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Abstract

We develop a stochastic Galerkin method for the Boltzmann equation with uncertainty.

The method is based on the generalized polynomial chaos (gPC) approximation in the

stochastic Galerkin framework, and can handle random inputs from collision kernel, initial

data or boundary data. We show that a simple singular value decomposition of gPC related

coefficients combined with the fast Fourier-spectral method (in velocity space) allows one to

compute the high-dimensional collision operator very efficiently. Several numerical examples

are presented to illustrate the validity of the proposed scheme.
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1 Introduction

Kinetic theory is an indispensable tool to describe the non-equilibrium dynamics of a gas or

system comprised of a large number of particles, primarily through applications of the Boltz-

mann equation [4]. When the well-known fluid mechanics laws of Navier-Stokes and Fourier

become inadequate to represent the system, this equation can provide reliable information at

the mesoscopic level, and is widely used in the fields such as rarefied gas dynamics, astronautical

engineering, etc.

While research studies on mathematical theory [7, 6, 25] and numerical approximation [5, 8]

of the Boltzmann equation are extensive and still ongoing, they almost exclusively concern the

deterministic problem. To authors’ best knowledge, no research has been conducted to evaluate

the impact of random inputs to the equation. There are, however, many sources that can bring

this kind of uncertainties. For example, one of the key terms in the Boltzmann equation is the

collision kernel (or cross section) which characterizes the law of interaction between particles.
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Ideally, it should be computed from the intermolecular potential using the scattering theory

[14]. In practice, for simplicity, phenomenological collision kernels are often used with the aim to

reproduce viscosity and diffusion coefficients [2, 17]. Specifically, these kernels contain adjustable

parameters whose values can be determined by matching with the available transport data for

various gases. On the other hand, when considering time evolution of a gas in bounded domains,

one needs to supplement with appropriate initial and boundary conditions. These are usually

given in terms of measured values of macroscopic quantities such as density, temperature, bulk

velocity, etc (e.g., shock tube and Couette flow problems). In either case, one has to rely

on the experimental data which inevitably involve uncertainties due to measurement errors.

Therefore, it is interesting to study the behavior of the solution to the Boltzmann equation

when randomness presents in the collision kernel or initial/boundary data. Most importantly,

a proper quantification of these uncertainties will allow scientists and engineers to obtain more

reliable predictions for sensitivity analysis and risk managements.

This paper serves as a first attempt to conduct uncertainty quantification (UQ) for the

Boltzmann equation with random inputs. We will adopt the generalized polynomial chaos (gPC)

based stochastic Galerkin approximation, which has been successfully applied to many physical

and engineering problems, see for instance, the overviews in [13, 27]. We also mention that the

same technique was used recently to solve some linear kinetic models in the diffusive limit [16].

For the Boltzmann equation, the main difficulty lies in its high-dimensional nonlinear collision

integral, whose direct evaluation would be prohibitively expensive. We will show that a simple

singular value decomposition (SVD) of gPC related coefficients combined with the fast spectral

method in the deterministic case [22] enables one to compute the collision operator accurately

and efficiently. Specifically, we are able to reduce the computational cost from O(N2
KN

d−1
σ N2d

v )

to O(RkN
d−1
σ Nd

v logNv), for some Rk ≤ NK , where NK =
(
K+n
K

)
is the dimension of n-variate

polynomials of degree up to K, d is the dimension of velocity space (typically d = 2 or 3), Nσ is

the number of discrete points in each angular direction, and Nv is the number of points in each

velocity dimension (typically Nσ � Nv). To give an idea on how much speedup is gained, note

that for examples, NK = 120 if K = 7, n = 3, and NK = 792 if K = 7, n = 5.

The rest of this paper is organized as follows. In the next section, we introduce the Boltzmann

equation with random inputs and formulate the UQ problem systematically. Section 3 describes

in detail the gPC based stochastic Galerkin scheme, where the fast algorithm for the collision

operator as well as the time/spatial discretization are discussed. We also provide a spectral

accuracy analysis of the gPC-Galerkin approximation in the random space for smooth solutions

of the spatially homogeneous problem. Extensive numerical examples are presented in section 4

to illustrate the validity of the proposed scheme. Finally some conclusions are given in section

5.

