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Abstract

In this paper, we present a time splitting scheme for the Schrödinger equation in the pres-

ence of electromagnetic �eld in the semi-classical regime, where the wave function propagates

O(ε) oscillations in space and time. With the operator splitting technique, the time evolution

of the Schrödinger equation is divided into three parts: the kinetic step, the convection step

and the potential step. The kinetic and the potential steps can be handled by the classi-

cal time-splitting spectral method. For the convection step, we propose a semi-Lagrangian

method in order to allow large time steps. We prove the unconditional stability conditions

with spatially variant external vector potentials, and the error estimate in the l2 approxima-

tion of the wave function. By comparing with the semi-classical limit, the classical Liouville

equation in the Wigner framework, we show that this method is able to capture the correct

physical observables with time step ∆t ≫ ε. We implement this method numerically for both

one dimensional and two dimensional cases to verify that ε−independent time steps can indeed

be taken in computing physical observables.

1 Introduction

Many problems in solid state physics and quantum chemistry require the solution to the Schrödinger

equation in the presence of electromagnetic �eld with a small (scaled) Planck constant ε,

iε∂tu
ε =

1

2
(−iε∇x −A)

2
uε + V uε, t ∈ R+, x ∈ Rd; (1.1)

uε(x, 0) = u0(x), x ∈ Rd (1.2)
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where uε(x, t) is the complex-valued wave function, V (x) is the scalar potential and A(x) is the

vector potential.

Mathematically, the electromagnetic �eld, or respectively, electric �eld E(x) ∈ Rd and magnetic

�eld B(x) ∈ Rd are described by the scalar potential V (x) ∈ R and the vector potential A(x) ∈ Rd

as

E = −∇V (x), B = ∇×A. (1.3)

In the dynamic picture, one de�nes canonical momentum P̂ = −iε∇x and the kinetic momen-

tum is κ̂ = P̂ − A (see [9]). The Schrödinger equation (1.1) can be derived from the one in the

absence of the vector potential by local gauge transformation (see [26]).

In fact, one can simplify the potential description by imposing one more condition, namely,

specifying the gauge. Due to the fact that the potential �elds are not what are observed, while the

electric and magnetic �elds are, there is freedom to impose conditions on the potentials so long as

whatever condition is chosen to impose does not a�ect the resultant electric and magnetic �elds.

This freedom is called the gauge freedom. For any choice of a scalar function of position λ(x) ∈ R,
the potentials can be changed as follows:

A′ = A+∇xλ, V ′ = V. (1.4)

One can easily show that electric �eld E(x) ∈ Rd and magnetic �eld B(x) ∈ Rd do not change

at all under this transformation. One natural choice is, choosing λ, so that ∇x ·A′ = 0. This is

the so-called Coulomb gauge. In this gauge, the vector potential and the canonical momentum

operator commute, [A, −iε∇x] = 0, so that the modi�ed �kinetic� part of the Schrödinger equation

(1.1) can be simpli�ed to:

1

2
(−iε∇x −A)2uε = −ε2

2
∆xu

ε +
iε

2
(A · ∇x +∇x ·A)uε +

1

2
|A|2uε

= −ε2

2
∆xu

ε + iεA · ∇xu
ε +

1

2
|A|2uε.

Previously, many numerical methods have been designed for the semi-classical Schrödinger

equation with only scalar potentials. As far as we know, little research has been done for the

semi-classical Schrödinger equation with vector potentials in the aspect of numerical simulations.

However, dynamics for particles exposed to external electromagnetic �eld result in many far-

reaching consequences in quantum mechanics, such as the Landau level, the Zeeman e�ect and

superconductivity. In the aspect of analysis, the Schrödinger operator with the vector potential

has di�erent features in spectral and scattering properties (see [2]). Numerically, it gives new

challenges as well, especially in the semi-classical regime.

In the Schrödinger equation, the wave function acts as an auxiliary quantity used to compute
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primary physical quantities such as the position density,

n(t, x) = |uε(t, x)|2, (1.5)

the current density,

I(t, x) = εIm (uε(t, x)∇xu
ε(t, x)) =

ε

2i
(uε∇xu

ε − uε∇xuε) , (1.6)

where f̄ denotes the complex conjugate of f . As a matter of fact, in the presence of the vector

potential, one needs to introduce the modi�ed current density as

J(t, x) =
1

2
(uε (−iε∇x −A)uε − uε (−iε∇x −A)uε) , (1.7)

so that mass conservation equation is satis�ed,

∂

∂t
n+∇x · J = 0. (1.8)

We remark that n and J are gauge invariant quantities. Numerically, computing I(t, x) and J(t, x)

face the same challenge.

