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Abstract— Second-order cooperative systems are second-
order systems in which the forces among agents are non-
repulsive. The celebrated Cucker-Smale model is a well known
example. Depending on the strength of the forces, the free
evolution of such systems is to converge either to a single group
of strongly connected agents, or to clustering.

In this article, we design a simple and robust control strategy
steering any second-order cooperative system to approximate
alignment. The computation of the control at any instant of
time only requires the knowledge of the size of the support and
the Lipschitz constant of the interaction force. Moreover, the
control is sparse in the sense that the (time-varying) support of
the control is a small subset of the configuration space.

Our strategy provides approximate alignment, on the one
hand, for second-order cooperative systems with any number
N of agents, and on the other, for the mean-field limit of such
systems, i.e., when N tends to infinity. Such a limit is a transport
partial differential equation involving nonlocal terms, called a
cooperative Partial Differential Equation.

Keywords: control of transport PDEs, PDEs with nonlocal
terms, cooperative systems, collective behavior.

I. INTRODUCTION

In recent years, the study of collective behavior of a
crowd of autonomous agents has drawn a great interest
from scientific communities, e.g. in civil engineering (for
evacuation problems), robotics (coordination of robots), com-
puter science and sociology (social networks), and biology
(crowds of animals). In particular, it is well known that
some simple rules of interaction between agents can promote
the formation of special patterns, like in formations of bird
flocks, lines, etc... This phenomenon is often referred to as
self-organization.

Beside the problem of analyzing the collective behavior
of a “closed” system, it is interesting to understand what
changes of behavior can be induced by an external agent
(e.g. a policy maker). For example, one can try to enforce
the creation of patterns when they are not formed naturally,
or break the formation of such patterns. This is the problem
of control of crowds, that we address here in a specific case.
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From the mathematical analysis point of view, passing
from a huge set of simple rules for each individual to a model
capable of capturing the dynamics of the whole crowd, is
performed by mean-field process, which permits to consider
the limit of a set of ordinary differential equations (one for
each agent) and yields a partial differential equation (PDE)
for the whole crowd.

We focus here on a well-known family of models for
crowds dynamics, called the cooperative systems (or mono-
tone systems, see, e.g., [1], [2]). Such models may reproduce
the behavior of a human or animal crowd, in which each
agent tries to align its velocity with the velocities of its
neighbors. The dynamics of the i-th agent is given by{

ẋi = vi,

v̇i = 1
N

∑N
j=1 ψ(xj − xi, vj − vi), i = 1, . . . N,

(1)

where the function ψ : Rd × Rd → Rd provides an account
for the influence between two individuals. From now on, we
will require the following condition on ψ, that is the natural
definition of a second-order binary cooperative system:

ψ(x, v) // v and ψ(x, v) · v ≥ 0. (2)

For more details on this assumption, see Section II. We will
also assume that

ψ is a L-Lipschitz function. (3)

Under (2), it is easy to prove that the set of velocities is
invariant with respect to the dynamics, i.e.

min
i=1,...,N

vki (t) ≤ vkj (t+ s) ≤ max
i=1,...,N

vki (t),

for each agent j = 1, . . . , N , each dimension k = 1, . . . , d
and all t ∈ R, s ≥ 0. Nevertheless, this does not imply that
the system converges to alignment or approximate alignment,
in general. In this article, approximate alignment means
that velocities of all agents are in a small neighborhood of
a given value (see Definition 10 further).

Then, it is interesting to understand how an external
controller can enforce alignment. In this article, we define
a simple strategy providing convergence of the system to
approximate alignment. Observe that conditions (2) and
(3) are the only ones that we require to ensure that our
strategy drives any initial data to alignment. No more precise
knowledge of ψ than the Lipschitz constant L is required to
define the control strategy.

We choose a specific action of the control, which can
be extended to the so-called mean-field limit of the system
(1), discussed below. Our control u = u(t, x, v) will be a



Lipschitz function with respect to x, v and it will act as
follows on the system (1):

ẋi = vi,

v̇i = 1
N

∑N
j=1 ψ(xj − xi, vj − vi)

+χω(t)u(t, xi, vi), i = 1, . . . N.

(4)

where ω is defined as the control set. In other words, for
every t the function u(t, ·, ·) is a Lipschitz vector field, not
depending on the specific agent. Its action on the i-th agent
is given by the evaluation of u in (xi, vi).

We also impose constraints on the control function. In
particular, we assume that the control strength is bounded:

|u(t, x, v)| ≤ 1 (5)

for any t ≥ 0 and that

ω = supp(u(t, ·, ·)) is compact, with |ω| ≤ c, (6)

where c > 0 is a small, fixed parameter, and |ω| is the
Lebesgue measure of ω. This constraint models a sparsity
property of the control, that is the fact that the control can
only act on a small part of the configuration space (see [3],
[4], [5]).

We now present the mean-field limit, describing the be-
havior of the system (1) when the number N of agents
tends to infinity (see Section II-B). The crowd at time t is
then represented by the density of agents µ(t, x, v), and its
dynamics is given by the transport PDE

∂tµ+ v · ∇xµ+∇v · (Ψ [µ]µ) = 0, (7)

with Ψ [µ] (x, v) =
∫
Rd×Rd ψ(y − x,w − v)dµ(y, w). This

velocity field is non-local since its value at some point
depends on the value of µ in a whole neighborhood of it
(see Section II-A). The controlled version is given by

∂tµ+ v · ∇xµ+∇v · ((Ψ [µ] + χωu(t, ·, ·)) f) = 0, (8)

The fact that the mean-field limit of (4) is (8) uses the specific
form of the control u introduced in (4). Indeed, u is Lipschitz
and independent on the agents, hence it passes to the mean-
field limit (see Section II-B).