2 The Boltzmann equation with random inputs

Our starting point is the following (dimensionless) deterministic Boltzmann equation [4, 25],

which is the central model in kinetic theory and describes the time evolution of a rarefied gas:

∂f

∂t
+ v · ∇xf =

1

Kn
Q(f, f), t > 0, x,v ∈ Rd, d = 2 or 3, (2.1)
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where f = f(t,x,v) is the phase space distribution function of particles at time t, position x, and

velocity v. Kn is the Knudsen number defined as the ratio of mean free path and typical length

scale of the problem. Q(f, f) is the nonlinear (quadratic) Boltzmann collision operator modeling

the binary interactions between particles (since Q acts only in the velocity space, variables t and

x are suppressed from the functions below):

Q(f, f)(v) =

∫
Rd

∫
Sd−1

B(v − v∗, σ) [f(v′)f(v′∗)− f(v)f(v∗)] dσdv∗. (2.2)

Here (v,v∗) and (v′,v′∗) are the velocity pairs before and after collision, during which the

momentum and energy are conserved; hence (v′,v′∗) can be represented in terms of (v,v∗) as
v′ =

v + v∗
2

+
|v − v∗|

2
σ,

v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

with the parameter σ varying in the unit sphere Sd−1. The collision kernel B(v − v∗, σ) is a

non-negative function depending only on |v − v∗| and cosine of the deviation angle θ:

B(v − v∗, σ) = B(|v − v∗|, cos θ), cos θ =
σ · (v − v∗)

|v − v∗|
.

The specific form of B is determined from the intermolecular potential via the scattering the-

ory. For numerical purpose, a commonly used model is the variable hard-sphere (VHS) model

introduced by Bird [2]:

B(|v − v∗|, cos θ) = bλ|v − v∗|λ, −d < λ ≤ 1, (2.3)

where bλ is a constant, λ > 0 corresponds to the hard potentials, and λ < 0 to the soft potentials.

The collision operator (2.2) conserves mass, momentum, and energy:∫
Rd
Q(f, f) dv =

∫
Rd
Q(f, f)v dv =

∫
Rd
Q(f, f)|v|2 dv = 0.

Moreover, it satisfies the celebrated Boltzmann’s H-theorem:

−
∫
Rd
Q(f, f) ln f dv ≥ 0,

which implies that the entropy is always increasing, and reaches its maximum if and only if f

attains the local equilibrium:

M(v)(ρ,u,T ) =
ρ

(2πT )d/2
e−

(v−u)2

2T ,

where ρ, u, T are, respectively, the density, bulk velocity, and temperature defined by

ρ =

∫
Rd
f(v) dv, u =

1

ρ

∫
Rd
f(v)v dv, T =

1

dρ

∫
Rd
f(v)|v − u|2 dv. (2.4)

When a Cauchy problem is considered, the equation (2.1) needs to be supplemented with an

initial condition:

f(0,x,v) = f0(x,v).
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If we further consider a bounded spatial domain x ∈ Ω ⊂ Rd, then a proper boundary condition

also needs to be imposed. A widely used one for the Boltzmann equation is the so-called Maxwell

boundary condition: for any boundary point x ∈ ∂Ω, let n(x) be the unit normal vector to the

boundary, pointed to the gas, then the in-flow boundary condition is specified as

f(t,x,v) = g(t,x,v), (v − uw) · n > 0,

and

g(t,x,v) :=(1− α)f(t,x,v − 2[(v − uw) · n]n)

+
α

(2π)
d−1
2 T

d+1
2

w

e−
|v−uw|2

2Tw

∫
(v−uw)·n<0

f(t,x,v)|(v − uw) · n|dv, (2.5)

where uw = uw(t,x), Tw = Tw(t,x) are, respectively, the velocity and temperature of the

wall (boundary). The constant α (0 ≤ α ≤ 1) is the accommodation coefficient with α =

1 corresponding to the purely diffusive boundary, and α = 0 the purely specular reflective

boundary.

Later we will also need the asymmetric collision operator:

Q(g, h)(v) =

∫
Rd

∫
Sd−1

B(v − v∗, σ) [g(v′)h(v′∗)− g(v)h(v∗)] dσdv∗. (2.6)

As mentioned in the introduction, for real-world problems, the collision kernel, initial data, or

boundary data may contain uncertainties that propagate into the solution and affect its property

substantially. To quantify these uncertainties, we formulate our problem in a stochastic manner

[27] as follows:
∂f

∂t
+ v · ∇xf =

1

Kn
Q(f, f)(t,x,v, z), t > 0, x ∈ Ω, v ∈ Rd, z ∈ Iz,

f(0,x,v, z) = f0(x,v, z), x ∈ Ω, v ∈ Rd, z ∈ Iz,

f(t,x,v, z) = g(t,x,v, z), t ≥ 0, x ∈ ∂Ω, v ∈ Rd, z ∈ Iz.

(2.7)

Now f = f(t,x,v, z) depends on an extra variable z — an n-dimensional random vector with

support Iz characterizing the random inputs of the system. The randomness could come from

• the collision kernel, for instance, B = bλ(zB)|v − v∗|λ;

• the boundary data g(t,x,v, z), in such a way that uw, Tw in (2.5) are replaced by

uw(t,x, zb) and Tw(t,x, zb);

• the initial data f0(x,v, z), via initial macroscopic quantities: density ρ0(x, zi), temperature

T 0(x, zi), etc.