It is well known that, the semi-classical Schrödinger equation propagates oscillation of wave-

length of order O(ε) in space and time, so that the wave function uε does not converge in the strong

sense as ε → 0. In addition, since the macroscopic physical quantities are non-linear transforms of

uε, the classical limit for those physical observables are not guaranteed by the weak convergence.

Mathematically, some micro-local analysis methodologies were introduced to explore the so-called

semi-classical limit of the Schrödinger equation. The celebrated Wigner transform (see [11, 10, 23])

has been shown to be a very powerful tool to reveal the macroscopic properties of the Schrödinger

equation in the semi-classical regime. In this framework, the semi-classical limit of the Schrödinger

equation can be derived, which is the classical Liouville equation. This provides an insightful

viewpoint to understand the transition from quantum mechanics to classical mechanics.

Numerically, the oscillatory nature of the wave function for the semi-classical Schrödinger equa-

tion, in general, gives rise to signi�cant computational burden. As a matter of fact, even for uncon-

ditionally stable methods, the numerical results may lead to completely wrong physical observables

if the mesh grids fail to completely resolve the O(ε) oscillations in space and time. In [20], by uti-

lizing the Wigner transform to study �nite di�erence approximation of the Schrödinger equation,

Markowich, Pietra and Pohl have shown for prevailing �nite di�erence method, to obtain correct

physical observables, one has to enforce the following meshing strategy

∆x = o(ε), ∆t = o(ε). (1.9)

In the meanwhile, in order to guarantee accurate L2 approximation of the wave function, even

more restrictive conditions have to be satis�ed.
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In [5], Bao, Jin and Markowich have shown that the time splitting spectral method gives much

less restrictive conditions in approximating not only the wave function but also physical observ-

ables. By comparing with the semi-classical limit using the Wigner Transform, and presenting

extensive numerical experiments, they have shown that the following meshing strategy is su�cient

in computing correct physical observables,

∆x = O(ε), ∆t = o(1). (1.10)

In other words, one is allowed to take ε−independent time steps in computing physical observables.

The readers can refer to the recent review [15] on the computation of semi-classical Schrödinger

equations by Jin, Markowich and Sparber.

In the presence of the vector potential, in general, the stability constraint in solving the con-

vection part

∂tu
ε = A · ∇xu

ε (1.11)

requires ∆t = O(ε) by an explicit scheme since one needs to take ∆x = O(ε) in order to resolve

spatial oscillations. The primary goal of this paper is to develop a numerical method with meshing

strategy (1.10), so that large time steps satisfying ∆t ≫ ε are allowed to take in computing the

physical observables.

We propose a semi-Lagrangian method to handle the convection step with the goal to allow time

steps which are as large as the case without the vector potential term. In this method, one follows

the characteristics of the convection equation (1.11) backwards in time from the original grid points

to the previous time step, and then use polynomial interpolation to compute the corresponding

value of the numerical solution.

The semi-Lagrangian methodology has been extensively studied in atmospheric models. See

[28] for a review by Staniforth and Côté. This technique has been extended to general transport

equations, for example, by Lin and Rood in [18], and in particular, a lot of research has been

done for its applications in Vlasov equation and other kinetic models (see [27, 24]). Previously,

the stability study for the semi-Lagrangian method was carried out only for constant coe�cient

problems (except the case of using the spectral interpolation, see [29]). In this paper, we give

rigorous l2 stability analysis of this method for variable coe�cient problems with the polynomial

interpolation, and prove the unconditional stability if suitable interpolation points are used.

By analyzing the correspondence between solving the Schrödinger equation and the semi-

classical limit, namely the Liouville equation in the Wigner framework, we show that the semi-

Lagrangian time splitting method is able to compute correct physical observables even with time

step ∆t ≫ ε, which is further veri�ed numerically.

The rest of this paper is organized as follows. In Section 2, we present the numerical methods to

solve the one dimensional Schrödinger equation with vector potentials based on the time splitting

technique and carry out the l2 stability analysis for arbitrary Courant numbers. In Section 3,

we prove the error estimate and corresponding meshing strategy for the semi-Lagrangian time
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splitting method in the l2 approximation of the wave function. In Section 4, by comparing with

the semi-classical limit, namely the Liouville equation in the Wigner framework, we prove that the

meshing strategy can be much relaxed so that ε−independent time step is allowed if one only aims

to obtain correct physical observables. We discuss how to extend the method to multidimensional

cases in Section 5. Extensive numerical examples are shown in Section 6 to verify the proposed

meshing strategy. We give some �nal remarks and future directions in the last section.

