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Abstract

In this paper we present the first numerical method for a kinetic description

of the Vicsek swarming model. The kinetic model poses a unique challenge, as

there is a distribution dependent collision invariant to satisfy when computing

the interaction term. We use a spectral representation linked with a discrete

constrained optimization to compute these interactions. To test the numerical

scheme we investigate the kinetic model at different scales and compare the

solution with the microscopic and macroscopic descriptions of the Vicsek model.

We observe that the kinetic model captures key features such as vortex formation

and traveling waves.
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1. Introduction

Swarming behavior is a perfect illustration of multiscale phenomena. In

a flock of birds for instance one can either decide to model each individual

separately [1, 2, 3, 4, 5], or one can model the whole flock as a single entity
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[6, 7, 8, 9]. These two points-of-view have led to two different types of models

for swarming: microscopic models (a.k.a agent-based-models) and macroscopic

models involving macroscopic quantities (e.g. mass, flux). In this work, we use

an intermediate approach studying a swarming model at the kinetic scale (also

called the mesoscopic scale).

Kinetic models offer the same possibilities as microscopic models to model

phenomena. For instance, one can model complex interactions among agents or

introduce various boundary conditions in a kinetic model. Macroscopic models

are less flexible from this point of view. Meanwhile, kinetic models allow for

analytic study, which is more scarce in microscopic models. Rigorous derivation

of kinetic models from a microscopic model can be achieved in some cases,

however, one needs to have the number of particles N to tend to infinity. In gas

dynamics, this would mean that the mean free path between particle interactions

becomes small enough. Unfortunately, there is no convenient mean free path

concept in swarming models. For this reason, it is also crucial to numerically

connect kinetic models with their corresponding microscopic models.

Several works have already studied kinetic models for swarming [10, 11, 12],

but few have done a numerical investigation. In this work, we first introduce a

numerical scheme for a kinetic swarming model based on the Vicsek model. We

then investigate numerically the model at different scales using the correspond-

ing microscopic, kinetic, and macroscopic models. In particular, we emphasize

how the kinetic model is able to capture typical solutions of both microscopic

and macroscopic models.

Numerical solution of kinetic equations has long been a computational chal-

lenge due to the typically integro-differential nature of the interactions between

particles, as well as the higher dimensionality of phase space. In particular, the

kinetic model that has been most studied is the Boltzmann transport equation

of rarefied gas dynamics. Stochastic methods, most notably Direct Simulation

Monte Carlo [13], have long been the primary method of solution for these

problems due to the reduction of dimensionality. However, these methods suffer

from the presence of noise in their solutions owing to the stochastic nature of
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their solution, and can become very expensive in problems that are far from

equilibrium or problems with transients.

Since the creation of the DSMC method, the considerable increase of compu-

tational power has made deterministic computation of kinetic equations within

the realm of possibility, despite the expense of dimensionality. Discrete veloc-

ity methods [14, 15, 16] simulate particle interactions on a mesh in velocity

space, but can suffer from low accuracy and lack of conservation [15, 17, 18, 19].

Spectral methods exploit the weighted convolution structure of the Fourier

transform [20] of the interaction terms for high accuracy. Spectral approxi-

mations for Boltzmann collision operators were first proposed by Pareschi and

Perthame [21], and many other authors developed numerical methods in this

area [22, 23, 24, 25, 26, 27].

In this paper we present a novel spectral method for computing the kinetic

form of the Vicsek model, in fact the first numerical method for this kinetic

formulation. This model presents several new challenges for a numerical method.

The alignment interaction between particles gives a nonlinear integro-differential

operator that needs to be handled carefully. By reformulation in terms of the

mean direction of motion of the particles, we obtain a nonlinear diffusion-like

operator. We then take the Fourier transform and use orthogonality to obtain

a coupled set of equations.

This nonlinear interaction gives rise to collision invariants, in the spirit of

the Boltzmann collision operator, which are needed to obtain a hydrodynamic

limit for the model. These invariant properties must also be preserved at the

discrete level, and we perform a constrained optimization in a suitable norm of

the solution obtained by the spectral method to ensure that the invariants are

correctly preserved. We show that this preservation is crucial by comparing the

solution with and without preservation of the collision invariants.

Numerical tests are performed comparing the solution of the kinetic equation

to both the macroscopic and microscopic models. We first investigate the kinetic

model in a ’hydrodynamic limit’ by performing a change of scales. We observe

the emergence of traveling waves (e.g. rarefaction and shock waves) that match
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perfectly with the solutions of the macroscopic model. Those numerical results

are remarkable as there is no analytic theory to handle traveling waves for the

macroscopic model (the model being non-conservative). We then compare the

kinetic model with the ’microscopic model’. For that, we take advantage that

boundary conditions are easily implemented at the microscopic and kinetic level.