Therefore, z is a collection of random vectors zB , zb and zi, summed up to dimension n, i.e.,

z := (zB , zb, zi) = (z1, . . . , zn). For simplicity, we assume in this paper, the components of z

are mutually independent random variables already obtained through some dimension reduction

technique, e.g., Karhunen-Loève expansion [18], and do not pursue further the issue of random

input parameterization.
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3 A gPC based stochastic Galerkin method

In this section, we construct a stochastic Galerkin scheme for the problem (2.7) using gPC

expansion. Specifically, we seek a solution in the following form:

f(t,x,v, z) ≈ PKf =

K∑
|k|=0

fk(t,x,v)Φk(z), (3.1)

fk(t,x,v) =

∫
Iz

f(t,x,v, z)Φk(z)π(z) dz. (3.2)

Here k = (k1, . . . , kn) is a multi-index with |k| = k1 + · · · + kn. {Φk(z)} are orthonormal gPC

basis functions satisfying∫
Iz

Φk(z)Φj(z)π(z) dz = δkj, 0 ≤ |k|, |j| ≤ K,

where π(z) is the probability distribution function of z. The approximation (3.1) is optimal in

space PnK (the set of all n-variate polynomials of degree up to K) in the sense that

‖f − PKf‖L2
π

= inf
h∈PnK

‖f − h‖L2
π
.

Inserting (3.1) into (2.7), and performing a standard Galerkin projection, we get
∂fk
∂t

+ v · ∇xfk =
1

Kn
Qk(PKf, PKf)(t,x,v), t > 0, x ∈ Ω, v ∈ Rd,

fk(0,x,v) = f0k(x,v), x ∈ Ω, v ∈ Rd,

fk(t,x,v) = gk(t,x,v), t ≥ 0, x ∈ ∂Ω, v ∈ Rd

(3.3)

for each 0 ≤ |k| ≤ K, and

Qk(PKf, PKf) :=

∫
Iz

Q(PKf, PKf)(t,x,v, z)Φk(z)π(z) dz,

f0k :=

∫
Iz

f0(x,v, z)Φk(z)π(z) dz,

gk :=

∫
Iz

g(t,x,v, z)Φk(z)π(z) dz.

Remark 3.1 Qk conserves mass, momentum and energy as Q(f, f). However, the H-theorem

no longer holds since PKf loses positivity.

For the VHS collision kernel (2.3) with uncertainty in bλ, Qk can be further expanded as

Qk =

K∑
|i|,|j|=0

Skij

∫
Rd

∫
Sd−1

|v − v∗|λ [fi(v
′)fj(v

′
∗)− fi(v)fj(v∗)] dσdv∗, (3.4)

with

Skij :=

∫
Iz

bλ(z)Φk(z)Φi(z)Φj(z)π(z) dz.
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For the Maxwell boundary condition (2.5) with uncertainty in Tw (assume uw = 0 for sim-

plicity), gk is given by

gk = (1− α)fk(t,x,v − 2(v · n)n) + α

K∑
|j|=0

Dkj(x,v)

∫
v·n<0

fj(t,x,v)|v · n|dv, (3.5)

with

Dkj(x,v) :=

∫
Iz

e−
v2

2Tw(x,z)

(2π)
d−1
2 T

d+1
2

w (x, z)
Φk(z)Φj(z)π(z) dz.

In (3.5), since Dkj does not depend on the solution fk, it can be precomputed accurately

and stored for repeated use. Likewise, Skij in (3.4) can also be precomputed, but even so, the

evaluation of Qk still presents a challenge. A naive, direct computation for each t and x would

result in O(N2
KN

d−1
σ N2d

v ) complexity, where NK =
(
K+n
K

)
is the dimension of PnK , Nσ is the

number of discrete points in each angular direction, and Nv is the number of points in each

velocity dimension. This is, if not impossible, prohibitively expensive.

3.1 A fast algorithm for the collision operator

In this subsection, we leverage the existing fast spectral method for the deterministic collision

operator [22] to construct a fast algorithm for (3.4). We show that with the help of the SVD,

one can easily reduce the above direct cost from O(N2
KN

d−1
σ N2d

v ) to O(NKN
d−1
σ Nd

v logNv) (in

practice, typically Nσ � Nv [11, 10]). This is achieved in two steps.

First, for each fixed k, decompose the symmetric matrix (Skij)NK×NK as (via a truncated

SVD with desired accuracy)

Skij =

Rk∑
r=1

Uk
irV

k
rj.

Substituting it into (3.4) and rearranging terms, we get

Qk =

Rk∑
r=1

∫
Rd

∫
Sd−1

|v − v∗|λ
[
gkr (v′)hkr (v′∗)− gkr (v)hkr (v∗)

]
dσdv∗, (3.6)

with

gkr (v) :=

K∑
|i|=0

Uk
irfi(v), hkr (v) :=

K∑
|i|=0

V k
rifi(v).