2 The description of numerical methods

2.1 The time splitting and the spectral approximation.

In this section, we present the numerical method to solve the Schrödinger equation (1.1), (1.2)

in one dimension with periodic boundary condition. The extension to multidimensional cases is

straightforward, and will be discussed in Section 5.

We assume, on computation domain [a, b], a uniform spatial grid xj = a+j∆x, j = 0, · · ·N−1,

where N = 2n0 , n0 is an positive integer and ∆x = b−a
N . We also assume uniform time steps

tk = k∆t, k = 0, · · · ,K. The construction of numerical methods is based on the following (�rst

order) operator splitting technique.

With the Coulomb gauge, the Schrödinger equation (1.1) can be formulated as

iε∂tu
ε = −ε2

2
∆uε + iεA · ∇uε +

1

2
|A|2uε + V uε, a < x < b, t ∈ R+; (2.1)

uε(0, x) = uε
0(x), uε(t, a) = uε(t, b), uε

x(t, a) = uε
x(t, b).

By the operator splitting technique, for every time step t ∈ [tn, tn+1], one solves the kinetic step

iε∂tu
ε = −ε2

2
∆uε, t ∈ [tn, tn+1]; (2.2)

followed by the potential step

iε∂tu
ε =

1

2
|A|2uε + V uε, t ∈ [tn, tn+1], (2.3)

and followed by the convection step

∂tu
ε = A · ∇uε, t ∈ [tn, tn+1]. (2.4)

For clarity, we rewrite the equation (2.1) as

∂tu
ε = (A+ B + C)uε (2.5)
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where

A =
iε

2
∆, B = − i

ε

(
1

2
|A|2 + V

)
, C = A · ∇.

Let uε(tn) be the exact solution at t = tn, so uε(tn+1) = e(A+B+C)∆tuε(tn). Let Un
j be the

numerical approximation of uε(xj , tn) and uε,n be the numerical approximation of uε(tn), which

means uε,n has Un
j as components. De�ne the solution obtained by the (�rst order) operator

splitting (without spatial discretization) as

wn+1 = eC∆teB∆teA∆tuε(tn). (2.6)

Note that wn+1 di�ers from uε(tn+1) due to the operator splitting error.

After operator splitting, the kinetic step can be solved analytically in time in the Fourier space,

and the potential step can be solved exactly by direct integration in time:

U∗
j =

1

N

N/2−1∑
l=−N/2

e−iε∆tµ2
l /2Ûn

l e
iµl(xj−a); (2.7)

U∗∗
j = e−i( 1

2 |A|2(xj)+V (xj))∆t/εU∗
j ; (2.8)

where Ûn
l are Fourier Coe�cients of Un

j , de�ned by

Ûn
l =

N−1∑
j=0

Un
j e

−iµl(xj−a), µl =
2πl

b− a
, l = −M

2
, · · · , M

2
− 1.

But for the convection step, there is no obvious way to solve it analytically based on discrete

data for a variable A(x). We propose in the next sub-section a semi-Lagrangian method to solve

the convection equation (2.9).

We need to give two remarks here:

Remark 1. Even if one doesn't specify the Coulomb gauge, the commutator [∇x,A] = ∇x · A
appears, and one only needs to add this contribution to operator C, namely one modi�es C =

−i
(
1
2 |A|2 + V

)
/ε + 1

2∇x · A. But, since ∇x · A is only a slowly varying scalar function, this

modi�cation will not introduce any new challenges numerically.

Remark 2. The �rst order operator splitting implies �rst order convergence in time. One can make

use of Strang's splitting to obtain second order time discretization method. If one wants to apply

the second order Strang's splitting to three operators, one can �rstly group A + B together as a

single operator, and apply Strang's splitting to A + B and C, while in the steps corresponding to

A+ B, one also uses Strang's splitting.
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2.2 A semi-Lagrangian method for the convection step

In this part, we present a semi-Lagrangian method (abbreviated by SL) to solve the following

scalar convection equation with periodic boundary conditions

∂tu
ε −A · ∇xu

ε = 0, t ∈ [tn, tn+1]. (2.9)

Such an approach has been used to solve atmospheric models, Vlasov equation and other

transport equations with improved stability condition, see [28, 18, 27, 24]. This method consists

of two parts: backward characteristic tracing and interpolation. We compute the data Un+1
j by

�rstly tracing backwards along the characteristic line :

dx(t)

dt
= −A (x(t)) , x(tn+1) = xj , (2.10)

for time interval [tn, tn+1]. Denote x(tn) = x0
j , obtained by numerically solving the ODE (2.10)

backwards in time as shown in the graph below:

t
n

t
n+1

x
j−1
0 x

j
0 x

j+1
0

x
j−1

x
j−1

x
j

x
j+1

x
j

x
j+1

Figure 2.1: Backward Tracing: xj are grid points; x0
j are the shifted grid points, which are the solutions to

problem (2.10) backwards in time at t = tn; dot line � · · · � indicates characteristics.