We perform simulations in a closed domain with reflexive boundary conditions.

We observe the emergence of vortex formation for the two models and compare

the solutions.

The paper is organized as follows: in Section 2, we introduce the swarm-

ing model referred to as the Vicsek model at different scales (microscopic, ki-

netic, and macroscopic). In Section 3, we develop a numerical scheme (spectral

method) for the kinetic model that preserves the so-called generalized collisional

invariant. Numerical investigations comparing the model at different scales are

presented in Section 4. We close with a discussion of future work in this area.

2. Self-organized dynamics at different scales

In this section, we introduce the model of self-organized dynamics at different

scales. Based on the Vicsek model [28, 29], we first introduce a particle system

describing alignment behavior. Next, we give a short review on the kinetic

equation associated with these dynamics and discuss the collisional invariants,

whose properties play a central role in the development of the numerical scheme

[30]. Finally, we introduce the macroscopic limit of the dynamics.

2.1. Microscopic model

At the microscopic level, the Vicsek model describes the evolution of N

particles which tend to align with their neighbors. Each particle is represented

by a position, xk ∈ Rd, and a unit velocity vector, ωk ∈ Sd−1. The evolution of

the particles is governed by the following dynamical system:

dxk
dt

= ωk , dωk = Pω⊥
(
Ωkdt+

√
2σ dBkt

)
. (2.1)
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Here, Ωk denotes the mean velocity:

Ωk =

∑
|xj−xk|<R ωj∣∣∣∑|xj−xk|<R ωj∣∣∣ , (2.2)

with R the radius of interaction, σ > 0 is the intensity of the noise with Bkt the

Brownian motion. The matrix Pω⊥ is a projector:

Pω⊥ = Id− ω ⊗ ω, (2.3)

which enforces the velocity ωk to remain of norm 1.

2.2. Kinetic model

Following the characteristics of the system (2.1), one can write the evolution

of the density of particles fN (t,x, ω). Formally, in the limit N −→ ∞, the

density of particles f satisfies the following kinetic equation:

∂tf + ω · ∇xf +∇ω · (F [f ]f) = σ∆ωf, (2.4)

with the vector fields F [f ](x, ω) given by:

F [f ](x, ω) = (Id− ω ⊗ ω)Ω(x) , Ω(x) =
J(x)

|J(x)| . (2.5)

Here, J(x) denotes the mean flux at position x:

J(x) =

∫
y,ω∗

K(y − x)ω∗f(y, ω∗) dydω∗, (2.6)

with K the characteristic function of the ball B(0, R), i.e. K(r) = 1{|r|<R}.

In the large scale limit in space and time (see section 2.3), the vector velocity

F (f) becomes local in space meaning that J is given by:

J(x) =

∫
ω∗∈S1

ω∗f(x, ω∗) dω∗. (2.7)

In the following, we only consider J(x) within this approximation. We rewrite

the kinetic equation (2.4) in the following form:

∂tf + ω · ∇xf = Q(f), (2.8)

with Q the collisional operator given by:

Q(f) = −∇ω · (F [f ]f) + σ∆ωf, (2.9)

with F (f) given by (2.5),(2.7).

5



2.3. Macroscopic model (hydrodynamic limit)

In order to derive a macroscopic model associated with the kinetic model

(2.4), one has to introduce an hydrodynamic scaling [29] introducing the macro-

scopic variables:

t′ = εt , x′ = εx,

where ε is the ratio between micro and macro variables. In these new macro

variables, the evolution of fε is given by:

∂tf
ε + ω · ∇xf

ε =
1

ε
Q(fε). (2.10)

As ε→ 0, one can show that the evolution fε converges locally in space toward

an equilibrium (see subsection 3.1):

fε ⇀ f0(x, ω) = ρ0(x)Mu(x)(ω). (2.11)

The evolution of the system is solely described by two macroscopic quantities:

the density of particles ρ and the macroscopic velocity u. Their evolutions are

governed by the following system:

∂tρ+∇x · (c1ρu) = 0, (2.12)

ρ
(
∂tu+ c2(u · ∇x)u

)
+ λPu⊥∇xρ = 0, (2.13)

|u| = 1. (2.14)

Here, c1, c2 and λ are constants depending on the noise parameter σ, Pu⊥ is

a projection operator given by Pu⊥ = (Id − u ⊗ u). It ensures the constraint

that |u| = 1. The macroscopic model is a hyperbolic system but it is also non-

conservative. Thus, few analytic results are known about this system. Local

existence and uniqueness have been studied in [12] and we refer to [30] for the

implementation of an accurate numerical scheme.

