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Abstract

We develop a stochastic Asymptotic Preserving (s-AP) scheme for the Vlasov-Poisson-

Fokker-Planck (VPFP) system in the high field regime with uncertainty based on the gen-

eralized Polynomial Chaos Stochastic Galerkin framework (gPC-SG). We first prove that,

for a given electric field with uncertainty, the regularity of initial data in the random space

is preserved by the analytical solution at later time, which allows us to establish the spec-

tral convergence of the gPC-SG method. We follow the framework developed in [15] to

numerically solve the resulting system in one space dimension, and show formally that the

fully discretized scheme is s-AP in the high field regime. Numerical examples are given to

validate the accuracy and s-AP properties of the proposed method.

Key words. Vlasov-Poisson-Fokker-Planck system, Uncertainty Quantification, Asymptotic Pre-
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1 Introduction

In this paper we are interested in developing a stochastic Asymptotic-preserving scheme

for the Vlasov-Poisson-Fokker-Planck (VPFP) system with random inputs, which arises in the

kinetic modeling of the Brownian motion of a large system of particles in a surrounding bath [2].

One application of such system is in electrostatic plasma, in which one considers the interactions

between the electrons and a surrounding bath via the Coulomb force. The equation takes the

form of a Liouville equation with a Fokker-Planck operator in the velocity space, coupled with a

Poisson equation for the electric field. See Section 2 for details of the equations. The unknown

in the system is f(t,x,v), the particle density distribution of particles at time t > 0, position

x ∈ RN with velocity v ∈ RN . In addition to the classical difficulty of high dimensionality

∗This work was partially supported by NSF grants DMS-1522184 and DMS-1107291: RNMS KI-Net, by

NSFC grant No. 91330203, and by the Office of the Vice Chancellor for Research and Graduate Education at

the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation.
†Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA

(yzhu232@wisc.edu)
‡Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA (sjin@wisc.edu),

and Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong

University, Shanghai 200240, China

1



to solve equations in the phase space, the problem under study has two more computational

challenges: Multi-scale and uncertainty.

In this paper the high field regime, in which the strong forcing term balances the Fokker-

Planck diffusion term [1], will be considered. In this problem, numerical stiffness arises due to

the strong field and diffusion term. On the other hand, in this regime one can approximate the

VPFP system by its high field limit, which has the form of a transport-Poisson system for the

density and electric potential [10, 20]. One successful numerical strategy to efficiently compute

into such asymptotic regimes is to develop Asymptotic-Preserving (AP) schemes, which preserves

the continuous asymptotic limit in the discrete space in a numerically uniformly stable way [12].

This strategy has been widely used in kinetic and hyperbolic equations with multiple time and

space scales (see [13] for a general review and [4] for applications in plasma). For its development

for the high-field limit, see [15, 16, 8, 3].

Another difficulty here is to treat the uncertainty. Due to modeling and measurement errors,

uncertainties in kinetic modeling could arise from initial and boundary data, and the forcing

term. In this paper we will consider the cases in which the electric potential and initial data

contain random inputs, modeled by random variables with given probability density functions.

In recent years, the generalized polynomial chaos approximation based stochastic Galerkin (gPC-

SG) methods have found many applications in a wide range of physical and engineering problems,

see [6, 23, 21], although its applications in kinetic problems are scarce, see recent efforts in

[17, 11, 14]. It is the goal of this paper to develop a gPC-SG method for the VPFP system

with random inputs that are stochastic Asymptotic-Preserving (s-AP). As defined in [17], for

the s-AP scheme, a stochastic Galerkin method for the VPFP system, in the high field limit,

becomes a stochastic Galerkin method for the limiting transport-Poisson system, when all the

numerical parameters are held fixed. For this scheme, one can use a fixed mesh size, time step,

and the number of gPC modes, in different asymptotic regimes. In particular, one does not need

to numerically resolve the physically small scale and still capture the correct solutions of the

high field limit.

For a given electric potential that contains uncertainty (thus the underlying problem becomes

linear), we first prove, in section 3, that the system preserves the regularity of the initial data

in the random space. In section 4 we introduce the gPC-SG method for the VPFP system, and

the regularity result in section 3 naturally leads to the proof of the spectral accuracy of the

method in section 5. Since the gPC-SG system is a vector version of the deterministic VPFP

system, in section 6, in the one dimensional case, we will use the AP scheme developed for its

deterministic counterpart in [15] for time, spatial and velocity discretizations, and the method is

shown formally to be s-AP, namely, in the high field limit, it gives the gPC-SG method–actually

a kinetic scheme– for the limiting system. Numerical experiments are conducted to demonstrate

asymptotic property, accuracy and other properties of the method in section 7.

In the near future we will also develop multi-dimensional s-AP schemes for the VPFP system.
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2 The Background and Model

2.1 The VPFP System with Uncertainty

In the VPFP system with uncertainty, the time evolution equations of particle density dis-

tribution function f(t,x,v, z) under the action of an electrical potential φ(t,x, z) is ∂tf + v · 5xf − 1
ε 5x φ · 5vf = 1

ε 5v ·[vf +5vf ],

−4x φ = ρ− h, t > 0, x ∈ RN , v ∈ RN , z ∈ Iz,
(2.1)

with the following initial condition:

f(0,x,v, z) = f0(x,v, z), x ∈ RN , v ∈ RN , z ∈ Iz. (2.2)

Here the distribution function f(t,x,v, z) depends on time t, position x, velocity v and random

variable z ∈ Iz ⊆ Rd. z is in a properly defined probability space (Σ,A,P), whose event space is

Σ and is equipped with σ-algebra A and probability measure P. φ(t,x, z) is the self-consistent

electrical potential, and h(x, z) is a given positive background charge with global neutrality

relation ∫
RN

∫
RN

f0(x,v, z)dxdv =

∫
RN

h(x, z)dx, (2.3)

and the density function ρ(t,x, z) is defined as

ρ(t,x, z) =

∫
RN

f(t,x,v, z)dv. (2.4)

Besides, we define operators L, Lφ as,

L(f, φ) = ∂tf + v · 5xf −
1

ε
5x φ · 5vf −

1

ε
5v ·[vf +5vf ], (2.5)

Lφ(f, φ) = −4x φ− (ρ− h). (2.6)

2.2 The High Field Limit

Here we will show the formal limit of (2.1) when ε→ 0.

First, integrate (2.1) over v,

∂t

∫
RN

fdv + Ox ·
∫
RN
vfdv − 1

ε

∫
RN

Ov · (Oxφfdv) =
1

ε

∫
RN

Ov · (vf + Ovf)dv. (2.7)

Define the flux

j =

∫
RN
vfdv. (2.8)

After integrating by parts, one has

∂tρ+5x · j = 0. (2.9)

Then multiply v to both sides of (2.1) and integrate over v,

ε∂t

∫
RN
vf + ε

∫
RN
vv · 5xf =

∫
RN
v5v ·(f 5x φ) + v5v ·[vf +5vf ]. (2.10)

3



Let ε→ 0 it becomes

0 =

∫
RN
v [5v · (f 5x φ+ vf +5vf)] dv, (2.11)

which implies,

0 =

∫
RN

f 5x φ+ vf +5vfdv. (2.12)

Therefore, one has,

j = −ρ(5xφ). (2.13)

Finally plugging (2.13) into (2.9), one gets the high field limit of system (2.1),{
∂tρ−5x · (ρ5x φ) = 0,

−4xφ = ρ− h.
(2.14)

For each fixed z, the rigorous proof for the high field limit of VPFP system in one dimension

can be found in [10, 20].

3 Regularity of the Solution in the Random Space

In this section, we study the regularity of f(t,x,v, z) for a given potential function φ(t,x, z).

In this setting, the equation is linear. This regularity will be needed to prove the spectral

convergence of the gPC approximation in Section 5.3. To simplify the notation we also assume

z ∈ Iz ⊂ R. All the theory can be extended to z ∈ Rd easily.