Our objective is to treat the control of both (4) and (8)
in a unified way. We will first prove that our strategy drives
the finite-dimensional system (4) to approximate alignment.
Then, a mean-field limit argument will provide the result for
the mean-field limit (8).

Theorem 1: Let v∗ ∈ Rd and ε > 0 be arbitrary.
Let (x1(0), v1(0), . . . , xN (0), vN (0)) be a given initial

data for (4). There exist a time T > 0 and a control u
satisfying (5)-(6) defined on a time interval [0, T ] such that
the corresponding solution of (4) satisfies |vi(t) − v∗| < ε,
for every i = 1, . . . , N and every t ≥ T .

Similarly, let µ(0) be a given initial data for (8) with
compact support. There exist a time T and a control u
satisfying (5)-(6) defined on a time interval [0, T ] such that
the corresponding solution of (8) satisfies supp(µ(t)) ⊂
Rd ×B(v∗, ε) for every t ≥ T .

The interest of controlling cooperative systems, both in
finite and infinite dimension, was motivated by some specific
examples, such as the Cucker-Smale model for flocking of
birds (see [6]), the finite-dimensional version of which was
studied in [5], [7] and its mean-field limit in [8], [9]. Here,
this is the first time that the control problem is treated
with a unified approach. In contrast to [9, Section 3] where
our control results for the Cucker-Smale model were deeply
rooted in precise estimates of the dynamics, in the present
paper only a rough knowledge of the dynamics is required,
then providing a more robust control strategy. The drawback
is that our alignment result is slightly weaker than consensus
for the Cucker-Smale models (see Remark 11).

II. COOPERATIVE SYSTEMS

We consider the system (1), that is a second-order system
with binary interactions.

In general, a system ẋ = f(x) is said to be cooperative
if ∂fk

∂xj ≥ 0 (see, e.g., [2]). In the particular case of binary
interactions, this would give ∂v̇ki

∂xl
j

≥ 0 for all i, j = 1, . . . , N

and all k, l = 1, . . . , d, and ∂v̇ki
∂xl

j

≥ 0 for i 6= j or k 6= l.

Simple computations show that this would imply ∂ψ(x,v)
∂x = 0

and the condition (2).
Here, in our study, we only keep the condition (2), showing

that it is sufficient to achieve control to alignment. This is
why, in order to underline the difference, we have used the
wording “second-order cooperative system”.

Given an initial data (x1(0), v1(0), . . . , xN (0), vN (0)) for
(1), the Lipschitz property of ψ guarantees existence and
uniqueness of the solution of (1) for all positive times.
Moreover, (2) implies that the set of velocities is invariant,
in the following sense.

Proposition 2: Let

V = [V 1, V
1
]× [V 2, V

2
]× · · · × [V d, V

d
] (9)

be a box such that vi(0) ∈ V for every i = 1, . . . , N . Then,
the solution of (1) satisfies vi(t) ∈ V for every t ≥ 0.

Proof: It suffices to prove that the set Rd×V is invariant
for the dynamics (1), which is proved by noticing that (2)
implies that:
• for each agent i satisfying vki = V k for some k =

1, . . . , d, we have v̇ki ≥ 0;
• for each agent i satisfying vki = V

k
for some k =

1, . . . , d, we have v̇ki ≤ 0.
This means that the dynamics is pointing inwards the box
domain. We prove the first condition, the second being
completely equivalent. We have ψ(xj − xi, vj − vi) =
ξ(xj − xi, vj − vi) (vj − vi), where ξ is a nonnegative
function due to (2). Let now the agent i satisfy vki =
V k: then vkj − vki ≥ 0 for every j = 1, . . . , N , hence
ψ(xj − xi, vj − vi) · ek = ξ(xj − xi, vj − vi) (vkj − vki ) ≥ 0,

and thus v̇ki = 1
N

∑N
j=1 ψ(xj − xi, vj − vi) · ek ≥ 0. The

result then follows by Cauchy uniqueness.



Corollary 3: Let

X (0) = [X1, X
1
]× [X2, X

2
]× . . .× [Xd, X

d
] (10)

and V given by (9) be two boxes such that (xi(0), vi(0)) ∈
X (0)× V for every i = 1, . . . , N . Then, the solution of (1)
satisfies xi(t) ∈ X (t) with

X (t) = [X1 + tV 1, X
1

+ tV
1
]× [X2 + tV 2, X

2
+ tV

2
]

× · · · × [Xd + tV d, X
d

+ tV d]. (11)

Proof: This follows from Proposition 2 and from the
fact that ẋi(t) ∈ V for all times.

In the following, the lower index i = 1, . . . , N refers to
the i-th agent, while the upper index k = 1, . . . , d refers to
the k-th coordinate in Rd.