Hence we readily reduce the cost from O(N2
KN

d−1
σ N2d

v ) to O(RkN
d−1
σ N2d

v ), where Rk ≤ NK is

the numerical rank of matrix (Skij)NK×NK .

Remark 3.2 The value of Rk is closely related to the properties of {Φk(z)} and bλ(z), and de-

serves further investigation. In our numerical examples using Legendre polynomials, we observe

that for prescribed accuracy 10−12, Rk ≡ NK for n = 1, and Rk ≤ NK for n = 2 (some Rk can

be significantly less than NK and results in further saving). We also mention that the tensor

Skij itself has some sparse structure owing to the orthogonality of basis and many symmetries,

as discussed in [21]. In principle, one can identify its nonzero values and perform computation

(3.4) only on those points. The SVD approach we used here is a simple alternative, and is

feasible when NK is not very large.
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Next, note that (3.6) can be formally written as

Qk =

Rk∑
r=1

Q(gkr , h
k
r ), (3.7)

and Q is the deterministic collision operator (2.6) with kernel B = |v − v∗|λ. In [22], a fast

Fourier-spectral method in velocity variable v was developed for (2.2) in the case of 2D Maxwell

molecule (λ = 0) and 3D hard-sphere molecule (λ = 1). Applying this method to (3.7) with slight

modification, one can further reduce the cost from O(RkN
d−1
σ N2d

v ) to O(RkN
d−1
σ Nd

v logNv) (see

appendix for a detailed description).

3.2 Time and spatial discretizations

A semi-discrete scheme for (3.3) consists of two steps:

• Convection step:
f∗k − fnk

∆t
+ v · ∇xf

n
k = 0;

• Collision step:
fn+1
k − f∗k

∆t
=

1

Kn
Q∗k.

For the spatial derivative in the convection step, we employ the second-order MUSCL scheme

[24]. Second-order accuracy in time can be achieved using Runge-Kutta scheme and Strang

splitting.

Remark 3.3 In this paper, we don’t consider very small Knudsen number, thus an explicit

scheme is used for the collision step. Developing efficient numerical schemes that work uniformly

for a wide range of Kn constitutes an active research area called “asymptotic-preserving scheme”

[15]. This is currently under consideration in the context of UQ.

3.3 Computation of the moments

When solving the Boltzmann equation, besides the directly evolved density distribution func-

tion, people are also interested in its various moments such as those in (2.4). In the stochastic

Galerkin method, a remaining issue is: given fk, how to obtain reasonable gPC expansion coef-

ficients for macroscopic quantities? Inspired by [21], we proceed as follows:

• Compute ρk, mk, and Ek by direct integration

ρk :=

∫
Rd
fk dv, mk :=

∫
Rd
fkv dv, Ek :=

1

2

∫
Rd
fk|v|2 dv.

• Compute ρ−1k from

ρρ−1 = 1⇒

 K∑
|i|=0

ρiΦi

 K∑
|j|=0

ρ−1j Φj

 = 1,
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which upon projection amounts to solving the linear system

K∑
|j|=0

akjρ
−1
j = δ0k

with

akj :=

K∑
|i|=0

ρiS
′
kij, S′kij :=

∫
Iz

Φk(z)Φi(z)Φj(z)π(z) dz.

• Compute uk and Tk via

u
(l)
k =

K∑
|i|,|j|=0

m
(l)
i ρ−1j S′kij,

Tk =
2

d

K∑
|i|,|j|=0

(
Eiρ
−1
j −

1

2

d∑
l=1

u
(l)
i u

(l)
j

)
S′kij,

where superscripts l denote the lth component of a d-dimensional vector.

3.4 A spectral accuracy analysis

In this subsection we perform a (non-rigorous) spectral accuracy analysis for smooth solutions

on the gPC Galerkin approximation (while keeps other variables continuous). For notation

clarification we assume space homogeneity and suppress the spatial dependence. We also omit

the Knudsen number Kn in front of the collision term.

First, if one applies directly the exact solution

f̂(t,v, z) =

∞∑
|k|=0

f̂k(t,v)Φk(z)

into the Boltzmann equation (2.7) and carries out the Galerkin projection, one will get

∂f̂k
∂t

= Qk(f̂ , f̂), t > 0.

