΛ,C0|(ω − ψ)+|2H1/2 − |(ω − ψ)+|22.
For the second we have after cancellations

−BR,ω((ω − ψ)−, (ω − ψ)+) = 2

∫
KR,ω(x, y)(ω − ψ)−(y)(ω − ψ)+(z) dy dz := P

which is positive and can be dismissed for the application of the First DeGiorgi Lemma.
Finally, as in [9] we obtain

|BR,ω(ψ, (ω − ψ)+)| 6 1

2
BR((ω − ψ)+, (ω − ψ)+) + |(ω − ψ)+|1 + |{ω − ψ > 0}|.

We thus have proved the following energy bound under (4.57) and for any rescaled solution
with RC1 > 1:

d

dt

∫
R
(ω − ψ)2

+ dx+ |(ω − ψ)+|2H1/2 . |(ω − ψ)+|22 + |(ω − ψ)+|1 + |{ω − ψ > 0}|.

We now recap the First DeGiorgi Lemma: there exists δ > 0 and θ ∈ (0, 1) such that any
solution ω to (4.55) satisfying

ω(t, x) 6 1 + (|x|1/4 − 1)+ on R× [−2, 0],

and

|{ω > 0} ∩ (B2 × [−2, 0])| 6 δ,

must have a bound

ω(t, x) 6 1− θ.
The proof proceeds as in [9] with extra care given for (4.57). We consider Lipschitz function

ψLk(x) = 1− θ − θ

2k
+ (|x|1/2 − 1)+.

For θ small enough it is clear that (ω−ψLk)+ can be made as small as we wish for all k ∈ N,
in particular satisfying (4.57). With θ fixed we can then apply the energy inequality for all
terms (ω − ψLk)+, and the argument of [9] proceeds.

Step 4: The second De Giorgi lemma. In the Second DeGiorgi Lemma the energy
bound is used in a somewhat different way. Here the presence of the drift term requires
extra attention as well as condition (4.57). We recall the lemma first. For a λ < 1/3 we

define ψλ(x) = ((|x| − 1
λ4

)
1/4
+ − 1)+. Let also F be non-increasing with F = 1 on B1 and

F = 0 outside B2. Define

φj = 1 + ψλ − λjF, j = 0, 1, 2.

The lemma claims that there exist µ, λ, γ > 0 depending only on Λ such that if

ω(t, x) < 1 + ψλ(x) on R× [−3, 0],
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and

|{ω < φ0} ∩B1 × (−3,−2)| > µ,

|{ω > φ2} ∩ R× (−2, 0)| > δ,

then necessarily

|{φ0 < ω < φ2} ∩ R× (−3, 0)| > γ.

So, if the function has substantial subzero presence and later over 1 − λ2 presence then it
has to leave some appreciable mass in between. The proof goes by application of the energy
inequality to (ω − φ1)+. However, (ω − φ1)+ 6 λ pointwise. Hence, to satisfy (4.57) it is
it sufficient to pick λ < 1/2C0, among further restrictions which come subsequently in the
course of the proof. Thus, we have

d

dt

∫
R
(ω − φ1)2

+ dx+BR,ω((ω − φ1)+, (ω − φ1)+) + P = −BR,ω(φ1, (ω − φ1)+)

+

∫ (
1

2
uR(φ1)x + fR,C1

)
(ω − φ1)+ dx.

All the terms are exactly the same as in [9] except the last one. To bound the last term
we note that (ω − φ1)+ is supported on B2, where φ1 = 1 + λF , hence |(φ1)x|L∞(B2) 6 Cλ.
Furthermore, as noted above, (ω − φ1)+ 6 λ. Hence,∣∣∣∣12

∫
uR(φ1)x(ω − φ1)+ dx

∣∣∣∣ 6 Cλ2.

As to the source term, we obtain the same bound provided ε0 < λ. The resulting bound
repeats another estimate on the term BR,ω(φ1, (ω − φ1)+), and hence, blends with the rest
of Section 4 in [9].

The rest of the proof makes no further direct use of the energy inequality and thus proceeds
ad verbatim. The penultimate constant λ ends up being dependent only on Λ and C0 which
are scaling invariant.

Step 5: Diminishing oscillation and Cγ regularity. The first and second lemmas are
not being used to prove that any solution with controlled tails on [−3, 0]× R,

−1− ψε,λ 6 w 6 1 + ψε,λ,

where

ψε,λ(x) =

{
0 , if |x| < λ−4

[(|x| − λ−4)ε − 1]+ , if |x| > λ−4

satisfies

sup
[−1,0]×B1

w − inf
[−1,0]×B1

w < 2− λ∗,

for some λ∗ > 0. The proof goes by application of shift-amplitude rescalings of the form

wk+1 =
1

λ2
(wk − (1− λ2)) =

1

λ2k
w + Ck.