A key property for the class of systems (1) is their
invariance under translations. Consider a translation in the
position variables at time t = 0, such as yi(0) = xi(0) + a
with a ∈ Rd. Then, the solution (x(t), v(t)) of (1)
with initial data (x1(0), v1(0), . . . , xN (0), vN (0))
and the solution (y(t), w(t)) with initial data
(y1(0), v1(0), . . . , yN (0), vN (0)) satisfy yi(t) = xi(t) + a
and wi(t) = vi(t) for all times and all agents. Similarly,
consider a translation in the velocity variable at time t = 0,
such as wi(0) = vi(0) + a, then the solution (x(t), v(t)) of
(1) with initial data (x1(0), v1(0), . . . , xN (0), vN (0))
and the solution (y(t), w(t)) with initial data
(x1(0), w1(0), . . . , xN (0), wN (0)) satisfy yi(t) = xi(t) + at
and wi(t) = vi(t) + a for all times and all agents.

A. Transport Equations with non-local velocities

In this section, we present a general theory for transport
equations with non-local velocities, of which (7) and (8) are
particular cases. Let Pc(Rm) be the space of probability
measures in Rm with compact support, endowed with the
weak-star topology. In the following, we will take m = 2d.
We recall that µN ⇀ µ if

∫
f dµN →

∫
f dµ for every

f ∈ C∞c (Rm). Let us recall the definition of the Wasserstein
distance in Pc(Rm) (see [10], [11]).

Definition 4: Let µ, ν ∈ Pc(Rm) be two measures.
A transference plan from µ to ν is a probability den-
sity in Pc(R2m) satisfying

∫
R2m(f(x) + g(y)) dπ(x, y) =∫

Rm f(x) dµ(x) +
∫
Rm g(y) dν(y) for all functions f, g ∈

C∞c (Rm), i.e., π has marginals µ, ν. The Wasserstein dis-
tance is defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

{(∫
R2m |x− y|p dπ(x, y)

)1/p}
,

where Π(µ, ν) is the set of transference plans from µ to ν.

A crucial property of the Wasserstein distance is that it
metrizes weak convergence in a compact space.

Proposition 5: Let µn ∈ Pc(K) with K compact. Then
µn ⇀ µ if and only if Wp(µn, µ) → 0. Moreover, in this
case we have µ ∈ Pc(K).

Proof: The condition above is a particular case of [11,
Thm 7.12]. It is also clear that µ ∈ Pc(K): indeed, for any

function f with support outside K we have
∫
f dµn = 0,

hence
∫
f dµ = 0.

The fundamental result for existence and uniqueness of
solutions of

∂tµ+∇ · (Φ[µ, t]µ) = 0 (12)

is then stated in terms of the Wasserstein distance (see [3],
[12], [13], [14]).

Theorem 6: We assume that

Φ [µ, t] :

{
Pc(Rm)× R → C1(Rm) ∩ L∞(Rm)

(µ, t) 7→ Φ [µ, t]

satisfies:
• Φ [µ, t] is measurable with respect to t;
• Φ [µ, t] is uniformly Lipschitz and with sublinear

growth, i.e., there exist L, M not depending on µ, t,
such that |Φ [µ, t] (x) − Φ [µ, t] (y)| ≤ L|x − y| and
|Φ [µ, t] (x)| ≤ M(1 + x), for all µ ∈ Pc(Rm), t ∈
R, x, y ∈ Rm;

• Φ is a Lipschitz function with respect to µ, i.e., there
exists K not depending on t such that ‖Φ [µ, t] −
Φ [ν, t] ‖C0 ≤ KWp(µ, ν).

For every µ0 ∈ Pc(Rm), there exists an unique solution µ(t)
of (12), i.e., a curve in Pc(Rm) continuous with respect to
time and satisfying (12) in weak form. Moreover, for all
initial data µ0, ν0 ∈ Pc(Rm), the corresponding solutions
µ(t), ν(t) satisfy Wp(µ(t), ν(t)) ≤ e4(L+K)|t|Wp(µ0, ν0)
(continuous dependence of solutions).

Clearly, (7) is a particular case of (12), with Φ [µ] =
(v,Ψ [µ])>, independent of t. Moreover, if the control func-
tion χω(t)u(t, x, v) is measurable with respect to time and
Lipschitz with respect to (x, v) with Lipschitz constant
independent of t, then (8) is as well a particular case of (12),
with Φ [µ, t] = (v,Ψ [µ]+χωu)>. For both cases (7) and (8),
the assumptions of Theorem 6 are satisfied with p = 1. While
first and second conditions can be checked directly, the third
condition is a consequence of the following estimate:∥∥∥∥( v

Ψ [µ] + χωu

)
−
(

v
Ψ [ν] + χωu

)∥∥∥∥ (x, v) =

= ‖Ψ [µ]−Ψ [ν] ‖(x, v) ≤ LW1(µ, ν),

which follows from the Kantorovich-Rubinstein duality for-
mula (see, e.g., [11])

LW 1(µ, ν) = sup
f∈Lip(R2d),|f |Lip≤L

∫
f d(µ− ν).

Hence we have existence and uniqueness for (7) and (8).

B. Mean-field limits

Definition 7: Let (y1, y2, . . . , yN ) ∈ (Rm)N be a vector
representing the position of N particles in Rm. The empirical
measure is defined as µN = 1

N

∑N
i=1 δyi ∈ Pc(Rm).