3. Numerical scheme for the kinetic model

We turn our attention on building a numerical scheme for the kinetic model

(2.8) in 2D. With this aim, we propose a splitting method between the collision
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and the transport part of the equation. In other words, we solve separately:

∂tf = Q(f) (3.1)

∂tf + ω · ∇xf = 0. (3.2)

The difficulty is essentially in the collisional part (3.1), it requires to use wisely

the properties of Q (Subsection 3.1). We propose a spectral method (subsection

3.2) that preserves the invariants of Q (Subsection 3.3). Next, we use a finite

volume method to solve the transport term (3.2) (Subsection 3.4). A summary

of the proposed numerical scheme is given in Appendix A.

3.1. Properties of the collisional operator

The collisional operator (2.9) can be written as a Fokker-Planck operator.

To do so, we introduce the equilibrium function MΩ(ω), also known as the Von

Mises distribution,

MΩ(ω) = C0 exp

(
ω · Ω
σ

)
, (3.3)

where C0 is a constant of normalization. In 2D, this gives the formula:

Mθ(θ) = C0e

cos(θ − θ)
σ (3.4)

with Ω = (cos θ, sin θ).

Proposition 3.1. Let Ωf ∈ S1 be the direction of the average velocity of f
(
i.e.

Ωf =
∫
ω
fω dω

|∫ω fω dω|
)
. We have

Q(f) = σ∇ω ·
(
MΩf∇ω

( f

MΩf

))
. (3.5)

In particular, ∫
ω

Q(f)f
dω

MΩf

= −σ
∫
ω

MΩf

∣∣∣∣∇ω( f

MΩf

)∣∣∣∣2 dω ≤ 0.

In 2D, equation (3.5) reads:

Q(f) = σ∂θ

(
Mθ ∂θ

(
f

Mθ

))
= −∂θ

(
sin(θ − θ)f

)
+ σ∂2

θf. (3.6)
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Corollary 3.2. The equilibria of the operator Q are given by the set:

E = {ρMΩ | ρ ∈ R , Ω ∈ S1}. (3.7)

Although the equilibria of the operator Q forms a set of dimension d (1 for ρ

and d − 1 for Ω), the collisional invariants of Q are only of dimension 1. In

particular, Q preserves only the mass and not the flux. In other words, for a

general f , we have:∫
ω∈S1

Q(f) dω = 0 and

∫
ω∈S1

Q(f)ω dω 6= 0.

To overcome the lack of conservations of Q, we generalize the notion of collisional

invariant.

Definition 1. (GCI) Fix a unit vector Ω. A function ψΩ is called a generalized

collisional invariant (GCI) if it satisfies:∫
ω∈S1

Q(f)ψΩ(ω) dω = 0, (3.8)

for any f satisfying Ωf = ±Ω.

Once we fix the direction Ωf , the operator Q becomes linear in f . We denote

by QΩ the linear operator defined by:

QΩ(f) = σ∇ω ·
(
MΩ∇ω

( f

MΩ

))
.

Thus, we can define the adjoint of QΩ in L2:

Q∗Ω(ϕ) = σM−1
Ω ∇ω · (MΩ∇ωϕ) . (3.9)

Expressing the constraint Ωf = Ω as a Lagrange multiplier, we find that ψΩ is

a collisional invariant for Ω if and only if it satisfies:

Q∗Ω(ψΩ) = βω × Ω

with β ∈ R. We deduce an explicit expression for ψΩ in 2D.
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Proposition 3.3. In 2D, suppose that Ω = (1, 0)T . The collisional invariants

ψ satisfy:

σ∂θ(M∂θψ) = β sin θM,

with M(θ) = C0 exp
(

cos θ
σ

)
. Thus, the solution corresponding to β = 1 is given

by:

ψ(θ) = σθ − σπ
∫ θ

0
e−

cos s
σ ds∫ π

0
e−

cos s
σ ds

. (3.10)

For Ω given by Ω = (cos θ, sin θ)T , a solution is written as

ψΩ(θ) = ψ(θ − θ). (3.11)

3.2. Spectral method

In the section, we introduce a Hilbert space to decompose the collisional

operator. In the following, we are looking at the equation (3.1) locally in x.

For clarity, we suppose that Ω(x) is given by the vector (1, 0)T , the result for

more general Ω can be found through rotation of this solution. We introduce

the subspace of periodic functions H defined as:

H := {f(θ) /

∫ 2π

0

|f(θ)|2 dθ

M(θ)
<∞}, (3.12)

along with the scalar product 〈, 〉H :

〈f, g〉H :=

∫ 2π

0

f(θ)g(θ)
dθ

M(θ)
.

The relevance of this scalar product comes from the symmetric property satisfied

by Q: suppose f, g are smooth functions of H, then

〈Q(f), g〉H = −σ
∫ 2π

0

M∂θ

(
f

M

)
∂θ

( g
M

)
dθ = 〈f,Q(g)〉H .