Before we start, let us first define π(z) : Iz −→ R+ as the probability density function of the

random variable z(ω), ω ∈ Σ. So one can define a corresponding L2
π space with inner product,

< f, g >π:=

∫
Iz

fgπ(z) dz, (3.1)

and weighted norm in x, v, z space

||f ||π =

(∫
Iz

∫
RN

∫
RN
|f |2 π(z)dxdvdz

) 1
2

. (3.2)

3.1 Regularity of Solution in the Random Space

Theorem 3.1. Given φ(t,x, z), if there exists some integer m > 0, and positive constants Cf ,

Cφ, such that ||∂lzf0||π ≤ Cf , ||∂lzOxφ||L∞ ≤ Cφ, for l = 0, · · · ,m, then

||∂lzf(t)||π ≤ Dle
Glt

ε , for l = 0, · · · ,m, (3.3)

where Dl = 2alCf l!, a = max{Cφ, 1}, Gl = 1
2 (l + 1),

Proof. For notation simplicity, we take N = 1. However, the proof can be easily extended to

multi-dimensional x and v.

First, multiply 2fπ(z) to (2.1) and integrate it over x, v and z, after integration by parts,

one gets,

ε∂t||f ||2π = ||f ||2π − 2||∂vf ||2π. (3.4)
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For l = 1, · · · ,m, take l-th derivative in z to (2.1), one gets,

ε∂t∂
l
zf + εv∂x∂

l
zf − ∂xφ∂v∂lzf −

l−1∑
i=0

(li)(∂
l−i
z ∂xφ)(∂v∂

i
zf) = ∂v(v∂

l
zf + ∂v∂

l
zf). (3.5)

Multiplying 2π(z)∂lzf and integrating over x, v and z, then the second and third terms vanish,

so one has, for l = 1, · · · ,m

ε∂t||∂lzf(t)||2π =

∫
Iz

∫
RN

∫
RN

l−1∑
i=0

2(li)(∂
l−i
z ∂xφ)(∂v∂

i
zf)∂lzfπ(z) dxdvdz + ||∂lzf ||2π − 2||∂v∂lzf ||2π.

(3.6)

Using Young’s Inequality and the boundedness of ‖∂lzOxφ‖∞, one gets,

ε∂t||∂lzf(t)||2π ≤C2
φ

l−1∑
i=0

(li)
2||∂v∂izf ||2π + (l + 1) ||∂lzf(t)||2π − 2||∂v∂lzf ||2π . (3.7)

Multiplying a constant Aml to (3.7) and summing l from 1 to m, then adding Am0 ×(3.4) gives,

ε∂t

(
m∑
l=0

Aml ||∂lzf(t)||2π

)

≤C2
φ

m∑
l=1

l−1∑
i=0

Aml (li)
2||∂v∂izf ||2π +

m∑
l=0

(l + 1)Aml ||∂lzf(t)||2π − 2

m∑
l=0

Aml ||∂v∂lzf ||2π

=

m−1∑
i=0

(
m∑

l=i+1

C2
φ(li)

2Aml − 2Ami

)
||∂v∂izf ||2π − 2Amm||∂v∂izf ||2π +

m∑
l=0

(l + 1)Aml ||∂lzf(t)||2π.

(3.8)

Let Amm = 1 and
∑m
l=i+1 C

2
φ(li)

2Aml − 2Ami = 0, for i = 0, · · · ,m− 1, (3.8) becomes

ε∂t

(
m∑
l=0

Aml ||∂lzf(t)||2π

)
≤

m∑
l=0

(l + 1)Aml ||∂lzf(t)||2π. (3.9)

and one has a linear system for Ami , i = 0, · · · ,m− 1:

− 2
C2
φ

(1
0)2 (2

0)2 · · · (m−1
0 )2

− 2
C2
φ

(2
1)2 · · · (m−1

1 )2

. . .
...

...

− 2
C2
φ

(m−1
m−2)2

− 2
C2
φ





Am0
Am1

...

Amm−2

Amm−1

 = −



(m0 )2

(m1 )2

...

(mm−2)2

(mm−1)2

 . (3.10)

Lemma 3.2. Solving the linear system (3.10), one has,

0 < Aml ≤ bm−l(
m!

l!
)2, where b = max{1, C2

φ} (3.11)

Proof. See Appendix A.1
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Therefore, by Lemma 3.2, and apply Gronwall’s Inequality to (3.9), one obtains,

m∑
l=0

Aml ||∂lzf(t)||2π ≤ e
(m+1)t

ε

(
m∑
l=0

Aml ||∂lzf(0)||2π

)
≤ e

(m+1)t
ε C2

f

m∑
l=0

bm−l
(
m!

l!

)2

≤ e
(m+1)t

ε C2
f (m!)2bm

[(
1

0!

)2

+

m∑
l=1

1

bl4(l−1)

]

≤ 7

3
bm(m!)2e

(m+1)t
ε C2

f , (3.12)

which implies,

||∂mz f(t)||π ≤ (2amm!)e
(m+1)t

2ε Cf , (3.13)

where a = max{Cφ, 1}

3.2 Regularity of Ovf in the Random Space

Theorem 3.3. Given φ(t,x, z), if there exists some integer m > 0, and positive constants Cf ,

Cφ, such that ||∂lzOvf(0)||π ≤ Cf , ||∂lzOxf(0)||π ≤ Cf , ||∂lzOxφ||L∞ ≤ Cφ, ||∂lzO2
xφ||L∞ ≤

Cφ, for l = 0, · · · ,m, then,

||∂lzOvf(t)||π ≤ Cle
Ll
ε t, for l = 0, · · · ,m, (3.14)

where Cl = 3alCf l!, a = max{Cφ, 1}, Ll = 1
2 (ε+ Cφ + 5 + 2l).

Proof. Applying ∂lz∂v and ∂lz∂x to (2.1), l = 1, · · · ,m, gives

ε∂t∂
l
z∂vf + εv∂x∂

l
z∂vf + ε∂lz∂xf −

l−1∑
i=0

(li)∂
l−i
z ∂xφ∂

i
z∂

2
vf − ∂xφ∂v∂lz∂vf

=∂v(∂
l
zf + v∂lz∂vf + ∂lz∂

2
vf) ; (3.15)

ε∂t∂
l
z∂xf + εv∂x∂

l
z∂xf − ∂2

xφ∂v∂
l
zf − ∂xφ∂v∂x∂lzf −

l−1∑
i=0

(li)∂
2
x∂

l−i
z φ∂v∂

i
zf

−
l−1∑
i=0

(li)∂x∂
l−i
z φ∂v∂

i
z∂xf = ∂v(v∂

l
z∂xf + ∂v∂

l
z∂xf) . (3.16)

Multiplying 2π(z)∂lz∂vf to (3.15) and 2π(z)∂lz∂xf to (3.16), and integrating over x, v and z, one

has respectively,

ε∂t||∂lz∂vf ||2π +

∫
RN

∫
RN

2ε < ∂lz∂xf, ∂
l
z∂vf >π −2

l−1∑
i=0

< (li)∂
l−i
z ∂xφ∂

i
z∂

2
vf, ∂

l
z∂vf >π dxdv

=3||∂lz∂vf ||2π − 2||∂lz∂2
vf ||2π ; (3.17)

ε∂t||∂lz∂xf ||2π −
∫
RN

∫
RN

2

l−1∑
i=0

< (li)∂
2
x∂

l−i
z φ∂iz∂vf, ∂

l
z∂xf >π dxdv

−
∫
RN

∫
RN

2

l−1∑
i=0

< (li)∂x∂
l−i
z φ∂iz∂v∂xf, ∂

l
z∂xf >π −2 < ∂2

xφ∂
l
z∂vf, ∂

l
z∂xf >π dxdv

=||∂lz∂xf ||2π − 2||∂lz∂v∂xf ||2π . (3.18)
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By Young’s Inequality, one gets,

ε∂t||∂lz∂vf ||2π ≤ε||∂lz∂xf ||2π + (ε+ 3 + l) ||∂lz∂vf ||2π + C2
φ

l−1∑
i=0

(li)
2||∂iz∂2

vf ||2π − 2||∂lz∂2
vf ||2π ; (3.19)