Definition 8: Consider a family of finite-dimensional
models describing a system of N particles. Given a trajectory



(yN1 (t), . . . , yNN (t)) of the system, consider the correspond-
ing empirical measure µN (t). The family of models indexed
by N converges to a mean-field model (to be defined) if
for any sequence of empirical measures indexed by N and
satisfying µN (0) ⇀ µ(0), we have µN (t) ⇀ µ(t), where
µ(t) is the solution of the mean-field model starting at µ(0).

Let us now prove that the mean-field limit of the sys-
tem (1) is (7). If the initial data for (7) is µ(0) =
µN (0) = 1

N

∑N
i=1 δ(xi(0),vi(0)), an empirical measure of

N agents, then the solution at time t of (7) is the
empirical measure µN (t) = 1

N

∑N
i=1 δ(xi(t),vi(t)), where

(x1(t), v1(t), . . . , xN (t), vN (t)) is the unique solution of
(1) with initial data (x1(0), v1(0), . . . , xN (0), vN (0)). By
density of the empirical measures in the space Pc(R2d)
with respect to the convergence of measures, and continuous
dependence of solutions to (7) with respect to the initial data,
we obtain that the PDE (7) is the mean-field limit of (1) (see,
e.g., [15], [16] for more details on mean-field limits).

Similarly, the mean-field limit of the family of control
systems (4) is the controlled PDE (8). The key observation
is that u(t, ·, ·) is a Lipschitz function, not depending on the
specific i-th agent (see [4], [9]).

The same technique allows one to extend several results
established for the finite-dimensional system (1) to the mean-
field limit (7). In particular, Proposition 2 and Corollary 3
yield the following result.

Proposition 9: Let X (0),V given by (9)-(10) be boxes
such that supp(µ(0)) ∈ X (0)× V . Then the solution of (7)
satisfies supp(µ(t)) ⊂ X (t)×V for every t ≥ 0, with X (t)
given by (11).

The invariance properties described above for the finite-
dimensional system (1) are as well valid for the mean-field
limit (7). We do not provide any details.

C. Approximate alignment and consensus

Definition 10: A solution of the finite-dimensional sys-
tem (1) or of the mean-field system (7) is said to be ε-
approximately aligned around v∗ ∈ Rd from time T if, for
every t ≥ T , we have
• for (1): vi(t) ∈ B(v∗, ε) for every i = 1, . . . , N ;
• for (7): supp(µ(t)) ∈ Rd ×B(v∗, ε).

The concept of approximate alignment is weaker than the
concept of consensus. In the finite-dimensional case, we
recall that a crowd of agents converges to consensus (or
flocking) if there exists X such that |xi(t) − xj(t)| ≤ X
for every t ≥ 0 and |vi(t)− vj(t)| → 0 as t→ +∞, for all
i, j = 1, . . . , N .

Remark 11: Approximate alignment does not imply uni-
form compactness of the position variable for t ≥ 0. More-
over, approximate alignment does not provide convergence
of velocities to v∗, as it is the case for flocking.

We recall that we require only weak conditions on
the dynamics for (1); as a consequence, even an ε-
approximately aligned system with ε very small can result

in non-compactness of the position variables and in non-
convergence of the velocity variable. As a degenerate exam-
ple, choose no interaction among agents, i.e., ψ = 0. This
is similar to the difference between stability and asymptotic
stability for dynamical systems.

III. CONTROL OF COOPERATIVE SYSTEMS (4) AND (8)
In this section, we define a strategy driving any initial data

of (4) or (8) with compact support to approximate alignment.
We first perform the analysis for the finite-dimensional
system (4), and then for the mean-field limit (8).

Following the arguments of Proposition 2 and Corollary 2,
we have the following result on the evolution of the support
of solutions of (4), provided that the control vector points
inwards along the boundary of the velocity support.

Proposition 12: Let u(t, x, v) be a control for (4),
and X (0),V be boxes defined in (9)-(10) such that
(xi(0), vi(0)) ∈ X (0) × V for every i = 1, . . . , N . We
assume that, if v satisfies v = V k (resp., v = V

k
) for some

k, then u(t, x, v) · ek ≥ 0 (resp., u(t, x, v) · ek ≤ 0). Then,
the solution of (4) satisfies (xi(t), vi(t)) ∈ X (t)× V for all
i = 1, . . . , N and t ≥ 0, with X (t) given by (11).

We are going to design a control satisfying the assump-
tions of Proposition 12. Using the invariance properties of
the system, we focus on alignment around v∗ = 0 ∈ Rd
and we assume that X = 0. Also, without loss of generality,
we assume throughout that V k = 0 and V

k
> 0 for any

dimension k = 1, . . . , d. Indeed, if V j < 0 < V
j

for a given
dimension j and one wants to achieve approximate alignment
around 0, one can use the following strategy:

1) Define the translated variables

yji (t) = xji (t)− tV
j , wji (t) = vji (t)− V

j ,

yki = xki , wki = vki for k 6= j,

and note that they follow the dynamics (4);
2) Control this system to approximate alignment around

0 in dimension j with precision ε√
d

+ V j , with the
strategy described below, then reducing the support
of velocities of the original system to [V j , ε√

d
) in

dimension j;
3) Define the reversed variables

ȳji (t) = −xji (t)− t
ε√
d
, w̄ji (t) = −vji (t) +

ε√
d
,

ȳki = xki , wki = vki for k 6= j.

They follow the dynamics (4) with ψ̄(x, v) =
−ψ(−x,−v), which satisfies (2)-(3). The support of
velocities in dimension j is contained in (0,−V j+ ε√

d
].