For our sourced equation this is the worst kind of rescaling since it doesn’t come with a
compensated space-time stretching. However, in the argument the number of iterations is
limited to k0 = |[−3, 0]×B3|/γ, and hence depends only on Λ. We can pre-scale the equation
in the beginning using R0 > 0 so large that ε0 = |fR0|∞ < λ2k0C0 6 λ2k0 . Hence, on each
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step of the iteration we have |fk| < λ, fulfilling the requirement of the previous Lemma
automatically.

The final iteration consists on zooming and shifting process:

w1 = w/|w|∞,

wk+1 =
1

1− λ∗/4
((wk)R − w̄k),

where w̄k is the average over [−1, 0]×B1. On the first step we still have the bound |f1| < λ2k0 .
Subsequently, among other restrictions put on R in [9] we set in addition R(1− λ∗/4) > 1,
which preserves the bound |f | < ε0 for all steps. This finishes the proof.

4.6. Flocking to a uniform state when e = 0. In the case if e = 0 we once again take
advantage of the density equation (4.49). Note that the equation has a structure similar
to the u-equation while the density remains uniformly bounded from above and below, see
(4.18). Moreover, testing with ρ and using that ux = −Lφρ, we obtain the energy equality:

d

dt
|ρ|22 =

∫
|ρ|2Lφρ dx.

Symmetrizing we obtain∫
|ρ|2Lφρ dx = −1

2

∫
φ(x, y)(ρ(x) + ρ(y))(ρ(x)− ρ(y))2 dx dy.

Since the pre-factor (ρ(x) + ρ(y)) is uniformly bounded from above and below this supplies
the energy inequality analogous to (2.8a). We now have all ingredients for a direct application
of Theorem 3.2 (with β = 0) to the density equation. This finishes the argument.

5. Appendix on topological alignment

5.1. Mean-field limit, kinetic description. We now give a formal derivation of a ki-
netic model (1.13) that describes evolution the large crowd dynamics (1.2) with geometric-
topological communication kernel, φ(x,y) = ψ1(r(x,y)) × ψ2(dρ(x,y)), in terms of a mass
probability distribution of agents f(t,x,v) in phase space (x,v). Our argument is very simi-
lar to that given in Ha, Tadmor [31] in the homogeneous case with a few notable distinctions
pertaining to modeling of the collective power terms mij. At this point we make no specific
assumptions on the geometric term ψ.

We consider a probability density PN = PN(x1,v1, ...,xN ,vN , t) of a system of N agents in
the configuration space (x1,v1, ...,xN ,vN) ∈ R2nN . The conservation of mass in the Gibbs
ensemble propagated according to the given system (2.2) leads to the classical Liouville
equation:

(5.1) PN
t +

N∑
i=1

vi · ∇xiP
N +

N∑
i=1

∇vi · (v̇iPN) = 0.

In the limit as N → ∞ we assume that the total mass M =
∑
mi remains constant while

maximi → 0. As a result, the agents become more and more indistinguishable, which we
reflect in the symmetry condition

PN(t, ...,xi,vi, ...,xj,vj, ...) = PN(t, ...,xj,vj, ...,xi,vi, ...).
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We seek to derive an equation for the first marginal

P 1,N(t,x,v) =

∫
R2n(N−1)

PN(x,v, x̄, v̄, t)dx̄dv̄,

where x̄ = (x2, ...,xN) and v̄ = (v2, ...,vN). Thus, integrating in x̄, v̄ in (5.1) we obtain

P 1,N
t + v · ∇xP

1,N + λ∇v ·
∫
R2n(N−1)

N∑
j=2

mjψ1(|x− xj|)× ψ2(m1j)(vj − v)PNdx̄dv̄ = 0.

Note that the mass coefficients m1j encode a rather complex dependence on all the spacial
positions involved. However, as the number of agents increases it is reasonable to expect
that m1j’s are well approximated by the macroscopic mass of the communication domain:

(5.2) m1j ∼M

∫
Ω(x,xj)×Rn

P 1,N(t, z,v) dz dv := mN(Ω(x,xj)).

By replacing m1j’s in the equation with its approximation (5.2), and in view of the symmetry
of PN , we achieve equality of the integrals in the sum above, and hence,

P 1,N
t + v · ∇xP

1,N

+λ(M−m1)∇v ·
∫
R2n(N−1)

ψ1(|x−y|)×ψ2(mN(Ω(x,y)))(w−v)P 2,N(t,x,v,y,w) dy dw = 0.