We call the point set
{
x0
j

}
the shifted point set. By the method of characteristics, Un+1

j =

Un
(
x0
j

)
. But, Un

(
x0
j

)
in general are not known, since x0

j are not necessarily grid points. Therefore,

interpolation is needed to approximate Un+1
j = Un

(
x0
j

)
based on uε,n. We compare the following

two choices: the spectral interpolation and the M th order polynomial interpolation.

For the spectral approximation, the interpolant ΠNUn(x) =
∑N/2−1

k=−N/2 cke
ikx is a global approx-

imation to Un(x) based on uε,n. One needs O(N logN) operations to get the Fourier coe�cients

ck via the FFT method. But, one needs O(N) operations to evaluate the interpolant at each point

x0
j , since the shifted points x0

j are not necessarily the grid points, which means the inverse FFT

does not apply. Hence, the total cost is O(N2) in each time step. This will make the whole scheme

very costly.

But, for the M th order Lagrange polynomial interpolation, one needs to establish a polyno-

mial interpolant for each shifted point x0
j with the discrete data on the closest M grid points
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xj1 , · · · , xjM . For each shifted point x0
j , one uses M grid points near x0

j to form a Lagrange

polynomial interpolant to approximate U(x0
j ) with error of order O(∆xM ). But, certain stability

constraints need to be satis�ed for di�erent interpolation methods. We discuss this issue in the

next sections. In practice, the fourth order interpolation, namely the cubic polynomial interpola-

tion is widely used (see [28]). The total cost of the semi-Lagrangian method with the polynomial

interpolation is O(N) for each time step. Therefore, we choose to take the polynomial interpolation

rather than a spectral interpolation.

We remark that, in [29], a local Chebyshev polynomial approach was proposed to improve the

e�ciency of the semi-Lagrangian method with the spectral interpolation, which is essentially using

a local polynomial interpolation with interpolation points at Chebyshev extrema to approximate

the Fourier basis function eixξ. The cost could be reduced to O(N (logN)
2
), and the accuracy is

restricted by the regularity of the solutions and the order of local Chebyshev polynomials used.

Thus, the semi-Lagrangian method proposed in [29] could also apply to this problem.

Recall that, the kinetic step requires O(N logN) operations with the spectral approximation.

Hence, the overall cost of the semi-Lagrangian time splitting method (abbreviated by SL-TS) for

the whole Schrödinger equation is O(N logN) for each time step. We prove in the next sections that

the SL-TS method is unconditionally stable if suitable interpolation points are used. Therefore,

the time step can be taken much larger than ∆x, and the constraint ∆t = O(ε) is removed, if only

physical observables are needed.

In summary, the semi-Lagrangian method for the convection step is implemented by the fol-

lowing procedures:

1. For each grid point xj , j = 1, · · ·N , solve equation (2.10) backward for ∆t time to obtain

the shifted grid points x0
j , j = 1, · · ·N .

2. For each shifted grid point x0
j , �nd the closest M grids points xj1 , · · · , xjM subject to

certain stability requirements and obtain the approximate value Un+1
j = Un(x0

j ) by polynomial

interpolation.

Here are some remarks for the semi-Lagrangian method:

Remark 3. When the vector potential A is time independent, the backward characteristic tracing

step is also independent of time. In other words, one just needs to solve (2.10) for the set of shifted

point
{
x0
j

}
once with su�ciently small time step ∆̃t, and can make use of them for all future

time steps. This step can be done in a preprocessed step with great precision. When the vector

potential is time dependent, the backward characteristic tracing step needs to be done for every

time step with O(N) operations.

Consider the one dimensional convection equation with periodic boundary conditions:

∂tu−A(x) · ∂xu = 0, a < x < b. (2.11)

Assume A(x) ∈ C2 ([a, b]), A(x) and its �rst two derivatives are bounded. With the M th order

Lagrange polynomial interpolation, the numerical scheme for the convection equation (2.11) can
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be written as

Un+1
j =

M∑
m=1

lm+pj (x
0
j )U

n
m+pj

, (2.12)

where pj is determined by ∆t, ∆x and the velocity A(x), and lm+pj are the Lagrange basis

functions.