ε∂t||∂lz∂xf ||2π ≤ (Cφ + 1 + 2l) ||∂lz∂xf ||2π + Cφ||∂lz∂vf ||2π + C2
φ

l−1∑
i=0

(li)
2||∂iz∂vf ||2π

+ C2
φ

l−1∑
i=0

(li)
2||∂iz∂v∂xf ||2π − 2||∂lz∂v∂xf ||2π. (3.20)

Summing the two inequalities yields,

ε∂t
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
≤ (ε+ Cφ + 3 + 2l)

(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
+ C2

φ

l−1∑
i=0

(li)
2||∂iz∂vf ||2π

+ C2
φ

l−1∑
i=0

(li)
2||∂iz∂2

vf ||2π − 2||∂lz∂2
vf ||2π + C2

φ

l−1∑
i=0

(li)
2||∂iz∂v∂xf ||2π − 2||∂lz∂v∂xf ||2π . (3.21)

Similarly, for l = 0, one has,

ε∂t(||∂xf ||2π + ||∂vf ||2π) ≤ (Cφ + 3 + ε)(||∂xf ||2π + ||∂vf ||2π)− 2||∂x∂vf ||2π − 2||∂v∂vf ||2π . (3.22)

Multiplying Aml to (3.20) and Summing it from 1 to m over l, then adding Am0 ×(3.22), gives,

ε∂t

m∑
l=0

Aml
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
≤

m∑
l=0

(ε+ Cφ + 3 + 2l)Aml
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
+

m−1∑
i=0

(
C2
φ

m∑
l=i+1

(li)
2Aml ||∂iz∂vf ||2π

)

+

m−1∑
i=0

(
C2
φ

m∑
l=i+1

(li)
2Aml − 2Ami

)(
||∂iz∂2

vf ||2π + ||∂iz∂v∂xf ||2π
)
. (3.23)

Let Amm = 1 and Ami solves (3.10), for i = 0, · · · ,m− 1, one has,

ε∂t

m∑
l=0

Aml
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
≤

m∑
l=0

(ε+ Cφ + 3 + 2l)Aml
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
+

m−1∑
i=0

2Ami ||∂iz∂vf ||2π

≤
m∑
l=0

(ε+ Cφ + 5 + 2l)Aml
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
, (3.24)

then by Lemma 3.2 and Gronwall’s Inequality, one obtains,

m∑
l=0

Aml
(
||∂lz∂vf ||2π + ||∂lz∂xf ||2π

)
≤ 7

3
bm(m!)2e

ε+Cφ+5+2m

ε t2C2
f . (3.25)

Therefore, one can get,

||∂mz ∂vf ||π ≤ 3amm!e
ε+Cφ+5+2m

2ε tCf . (3.26)

which completes the proof.
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Remark 3.4. Theorems 3.1 and 3.3 imply that if f and ∂vf are in Hm = {f | ‖∂lzf‖π <∞, 0 ≤
l ≤ m} initially, then under suitable assumption on the regularity of φ as given in Theorems 3.1

and 3.3, f and Ovf remain in Hm at later time. Thus the regularity in z of the initial data is

preserved in time.

4 The gPC Method for the VPFP System

4.1 The Method of gPC

Let WK
π be the orthogonal polynomial space corresponding to the random space (Σ,A,P),

WK
π = {g : Iz −→ R : g ∈ span{Φk(z)}Kk=0}, (4.1)

where Φk, k = 0, · · · ,K is a set of d-variate orthonormal polynomials of degree k satisfying,

< Φk,Φl >π= E(ΦkΦl) =

∫
Iz

Φk(z)Φl(z)π(z)dz = δkl. (4.2)

Here E means the expected value, and δkl is the Kronecker delta function. By the classical

approximation theory, W∞π is a Hilbert space with inner product < ·, · >π. Thus the solution

f(t,x,v, z), φ(t,x, z) to (2.1) can be represented as

f(t,x,v, z) =

∞∑
k=0

f̄k(t,x,v)Φk(z), φ(t,x, z) =

∞∑
k=0

φ̄k(t,x)Φk(z), in L2
π . (4.3)

In the gPC stochastic Galerkin (gPC-SG) method, one seeks an approximation to the exact

solution f and φ in the subspace WK
π , i.e. the approximation solution f̂K , φ̂K are in the form

of,

f̂K(t,x,v, z) =

K∑
k=0

f̂k(t,x,v)Φk(z) , f̂K ·ΦK , φ̂K(t,x, z) =

K∑
k=0

φ̂k(t,x)Φk(z) , φ̂K ·ΦK ,

(4.4)

where ΦK = (Φ0, · · · ,ΦK), and f̂k =< f̂K ,Φk >π, φ̂k =< φ̂K ,Φk >π, which are independent

of z, are the components of vector f̂K , φ̂K satisfying, for 0 ≤ j ≤ K,

< L(f̂K , φ̂K),Φj >π= 0,

< Lφ(f̂K , φ̂K),Φj >π= 0. (4.5)

We also approximate the given charge h by

ĥK(x, z) =

K∑
k=0

ĥkΦk , ĥK ·ΦK , (4.6)

where ĥk(x) =< h,Φk >π, for k = 0, · · · ,K.

By the definition of ρ in (2.4), the numerical approximation of ρ is,

ρ̂K(t,x, z) =

K∑
k=0

ρ̂kΦk , ρ̂K ·ΦK , (4.7)
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where ρ̂k(t,x) =
∫
RN f̂k(t,x,v)dv, for k = 0, · · · ,K.

By equation (4.5), we have for each j = 0, · · · ,K, ∂tfj + v · Oxfj − 1
ε

∑K
k,l=0 Oxφk · Ovfl(Ej)kl = 1

εOv · [vfj + Ovfj ],

−4x φj = ρj − hj , for 1 ≤ j ≤ K,
(4.8)

where Ej , (0 ≤ j ≤ K), is a (K + 1)-dimensional matrix, and (Ek)jl = EΦjΦlΦk.

In order to express the system in a simple form, also for the sake of combining the stiff terms

and forming an AP scheme as in [15], we give the following Lemma.

Lemma 4.1. For matrix Ei, 0 ≤ i ≤ K, defined above, one has

K∑
k,l=0

Oxφk · Ovfl(Ej)kl = Ov ·

[
K∑
k=0

(Ekf̂
K)j(Oxφk)>

]
. (4.9)

Proof.

K∑
k,l=0

Oxφk · Ovfl(Ej)kl

=

K∑
k,l=0

N∑
i=0

∂xiφk∂vifl(Ej)kl =

K∑
k=0

N∑
i=0

∂xiφk

K∑
l=1

(Ek)jl∂vifl =

K∑
k=0

N∑
i=0

∂xiφk∂vi

[
K∑
l=0

(Ek)jlfl

]

=

K∑
k=0

N∑
i=0

∂xiφk∂vi(Ekf̂
K)j =

K∑
k=0

Ov · [∂x1φ1(Ekf̂
K)j , ..., ∂xNφk(Ekf̂

K)j ]

=Ov ·

[
K∑
k=1

(Ekf̂
K)jOxφk

]
. (4.10)

Now by Lemma 4.1, (4.8) can be written in a vector form as
∂tf̂

K + (5xf̂
K)v − 1

ε
5v ·

[
K∑
k=0

Ekf̂
KOxφk

]
=

1

ε
5v ·

[
f̂Kv> +5vf̂

K
]
,

−4xφ̂
K = ρ̂K − ĥK .

(4.11)

5 The Spectral Convergence of the gPC-SG Method

In this section, we establish the spectral convergence of the gPC-SG method for a given

potential φ(t,x, z).

5.1 Stability

We first prove a stability result, estimating the evolution of ||f̂K(t)||π

Theorem 5.1. For ∀ t > 0,

||f̂K(t)||π ≤ e
3Nt
ε ||f̂K(0)||π (5.1)
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Proof. Due to the orthogonality of φk(z), one has ||f̂K ||π = ||f̂K ||L2 , with || · ||L2 defined as,

|| · ||L2 =

(∫
R3

∫
RN
|| · ||22 dxdv

) 1
2

, (5.2)

where || · ||2 is the regular Euclidean norm for vectors. Therefore one only needs to prove the

theorem for ||f̂K(t)||L2 .