4) Control this system to approximate alignment with pre-
cision 2 ε√

d
. Then, the support of the original velocities

vi in dimension j is contained in
(
− ε√

d
; ε√

d

)
, i.e.,

we have achieved approximate alignment around 0 in
dimension j with precision ε√

d
.

Repeating the same strategy for each dimension, we obtain
ε-approximate alignment around 0.



To simplify notation, we denote X = X and V = V
in what follows. Using Proposition 12, the solution satisfies
(xi(t), vi(t)) ∈ [0, X+ tV ]× [0, V ] for all i = 1, . . . , N and
t ≥ 0.

The control strategy is based on the repetition of a funda-
mental step, until reaching approximate alignment. In Section
III-A, we define the fundamental step of our strategy, and we
establish precise estimates of its action on the dynamics (4).
In Section III-B, we apply the fundamental step repeatedly
on a 1D system, and we prove that it yields approximate
alignment. In Section III-C, we prove that the use of the
strategy on the sequence of dimensions k = 1, . . . , d yields
approximate alignment for (4). Finally, in Section III-D, we
prove that our strategy yields approximate alignment for the
mean-field limit (8).

A. The fundamental step

We assume that d = 1. In Section III-C we will show how
to deal with any dimension d.

To define the fundamental step, we only need to know
three parameters1: the Lipschitz constant L of ψ, and the
values X and V (support of the initial data).

Remark 13: It is interesting to observe that one does not
need to know the precise values of the parameters X,V, L,
but only upper bounds. Indeed, having the knowledge of
upper bounds, the control strategy given below drives the
system to approximate alignment, with a possibly larger final
time T . For this reason, the strategy presented below is very
robust to perturbation of the parameters and/of the dynamics.

We now define the fundamental step of the control strat-
egy, based on three parameters l, η,W to be chosen later.
We set A = [X,X + l]× [η, V ] and

ũ(x, v) = max

(
0, 1− d((x, v), A)

η

)
, (13)

where d is the Euclidean distance. The function ũ is non-
negative, 1

η -Lipschitz, and is equal to 1 in A. Note that
ũ(x, 0) = 0, i.e., ũ is zero for the target velocity. Now, we
define the control function by

u(t, x, v) = −ũ(x+ tW, v)
v

|v|
, (14)

for t ∈ [0, T ] with

T =
X + l

W
. (15)

The control function u is well defined, even for v = 0, since
ũ(x, 0) = 0. The control strategy is based on the following
idea: at time t = 0 the control u coincides with ũ. Then, the
same function is shifted to lower values of positions with
velocity W , until the value of ũ at X+l reaches the minimal
value of the position variable, that is larger or equal than 0.
Note that u satisfies the assumptions of Proposition 12.

1In general, one also needs to know the minimal values X,V to perform
translations.

The support ω(t) of u at time t is the rectangle

ω(t) = [X − η − tW,X + l + η − tW ]× [0, V + η] .

We have |ω(t)| = (l+2η)(V +η). Note that the control χωu
is a Lipschitz vector field at each time, as required to ensure
existence and uniqueness of solutions of (4) and (8).

Remark 14: It is possible to perform the same strat-
egy with a more regular control, by replacing ũ(x, v) by
f(ũ(x, v)) with f(a) = sin2

(
π
2x
)
. The control is then a

function in C∞(Rd × Rd) for each time.

Consider an initial data (x1(0), v1(0), . . . , xN (0), vN (0))
for a N -particle system (4). Assuming that (xi(0), vi(0)) ∈
[0, X]×[0, V ] for each i = 1, . . . , N , we want to estimate the
solution to (4) at time T defined by (15) with the control u
given by (14). In particular, we want to prove that the interval
of velocity variables is reduced to a set [0, V ′] ⊂ [0, V ].
Considering the i-th particle in (4), we have

v̇i =
1

N

N∑
j=1

ψ(xj − xi, vj − vi) + u(t, xi, vi)

≤ 1

N

N∑
j=1

L(vj − vi) + u(t, xi, vi)

≤ L(V − vi) + u(t, xi, vi),

where we used that ψ(x, v) ≤ ψ(x, 0) + Lv = Lv. By
applying the Gronwall lemma to vi − V , we get that

vi(T ) ≤ e−LT (vi(0)− V ) + V (16)

+e−LT
∫ T

0

u(t, xi(t), vi(t)) dt.

We now have two cases. First, assume that v(t) ≥ η for
every t ∈ [0, T ]. Then u(t, xi(t), vi(t)) = −1 in an interval
of length l in the space variable, hence in a time interval at
least l

W−V , since the relative velocity of the particle with
respect to the moving control is smaller than W . Then (16)
gives

vi(T ) ≤ e−LT (vi(0)− V ) + V − e−LT l

W
. (17)

The second case is when there exists t ∈ [0, T ] such that
vi(t) < η. If such a condition is satisfied for any t, then
vi(T ) < η. Otherwise, consider the maximal time t for which
vi(t) = η and note that vj(s)− vi(s) ≤ V −η for s ∈ [t, T ],
thus v̇i ≤ L(V − η), hence

vi(T ) ≤ η + L(V − η)(T − t) ≤ η(1− LT ) + LV T. (18)

We now merge the two cases. For all agents, we have
vi(0)− V ≤ 0, hence vi(T ) ∈ [0, V ′] with

V ′ = max

{
V − e−LT l

W
, η(1− LT ) + LV T

}
. (19)

Note that the support may actually be smaller, but the esti-
mate given here is sufficient to prove approximate alignment.