If A(x) is spatially constant, in [6], it has been shown that, when linear interpolation (M = 2)

is applied, the scheme (2.12) is unconditionally stable when x0
j is between xpj+1 and xpj+2, and

when quadratic interpolation (M = 3) is applied, the scheme (2.12) is unconditionally stable when

x0
j is between xpj+1 and xpj+3. Similar analysis has been presented in [8]. However, little research

has been done in the rigorous stability analysis for the semi-Lagrangian method with spatially

variant A(x).

We study the stability requirements of the semi-Lagrangian method in the following three

subsections. In Section 2.3, we deal with the case when ∆t = O (∆x), and the semi-Lagrangian

di�erence operator is treated as a one-parameter family of operators depending on ∆x. This was

done in [17], where ∆t is treated as ∆x, but for our purpose, we need to keep track of both ∆x and

∆t in the analysis. In Section 2.4, we study the case when Cc = ∥A∥L∞ ∆t/∆x > 1, which together

with results in Section 2.3 covers all Courant number cases, in particular when ∆t ≫ ∆x, so an

unconditional stability is established. In Section 2.5, we derive the speci�c stability requirement

for the semi-Lagrangian method with the fourth order polynomial interpolation.

For numerical comparison, we also introduce a pseudo-spectral method for the convection equa-

tion (2.9). We discretize the spatial derivative by the spectral approximation,

∂tU
ε
j −A|x=xj ·DxU

ε|x=xj = 0, (2.13)

where

DxU
ε|x=xj =

1

N

N/2−1∑
l=−N/2

iµlÛ
n
l e

iµl(xj−a),

and use some explicit ODE solver in time discretization. With the spectral approximation, the

eigenvalues of the spatial discretization operator are purely imaginary (see [32]). This indicates, the

absolute stability region of the time-discretization method used has to cover part of the imaginary

axis near origin. Namely, one needs the so-called I-stability studied in [4]. For example, one can use

the fourth order Runge-Kutta method or the leap frog method. We name this method time-explicit

spectral approximation method (abbreviated by TESP).

Note that the FFT method can be used to compute spatial derivative with the spectral ap-

proximation, so the total cost in this step is O (N log (N)), which is comparable to the cost of

the kinetic step. This method has spectral convergence in space. However, because some explicit

time-discretization method is applied, one needs to enforce ∆t/∆x = O(1) to guarantee stability,

which means the overall meshing strategy is ∆x = O(ε), ∆t = O(ε). We remark that, the draw-

back of the TESP method is, it requires ε dependent time step even if only physical observables
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are desired.

2.3 Stability of the semi-Lagrangian method when ∆t = O(∆x)

De�ne the di�erence operator Pδ depending on a positive parameter δ in the following way

Pδ =
∑
α

pα(x)Tα, (2.14)

where α is an integer, and Tα is the shift operator, (Tαu) (x) = u (x+ αδ). The natural domain

for the di�erence operator is the space of functions de�ned on a lattice. It is easy to show that

boundedness and positivity of the di�erence operator over lattice functions of the l2 space are

equivalent to these properties of the di�erence operator over the L2 space (see [17]). Next, de�ne

the symbol p(x, ξ) of the one-parameter family Pδ as

p(x, ξ) =
∑
α

pα(x)e
iαξ, (2.15)

which is 2π−periodic in ξ. For functions f(x), denote by |f |k the maximum of the L2 norm of f

and the L2 norms of its �rst k partial derivatives, namely,

|f |k = max
l∈{0,··· ,k}

∥∥∂l
xf
∥∥
L2 .

Then, de�ne the (k, l) norm of the symbol p as

|p|k,l =
∑
α

|pα|k (1 + |α|)l . (2.16)

Denote by Ck,l the class of symbols with �nite (k, l) norm.

We quote the following lemma from [17], which plays a crucial role in proving stability.

Lemma 1. Let Pδ be a one-parameter family of di�erence operators, whose symbol p(x, ξ) is in

C2,0 ∩ C0,2 . Suppose p(x, ξ) is bounded by 1:

|p (x, ξ)| 6 1, ∀x, ξ ∈ R. (2.17)

Then for all δ, there exists a constant K, such that the operator Pδ is bounded in the following

way:

∥Pδ∥L2 6 1 +Kδ. (2.18)

To prove this Lemma, we need to quote two theorems from [17]. The �rst one is a standard

result for pseudo-di�erential operators:

Theorem 1. Let Aδ, Bδ be one-parameter families of di�erence operators of the form (2.14) with

symbols a(x, ξ) and b(x, ξ), respectively. Denote the product ab by c, and the one-parameter family
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of operators with symbol c by Cδ. Then

∥AδBδ − Cδ∥L2 6 δ |a|0,1 |b|1,0 .