Define the numerical error as

ek = f̂k − fk , |k| ≤ K , e = (e1, · · · , eNK )T ,

then one has the following equation for the error:

∂ek
∂t

= Qk(f̂ , f̂)−Qk(PKf, PKf) . (3.8)

We now estimate the right hand side of (3.8) for consistency error. We first state a basic

property of the collision operator (see for example [3, 19]):

Lemma 3.4 If g, h ∈ L2
v, the L2 space in v, then

‖Q(g, h)‖L2
v
≤ CB‖g‖L2

v
‖h‖L2

v
,

where CB > 0 only depends on the collision kernel B.
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Since our B depends on z, CB will depend on z. Below we assume that it has an upper

bound for all z. Furthermore, we assume the regularity of f̂ as needed, and assume PKf

bounded uniformly in K in the space needed. Then,

‖Qk(f̂ , f̂)−Qk(PKf, PKf)‖2L2
v

=

∫
Rd

(∫
Iz

[Q(f̂ , f̂)(t,v, z)−Q(PKf, PKf)(t,v, z)]Φk(z)π(z) dz

)2

dv

=

∫
Rd

(∫
Iz

[Q(f̂ − PKf, f̂)(t,v, z) +Q(PKf, f̂ − PKf)(t,v, z)]Φk(z)π(z) dz

)2

dv

≤
∫
Rd

(∫
Iz

[Q(f̂ − PKf, f̂)(t,v, z) +Q(PKf, f̂ − PKf)(t,v, z)]2π(z) dz

)(∫
Iz

Φ2
k(z)π(z) dz

)
dv

=

∫
Iz

∫
Rd

[Q(f̂ − PKf, f̂)(t,v, z) +Q(PKf, f̂ − PKf)(t,v, z)]2dv π(z) dz

≤ 2

∫
Iz

(
‖Q(f̂ − PKf, f̂)(t, ·, z)‖2L2

v
+ ‖Q(PKf, f̂ − PKf)(t, ·, z)‖2L2

v

)
π(z) dz

≤ 2C2
B

∫
Iz

(
‖f̂‖2L2

v
‖f̂ − PKf‖2L2

v
+ ‖PKf‖2L2

v
‖f̂ − PKf‖2L2

v

)
π(z) dz

≤ C

∫
Iz

‖f̂ − PKf‖2L2
v
π(z) dz,

≤ C

∫
Iz

(
‖f̂ − PK f̂‖2L2

v
+ ‖PK(f̂ − f)‖2L2

v

)
π(z) dz

≤ C

{
1

K2m
+ ‖e‖2L2

v

}
where in the first inequality we used Cauchy-Schwartz inequality, in the third inequality we

used Lemma 3.4, in the fourth inequality we used the assumed boundedness of f̂ and uniform

boundedness of PKf in K, and in the last inequality we used the spectral accuracy of the PK

operator

‖f̂ − PK f̂‖L2
v

= O(K−m) (3.9)

where m comes from regularity assumption in the random space. C > 0 is a generic constant.

Now multiplying both sides of (3.8) by ek, summing over k, and using Cauchy-Schwartz

inequality on the right hand side, one can easily derive the following inequality:

∂

∂t
‖e‖L2

v
≤ C

{
1

Km
+ ‖e‖L2

v

}
.

By Gronwall’s inequality one obtains

‖e(t)‖L2
v
≤ eCt

{
1

Km
+ ‖e(0)‖L2

v

}
. (3.10)

Finally,

‖f̂ − PKf‖L2
v
≤ ‖PK(f̂ − f)‖L2

v
+ ‖f̂ − PK f̂‖L2

v
.

This, together with (3.10) gives

‖f̂ − PKf‖L2
v
≤ C(t)

{
1

Km
+ ‖e(0)‖L2

v

}
which shows the spectral accuracy for smooth solutions.

9



Remark 3.5 One can combine the spectral accuracy analysis in the random space and the spec-

tral accuracy analysis for the collision operator established in [22] to obtain a spectral accuracy

for the combined random space and velocity space. We omit the straightforward details.

4 Numerical examples

In this section, we present several numerical examples to illustrate the validity of the proposed

scheme. We will consider both spatially homogeneous and inhomogeneous problems, wherein the

randomness can come from collision kernel, initial data, or boundary data. For simplicity, we

will always assume the random variable z obeys the uniform distribution on [−1, 1]n with n up

to 2, thus the Legendre polynomials are used as gPC basis. Given the gPC coefficients fk of f ,

the statistical information mean, variance, and standard deviation are retrieved as

E[f ] = f0, Var[f ] ≈
K∑
|k|=1

f2k, S[f ] ≈

√√√√ K∑
|k|=1

f2k.

4.1 The spatially homogeneous BGK equation

Example 1. We first consider the homogeneous BGK equation

∂f

∂t
= B(z)(M− f), v ∈ R

with random collision kernel

B(z) = 1 + s1z1 + s2z2, s1 = 0.2, s2 = 0.1,

and deterministic initial condition

f0(v) = v2e−v
2

.

This is a particularly simple example where the Maxwellian M neither depends on z nor

changes in time. Figure 1 shows the mean and standard deviation of f obtained using gPC up

to 7th degree. The fourth-order Runge-Kutta scheme is applied for time discretization. The

velocity space is discretized using 64 points.

To further verify the accuracy of the scheme, we conduct the convergence analysis by com-

paring with the exact solution. Results are gathered in Figure 2, where we clearly observe the

spectral accuracy in random space and desired accuracy in time.