Multiplying f̂j to (4.8) and integrating over x and v,

∫
RN

∫
RN

∂t(1

2
f̂2
j

)
+ v · Ox

(
1

2
f̂2
j

)
− 1

ε

K∑
k,l,i=0

∂xiφkf̂j∂vi f̂l(Ej)kl

 dxdv
=− 1

ε

∫
RN

∫
RN
v · Ov

(
1

2
f̂2
j

)
dxdv +

N

ε
||f̂2
j ||2L2 −

1

ε
||Ov f̂j ||2L2 , (5.3)

After integration by parts the second term on the LHS vanishes, and the first term of the RHS

becomes N
ε

∫
RN
∫
RN

1
2 f̂

2
j dxdv. Sum j from 1 to K, one gets,

1

2
∂t||f̂K ||2L2 −

1

ε

∫
RN

∫
RN

K∑
k,l,i,j=0

∂xiφkf̂j∂vi f̂l(Ej)kldxdv ≤
(
N

2ε
+
N

ε

)
||f̂K ||2L2 . (5.4)

Note the second term on the LHS also vanishes, since

1

ε

∫
RN

∫
RN

K∑
k,l,i,j=0

∂xiφkf̂j∂vi f̂l(Ej)kl dxdv

=
1

ε

∫
RN

∫
RN

 K∑
k,i=0

K∑
j=0

∂xiφk(Ej)kj∂vi

(
1

2
f̂2
j

)
+

K∑
k,i=0

K∑
j 6=l

∂xiφkf̂j∂vi f̂l(Ek)jl

 dxdv,

=
1

ε

∫
RN

∫
RN

K∑
k,i=0

K∑
j=0

∂xiφk(Ej)kj∂vi

(
1

2
f̂2
j

)
+

K∑
k,i=0

K∑
j>l

∂xiφk(Ek)jl∂vi(f̂j f̂l) dxdv. (5.5)

By the symmetric of Ek, where the last inequality uses the symmetry of Ek. Both terms in (5.5)

vanish after integration by parts, so (5.4) implies,

1

2
∂t||f̂K ||2L2 ≤

(
N

2ε
+
N

ε

)
||f̂K ||2L2 , (5.6)

By Gronwall’s Inequality,

||f̂K(t)||L2 ≤ e 3Nt
ε ||f̂K(0)||L2 , (5.7)

which completes the proof.

5.2 The Spectral Convergence

Before we start to prove the convergence of the numerical approximation f̂ , for the sake of

convenience, we assume z ∈ R, and all the proof can be easily extended to multi-dimensional z.

We define operators Lf , K as,

Lf := ε∂t + εv · Ox − v · Ov −N −4v, K := Oxφ · Ov, then L = Lf −K. (5.8)

10



Let the projection of the exact solution f(t,x,v, z) to the subspace WK
π be PKf ,

PKf :=

K∑
k=0

< f,Φk >π Φk(z) :=

K∑
k=0

f̄k(t, x, v)Φk(z) := f̄K ·ΦK , (5.9)

where f̄ = (f̄0, · · · , f̄K)>. As defined in (4.4), the numerical approximation f̂K = f̂K · ΦK ,

then the error can be split into two parts,

f − f̂K = (f − PKf) + (PKf − f̂K) := RK + µK , (5.10)

Where

RK =

∞∑
k=K+1

f̄k(t,x,v)Φk(z), (5.11)

is the projection error. Define vector

µK = (µ0, · · · , µK) with µi = f̄i − f̂i, i = 0, · · · ,K. (5.12)

So µK = µK ·ΦK is the error of the gPC-SG approximation.

Theorem 5.2. Given φ(t,x, z), if for some integer m > 0, and positive constants Cf , Cφ, such

that ||∂lzOvf(0)||π ≤ Cf , ||∂lzOxφ||L∞ ≤ Cφ, ||∂lzO2
xφ||L∞ ≤ Cφ, for l = 0, · · · ,m, then for

0 < t < T ,

||µK(t)||2π ≤
Hme

2Lm+3N
2ε t

Km
, (5.13)

where Hm =
CACmCφ√

2Lm
, with CA a constant depending on polynomials {Φk(z) | 0 ≤ k ≤ m}.

Proof. Subtracting < Lf,ΦK >π= 0 by < Lf̂K ,ΦK >π= 0, one has

< Lf (f − f̂K),ΦK) >π − < K(f − f̂K),ΦK >π= 0. (5.14)

Since Lf is independent of z,

< Lf (f − f̂K),ΦK) >π=Lf < f − f̂K ,ΦK >π= Lf (µK). (5.15)

Plugging (5.15) into (5.14) gives,

Lf (µK)− < K(µK +RK),ΦK >π= 0. (5.16)

Taking dot product of 2µK to (5.16), then integrating over x, v, yields,

0 =

∫
RN

∫
RN

[
2Lf (µK) · µK − 2 < K(µK +RK),ΦK >π ·µK

]
dxdv

=ε∂t||µK ||2π − 2N ||µK ||2π + 2||Ovµ
K ||2π − 2

∫
RN

∫
RN

< K(RK), µK >π dxdv

−
∫
RN

∫
RN

∫
Iz

∂xφOv(µK)2π(z) dzdxdv

=ε∂t||µK ||2π − 2N ||µK ||2π + 2||Ovµ
K ||2π − 2

∫
RN

∫
RN

< K(RK), µK >π dxdv. (5.17)

11



This gives,

ε∂t||µK ||2π ≤ (2N +N)||µK ||2π + C2
φ||OvR

K ||2π. (5.18)

Since ||µK(0)||π =
∫ ∫
||uK(0)||2 dxdv = 0, and by Grownwall’s inequality implies,

||µK(t)||2π ≤
1

ε

(
C2
φ

∫ t

0

||OvR
K(s)||2πds

)
e

3N
ε t. (5.19)

By classical approximation theory and Theorem 3.3,

||OvR
K ||π ≤

CA||∂mz Ovf ||π
Km

≤ CACme
Lm
ε t

Km
, (5.20)

where CA is a constant depending on polynomials {Φk(z) | 0 ≤ k ≤ m}. Plugging (5.20) into

(5.19) yields,

||µK(t)||2π ≤
H2
m(e

2Lm
ε t − 1)

K2m
e

3N
ε t, (5.21)

where Hm =
CACmCφ√

2Lm
, which implies,

||µK(t)||π ≤
Hme

2Lm+3N
2ε t

Km
. (5.22)

Theorem 5.3. Given φ(t, x, z), if for some integer m > 0, and positive constants Cf , Cφ,

such that ||∂lzf(0)||π ≤ Cf , ‖∂lzOvf(0)‖ ≤ Cf , ||∂lzOxφ||L∞ ≤ Cφ, ||∂lzO2
xφ||L∞ ≤ Cφ, for l =

0, · · · ,m. Then the K-th order numerical approximation f̂K converges to the solution f with an

error,

||f − f̂K ||π ≤
Om
Km

. (5.23)

where Om = CADme
Gm
ε t + Hme

2Lm+3N
2ε t is a finite positive constant depending on Cf , Cφ and

ε.

Proof.

||f − f̂K ||π ≤ ||RK ||π + ||µK ||π ≤
CA||∂mz f ||π

Km
+
Hme

2Lm+3N
2ε t

Km

≤ CADme
Gm
ε t +Hme

2Lm+3N
2ε t

Km
, (5.24)

The first inequality is because of the definition in (5.10), the second inequality is because of the

error for projection and Theorem 5.2, the third inequality is because of Theorem 3.1.

Remark 5.4. Theorem 5.3 shows that as ε→ 0, one needs K � O(e
mt
ε ) to get a good accuracy.