The following theorem is the main result of paper [17]:

Theorem 2. Let Qδ be a one-parameter family of di�erence operators whose symbol q(x, ξ) is in

C2,0 ∩C0,2. Suppose q is Hermitian and non-negative de�nite for every x and ξ. Then there exists

a constant K related to |q|2,0 and |q|0,2, such that the operator Qδ satis�es the inequality

Re (u,Qδu) > −Kδ (u, u) ,

for all δ, and arbitrary u ∈ L2.

Now we sketch the proof of Lemma1 from [17], and later modify the proof to show that the

stability constraint in time steps ∆t can be relaxed.

Proof. For all u ∈ L2,

∥u∥2L2 − ∥Pδu∥2L2 = (u, u)− (Pδu, Pδu) = (u, (I − P ∗
δ Pδ)u) , (2.19)

where P ∗
δ is the adjoint of Pδ.

De�ne the symbol q = 1 − p∗p, and denote the di�erence operator with symbol q by Qδ. By

Theorem1, Qδ di�ers from (I − P ∗
δ Pδ) only by O(δ). In other words, there exits a δ−independent

constant K1 = |p|0,1 |p|1,0, such that

∥Qδ − (I − P ∗
δ Pδ)∥L2 6 K1δ. (2.20)

From (2.19) and (2.20), one gets

−∥u∥2L2 + ∥Pδu∥2L2 6 − (u,Qδu) +K1δ ∥u∥2L2 .

Obviously, q is Hermitian, and according to the assumption (2.17), q is also non-negative de�nite.

Therefore, according to Theorem2, there is some constant K2 such that

Re (u,Qδu) > −K2δ (u, u) . (2.21)

If ∥u∥2L2 − ∥Pδu∥2L2 6 0, then by (2.20) and (2.21), there is some positive constant K (for

example, K = K1 +K2), such that

−∥u∥2L2 + ∥Pδu∥ = Re
(
−∥u∥2L2 + ∥Pδu∥2L2

)
6 Kδ ∥u∥2L2 ,
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which implies

∥Pδu∥2L2 6 (1 +Kδ) ∥u∥2L2 .

If ∥u∥2L2 − ∥Pδu∥2L2 > 0, the estimate above is also satis�ed. This completes the proof.

Therefore, for the semi-Lagrangian method, if one takes δ = ∆x, and ∆t = O (∆x), then ∆x

and ∆t can be treated as a single parameter. We take M = ∆t/∆x, which characterizes the ratio

of temporal and spatial mesh. Thus, the numerical scheme can be written as

u (x+∆t) = Pδu(x).

As long as one can show |p (x, ξ)| 6 1 for all x and ξ, then by Lemma1,

∥u (x, t0 + n∆t)∥L2 6 ∥Pδ∥nL2 ∥u (x, t0)∥L2 6 (1 +Kδ)
n ∥u (x, t0)∥L2

6 eKn∆x ∥u (x, t0)∥L2 = e
Kn∆t

M ∥u (x, t0)∥L2 6 e
KT
M ∥u (x, t0)∥L2 . (2.22)

This implies, for �xed M = O(1), in other words when ∆t = O (∆x), the semi-Lagrangian method

is stable as long as |p (x, ξ)| 6 1 for all x and ξ. The reason is with �xed M = ∆t/∆x, the constant

K in (2.18) is δ−independent.
Another implication is in the limit M = ∆t/∆x → 0, the above stability proof fails. However,

we would like to allow ∆t = o(1) despite ∆x = O(ε), so the Courant number can be as large as

O( 1ε ). We further show in the next subsection the stability conditions for the semi-Lagrangian

method with arbitrary Courant number Cc = ∥A∥L∞ ∆t/∆x > c0, where c0 > 0.

2.4 Stability of the semi-Lagrangian method for arbitrary Courant num-

bers

The proof above for the stability of the semi-Lagrangian method does not apply directly, for

arbitrary Courant numbers. Instead, in this subsection we explore the dependence of Pδ on both

∆t and ∆x. Especially, we aim to derive the estimates of Pδ which are valid even when ∆t ≫ ∆x.

For arbitrary Courant number cases, one expects to derive the requirements such that Pδ is

bounded in the following way,

∥Pδ∥L2 < 1 +K (∆x+∆t) , (2.23)

for some constant K independent of ∆x and ∆t. However, when ∆t ≫ ∆x, one can no longer

treat the constants K1 in (2.20) and K2 in (2.21) simply as bounded quantities. Hence, one needs

to derive the dependence of those constants on both ∆t and ∆x.