Denoting the limiting densities by P = limN→∞ P
1,N , Q = limN→∞ P

2,N , and accordingly,

(5.3) mN(Ω(x,y))→mt(Ω(x,y)) = M

∫
Ω(x,y)×Rn

P (t, z,w) dz dw

we obtain

Pt + v · ∇xP + λM∇v ·
∫
R2n

ψ1(|x− y|)ψ2(mt(Ω(x,y)))(w − v)Q(t,x,v,y,w) dy dw = 0.

We close by making the molecular chaos assumption

Q(t,x,v,y,w) = P (t,x,v)P (t,y,w),

which results in the following Vlasov-type equation for the mass density f = MP

(5.4) ft + v · ∇xf + λ∇v ·Q(f, f) = 0,

where

Q(f, f)(t,x,v) =

∫
R2n

ψ1(|x− y|)× ψ2(mt(Ω(x,y)))(w − v)f(t,x,v)f(t,y,w) dy dw.

Note. A more straightforward way to see a connection between discrete and kinetic
models is to consider (5.4) for measure-valued solutions and to compute it for the empirical
measure given by

(5.5) µNt =
N∑
i=1

miδxi(t) ⊗ δvi(t) subject to
∑

mj = ρ0,
∑
j

mjvj = ρ0u0.
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In fact this approach is more practical for rigorous justification purposes, [30, 45]. We say
that {µt}06t<T is a measure-valued solution to (5.4) with initial condition µ0 if for any
test-function g ∈ C∞0 ([0, T )× R2n) one has

(5.6) 〈µ0, g(0, ·, ·)〉+

∫ T

0

〈µt, ∂tg + v · ∇xg〉 dt+

∫ T

0

〈µt, F (µt) · ∇vg〉 dt = 0.

Here, by F (µt) we understand a function of (t,x,v) given by

F (µt)(t,x,v) =

∫
R2n

ψ1(|x− y|)× ψ2(mt(Ω(x,y)))(w − v) dµt(y,w),

mt(Ω(x,y)) =

∫
Rn

∫
Ω(x,y)

1 dµt(z, dv).

Thus, for the empirical measures µNt , we recover the mass coefficients mij = mt(Ω(xi,xj)).
The above formulation undoubtedly presents several technical difficulties which we plan

to address in the future. We only remark that at least for the weakly singular kernels when
the total order of the singularity is less than n, and the spatial marginals of µt satisfy the
no-vacuum condition:

(5.7) mt(Ω(x,y)) > cT |x− y|, for all x,y ∈ supp

∫
Rn
µt(·, dv),

one can verify directly that if (xi(t),vi(t)) is a solution to (2.2), then the empirical measure
(5.5) satisfies weak kinetic formulation (5.6), and clearly it satisfies (5.7). We refer to [45,
page 281] for a similar computation in CS case. Rigorous justification of the limit, asN →∞,
requires a separate study and we will not pursue it at the moment.

5.2. Pointwise evaluation of topological alignment. Here we collect necessary formal-
ities related to pointwise evaluations of the operator Lφ and the commutator Cφ. The
statements come with corresponding estimates we used throughout the text.

Lemma 5.1. For any 0 < α < 2 one has the natural pointwise representation formula

(5.8) Lφf(x) = p.v.

∫
Tn

(f(x + z)− f(x))φ(x + z,x) dz.

Moreover, for any r > 0,

(5.9) Lφf(x) =

∫
Tn

(f(x + z)− f(x)− z · ∇f(x)χ|z|<r(z))φ(x + z,x) dz + br(x) · ∇f(x),

where

(5.10) |br|∞ 6 C|∇ρ|∞r2−α.

Proof. At the core of the proof is a bound on the operator given by

Brζ(x) = p.v.

∫
|z|<r

ζ(x + z) zφ(x + z,x) dz.
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Clearly, Br1 = br. We address it more generally as was used in preceding sections. By
symmetrization,

Brζ(x) =
1

2

∫
|z|<r

dτρ(x− z,x)− dτρ(x + z,x)

dτρ(x + z,x)dτρ(x− z,x)|z|n+α−τ ζ(x + z)zh(z) dz

+
1

2

∫
|z|<r

ζ(x + z)− ζ(x− z)

dτρ(x− z,x)|z|n+α−τ zh(z) dz = I(x) + J(x).

In what follows the constant C will change line to line and may depend on the underlying
bounds on the density at hand, (2.11). As to J , we directly obtain

|J(x)| 6 C|∇ζ|∞r2−α.