As a Hilbert basis on H, we use the following functions:

Pk(θ) = eikθ
√
M(θ)

2π
, k ∈ Z. (3.13)

Using the formulation (3.6), we deduce that:

Q(Pk) =

(
−σk2 +

cos θ

2
− sin2 θ

4σ

)
Pk. (3.14)
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Thus,

Q(Pk) =
1

16σ
Pk−2 +

1

4
Pk−1 +

(
−σk2 − 1

8σ

)
Pk +

1

4
Pk+1 +

1

16σ
Pk+2.

For any function f in H, we can decompose:

f(θ) =
∑
k∈Z

ckPk(θ) , with ck = 〈f, Pk〉H .

and deduce that Q(f) =
∑
k∈Z c̃kPk(θ) with

c̃k =
1

16σ
ck−2 +

1

4
ck−1 +

(
−σk2 − 1

8σ

)
ck +

1

4
ck+1 +

1

16σ
ck+2.

Numerically, we use a uniform grid to divide the domain [0, 2π) in 2N points:

θs = s∆θ with ∆θ = 2π
2N . We approximate the Hilbert space H (3.12) by a

subspace of finite dimension:

VN = {fN (θ) =

N∑
k=−N

ckPk(θ), with c−N , . . . , cN ∈ C}. (3.15)

Notice that on the grid point θs, we have Pk(θs) = Pk+2N (θs). Thus, only

2N + 1 polynomials PK are relevant. For a given function f in H, we define its

approximation fN in V with coefficients ck given by:

ck =

2N−1∑
s=0

f(θs)P k(θs)
∆θ

M(θs)
. (3.16)

Similarly to the Discrete Fourier Transform, the function fN interpolates f at

the grid points θs. By periodicity and using that f is a real function, we deduce

that (see figure 1):

ck = ck+2N , c−k = ck. (3.17)

Therefore, only the coefficients c0, . . . , cN are required to describe fN .

Applying the operator Q to the approximation fN gives:

Q(fN ) =
∑

k=−N..N

ck
[
α2Pk−2+α1Pk−1+(−σk2−α0)Pk+α1Pk+1+α2Pk+2

]
, (3.18)
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0 N

1 2 N+1N−1−1−N+1

ck = ck+2N

c−k = ck

−2

−N

Figure 1: The coefficients {ck}k (3.16) satisfy the properties ck = ck+2N and c−k = ck. Thus,

only the coefficients ck from 0 to N are needed.

with α0 = 1
8σ , α1 = 1

4 , α2 = 1
16σ . Since Pk+2N (θs) = Pk(θs), we deduce that Q

has the following matrix representation in the basis B = {Pk}−N≤k≤N of VN :

[Q]B =



−σN2−α0 α1 α2 0 α2 α1

α2

. . .
. . .

. . .
. . .

. . .

0 α2 α1 −σk2−α0 α1 α2 0

. . .
. . .

. . .
. . .

. . .

α1

α2 α1 0 α2 α1 −σN2−α0


.

(3.19)

3.3. Time discretization

We now propose a numerical scheme to solve the collision operator (3.1).

We denote by c = (c−N , . . . , cN )T the coefficients (3.16). In the subspace VN ,

the equation (3.1) reduces to:

∂tc = [Q]Bc. (3.20)

We would like to find a discretization of this system that preserves the collisional

invariants of f (see 3.1). In other words, if fn+1 is the update of fn, we should

have: ∫
θ

fn

 1

ψ

 dθ =

∫
θ

fn+1

 1

ψ

 dθ, (3.21)
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which leads to:

Ccn+1 = Ccn (3.22)

where cn and cn+1 are (resp.) the coefficients of fn and fn+1, and C is a

2× (2N + 1) matrix defined by:

C0,k =

∫ 2π

0

Pk(θ) dθ , C1,k =

∫ 2π

0

Pk(θ)ψ(θ) dθ for all k ∈ J−N,NK.

The algorithm we propose consists in solving (3.20) using an Euler scheme and

to project the solution obtained to satisfy the constraint (3.22). In other words,

we write:

c∗ = cn + ∆t[Q]Bc
n. (3.23)

and then compute cn+1 such that the constraint (3.22) is satisfied with ‖cn+1 − cn‖H
minimized (see figure 2).

plane
cn+1

{c : Cc = Ccn}

c∗

cn

P

Figure 2: The update coefficients cn+1 has to (i) belong to the invariant plane P = {c : Cc =

Ccn} and (ii) minimize the distance with the auxiliary estimation c∗. Therefore, cn+1 has to

be taken as the orthogonal projection of c∗ on the plane P.