When A(x) has zeros, even for bounded A(x), there is no obvious way to �nd desired bounds

for certain (k, l) norms of the symbol of Pδ such that (2.23) is satis�ed. To simplify the analysis, we

�rstly introduce a method to decompose the semi-Lagrangian di�erence operator Pδ into a product

of a shift operator and another semi-Lagrangian di�erence operator P̃ δ, which corresponds to a
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di�erent characteristic velocity −Ã(x), where Ã is positive. We will derive estimates for certain

(k, l) norms of the symbol of P̃ δ, which help to prove the stability of the semi-Lagrangian method

with arbitrary Courant numbers.

We now introduce the decomposition of the semi-Lagrangian di�erence operator. Since A(x) is

bounded, assume amin 6 A(x) 6 amax. We naturally assume ∥A∥L∞ > 0, because otherwise only

the trivial case A ≡ 0 is allowed. Suppose for each point xin at time level t = tn+1, the backward

characteristic passing through it hits the point x0 at time level t = tn. Notice, ∀m ∈ Z, one can
rewrite the di�erence operator as

Pδ =
∑
α

pα (xin)Tα =

∑
β

p̃β (xin)Tβ

Tm = P̃ δTm,

where β = α−m and p̃β(xin) = pβ+m(xin). Actually, ∀m ∈ Z, the shift operator Tm can be seen as

the semi-Lagrangian di�erence operator corresponding to the exact method of characteristic with

the characteristic speed −m∆x
∆t . Thus, the operator P̃ δ is the semi-Lagrangian di�erence operator

with velocity −A(x) + m∆x
∆t . This observation allows one to rewrite the original semi-Lagrangian

di�erence operator Pδ as a product of a shift operator and another semi-Lagrangian di�erence

operator P̃ δ with di�erent velocity �eld, though the di�erence in corresponding velocities is only

a constant.

Since in Section 2.3, the cases when the Courant number Cc = O(1) were treated, to com-

plete the analysis for arbitrary Courant number cases, without the loss of generality, we as-

sume Cc > 1. Next, we choose a special integer m, so that the characteristic velocity that

the semi-Lagrangian di�erence operator P̃ δ corresponds to is negative and bounded away from

0. Since Cc = ∥A∥L∞ ∆t/∆x > 1, we claim that there exists a constant b ∈ [1, 2] , such that

(amin − b ∥A∥L∞)∆t/∆x = m0 ∈ Z. Actually, consider the linear function,

y(s) = − (∥A∥L∞ ∆t/∆x) s+ amin∆t/∆x

with the slope − (∥A∥L∞ ∆t/∆x) < −1 and the domain D = [1, 2], so the length of the range is

larger than 1. Thus, there exists a point b ∈ [1, 2], such that y(b) equals an integer, and we denote

this integer by m0.

Therefore, the operator Tm0 can be seen as the semi-Lagrangian di�erence operator that cor-

responds to the constant characteristic speed −amin + b ∥A∥L∞ , and P̃ δ = PδT−m0 corresponds to

the semi-Lagrangian di�erence operator with the same ∆x and ∆t, but the velocity −A(x) is re-

placed by −Ã(x) = − (A(x)− amin + b ∥A∥L∞). We denote the symbol of P̃ δ by p̃, then obviously,

p̃ = pe−im0ξ. For di�erent pairs of ∆x and ∆t, one may have di�erent P̃ δ, but the corresponding

Ã(x) has a uniform lower bound and a uniform upper bound:

Ã(x) = A(x)− amin + b ∥A∥L∞ > b ∥A∥L∞ > ∥A∥L∞ ; (2.24)
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Ã(x) = A(x)− amin + b ∥A∥L∞ 6 2 ∥A∥L∞ + b ∥A∥L∞ 6 4 ∥A∥L∞ . (2.25)

Also, observe that A(x) and Ã(x) have the same derivatives, so we denote ∥∂xA∥L∞ =
∥∥∥∂xÃ∥∥∥

L∞
=

L1 and
∥∥∂2

xA
∥∥
L∞ =

∥∥∥∂2
xÃ
∥∥∥
L∞

= L2.

Since the polynomial interpolation is applied, the coe�cients p̃β (xin) of P̃ δ are Lagrange basis

functions, which are polynomials of r(xin), with

r(xin) =
x0 − xl

∆x
, (2.26)

where xl is the �rst point on the left hand side of x0 such that for some integer n0, (xl − xin) /∆x =

n0. To give estimates of certain (k, l) norms of p̃, we study the derivative of r with respect to xin.