4.2 The spatially homogeneous Boltzmann equation

We now consider the homogeneous Boltzmann equation. In this and the rest of examples,

we always assume 2D Maxwell molecules, i.e., v ∈ R2 and λ = 0 in (2.3). Extension to 3D is

straightforward.

4.2.1 Random collision kernel

Example 2. Assume the collision kernel

B(z) = 1 + sz, s = 0.2,

10



Figure 1: Example 1. Left: E[f ](t, v). Right: S[f ](t, v). K = 7, Nv = 64, ∆t = 0.2/32, RK-4

for time discretization.
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Figure 2: Example 1. Left: spectral accuracy in K (∆t = 0.2/64, RK-4 for time discretization).

Right: 1st, 2nd, and 4th order accuracy in time (K = 9). errE = ‖E[f ] − E[f ext]‖l1(t,v),
errV = ‖Var[f ]−Var[f ext]‖l1(t,v).
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and the initial data

f0(v) =
1

2π2
v2e−v

2

.

Figure 3 shows the mean and standard deviation of f at t = 2.5 obtained using gPC up to

7th degree. The second-order Heun’s method is applied for time discretization. The velocity

space is discretized on 64× 64 mesh, and Nσ = 8 for angular discretization.
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Figure 3: Example 2. Left: E[f ](t = 2.5,v). Right: S[f ](t = 2.5,v). K = 7, Nv = 64, Nσ = 8,

∆t = 0.1, Heun for time discretization.

Without uncertainty, this is a famous benchmark example for the Boltzmann equation where

the exact solution can be constructed [9]. However, it is not the case with a random collision

kernel. We therefore compare our solution with the stochastic collocation [27] using 20 Gauss-

Legendre quadrature points. The solutions at different time are plotted in Figure 4.
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Figure 4: Example 2. E[f ] and S[f ] at v2 = 0. “Col” stands for collocation, “Gal” stands for

Galerkin. Heun is used for Galerkin, RK-4 is used for collocation.
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4.2.2 Random initial data

Example 3. Assume constant kernel B = 1 but random initial data

f0(v, z) =
1

2π2
v2e−

v2

1+sz , s = 0.2,

we perform the same test as above. The results are shown in Figures 5 and 6. We see that the

mean of the solution is more or less the same no matter whether the uncertainty is in collision

kernel or initial data, whereas the standard deviation exhibits quite different behavior in the two

cases.
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Figure 5: Example 3. Left: E[f ](t = 1.5,v). Right: S[f ](t = 1.5,v). K = 7, Nv = 64, Nσ = 8,

∆t = 0.1, Heun for time discretization.
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Figure 6: Example 3. E[f ] and S[f ] at v2 = 0. “Col” stands for collocation, “Gal” stands for

Galerkin. Heun is used for Galerkin, RK-4 is used for collocation.

4.3 The spatially inhomogeneous Boltzmann equation

We finally consider the full Boltzmann equation and assume 1D in x. For not too small

Knudsen number Kn, time step ∆t is mainly controlled by the CFL condition from the convection
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part. In the following examples, we take a fixed CFL number 0.8 and implement the MUSCL

scheme with minmod slope limiter for spatial discretization.

4.3.1 Random collision kernel

Example 4. Assume the collision kernel

B(z) = 1 + sz, s = 0.6,

the continuous initial data

f0(x,v) =
ρ0(x)

4πT 0(x)

(
e
− |v−u0(x)|2

2T0(x) + e
− |v+u0(x)|2

2T0(x)

)
, x ∈ [0, 1], (4.1)

where

ρ0(x) =
2 + sin(2πx)

3
, u0 = (0.2, 0), T 0 =

3 + cos(2πx)

4
, (4.2)

periodic boundary condition in x, and Kn = 0.1. We compare the solution obtained by stochastic

Galerkin with that of stochastic collocation on a finer mesh using 20 Gauss-Legendre quadrature

points. The macroscopic quantities density, bulk velocity and temperature are depicted in Figure

7, where we observe good agreement between two methods.

4.3.2 Random initial data

In this subsection, we assume the randomness is only in initial data.

Example 5 (Shock tube problem).

Consider the equilibrium initial condition with random macroscopic quantities: ρl = 1 + s1

(
z + 1

2

)
, ul = 0, Tl = 1 + s2z, x ≤ 0.5,

ρr = 0.125, ur = 0, Tr = 0.25, x > 0.5.

To illustrate the effects of uncertainty in different macroscopic quantities, we examine two cases

(1) s1 = 0.2, s2 = 0; (2) s1 = 0.2, s2 = 0.1. The results are shown, respectively, in Figures 8

and 9. The wiggles in the solution are due to the fact that a global gPC is used to approximate

a discontinuous function, and can be improved by using local adaptive basis such as [26, 20].