Following [25], we obtain the following algorithm:

Proposition 3.4. The coefficients cn+1 are given by:

cn+1 = cn + ∆tΛN (C) [Q]B cn, (3.24)

with ΛN (C) the square matrix defined as:

ΛN (C) = Id− CT
(
CCT

)−1C. (3.25)
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Numerically, the explicit Euler scheme (3.23) could be unstable due to the

stability condition (i.e. σ
4N

2∆t . 1, see Appendix B). Thus, we propose a

second algorithm based on the implicit Euler scheme:

c∗k = cnk + ∆t [Q]B c∗k. (3.26)

Following the same methodology, we deduce the following algorithm:

cn+1 = cn + ∆tΛN (C) [Q]B (Id−∆t [Q]B)−1cn, (3.27)

with ΛN (C) the square matrix given by (3.25). Notice that the implicit scheme

requires to estimate the matrix (Id −∆t [Q]B)−1. The matrix inversion has to

be computed only once as [Q]B is independent of the cells and time.

3.4. Transport term

Finally, we propose a finite volume method [31] to solve the transport equa-

tion (3.2).

Suppose f is defined on a Cartesian grid in (x, y), f(xi, yj , θ). The finite

volume method consists of identifying f(xi, yj , θ) as the mass of particles in the

cell Ci,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] moving with speed ω(θ) = (cos θ, sin θ).

Integrating the transport equation on the cell Ci,j yields

d

dt
f(xi, yj) + cos θ

f(xi+ 1
2
, yj)− f(xi− 1

2
, yj)

∆x

+ sin θ
f(xi, yj+ 1

2
)− f(xi, yj− 1

2
)

∆y
= 0. (3.28)

It remains to determine the values of the interface of the cell Ci,j (e.g. f(xi+ 1
2
, yj , θ),

f(xi, yj+ 1
2
, θ)). We use an upwind approach: for each value of θ, the value of f

at the boundary is given by:

f(xi+ 1
2
, yj , θ) =

 f(xi, yj , θ) if cos θ ≥ 0

f(xi+1, yj , θ) if cos θ < 0.
(3.29)

The stability condition for this algorithm is cmax∆t < ∆x where cmax is the

maximum speed at which f is transported. Since |ω| ≤ 1, we enforce numerically

that ∆t < ∆x.
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4. Numerical investigations

Using the numerical scheme developed for the kinetic equation (2.8), we now

investigate the Vicsek model using either its particle description (2.1), kinetic

formulation (2.8), or hydrodynamic limit (2.12)-(2.13).

We first validate our numerical scheme for the kinetic equation by solving the

homogeneous equation (3.1) and analyzing its convergence toward equilibrium

(2.11). In particular, we highlight the importance of preserving the invariants for

the stability of large time simulation. Next, we investigate the kinetic equation

within its hydrodynamic limit, i.e. letting ε→ 0 in (2.10). Our results show that

at ε = 10−2 the solutions of the kinetic equation and the hydrodynamic limit

are almost indistinguishable. For instance, we recover at the kinetic level shock

and rarefaction waves. Finally, we explore the effect of boundary conditions

on the dynamics. We use a domain with reflexive boundary conditions and

compare the solution of the particle dynamics with the kinetic formulation once

they reach a stationary state.

In all the simulations, we use the implicit scheme (3.27) to solve the col-

lisional operator. The results are similar with the explicit scheme (3.23) but

requires an additional constraint on the time step ∆t for the stability of the

scheme (see Appendix B). In term of CPU time, both methods gives analogous

results. The intensity of the noise is fixed at σ = .2 for the three descriptions

of the system (micro/kinetic/macro).

4.1. Convergence to equilibrium

In this subsection, we validate our numerical scheme for the kinetic equation

using analytic results. Since the stationary states of the homogeneous equation

are known, we can test that our scheme converges toward such analytic solutions.

With this aim, we use our numerical scheme to solve the homogeneous equa-

tion ∂tf = Q(f) with Q defined in (2.9). We use as initial condition a sinusoid

for f(θ)

f(t = 0, θ) = 1 + cos 2θ.
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We leave the discussion about the time and velocity discretization (∆t and ∆θ)

of the kinetic equation in the appendix Appendix B. In figure 3, we plot the

solution f(t) at t = 10 unit times and the corresponding stationary state (i.e.

Von Mises distribution (3.3)). We observe that the two curves are in perfect

agreement.

The mean direction θ of f(t, θ) can vary during a simulation. This is expected

since the mean velocity is not conserved by the kinetic equation (2.8). However,

the total mass, ρ(t) =
∫ 2π

0
f(t, θ) dθ, has to be conserved in time. Thanks

to our formulation (3.24), the mass is precisely conserved in our simulation

(up to round-off error). If one would use the formulation (3.23) to update f

(i.e. without the constraint), one cannot guarantee that the mass would be

preserved. To analyze this property, we numerically investigate the long time

behavior of the mass ρ(t) with and without taking into account the invariant

of the dynamics. Thus, we use a preserving and a non-preserving scheme. In

figure 4, we represent the evolution of the total mass ρ(t) in time for both cases.