This motivates the development of the s-AP scheme in which one can take K independent of ε.
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6 The s-AP schemes

6.1 The High Field Limit of the gPC Method

We will first formally derive the high field limit of the gPC system (4.11). Integrating (4.11),

and letting ĵK =
∫
R f̂

Kv>dv be the flux, one gets,

∂tρ̂
K + Ox · ĵK = 0, (6.1)

then, multiplying v>, the transpose of v, to (6.4) and integrating it over v gives,(
K∑
k=0

Ekρ̂
KOxφk

)
+ ĵK = 0. (6.2)

Plugging (6.2) into (6.1) yields the High-field limit system for the coefficient of ρ̂K and φ̂K ,
∂tρ̂

K − Ox ·

(
K∑
k=0

Ekρ̂
KOxφ̂k

)
= 0,

−4xφ̂K = ρ̂K − ĥK .

(6.3)

This system is exactly the gPC system for the High-field limit with uncertainty (2.14), which

shows that the gPC system is AP.

6.2 The fully discrete first order scheme

Here we’ll give the VPFP system with uncertainty a fully discrete scheme when N = 1.

First we combine the stiff terms ∂v

[∑K
k=0

(
∂xφ̂kEkf̂

K
)]

and ∂v

(
vf̂K + ∂vf̂

K
)

, then
∂tf̂

K + v∂xf̂
K =

1

ε
∂v

[(
K∑
k=0

∂xφ̂kEk + vIK

)
f̂K + ∂vf̂

K

]
,

− ∂xxφK = ρ̂K − ĥK .

(6.4)

where IK is K ×K identity matrix.

Here we denote,

F =

K∑
k=0

∂xφ̂kEk, P = F + vIK , A = −1

2
|P |2, (6.5)

where

|P |2 := P>P. (6.6)

Let

M =
1√
2π

eA. (6.7)

Concerning the properties of the matrix M , we give the following proposition.

Proposition 6.1. Suppose M is defined in (6.7), then
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(a) ∂v(M) = −PM ;

(b) M is invertible, and M−1 =
√

2πe−A, ∂vM
−1 = PM−1;

(c) M and M−1 are both symmetric and positive definite;

(d) M(v1)M(v2) is symmetric and positive definite for any v1, v2 and M(v1)M(v2) = M(v2)M(v1);

(e)
∫
RMdv = IK ,

∫
R vMdv = F ;

(f) MPM−1 = P .

Proof. See the Appendix A.2

Back to system (6.4), where the stiff terms can be represented by ∂v

[
M∂v

(
M−1f̂K

)]
from

Proposition 6.1 (a), (b), (g), thus (6.4) is equivalent to ∂tf̂
K + v∂xf̂

K =
1

ε
∂v

[
M∂v(M

−1f̂K)
]
,

− ∂xxφK = ρ̂K − ĥK .
(6.8)

Denote f̂nij = f̂(tn, xi, vj), 0 ≤ i ≤ Nx, −Nv2 ≤ j ≤
Nv
2 , n ≥ 0. Nx, Nv(even) are numbers of

mesh points in x and v directions respectively. Let xi = a+ iδx, vj = jδv, ρ̂
n
i = δv

∑Nv/2
j=−Nv/2 f̂

n
i,j

be the numerical approximation of density ρ̂. We choose Nv sufficiently large such that outside

the velocity domain,

f ||v|≥Nv2 δv
∼ 0, M ||v|≥Nv2 δv

∼ 0, (6.9)

during the computational time.

We basically adopt the scheme in [15] for deterministic problem. The first order scheme is

f̂n+1
ij − f̂nij

δt
+
f̂n
i+ 1

2 ,j
− f̂n

i− 1
2 ,j

δx
=

1

ε
P (f̂n+1

ij ), (6.10)

−4xφ̂n+1
ij = ρ̂n+1

i − ĥn+1
i , (6.11)

where the upwind flux is used for spatial discretization,

f̂ni+ 1
2 ,j

=
vj + |vj |

2
f̂ni,j +

vj − |vj |
2

f̂ni+1,j . (6.12)

P (f̂n+1
ij ) is the discretization form of P(f̂) = ∂v[M∂v(M

−1f̂)], which is defined as,

P (f̂j) =
1

δv

[
Mj+1/2[∂v(M

−1f̂)]j+1/2 −Mj−1/2[∂v(M
−1f̂)]j−1/2

]
=

1

δ2
v

[
M

1/2
j+1M

1/2
j (M−1

j+1f̂j+1 −M−1
j f̂j)−M1/2

j M
1/2
j−1(M−1

j f̂j −M−1
j−1f̂j−1)

]
=
M

1/2
j

δ2
v

[
M
−1/2
j+1 f̂j+1 − (M

1/2
j+1 +M

1/2
j−1)M

−1/2
j (M

−1/2
j f̂j) +M

−1/2
j−1 f̂j−1

]
. (6.13)

The algorithm is implemented as following:
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• Step 1. Summing (6.10) over j. Since the RHS vanishes, one gets,

ρ̂n+1
i − ρ̂ni
δt

+
Fn
i+ 1

2

− Fn
i− 1

2

δx
= 0, (6.14)

where Fn
i+ 1

2

= δv
∑
j f

n
i+ 1

2 ,j
. This gives ρ̂n+1

i .

• Step 2. By using a Poisson solver, one gets φ̂n+1
i from (6.11), which in term gives Mn+1

ij

as,

Mn+1
i,j =

1√
2π

exp

(
1

2
|
K∑
k=0

(φ̂k)n+1
i+1 − (φ̂k)n+1

i−1

2δx
Ek + vjIK |2

)
. (6.15)

• Step 3. Since Fni =
∑K
k=0

(φ̂k)ni+1−(φ̂k)ni−1

δx
Ek can be decomposed as Fni = Qni Λni (Qni )>,

where Qni is an orthogonal matrix, Λni = diag(λ0, · · · , λK)ni is a diagonal matrix. Then

Mn
ij = Qni e

− 1
2 (vj+Λni )2

(Qni )>, therefore Let Λn
ij = e−

1
4 (vj+Λni )2

, (6.13) can be written as,

P (f̂n+1
ij ) =

{
QΛj
ε4v2

[
Λ−1
j+1Q

>f̂j+1 − (Λj+1 + Λj−1)Λ−1
j Λ−1

j Q>f̂j + Λ−1
j−1Q

>f̂j−1

]}n+1

i

(6.16)

Multiply (Λn+1
ij )−1(Qn+1

i )> to (6.10), and let ĝn+1
ij = (Λn+1

ij )−1(Qn+1
i )>f̂n+1

ij , one has,

ĝn+1
i,j+1 −

[
(Λn+1

i,j+1 + Λi,j−1)Λ−1
ij +

ε4v2

4t

]
ĝn+1
ij + ĝn+1

i,j−1

=εδ2
v(Λn+1

ij )−1(Qn+1
i )>

 f̂ni+ 1
2 ,j
− f̂n

i− 1
2 ,j

δx
−
f̂nij
δt

 (6.17)

Let bnij = (Λn+1
ij )−1(Qn+1

i )>

(
f̂n
i+ 1

2
,j
−f̂n

i− 1
2
,j

δx
− f̂nij

δt

)
, then one has a scalar solver for each

component ĝn+1
k of ĝn+1, k = 0, · · · ,K,

(gk)n+1
i,j+1 −

[
(mk)n+1

i,j+1

(mk)n+1
ij

+
(mk)n+1

i,j−1

(mk)n+1
ij

+
e4v2

4t

]
(gk)n+1

ij + (gk)n+1
i,j−1 = (bk)nij , (6.18)

where (mk)n+1
ij = e−

|vj+(λk)
n+1
i
|2

4 , which has been proved in [18] that the linear system for

(gk)n+1
i is positive definite, so one can invert it by conjugate gradient method.