B. Proof of Theorem 1 in 1D

Let us prove ε-approximate alignment of a solution of (4)
around 0 in 1D. The proof is constructive and the strategy
follows a sequence of fundamental steps (i.e., a sequence of
W, l, η) steering the system to approximate alignment.

We denote by [0, X0] × [0, V 0] the box containing
(xi(0), vi(0)) for every i = 1, . . . , N . We apply the fun-
damental step with parameters W 0, l0, η0 for the time T 0

given by (15), with W 0 > V 0. The corresponding solution
of (4) satisfies (xi(T

0), vi(T
0)) ∈ [0, X1] × [0, V 1] for

every i = 1, . . . , N . We then reiterate the same strategy,
with parameters W 1, l1, η1 for the time T 1, and iteratively
for K times (to be chosen), until reaching ε-approximate
alignment around 0. The objective of this section is to design
an appropriate choice of W k, lk, ηk, with k = 0, . . . ,K − 1.
The index xk represents here the k-th step of the algorithm.

The key observation is that, as a consequence of (19) and
Ẋ ≤ V , it holds

V k+1 = max

{
V k − e−LT

k

lk

W k
,

ηk(1− LT k) + LV kT k
}
, (20)

Xk+1 = Xk + T kV k (21)

Now, we define

lk =
k + 1

k + 4

c

V k
, (22)

ηk = min

{
1

k + 4

c

V k
,

1

k + 4
V k,

3

4α2
V k
}
,

W k = max

{
αL(Xk + lk), α

k + 1

k + 4

c

(V k)2

}
,

until reaching V k < ε. Here, α > 2 is arbitrary. Note that

|ω| = (lk + 2ηk)(V k + ηk) ≤ (k + 3)(k + 5)

(k + 4)2
c < c. (23)

We have LT k = LX
k+lk

Wk ≤ 1
α . Using e−LT

k ≤ 1− LT k +

L2 (Tk)2
2 , we infer that

V k − e−LT
k

lk

W k
− LV kT k − ηk ≥ V k −(

1− LT k + L2 (T k)2

2

)
k + 1

k + 4

c

V k
(k + 4)(V k)2

α(k + 1)c
+

−LV kT k − 3

4α2
V k ≥

V k
(

1− 1

α
+
LT k

α
− L2 (T k)2

4
− LT k − 3

4α2

)
≥

V k

((
1− 1

α

)2

− 1

α2

)
=

(
1− 2

α

)
V k. (24)

Since α > 2, the maximum in (20) is always reached by the
first term, and

V k+1 = V k − e−LT
k

lk

W k
. (25)

The sequence V k is then decreasing and thus has a limit
V ∗. If V ∗ = 0, then we have approximate alignment for any
precision ε > 0.

We study this limit in two cases. First, assume that W k =
αk+1
k+4

c
(V k)2

for an infinite number of indices kj . For such

indices, using e−LT
kj ≥ 1 − LT kj , similarly to estimates

for (24), from (25) we get

V kj+1 ≤ V kj
(

1− 1

α
+

1

α2

)
< V kj

(
1− 1

2α

)
.

Since for the other indexes the sequence is decreasing, we
have V kj+1 ≤ V kj

(
1− 1

2α

)
, hence limj→∞ V kj = 0,

and thus limk→∞ V k = 0. Hence we have approximate
alignment for any precision ε > 0.

In the second case, we assume to have a finite number of
indices for which W k = αk+1

k+4
c

(V k)2
. Then, there exists k0

such that W k = αL(Xk + lk) for every k ≥ k0. We also
have T k = 1

αL .
Let us now establish, by contradiction, that limk→∞ V k =

0. Assume that limk→∞ V k = V ∗ > 0. As a first conse-
quence, we have limk→∞ lk = l∗ > 0. Let δ < V ∗ and note
that there exists k1 ≥ k0 such that

Xk+1 = Xk + T kV k ∈
(
Xk +

V ∗ − δ
αL

,Xk +
V ∗ + δ

αL

)
, (26)

for every k ≥ k1. In particular limk→∞Xk = +∞. As a
consequence, limk→∞W k = +∞, hence from (25) there
exists k2 ≥ k1 such that

V k+1 ≤ V k − r1l
∗

W k
≤ V k − r2

Xk
, (27)

for every k ≥ k2, with constants r1, r2 > 0 computed with
limits. Note that Xk+k2 ≤ Xk2 + (V ∗ + δ)k, due to (26).
Then, from (27), we have

V k+k2 ≤ V k2 −
k∑
j=0

r2

Xk2 + (V ∗ + δ)j
.

But the right-hand side tends to −∞, since

∞∑
j=0

r2

Xk2 + (V ∗ + δ)j
≥
∞∑
j=J

r3

j
= +∞,

with J ≥ Xk2

V ∗+δ and r3 = r2
V ∗+δ . As a consequence, we have

limk V
k = −∞ < V ∗, which is a contradiction.

Summing up, the strategy yields limk→∞ V k = 0. Hence,
for every ε > 0, there exists K such that V K < ε, and
then the algorithm terminates. Moreover, since T k ≤ 1

αL ,
the total time of the algorithm is finite, bounded by K

αL , and
the space variable satisfies XK ≤ X0 + V 0 K

αL .
Finally, note that the control is a Lipschitz func-

tion for each time, with Lipschitz constant bounded by
max

{
1
ηk
| k = 0, . . . ,K − 1

}
.