With the preserving scheme, the mass ρ(t) remains constant over time whereas

the mass ρ(t) is increasing with the non-preserving scheme which is inaccurate.

4.2. Traveling waves

We now turn our attention to the full kinetic equation (2.4). Few analytic

results are known for this equation other than hydrodynamic limit. Therefore,

we will numerically investigate the kinetic equation in the hydrodynamic regime,

i.e., we investigate the solution of (2.10) for small value of ε and compare it with

the solution of the hydrodynamic model (2.12)-(2.13).

To compare the solution fε of the kinetic equation (2.10) and the solution

(ρ, u) of the hydrodynamic limit (2.12)-(2.13), we analyze the evolution of the

two first moments of fε corresponding to the mass ρε and the macroscopic

velocity uε. They are obtained through averaging of fε in velocity variables:

ρε(x) =

∫ 2π

0

fε(x, θ) dθ , uε(x) =
jε(x)

|jε(x)| with jε(x) =

∫ 2π

0

cos θ

sin θ

 fε(x, θ) dθ.
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Both quantities ρε and uε are expected to converge to the solution of the hydro-

dynamic system (2.12)-(2.13) as ε→ 0. Thus, we compute the solutions of the

kinetic equation (2.10) with different ε (resp. ε ∈ {1, 10−1, 10−2}). The hydro-

dynamic system (2.12)-(2.13) plays the role of a benchmark in this approach.

To obtain interesting patterns, we use as an initial condition a Riemann

problem in the x-direction and we suppose that the solution is homogeneous

in the y-direction. Thus, for the hydrodynamic limit, the initial condition is

prescribed by two values (ρl, ul) and (ρr, ur) corresponding to the values at the

left and right side of the domain (resp.). For the kinetic equation, we suppose

that fε starts from local equilibrium meaning that fε(x, θ) is initially a Von

Mises distribution for any x. For the two remaining degrees of freedom, ρε

and θ
ε
, we initiate them such that the moments of fε match with the initial

condition of the hydrodynamic limit.

We investigate three different Riemann problems. For our first simulation,

the solution of the macroscopic model is given by a rarefaction wave:

(ρl, θl) = (2, 1.7) , (ρr, θr) = (0.218, 0.5). (4.1)

In figure 5, we represent the density ρε(x) and angle velocity θε(x) at t = 4 unit

time. We do observe that, as ε→ 0, the solution given by the kinetic equation

(ρε, θε) gets closer and closer to the solution of the hydrodynamic model (ρ, u).

The effect of ε can be seen as a “smoothing parameter”. It is consistent with

the derivation of the hydrodynamic limit where the second order approximation

in ε gives a diffusion-type operator [32].

For our second simulation, we use a Riemann problem that generates a shock

solution. We use for that the initial condition:

(ρl, θl) = (1, 1.5) , (ρr, θr) = (2, 1.83). (4.2)

We plot the solutions of both the kinetic equation and hydrodynamic limit

at time t = 4 unit time in figure 6. Once again, the moments (ρε, uε) do

converge toward the shock profile given by the solution of the hydrodynamic

model (ρ, u). We note that there is no analytic solution for the shock wave since
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the hydrodynamic model is not conservative, we lack the Rankine-Hugoniot

conditions to find an explicit value for the shock speed. Hence, it is quite

remarkable that both the kinetic formulation and the hydrodynamic model give

the same shock profile with the same speed.

An additional inspection of the solutions suggest that the solution of the

kinetic model might present cusp formation. For instance, in figure 5 (right),

we observe a ’blob’ forming at x ≈ 3.7 unit space, that vanishes as ε→ 0. There

is a similar but ’more disperse’ pattern in the figure 6 at x ≈ 1 unit space. The

formation of cusps will have a strong importance for the understanding of the

kinetic model.

For our third simulation, the Riemann problem used is a contact disconti-

nuity (see figure 7):

(ρl, θl) = (1, 1) , (ρr, θr) = (1,−1). (4.3)

Here, the solution of the hydrodynamic model is more complex than a rarefac-

tion wave or a shock wave. As for the shock profile (figure 6), there is no analytic

expression for this solution. But once again, the solution given by the kinetic

equation does converge as ε → 0 toward the complex profile of the hydrody-

namic model. Thus, these numerical simulations at the kinetic level confirm the

relevance of the profile observed at the macroscopic level.