Example 6. Consider the same initial data as in (4.1), (4.2) except

ρ0(x, z) =
2 + sin(2πx) + 1

2 sin(4πx)z1 + 1
3 sin(6πx)z2

3
,

T 0(x, z) =
3 + cos(2πx) + 1

2 cos(4πx)z1 + 1
3 cos(6πx)z2

4
.

These are chosen to mimic the K-L expansion. Periodic boundary condition is assumed in x.

In the stochastic collocation, 10 Gauss-Legendre quadrature points are used for each random

dimension. See results in Figure 10.
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Figure 7: Example 4. Solutions at t = 0.2. Left column: mean of density, bulk velocity

(first component), and temperature. Right column: standard deviation of density, bulk velocity

(first component), and temperature. Solid line: collocation with Nz = 20, Nv = 64, Nσ = 8,

Nx = 200. Red star: Galerkin with K = 7, Nv = 32, Nσ = 4, Nx = 100.
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Figure 8: Example 5: case (1) s1 = 0.2, s2 = 0. Solutions at t = 0.1. Left column: mean of

density, bulk velocity (first component), and temperature. Right column: standard deviation of

density, bulk velocity (first component), and temperature. Solid line: collocation with Nz = 20,
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Figure 9: Example 5: case (2) s1 = 0.2, s2 = 0.1. Solutions at t = 0.1. Left column: mean of

density, bulk velocity (first component), and temperature. Right column: standard deviation of

density, bulk velocity (first component), and temperature. Solid line: collocation with Nz = 20,
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Figure 10: Example 6. Solutions at t = 0.1. Left column: mean of density, bulk velocity

(first component), and temperature. Right column: standard deviation of density, bulk velocity

(first component), and temperature. Solid line: collocation with Nz = 10, Nv = 64, Nσ = 8,

Nx = 200. Red star: Galerkin with K = 5, Nv = 32, Nσ = 4, Nx = 100.
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4.3.3 Random boundary data

Example 7 (Sudden heating problem).

The gas is initially in a constant state

f0(x,v) =
1

2πT 0
e−

v2

2T0 , T 0 = 1, x ∈ [0, 1].

At time t = 0, suddenly change the wall temperature at left boundary to

Tw(z) = 2(T0 + sz), s = 0.2.

Assume purely diffusive Maxwell boundary condition at x = 0, and Kn = 0.1.

The deterministic version of this problem has been considered by many authors [1, 12, 10],

where they all observed that with the sudden rise of wall temperature, the gas close to the wall

is heated and accordingly the pressure there rises sharply, which pushes the gas away from the

wall and a shock wave propagates into the domain. The mean of our solution also exhibits the

similar behavior (see Figure 11). Meanwhile, the standard deviation of the solution allows us to

predict the propagation of uncertainties quantitatively.

5 Conclusion

We have introduced a gPC based stochastic Galerkin scheme for the nonlinear Boltzmann

equation with random inputs. For the first time, we are able to quantify the uncertainties coming

from collision kernel, initial data, or boundary data. Along the way, we proposed a fast algorithm

to accelerate the computation of collision operator in the gPC expansion. This paper serves as

an initial attempt to UQ for nonlinear kinetic equations. Many interesting problems are open or

currently under investigation, such as dimension reduction for high dimensional random input,

asymptotic-preserving schemes that are efficient near the fluid dynamic regime, etc.

6 Appendix: fast Fourier-spectral method for the collision

operator Q(g, h)
In this appendix, we outline the fast Fourier-spectral method for computing the collision

operator (3.7). First it suffices to consider an operator of the form

Q(g, h)(v) =

∫
Rd

∫
Sd−1

|v − v∗|λ [g(v′)h(v′∗)− g(v)h(v∗)] dσdv∗,

where g and h are arbitrary functions of v (not necessarily positive). The starting point in [22]

is to transform the above integral into a Carleman-like representation:

Q(g, h)(v) =

∫
Rd

∫
Rd
B̃(x,y) δ(x · y) [g(v′)h(v′∗)− g(v)h(v∗)] dx dy, (6.1)

where v∗ = v+x+y, v′ = v+x, v′∗ = v+y, and B̃(x,y) = 2d−1|x+y|λ+2−d, so for 2D Maxwell

molecule (d = 2, λ = 0) and 3D hard sphere molecule (d = 3, λ = 1), one has B̃ ≡ C. The

construction of Fourier spectral method for (6.1) can then be summarized as follows (assume

B̃ = 1):
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Figure 11: Example 7. Left column: mean of density, bulk velocity (first component), and

temperature. Right column: standard deviation of density, bulk velocity (first component), and

temperature. Solid line: collocation with Nz = 20, Nv = 64, Nσ = 8, Nx = 200. Other legends

are the Galerkin solutions at different time with K = 7, Nv = 32, Nσ = 4, Nx = 100.
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• Truncate the integral to a ball BR (for both x and y) with R ≥ 2S, BS ≈ suppv(g, h).