C. Proof of Theorem 1 in dimension d

We still focus on the system (4), but now in dimension d.
Without loss of generality, we assume that (xi(0), vi(0)) ∈
X (0)× V for every i = 1, . . . , N , with X (0),V defined by
(9)-(10). In what follows, we use the double index xj,k to
denote the j-th dimension at the k-th step of the algorithm.

To reach ε-approximate alignment around 0, we first
achieve ε√

d
-approximate alignment in the first coordinate.

We define the sequence (l1,k, η1,k,W 1,k) by

l1,k =
k + 1

k + 4

c1,k

V 1,k
, (28)

η1,k = min

{
1

k + 4

c

V 1,k
,

1

k + 4
V 1,k,

3

4α2
V 1,k

}
,

W 1,k = max
{
αL(X1,k + l1,k)d, αk+1

k+4
c

(V 1,k)2

}
,

where c1,k = c
(X2,k+V 2,k)...(Xd,k+V d,k)(V 2,k+1)...(V d,k+1)

.
We define the sets

A1,k = [X1,k, X1,k + l1,k]× [η1,k, V 1,k],

B1,k = R×
[
0, X2,k +

1

2
V 2.k

]
×
[
0, X3,k +

1

2
V 3,k

]
×
[
Xd,k +

1

2
V d,k

]
× R×

[
V 2,k + 1

]
. . .
[
V d,k + 1

]
,

and the functions

ũ1,k(x, v) = max

(
0, 1− d((x1, v1), A1,k)

η1,k

)
, (29)

ū1,k(x, v) = max

(
0, 1− d((x, v), B1,k)

min
{

1
2 ,

1
V 2,k , . . . ,

1
V d,k

}) ,
where (x1, v1) are the coordinates in the first dimension of
(x, v). We define the control u by

u1,k(t, x, v) = −ũ1,k(x+ tW 1,ke1, v)ū1,k(x, v)
v1

|v1|
, (30)

where e1 is the unit vector in the first dimension. The control
set ω is the support of u1,k. Similarly to (23), we have

|ω| ≤ (l1,k + 2η1,k)(X2,k + V 2,k) . . . (Xd,k + V d,k)

×(V 1,k + η1,k)(V 2,k + 1) . . . (V d,k + 1) < c.

Note that, at each step, the support of any uncontrolled
variable passes from Xj,k to Xj,k+1 = Xj,k + 1

2V
j,k as a

consequence of the fact that, for each step of the algorithm,
the final time T 1,k is bounded by 1

α < 1
2 . Hence, if

(xi(0), vi(0)) ∈ X (0)×V , then (xi(T
1,k), vi(T

1,k)) ∈ B1,k,
hence the value of the control function u depends only on
the coordinate (x1, v1).

The main difference with respect to the 1D case is that,
here, the limit of l1,k is c

V 1,kkd−1 , whereas in the previous
section the limit of lk was c

V k .
We now prove that a finite number of fundamental steps

ensures approximate alignment in the first variable. The
idea is to repeat the proof of the 1D case, by highlighting
the differences due to the change in l1,k,W 1,k. First, it is
easy to prove that estimates equivalent to (20)-(26) hold for

X1,k, V 1,k, T 1,k too, since they hold for any positive value
of c1,k. This also implies that (24) holds, hence (25) can be
rewritten as

V 1,k+1 = V 1,k − e−LT
1,k

l1,k

W 1,k
. (31)

As in the 1D case, the sequence V 1,k is decreasing and
has a limit. We study this limit in two cases. First, assume
that W k = αk+1

k+4
c

(V k)2
for an infinite number of indices

kj . This implies that V 1,kj+1 ≤ V 1,kj
(
1− 1

2α

)
, hence

limk→∞ V 1,k = 0.
In the second case, we assume to have a finite number of

indices for which W 1,k = αk+1
k+4

c1,k

(V 1,k)2
. Then, there exists

a k0 such that W 1,k = αL(X1,k + l1,k)d for every k ≥ k0.
We also have T 1,k = 1

αL .
Let us establish, by contradiction, that limk→∞ V k = 0.

Denoting by V ∗ > 0 the limit, we have X1,k ≥ r1k and
W 1,k ≥ r2(X1,k)d for a sufficiently large k and constants
r1, r2 > 0. Since Xj,k+1 = Xj,k + 1

αV
j,k and V j,k+1 =

V j,k for j = 2, . . . , d, we have

lim
k→∞

kd−1c1,k = c∗ > 0, lim
k→∞

kd−1l1,k =
c∗

V ∗
> 0.

It follows that

V 1,k+1 ≤ V 1,k − r3l
1,k

W 1,k
= V 1,k − r4

X1,k
,

for some constants r3, r4. This implies convergence of V 1,k

to −∞ similarly to the 1D case, raising a contradiction.
As a consequence, after a finite number K1 of steps, we

have V 1,K1

< ε√
d

, and the total time to reach approximate

alignment is T 1 =
∑K−1
k=0 T 1,k ≤ K1

αL . Then, the solution of
(4) at time T 1 satisfies, for every i = 1, . . . , N ,

xi(T
1) ∈ [0, X1 + V 1T 1]× [0, X2 + V 2T 1]

× . . .× [0, Xd + V dT 1],

vi(T
1) ∈

[
0,

ε√
d

)
× [0, V 2]× . . .× [0, V d].