4.3. Vortex formation

In all the previous simulations, we have used Neumann boundary conditions

in order to reduce the influence of the boundary of the domain on the dynam-

ics. We would like now to investigate in more details the impact of boundary

conditions on the dynamics. For this purpose, we compare the kinetic model

(2.4) and the microscopic model (2.1) in a bounded domain Ω with reflexive

boundary conditions. At the microscopic level, each time a particle i hits the

boundary (i.e. xi ∈ ∂Ω), its velocity ωi is reflected:

ω̂i = S∂Ω(x)(ωi) = ωi − 2〈ωi, η〉η

18



0

0.5

1

1.5

2

2.5

−4 −2 0 2 4

d

e

n

s

i

t

y

ρ

x

Density ρ at t = 4

ε = 1
ε = 10−1

ε = 10−2

Ma
ro

0

0.5

1

1.5

2

2.5

−4 −2 0 2 4

a

n

g

l

e

θ

x

Velo
ity angle θ at t = 4

ε = 1
ε = 10−1

ε = 10−2

Ma
ro

Figure 5: The solutions of the Riemann problem (4.1) is given by a rarefaction wave. Left:

the mass ρε for the kinetic equation (blue) and for the hydrodynamic model (red). Right:

the velocity angle θε for the kinetic equation (blue) and for the hydrodynamic model (red).

0

0.5

1

1.5

2

−4 −2 0 2 4

d

e

n

s

i

t

y

ρ

x

Density ρ at t = 4

ε = 1
ε = 10−1

ε = 10−2

Ma
ro

1.2

1.4

1.6

1.8

2

−4 −2 0 2 4

a

n

g

l

e

θ

x

Velo
ity angle θ at t = 4

ε = 1
ε = 10−1

ε = 10−2

Ma
ro

Figure 6: Shock wave solution of the Riemann problem (4.2).

0

0.5

1

1.5

2

−4 −2 0 2 4

d

e

n

s

i

t

y

ρ

x

Density ρ at t = 4

ε = 1
ε = 10−1

ε = 10−2

Ma
ro

−1

−0.5

0

.5

1

−4 −2 0 2 4

a

n

g

l

e

θ

x

Velo
ity angle θ at t = 4

ε = 1
ε = 10−1

ε = 10−2

Ma
ro

Figure 7: Contact discontinuity solution of the Riemann problem (4.3).

19



where η is the unit normal vector at ∂Ω(x) (see figure 8). Similarly, at the kinetic

level, reflexive boundary conditions impose that f satisfies at the boundary:

f(x, ω) = f(x, S∂Ω(x)(ω)) for x ∈ ∂Ω.

In other words, we have no-flux boundary conditions. In contrast to the kinetic

model, reflexive boundary conditions would be more delicate to implement for

the hydrodynamic model due to the constraint |u| = 1. Moreover, the validity of

the hydrodynamic model near the boundary is questionable due to the possible

formation of boundary layers (e.g. Prandtl’s boundary layer).

wall ∂Ω

ωi

S∂Ω(ωi)

xi
η

ω

wall ∂Ω

x

f(x, S∂Ω(ω)) = f(x, ω)

S∂Ω(ω)

Figure 8: Left: Reflexive boundary conditions for the particle model. Once xi reaches the

boundary ∂Ω, its velocity ωi is reflected. Right: Reflexive boundary conditions for the

kinetic model: outgoing flux (i.e. f(x, ω)) equals the incoming flux (i.e. f(x, S∂Ω(ω))) at the

boundary x ∈ ∂Ω in all direction ω.

Starting from a uniform distribution in space and velocity, we run the Vicsek

model for both the particle and kinetic level. Both simulations are run on a

square domain Ω of 10 space units. For the particle level, we use 104 particles

with a radius of interaction R = .2 and a time discretization of ∆t = .01 unit

time. For the kinetic model, we use a mesh grid ∆x = ∆y = .2 and a larger

time discretization ∆t = .05 to reduce the numerical viscosity. We use 32 modes

to discretize the velocity distribution.

After a transient period, both simulations converge toward a stationary state

consisting of a vortex-type formation. In figure 9, we represent the spatial
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density ρ and macroscopic velocity u defined as:

ρ(x) =

∫ 2π

0

f(x, θ) dθ, ρ(x)u(x) =

∫ 2π

0

ω(θ)f(x, θ) dθ,

with ω(θ) = (cos θ, sin θ)T . As a result of the reflexive boundary conditions

and the alignment interaction, the flow u tends to follow the boundary. Here,

the flow u is turning clockwise but it is equally probable that it would turn

counter-clockwise since the initial distribution is uniform in space and velocity.

We notice that the particle model has more fluctuations compared to the ki-

netic model as we could expect. For instance, the solution of the kinetic model is

invariant under rotation of angle π/2 which is not the case in the particle model

due to fluctuations. To measure the agreement and the discrepancy between

the two spatial distributions, we introduce the distribution ϕ(`) measuring the

average density on the squares C` centered at the origin with radius `:

C` = {(x, y) ∈ R2 | max(|x|, |y|) = `}.