Remark 6.2. Instead of using Mj+ 1
2

= M
1
2
j M

1
2
j+1, one can also use Mj+1/2 =

Mj+1+Mj

2 . By

setting gi,j = Λ−2
i,jQ

>
i fi,j, thus for fixed i, n, (6.13) will become,

P (f̂j) =
1

δ2
v

[
Mj+1 +Mj

2
(M−1

j+1f̂j+1 −M−1
j f̂j)−

Mj +Mj−1

2
(M−1

j f̂j −M−1
j−1f̂j−1)

]
=
Q

2δ2
v

[
(Λ2

j+1 + Λ2
j )ĝj+1 − (Λ2

j+1 + 2Λ2
j + Λ2

j−1)ĝj + (Λ2
j + Λ2

j−1)ĝj−1

]
(6.19)
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Thus, (6.17) becomes,[
(Λ2

j+1 + Λ2
j )ĝj+1 − (Λ2

j+1 + (2 + δ2
v)Λ2

j + Λ2
j−1)ĝj + (Λ2

j + Λ2
j−1)ĝj−1

]n+1

i

=2δ2
vQ
>

−f̂nij
δt

+
f̂n
i+ 1

2 ,j
− f̂n

i− 1
2 ,j

δx

 (6.20)

which can be decomposed to a scalar solver for each component of ĝn+1. Besides, it is easy to

see the coefficient in (6.20) is diagonally dominated matrix with negative diagonal entries, so it

is a negative definite matrix.

6.3 The s-AP property

6.3.1 Mass Conservation

Since P(f̂) has the property of mass conservation, its discretization P (f̂) should have the

same property. Let

Kj = M
1/2
j+1M

1/2
j

(
M−1
j+1f̂j+1 −M−1

j f̂j

)
, (6.21)

then, by (6.13), ∑
j

P (f̂j) =
∑
j

1

δ2
v

[Kj −Kj−1] =
1

δ2
v

∑
j

Kj −
1

δ2
v

∑
j

Kj−1

=
1

δ2
v

∑
j

Kj −
1

δ2
v

∑
j

Kj = 0. (6.22)

Thus, summing (6.10), one can get the scheme for ρ̂n+1, (6.14), which also implies
∑
i ρ̂

n+1
i =∑

i ρ̂
n
i .

6.3.2 The formal proof of s-AP

Here we want to prove the scheme is stochastic asymptotic preserving, that is for fixed

δt, δx, δv, when ε → 0, it automatically becomes a gPC-SG approximation for the high field

limit.

Lemma 6.3. In scheme (6.10), f̂nij →Mn
ij ĉ

n
i , as ε→ 0 , where ĉni is independent of j.

Proof. For fixed i, n, let ε→ 0, multiply vj to (6.10) and sum it over j, one gets,

0 =
∑
j

vjP (f̂j) =
1

δ2
v

∑
j

vj [Kj −Kj−1] =
1

δ2
v

∑
j

δvKj , (6.23)

which is equivalent to, ∑
j

Kj = 0. (6.24)

Letting ε→ 0, (6.10) also implies P (f̂j) = 0 for ∀j, or equivalently,

1

δ2
v

(Kj −Kj−1) = 0 for ∀j. (6.25)
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This implies,

Kj = c for ∀j, (6.26)

where c is a constant depending on i and n.

From (6.24), (6.26), one has Kj ≡ 0. By the definition of Kj in (6.21), this implies,

(Mn
i,j+1)−1f̂ni,j+1 − (Mn

ij)
−1f̂nij = 0, (6.27)

therefore,

(Mn
ij)
−1f̂nij = ĉni for ∀ j, (6.28)

this gives,

f̂nij = Mn
ij ĉ

n
i .

Lemma 6.4. If f̂nij = Mn
ij ĉ

n
i , where ĉni is a constant vector, then ĉni = ρ̂ni +O(δ2

v).

Proof. As defined in section 6.2,

δv

j=Nv
2∑

j=−Nv2

f̂ij = ρ̂i = (δv

j=Nv
2∑

j=−Nv2

Mij)ĉi. (6.29)

Since for fixed i, n, Mij = 1√
2π

exp(− |Fi+vjI|
2

2 ), where F is a constant symmetric matrix for

each i. So there exists a unity matrix Q, and a diagonal matrix Λ = diag(λ1, · · · , λK), s.t.

F = Q>ΛQ. Thus,

Mj =
1√
2π
Q>e−

Λ2+2vjΛ+v2
j I

2 Q =
1√
2π
Q>diag

(
e−

(λ1+vj)2

2 , · · · , e−
(λn+vj)2

2

)
Q. (6.30)

Use the trapezoidal rule and assumption (6.9),

1 =

∫
R

1√
2π
e−

(λi+v)2

2 dv

=

j=Nv
2 −1∑

j=−Nv2 +1

1√
2π
e−

(λi+vj)2

2 +
1

2

1√
2π

exp

(
−1

2
(λi + v−Nv2

)2

)
+

1

2

1√
2π

exp

(
−1

2
(λi + vNv

2
)2

)
+O(δ2

v),

(6.31)

Again by assumption (6.9), 1
2

1√
2π

exp
(
− 1

2 (λi + v−Nv2
)2
)

+ 1
2

1√
2π

exp
(
− 1

2 (λi + vNv
2

)2
)
≤ O(δ2

v),

so (6.31) implies,

j=Nv
2∑

j=−Nv2

1√
2π
e−

(λi+vj)2

2 +O(δ2
v),

so

δv

j=Nv
2∑

j=−Nv2

Mj =Q>diag

δv j=Nv
2∑

j=−Nv2

1√
2π
e−

(λ1+vj)2

2 , · · · , δv
j=Nv

2∑
j=−Nv2

1√
2π
e−

(λn+vj)2

2

Q

=Q>(1 +O(δ2
v))IQ =

(
1 +O(δ2

v)
)
I. (6.32)

(6.33)
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Therefore,

(δv
∑
j

Mj)
−1 =

1

1 +O(δ2
v)
I =

(
1 +O(δ2

v)
)
I. (6.34)

So by (6.29) and (6.34), one gets ĉni = ρ̂ni +O(δ2
v).

Theorem 6.5. The first order scheme defined as (6.10) - (6.12) is s-AP. That is, when ε→ 0,

the limit of the first order scheme coincides with the gPC-SG discretization of high field limit

(2.14).

Proof. From Lemma 6.4 and 6.3, as ε→ 0,

f̂nij →Mn
ij

(
ρ̂ni +O(δ2

v)
)
. (6.35)

Thus,

F+ =

∫
R

v + |v|
2

M(v)dv =

∫ ∞
0

vM(v)dv =

∫ ∞
0

1√
2π

(vIK + F )eAdv −
∫ ∞

0

FM(v)dv

=

∫ − |F |22

−∞

1√
2π
eAdA− F

∫ ∞
F

1√
2π
e−
|P |2

2 dP =
1√
2π
e−
|F |2

2 − F erf(F ), (6.36)

where erf(x) =
∫∞
x

1√
2π
e−
|t|2
2 dt, F , P , A is defined in (6.5).

Similarly,

F− =

∫
R

v − |v|
2

M(v)dv =

∫ 0

−∞
vM(v)dv = − 1√

2π
e−
|F |2

2 − F erf(−F ). (6.37)

Then Fn
i+ 1

2

defined in (6.14) becomes

Fni+ 1
2

= (F+ρ̂)ni + (F−ρ̂)ni+1 +O(δ2
v), (6.38)

which is exactly the numerical flux of the kinetic scheme for (6.3) by ([7], ch3). So as ε → 0

(6.14) becomes the forward Euler in time and kinetic scheme in space for the resulting system

of the high field limit equation with uncertainty (2.14), which completes the proof for s-AP

property.

6.4 A second order scheme

Using backward difference formula for time discretization [9], and MUSCL scheme for space

discretization, the second order scheme is given by

3f̂n+1
ij − 4f̂nij + f̂n−1

ij

2δt
+ 2v∂xf̂

n
ij − v∂xf̂n−1

ij =
1

ε
P (f̂n+1

ij ), (6.39)

−4xφ̂n+1
ij = ρ̂n+1

i − ĥn+1
i (by Poisson Solver). (6.40)

Here,

vj∂xf̂ij = vj
f̂i+ 1

2 ,j
− f̂i− 1

2 ,j

δx
, and

 f̂i+ 1
2 ,j

= f̂i,j + 1
2ψ(θ+

i+ 1
2

)(f̂i+1 − f̂i) vj > 0,

f̂i+ 1
2 ,j

= f̂i+1,j − 1
2ψ(θ+

i+ 1
2

)(f̂i+1 − f̂i) vj < 0.