Now, we achieve ε√
d

-approximate alignment in the second
coordinate by defining l2,k, η2,k,W 2,k, A2,k, u2,k similarly
to the previous case. This control strategy yields approxi-
mate alignment in K2 steps, with finite total time T 2. The
key observation is, due to invariance of the velocities, this
strategy does not expand the velocity set in the first variable,
i.e., v1

i (T 1 + T 2) ∈
[
0, ε√

d

)
for every i = 1, . . . , N .

Repeating the same process for all other dimensions, we
have a total final time T ∗ = T 1 + T 2 + . . . + T d, that is
finite, and the solution of (4) at time T ∗ satisfies

xi(T
∗) ∈ [0, X1 + V 1T ∗]× [0, X2 + V 2T ∗]

× . . .× [0, Xd + V dT ∗],

vi(T
∗) ∈

[
0,

ε√
d

)d
for every i = 1, . . . , N . In particular, |vi(T ∗)| < ε, as
required.



Finally, note that the control is a Lipschitz function for
each time, with Lipschitz constant bounded by

L′ = max

{
2, V i,k | i = 1, . . . , d,

k = 0, . . . ,Ki − 1

}
+

max

{
1

ηi,k
| i = 1, . . . , d,

k = 0, . . . ,Ki − 1

}
. (32)

Remark 15: The control that we have designed is piece-
wise smooth with respect to t, and for each t is Lipschitz with
respect to (x, v). This is exactly what is required to pass to
the mean-field limit, by letting the number N of particles
go to infinity. Indeed, for the mean-field limit, we need
regular flows of the ODE, and then L1 regularity in time,
and Lipschitz in (x, v), suffices to have Filippov solutions.
As said in Remark 14, we could design a control that is
smooth in (x, v). We could also have smoothness in time,
by designing a control moving fast left and right (W positive
and negative), but then this would be at the price of having
a larger time to reach approximate alignment.

D. Proof of Theorem 1 for the mean-field model (8)

In this section, we prove that the strategy yielding approx-
imate alignment for the finite-dimensional system (4) also
yields approximate alignment for the mean-field model (8).

The crucial observation is that the control strategy does
not focus on a specific i-th agent, but focuses on agents that
are in a given subset of the space. In this sense, the limit of
the control strategy “passes to the limit” with respect to the
mean-field limit from (4) to (8). Another key property is that
the definition of the control strategy is based on the size of
the support of the solution Xi,k, V i,k, that are quantities that
are well defined for the finite-dimensional and the mean-field
dynamics.

Consider an initial measure µ(0) and a sequence of
empirical measures µN (0) = 1

N

∑N
i=1 δ(xi,N (0),vi,N (0)) sat-

isfying supp(µN (0)) ⊂ supp(µ∗(0)) for every N and
limN→∞W1(µN (0), µ(0)) = 0. Such a sequence is built
for instance by space discretization. Let Xi, V i be such that

supp(µ(0)) ⊂ [0, X1]× [0, X2]× . . .× [0, Xd]

×[0, V 1]× [0, V 2]× . . .× [0, V d].

For a fixed ε, define the strategy to achieve ε-approximate
alignment of a finite-dimensional system (4) with support in
such a set. Note that the strategy does not depend on N , and
that all parameters lk, ηk,W k are completely determined by
the size of the support at step k, that is in turn completely
determined by the size of the support at step k − 1 thanks
to (20)-(21). As a consequence, the strategy is completely
determined by parameters X1, . . . , Xd, V 1, . . . , V d for the
initial support. Moreover, the final time T ∗ is given, and the
control is a Lipschitz function for all times, with Lipschitz
constant L′ given by (32).

We now study the solution of (8) on the time interval
[0, T ∗] with the control χωu given by the strategy, hence not
depending on µ or on µN . For any initial data µ(0), µN (0),

the solution µ(t), µN (t) exists for t ∈ [0, T ∗] and is unique,
and supports of µ(t), µN (t) are contained in

[0, X1 + V 1T ∗]× [0, X2 + V 2T ∗]× . . .
×[0, Xd + V dT ∗]× [0, V 1]× [0, V 2]× . . .× [0, V d].

These properties follow from Section II-A. Moreover,
continuous dependence for solutions to (8) implies
that limN→∞W1(µ(T ∗), µN (T ∗)) = 0, and therefore
µN (T ∗) ⇀ µN (T ∗).

Now, note that the solution of (8) with initial data
µN (0) = 1

N

∑N
i=1 δ(xi,N (0),vi,N (0)) is the empirical measure

µN (t) = 1
N

∑N
i=1 δ(xi,N (t),vi,N (t)), where (xi,N (t), vi,N (t))

is the solution of the finite-dimensional system (4) with N
particles and control χωu. The results of Section III-C imply
that supp(µN (T ∗)) ⊂ A∗ with

A∗ = [0, X1 + V 1T ∗]× [0, X2 + V 2T ∗]

× . . .× [0, Xd + V dT ∗]×
[
0,

ε√
d

)d
.

Since A∗ does not depend on N , Proposition 5 implies that
supp(µ(T ∗)) ⊂ A∗, i.e., µ(T ∗) is ε-approximately aligned
around 0. This proves Theorem 1.
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