For I(x) we first observe

dτρ(x + z,x)− dτρ(x− z,x) =
τ

n
[dnρ(x + z,x)− dnρ(x− z,x)]×

×
∫ 1

0

[
θdnρ(x + z,x) + (1− θ)dnρ(x− z,x)

] τ
n
−1

dθ.

Note that

|dnρ(x + z,x)− dnρ(x− z,x)| =
∣∣∣∣∫

Ω(z,0)

(ρ(x + w)− ρ(x−w)) dw

∣∣∣∣ 6 |∇ρ|∞|z|n+1,

and clearly, ∫ 1

0

[
θdnρ(x + z,x) + (1− θ)dnρ(x− z,x)

] τ
n
−1

dθ 6 C|z|τ−n.

Consequently,

|I(x)| 6 C|∇ρ|∞|ζ|∞
∫
|z|<r

1

|z|n+α−2
dz ∼ |∇ρ|∞|ζ|∞r2−α.

In conclusion we obtain the bound

(5.11) |Brζ|∞ 6 C (|∇ρ|∞|ζ|∞ + |∇ζ|∞) r2−α.

Note that the bounds above provide a common integrable dominant for the integrands
parametrized by x. So, in addition Brζ ∈ C(Tn).

The bound (5.10) now follows directly from (5.11), and we also have br ∈ C(Tn). With
the knowledge that the drift is finite, clearly, the right hand sides of (5.8) and (5.9) coincide.
Denote them Lφf(x). We now have a task to pass to the limit

〈Lφf, gε〉 → Lφf(x0),

for every x0 ∈ Tn. Splitting the integral we obtain

〈Lφf, gε〉 =
1

2

∫
R
φ(x,y)(f(y)− f(x)−∇f(x)(y − x)χ|x−y|<r)(gε(x)− gε(y)) dy dx

+
1

2

∫
R
φ(x,y)∇f(x)(y − x)χ|x−y|<r)(gε(x)− gε(y)) dy dx = I + J.

Note that J = 1
2
〈br · ∇f, gε〉+ 1

2
〈Br∇f, gε〉. By continuity of Br proved above,

(5.12) J → 1

2
br(x0) · ∇f(x0) +

1

2
(Br∇f)(x0).
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As to I we can unwind the symmetrization since each part of the integral is not singular
any more:

I =
1

2

∫
R
φ(x,y)(f(y)− f(x)−∇f(x)(y − x)χ|x−y|<r)gε(x) dy dx

− 1

2

∫
R
φ(x,y)(f(y)− f(x)−∇f(x)(y − x)χ|x−y|<r)gε(y) dy dx.

Passing to the limit in each integral we obtain

I → 1

2

∫
T
(f(y)− f(x0)−∇f(x0)(y − x0))φ(x0,y) dy

− 1

2

∫
T2

(f(x0)− f(x)−∇f(x)(x0 − x))φ(x,x0) dx

=

∫
R
φ(x0,y)(f(y)− f(x0)− 1

2
(∇f(x0) +∇f(y))(y − x0)χ|x0−y|<r) dy

=

∫
R
φ(x0,y)(f(y)− f(x0)−∇f(x0)(y − x0)χ|x0−y|<r) dy

+
1

2

∫
R
φ(x0,y)(∇f(x0)−∇f(y))(y − x0)χ|x0−y|<r dy

= Lφf(x0)− 1

2
br(x0) · ∇f(x0)− 1

2
(Br∇f)(x0).

Thus, combining with (5.12) we obtain

I + J → Lφf(x0).

This finishes the proof. �

As a corollary we obtain analogous representation formula for the commutator.

Lemma 5.2. For any 0 < α < 2 one has the following pointwise representation

(5.13) Cφ(f, ζ)(x) = p.v.

∫
Tn
φ(x + z,x)ζ(x + z)(f(x + z)− f(x)) dz.

Moreover, the following representation holds for any r > 0:

Cφ(f, ζ)(x) =

∫
R
φ(x + z,x)ζ(x + z)(f(x + z)− f(x)− z · ∇f(x)χ|z|<r) dz

+ (ζ(x)br(x) + ar(x)) · ∇f(x),
(5.14)

where br is as before, and

(5.15) |ar|∞ 6 C|∇ζ|∞r2−α.

The proof goes by a direct application of Lemma 5.1. For the residual drift we obtain

ar(x) =

∫
|z|<r

φ(x + z,x)(ζ(x + z)− ζ(x))z dz.

The bound (5.15) follows immediately.
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