(6.41)
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Where θ+
i+ 1

2

= f̂i−f̂i−1

f̂i−1−f̂i
and θ−

i+ 1
2

= f̂i+2−f̂i+1

f̂i+1−f̂i
are smooth indicators, ψ = max(0,min(1, θ)) is the

slope limiter function [19].

The AP property can be similarly established as the first order scheme, so we omit the details

here.

7 Numerical Examples

We solve the one-dimensional VPFP system with uncertainty, ∂tf + v∂xf −
1

ε
∂xφ∂vf =

1

ε
∂v[vf + ∂vf ],

− (1 + λ2z2)∂xxφ = ρ− h, x ∈ [x0, xI ], v ∈ R,
(7.1)

with periodic function φ(t, x, z1) satisfying,

φ(t, x0, z) = φ(t, xI , z) = 0. (7.2)

and only in Section 7.3.2, λ2 6= 0. Initial conditions are given by,

ρ0 = ρ0(x, λ1z1), f0 = f0(x, v, λ1z1), (7.3)

and the given positive charged background h(x, z) satisfies the global neutrality relation.

Here z = (z1, z2) are two independent random variables following the uniform distribution

U [a, b].

Given the gPC coefficients f̂m, (m = 0, 1, · · · ,K) of the numerical approximation f̂K , the

statistical quantities such as expectation, standard deviation are retrieved as,

E[f̂K ] = f̂0, S[f̂K ] =

√√√√ K∑
m=1

f̂2
m. (7.4)

7.1 The Order of Convergence

This section is devoted to check the spectral convergence. The initial data is given by an C∞

function in z ∼ U [0, 1], and periodic in x:

ρ0(x, z) = 2 + sin(x)ez, f0 =
ρ0(x, z)√

2π
e−
|v+∂xφ(x,z)|2

2 , x ∈ (0, 2π). (7.5)

In order to satisfy the global neutrality relation for the background charge h, i.e., equation (2.3),

we set,

h0(x) = 2 + sin(x)z, periodic in x ∈ (0, 2π) (7.6)

Define the l1-error for the expectation and standard deviation of the approximation solution f̂K ,

errorE = δxδv
∑
i,j

|Efij − Ef̂Kij |, errorS = δxδv
∑
i,j

|Sfij − Sf̂Kij |, (7.7)

where f , the reference solution, is calculated by the Stochastic Collocation method [22] with

20 Legendre quadrature points and mesh size δx = 2π
1000 , δt = δx

15 , δv = 12
400 , while f̂K is the

numerical solution by the K-th order gPC-SG and the same mesh size as the reference solution.
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Figure 1: Example 7.1: Error of the numerical solution at T = 0.01 defined in (7.7) when ε = 1, 10−3,

10−5. We take δx = 2π
1000

, v ∈ [−6, 6], δv = 12
1000

, δt = δx
15

, 0 ≤ K ≤ 8.

Figure 1 is the l1-error in terms of gPC order K for ε = 1, 10−3, 10−5 respectively with

fixed δx, δv and δt. It shows exponential decay in K, until the errors due to spatial, temporal

and velocity discretizations dominate. Furthermore, the amplitudes of the errors increase as ε

decreases, but are within the estimated numerical approximation errors.

7.2 The asymptotic preserving property

This section is devoted to check the asymptotic preserving property of the scheme. We take

the equilibrium initial data, and non-equilibrium initial data respectively.

The certain part of the initial data in this example is same as section 3.2 in [15].

ρ0(x, v,z) =

√
2π

2
(2 + cos(2πx)) + λ1z1, h(x, z) =

5.0132

1.2661
ecos(2πx) + 0.1z1, x ∈ [0, 1]. (7.8)

For equilibrium initial condition, f0 is given by,

f0(x, v,z) =
ρ0(x, z)√

2π
e−
|v+∂xφ|2

2 , periodic in x ∈ [0, 1], (7.9)

while for the non-equilibrium initial data, f0 is given by,

f0(x, v,z) =
ρ0(x, z)

2
√

2π

(
e−
|v+1.5|2

2 + e−
|v−1.5|2

2

)
, periodic in x ∈ [0, 1]. (7.10)

We study the evolution of the difference between f and equilibrium Meq = ρ√
(2π)

e−
|v+∂xφ|2

2 , with

respect to different ε as shown in Figure 2. Here the difference is defined as,

difference = ||Ef − EMeq||1 = δxδv
∑
i,j

|Efij − E(Meq)ij | (7.11)

Figure 2 shows the time evolution of the difference defined in (7.11) with different ε. One can

see no matter whether the initial data is equilibrium or non-equilibrium, the s-AP method will

push f towards the local Maxwellian quickly, and this is how [5] defined strong AP property.
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Figure 2: Example 7.2: The l1-norm of E(f −Meq). We take x ∈ (0, 1), Nx = 1000, v ∈ [−6, 6], Nv =

400, t ∈ [0, 0.01], δt = δx/15 and ε = 10−3, 10−4, 10−5,K = 4. The left figure: second order scheme with

equilibrium initial data defined as (7.9); The right figure: second order scheme with non-equilibrium

initial data defined as (7.10).

7.3 Statistical Quantities

In this section, we will see the expectation and standard deviation of ρ(t, x,z), E(t, x,z),

j(t, x,z) for different cases.

7.3.1 Mixing regimes

In the first case, we compare the second order gPC-SG method with the reference solution

(Calculated with 20 Legendre quadrature points and mesh size δx = 1/1000, δt = δx
15 , δv = 12

400

). The mixing regime is defined as following,

ε(x) =

 10−3 +
1

2
(tanh(5− 10x) + tanh(5 + 10x)) , x ≤ 0.3,

10−3, x > 0.3.
(7.12)

So it contains both the kinetic and high field regimes. See Figure 3

The initial condition is given by,

ρ0 =

√
2π

6
(2 + sin(πx)) + 0.1z1, f0 =

ρ0(x, z)√
2π

e−
|v+∂xφ(x,z)|2

2 , periodic in x ∈ (−1, 1). (7.13)

with

h0 =
1.6711

2.5322
ecos(πx) + 0.1z1. (7.14)

Where the certain part of the initial data is given in [15] Section 3.3. The time evolution of the

expectation and standard deviation for ρ, j, E at T = 0.1, 0.2, 0.3 are shown in Figure 4.

Figure 4 shows the expectation and deviation of ρ, j and φ at time T = 0.1, 0.2, 0.3. One can

see the statistic quantities of gPC-SG matches well with the reference solution.
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Figure 3: ε(x) given in (7.12)

7.3.2 Piecewise Constant Initial Data

In the second case, we test the second order scheme with periodic piecewise constant initial

data defined as following, where the certain part is same as [15] Section 3.4.
(ρ0, h0) = (

1

8
,

1

4
) + λ1z1, 0 ≤ x < 1

4
,

(ρ0, h0) = (
1

2
,

1

8
) + λ1z1,

1

4
≤ x < 3

4
,

(ρ0, h0) = (
1

8
,

1

2
) + λ1z1,

3

4
≤ x < 1,

f0 =
ρ0(x, z)√

2π
e−
|v+φx(x,z)|2

2 , ε = 10−3. (7.15)

In order to test how the random variables affect the final result, we compare two cases,

1. λ2 = 0, λ1 = 0.1; v.s. λ2 = 0, λ1 = 0.2.

2. λ2 = 0, λ1 = 0.1; v.s. λ2 = 0.2, λ1 = 0.1.

Figure 5 shows the comparison of the first case at T = 0.2. As the coefficient of z1 getting

bigger, the expectation remains the same, while the standard deviation becomes bigger and it

increases in the same order as the coefficient.

Figure 6 shows the comparison of the second case at T = 0.2. One can tell that the random-

ness in the poisson equation doesn’t have a significant effect on density, while it does affect the

electric field.

A Appendices

A.1 The proof of Lemma 3.2

Proof. 1. The conclusion holds for l = m− 1, since from the last line of (3.10),

0 < Amm−1 =
C2
φ

2
m2 ≤ b

(
m!