In other words, ϕ(`) is defined for ` > 0 as:

ϕ(`) =
1

|C`|

∫
C`

ρ ds =
1

4`

∫
{‖(x,y)‖∞=`}

ρ ds. (4.4)

We average over squares instead of circles to take into account the geometry

of the domain Ω. As we observe in figure 10, the distributions ϕ(`) for the

particle and kinetic models agree very well with each other. We observe some

discrepancy near ` ≈ 0 and ` ≈ 5 corresponding respectively to the center and

the boundary of the domain Ω but this is expected since the number of particles

at the origin fluctuates more.

Overall, the kinetic model provides a reliable description of the microscopic

model without the fluctuations. Moreover, the computation time of the micro-

scopic model would drastically increase as the number of particles N becomes

larger. Whereas, for the kinetic model, the computation time remains exactly

the same when we increase the density.

Additional numerical investigations are required to better understand the

discrepancy between the two curves. In particular, it would be of great interest
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to analyze the influence of the number of particles N . Both curves should

coincide as N → ∞, but we lack a good quantifier to indicate when N would

be “large enough”.

5. Conclusion

We presented the first numerical method for a kinetic description of the Vic-

sek swarming model, which poses a unique challenge as there is a distribution

dependent collision invariant to satisfy when computing the interaction term.

The method used a spectral representation linked with a discrete constrained

optimization to compute these interactions, and shows excellent agreement with

the macroscopic equations when near that regime. The numerical results em-

phasize the importance of enforcing the collision invariants in the system. Future

work will seek to extend this formulation to the three dimensional Vicsek equa-

tion, which has two Generalized Collisional Invariants instead of one. Another

interesting application is using the kinetic equation to study the dynamics of

the non-conservative macroscopic equations that arise from this model, in par-

ticular, the formation of cusps. Another interesting avenue for investigation is

to develop more intricate boundary conditions in order to model more advanced

wall avoidance, such as birds swerving when approaching a wall.
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Appendix A. Summary of the numerical scheme

We summarize the different steps of the numerical scheme. We use the

following notations: xi = i∆x, yi = j∆y, θs = s∆θ.

After the initialization of the distribution fi,j,s = f(xi, yj , θs), the numerical

scheme consists in iterating the following splitting method.

1) Collisional operator: in each cell (xi, yj)

– Decomposition: compute the mean direction θ and deduce {ck}k

ck =
∑
s

f(θs+θ)P−k(θs)
∆θ

M(θs)
. (A.1)

– Update: c∗k = ck + ∆tΛQ̃(ck).

– Reconstruct f : fs =
∑
k c
∗
kPk(θs − θ).

2) Transport operator : for each velocity angle θs and in each case i, j

fi,j,s = fi,j,s−
∆t cos θs

∆x
(fi+ 1

2 ,j,s
−fi− 1

2 ,j,s
)−∆t sin θs

∆y
(fi,j+ 1

2 ,s
−fi,j− 1

2 ,s
),

where the indices i ± 1
2 are computed using an upwind-method. For in-

stance,

i+
1

2
=

 i+ 1 if cos(θs) ≤ 0

i if cos(θs) > 0

Remark Appendix A.1. To estimate the coefficients {ck}k in (A.1), we need

to perform a change of coordinates which creates error if θ is not an meshgrid.

To avoid those interpolations approximations, we use a change of coordinates

in the formula which yields

ck =
∑
s

f(θs)P−k(θs−θ)
∆θ

M(θs−θ)
. (A.2)

Since Pn and M are explicit functions (3.4) (3.13), there is no additional cost

in using (A.2).
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Appendix B. Stability of the homogeneous equation

To implement the numerical scheme (3.24) for the homogeneous equation

∂tf = Q(f), we have to establish a stability condition. The explicit Euler

method is stable under the condition that:

|λMax|∆t < 1,

where λMax is the largest eigenvalue of the matrix [Q]B (3.19). From the Ger-

shgorin circle theorem, we find a rough estimate as: |λMax| ∼ σ
4N

2. This rough

estimation is confirmed numerically (see figure B.11).

Analytically, the solution f is converging toward an equilibrium (3.3). Thus,

one needs to verify that Q has a zero eigenvalue. Numerically (see figure B.11),

the first eigenvalue λ1 decreases with the number of discretization intervals N

and stabilizes for N > 20 near machine precision around 10−15.

Therefore, we use in our simulation N = 32 discretization intervals for the

angle velocity θ. For the time discretization, we ensure that σ
4N

2∆t < 1 once

we use the explicit Euler scheme. There is no such constraint if we use the

implicit Euler method.
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Figure B.11: Left: the largest eigenvalue λMax of [Q]B (3.19) depending on N the number

of points of discretization of the angle velocity θ ∈ (−π, π]. Right: the first eigenvalue λ1 of

[Q]B depending on N .
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