• Periodize g, h on the domain DL = [−L,L]d. Choose L ≥ 3
√
2+1
2 S for anti-aliasing [23].

• Approximate g, h respectively by truncated Fourier series (note here k is a multi-dimensional

index and is different from the main text):

g(v) =
∑
k

ĝke
i πLk·v, h(v) =

∑
k

ĥke
i πLk·v, k = −Nv

2
, . . . ,

Nv

2
− 1. (6.2)

• Substitute (6.2) into (6.1), and perform the standard Galerkin projection. The k-th mode

of the Fourier expansion of Q is given by

Q̂k =
∑

l+m=k

[β(l,m)− β(m,m)] ĝlĥm, l,m, k = −Nv

2
, . . . ,

Nv

2
− 1, (6.3)

with the kernel mode

β(l,m) =

∫
BR

∫
BR

δ(x · y)ei
π
L l·xei

π
Lm·y dx dy. (6.4)

It is clear that a direct computation of (6.3) (for all k) would require O(N2d
v ) complexity.

But if we can find a low-rank separated expansion of β as

β(l,m) ≈
M∑
r=1

Ar(l)Br(m), (6.5)

then the weighted convolution in (6.3) can be rendered into a pure convolution. Hence the cost

will be reduced to O(MNd
v logNv) by using the Fast Fourier Transform.

Now the question left is: how to find a decomposition as in (6.5)? We will explain the idea

for 2D Maxwell molecule (readers are referred to [22] for other cases). In (6.4), expanding x, y

in polar coordinates, we have

β(l,m) =
1

4

∫
S1

∫
S1

δ(σ1 · σ2)φ(l · σ1)φ(m · σ2) dσ1dσ2 =

∫ π

0

φ(l · σθ)φ(
√
|m|2 − (m · σθ)2) dθ,

(6.6)

where

φ(s) :=

∫ R

−R
ei
π
Lρs dρ = 2R Sinc

(π
L
Rs
)
, σθ := (cos θ, sin θ).

Note that the right hand side of (6.6) is a single integral in θ and the integrand is readily in

decoupled form (also π-periodic in θ). Therefore, we can approximate β by a uniform quadrature

rule:

β(l,m) ≈
(
π

Nσ

) Nσ∑
r=1

φ(l · σθr )φ(
√
|m|2 − (m · σθr )2),

hence resulting in the desired form.

21



References

[1] K. Aoki, Y. Sone, K. Nishino, and H. Sugimoto. Numerical analysis of unsteady motion

of a rarefied gas caused by sudden changes of wall temperature with special interest in the

propagation of a discontinuity in the velocity distribution function. In A. E. Beylich, editor,

Rarefied Gas Dynamics, pages 222–231, 1991.

[2] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon

Press, Oxford, 1994.

[3] F. Bouchut and L. Desvillettes. A proof of the smoothing properties of the positive part of

Boltzmann’s kernel. Rev. Mat. Iberoamericana, 14:47–61, 1998.

[4] C. Cercignani. The Boltzmann Equation and Its Applications. Springer-Verlag, New York,

1988.

[5] C. Cercignani. Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cam-

bridge University Press, Cambridge, 2000.

[6] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases.

Springer-Verlag, 1994.

[7] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cam-

bridge University Press, Cambridge, third edition, 1991.

[8] G. Dimarco and L. Pareschi. Numerical methods for kinetic equations. Acta Numer.,

23:369–520, 2014.

[9] M. H. Ernst. Exact solutions of the nonlinear Boltzmann equation. J. Stat. Phys., 34:1001–

1017, 1984.

[10] F. Filbet. On deterministic approximation of the Boltzmann equation in a bounded domain.

Multiscale Model. Simul., 10:792–817, 2012.

[11] F. Filbet, C. Mouhot, and L. Pareschi. Solving the Boltzmann equation in NlogN. SIAM

J. Sci. Comput., 28:1029–1053, 2006.

[12] I. Gamba and S. H. Tharkabhushanam. Shock and boundary structure formation by

spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation. J.

Comput. Math., 28:430–460, 2010.

[13] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-

Verlag, New York, 1991.

[14] J. Hirschfelder, R. Bird, and E. Spotz. The transport properties for non-polar gases. J.

Chem. Phys., 16:968–981, 1948.

[15] S. Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations:

a review. Riv. Mat. Univ. Parma, 3:177–216, 2012.

22



[16] S. Jin, D. Xiu, and X. Zhu. Asymptotic-preserving methods for hyperbolic and transport

equations with random inputs and diffusive scalings. J. Comput. Phys., 289:35–52, 2015.

[17] K. Koura and H. Matsumoto. Variable soft sphere molecular model for inverse-power-law

or Lennard-Jones potential. Phys. Fluids A, 3:2459–2465, 1991.
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