(m− 1)!

)2

. (A.1)
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Figure 4: Example 7.3.1. The dot lines represent for the result obtained by gPC-SG: Nx = 128,

v ∈ [−6, 6], Nv = 64, and δt = δx
15

, K = 5. The solid lines are reference solution with Nx = 1000,

Nv = 400, δt = δx
15

and 20 Gaussian quadrature points.
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Figure 5: Example 7.3.2: The dash line is the expectation of two cases, while the solid line is obtained

by E± Sd. Nx = 64, v ∈ [−6, 6], Nv = 100, and δt = δx
15

, K = 5.
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Figure 6: Example 7.3.2: The dash line is the expectation of the two cases, while the solid line is

obtained by E± Sd. Nx = 100, v ∈ [−6, 6], Nv = 100, and δt = δx
15

, K = 5.
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2. Assume the conclusion holds for l = k + 1, · · · ,m− 1, then one has,

0 < Amk =
C2
φ

2

(
m−1∑
i=k+1

(ik)2Ami + (mk )2

)
≤ b

2

(
m−1∑
i=k+1

bm−i
(

i!

k!(i− k)!

)2(
m!

i!

)2

+

(
m!

k!(m− k)!

)2
)

=
1

2

(
m!

k!

)2 m∑
i=k+1

bm+1−i
(

1

(i− k)!

)2

= bm−k
(
m!

k!

)2 m−k∑
i=1

b1−i

2

(
1

i!

)2

≤ bm−k
(
m!

k!

)2 ∞∑
i=0

1

2

(
1

bi4i

)
≤ bm−k

(
m!

k!

)2

. (A.2)

A.2 The proof of Proposition 6.1

Proof. To prove (a), By the definition of eA =
∑∞
n=0

1
n!A

n, one has,

∂vM =

∞∑
n=1

1

n!
∂v(A

n). (A.3)

One notes ∂vA = −P , which implies, (∂vA)A = A (∂vA). Therefore,

∂v(A
n) =

n∑
i=1

An−i(∂vA)Ai−1 = (∂vA)

n∑
i=1

An−iAi−1 = n(∂vA)An−1. (A.4)

Thus,

∂vM =

∞∑
n=1

1

(n− 1)!
(−P )An−1 = −PM. (A.5)

To prove (b), as long as matrices A and B are commutative, then eAeB = eA+B . Since

eAe−A = e0 = I, the inverse of M exists and is

M−1 = exp(−A). (A.6)

To prove (c), since P is a symmetric matrix, there exists a unity matrix Q and a diagonal

matrix Λ = diag(λ1, · · · , λK), such that P = Q>ΛQ, so |P |2 = Q>Λ2Q. Since

M = e−
|P |2

2 = Q>e−
Λ2

2 Q,

the eigenvalues of M are e−
λ2
m
2 > 0, m = 1, . . . ,M. The proof for M−1 is similar.

To prove (d), let P1 =
∑K
k=0 ∂xφkEk + v1IK , P2 =

∑K
k=0 ∂xφkEk + v2IK , then it is easy to

check P1P2 = P2P1, hence |P1|2|P2|2 = |P2|2|P1|2, which means |P1|2
2 and |P1|2

2 are commutative.

Thus

M(v1)M(v2) = e−
|P1|

2

2 − |P2|
2

2 . (A.7)

is symmetric. Since if the matrices A, B are positive definite and AB is symmetric, then AB is

still positive definite. Therefore, we conclude M(v1)M(v2) is still positive definite.

The commutativity can be easily obtained from (A.7).
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To prove (e), since F is a symmetric matrix, there exists a unity matrix Q and a diagonal

matrix Λ such that F = Q>ΛQ, so one can represent |P |2 = Q>(Λ2 + v2I + 2vΛ)Q. Thus,∫
Mdv =Q>

(∫
exp(−Λ2 + v2I + 2vΛ

2
)dv

)
Q = Q>

(√
2πI

)
Q =

√
2πI. (A.8)

Similarly, we can derive, ∫
R

v√
2π
Mdv = F. (A.9)

To prove (f),

MPM−1 = (Q>e−
1
2 Λ2

Q)Q>ΛQ(Q>e
1
2 Λ2

Q) = Q>e−
1
2 Λ2

Λe
1
2 Λ2

Q

=Q>Λe−
1
2 Λ2+ 1

2 Λ2

Q = Q>ΛQ = P. (A.10)
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for Fusion, volume 39/40 of Panor. Synthèses, pages 1–90. Soc. Math. France, Paris, 2013.

[5] Francis Filbet and Shi Jin. A class of asymptotic-preserving schemes for kinetic equations

and related problems with stiff sources. Journal of Computational Physics, 229(20):7625–

7648, 2010.

[6] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-

Verlag, New York, 1991.

[7] Edwige Godlewski and Pierre-Arnaud Raviart. Numerical Approximation of Hyperbolic

Systems of Conservation Laws, volume 118. Springer Science & Business Media, 2013.

[8] Laurent Gosse and Nicolas Vauchelet. Numerical high-field limits in two-stream kinetic

models and 1D aggregation equations. SIAM J. Sci. Comput., 38(1):A412–A434, 2016.

[9] Thierry Goudon, Shi Jin, Jian-Guo Liu, and Bokai Yan. Asymptotic-preserving schemes

for kinetic-fluid modeling of disperse two-phase flows. Journal of Computational Physics,

246:145–164, 2013.

27



[10] Thierry Goudon, Juanjo Nieto, Frédéric Poupaud, and Juan Soler. Multidimensional high-

field limit of the electrostatic vlasov–poisson–fokker–planck system. Journal of Differential

Equations, 213(2):418–442, 2005.

[11] Jingwei Hu and Shi Jin. A stochastic Galerkin method for the boltzmann equation with

uncertainty. Journal of Computational Physics, 315:150–168, 2016.

[12] S. Jin. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations.

SIAM J. Sci. Comput., 21:441–454, 1999.

[13] Shi Jin. Asymptotic preserving (ap) schemes for multiscale kinetic and hyperbolic equa-

tions: a review. Lecture Notes for Summer School on Methods and Models of Kinetic

Theory(M&MKT), Porto Ercole (Grosseto, Italy), pages 177–216, 2010.

[14] Shi Jin and Liu Liu. An asymptotic-preserving stochastic galerkin method for the semicon-

ductor boltzmann equation with random inputs and diffusive scalings. Preprint.

[15] Shi Jin and Li Wang. An asymptotic preserving scheme for the vlasov-poisson-fokker-planck

system in the high field regime. Acta Mathematica Scientia, 31(6):2219–2232, 2011.

[16] Shi Jin and Li Wang. Asymptotic-preserving numerical schemes for the semiconductor

Boltzmann equation efficient in the high field regime. SIAM J. Sci. Comput., 35(3):B799–

B819, 2013.

[17] Shi Jin, Dongbin Xiu, and Xueyu Zhu. Asymptotic-preserving methods for hyperbolic and

transport equations with random inputs and diffusive scalings. Journal of Computational

Physics, 289:35–52, 2015.

[18] Shi Jin and Bokai Yan. A class of asymptotic-preserving schemes for the Fokker–Planck–

Landau equation. Journal of Computational Physics, 230(17):6420–6437, 2011.

[19] Randall J LeVeque. Finite Volume Methods for Hyperbolic Problems, volume 31. Cambridge

University Press, 2002.

[20] Juan Nieto, Frédéric Poupaud, and Juan Soler. High-field limit for the vlasov-poisson-

fokker-planck system. Archive for Rational Mechanics and Analysis, 158(1):29–59, 2001.

[21] D. Xiu. Numerical Methods for Stochastic Computations. Princeton University Press, New

Jersey, 2010.

[22] Dongbin Xiu. Fast numerical methods for stochastic computations: a review. Communica-

tions in Computational Physics, 5(2-4):242–272, 2009.

[23] Dongbin Xiu and George Em Karniadakis. The wiener–askey polynomial chaos for stochastic

differential equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002.

28