Consider the characteristic equation

dx(t)

dt
= −Ã(x(t)), (2.27)

with x(∆t) = xin. Denote the solution to this initial value problem by x(t; xin). Integrate the

equation from ∆t to 0, one gets

x0 = xin +

ˆ ∆t

0

Ã (x (s; xin)) ds. (2.28)

Since Ã(x) ∈ C1, x(t; xin) is continuously di�erentiable with respect to xin. Therefore, there exists

a constant η, such that
∣∣∣dx(t;xin)

dxin

∣∣∣ < η.

Because Ã(x) > ∥A∥L∞ > 0, there exists t′ ∈ [0,∆t], such that

xl = xin +

ˆ t′

0

Ã (x (s; xin)) ds. (2.29)

In other words, one gets

n0 =
xl − xin
∆x

=

´ t′
0
Ã (x (s; xin)) ds

∆x
. (2.30)

Rewrite r =
´∆t

t′
Ã (x (s; xin)) ds/∆x. Then one gets the following estimate for its derivative with

respect to xin, ∣∣∣∣ dr

dxin

∣∣∣∣ =
∣∣∣´∆t

t′
∂xÃ (x (s; xin))

dx
dxin

ds
∣∣∣

∆x

6 η (∆t− t′)

∆x

∥∥∥∂xÃ∥∥∥
L∞

=
η (∆t− t′)L1

∆x
.

By the de�nition of xl, one has 0 6 x0 − xl 6 ∆x, so (2.28) and (2.29) imply

0 6
ˆ ∆t

t′
Ã (x (s; xin)) ds 6 ∆x,
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then the estimate (2.24) implies,

(∆t− t′) ∥A∥L∞ 6
ˆ ∆t

t′
Ã (x (s; xin)) ds 6 ∆x, (2.31)

and thus one concludes ∣∣∣∣ dr

dxin

∣∣∣∣ 6 η (∆t− t′)L1

∆x
6 ηL1

∥A∥L∞
. (2.32)

This means, dr
dxin

is uniformly bounded with respect to ∆x and ∆t. Similarly, one can show d2r
dx2

in

is also uniformly bounded. We remark that, without introducing Ã, one cannot get the estimate

(2.31).

We're ready to prove the following lemma, which gives the estimate of the L2 norm of the

semi-Lagrangian di�erence operator Pδ when the Courant number exceeds 1.

Lemma 2. Let Pδ be the semi-Lagrangian di�erence operator with δ = ∆x and Cc = ∥A∥L∞ ∆t/∆x >

1, as is de�ned above. Suppose its symbol p(x, ξ) is bounded by 1:

|p (x, ξ)| 6 1, ∀x, ξ ∈ R. (2.33)

Then for all δ, there exists a constant K, such that the operator Pδ is bounded in the following

way:

∥Pδ∥L2 6 1 +K (∆x+∆t) . (2.34)

Proof. For the semi-Lagrangian di�erence operators Pδ when Cc = ∥A∥L∞ ∆t/∆x > 1, we intro-

duce the decomposition Pδ = P̃ δTm0 as is de�ned above. Observe, for all L2 functions u,

∥u∥2L2 − ∥Pδu∥2L2 = (u, (I − P ∗
δ Pδ)u)

=
(
u,
(
I −

(
P̃ δTm0

)∗
P̃ δTm0

)
u
)

=
(
u,
(
T−m0Tm0 − T−m0

(
P̃ δ

)∗
P̃ δTm0

)
u
)

=
(
Tm0u,

(
I −

(
P̃ δ

)∗
P̃ δ

)
Tm0u

)
.

Next, we de�ne the symbol q̃ (x, ξ) = 1− p̃∗p̃, and denote the di�erence operator with symbol

q̃ by Q̃δ.

To make use of Theorem1 and Theorem2, we estimate some (k, l) norms of the symbols p̃ and

q̃ to be used in the proof. Recall that p̃ =
∑

β p̃β (r (xin)) e
iβξ, since p̃β (r (xin)) are polynomials of

r, and the �rst derivative of r is bounded uniformly with respect to ∆x and ∆t, so |p̃β |0 and |p̃β |1
are bounded on any bounded interval of r. In practice, the interval of r is determined so that the

condition |p (x, ξ)| 6 1 is satis�ed. In the next subsection, we derive the interval of r when the

fourth order interpolation is applied, so that |p (x, ξ)| 6 1.

If the M thorder polynomial interpolation is applied, one then has |β| 6 n0 +M , where M is
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�xed and

n0 =

´ t′
0
Ã (x (s, xin)) ds

∆x
6
´∆t

0
Ã (x (s, xin)) ds

∆x
6 4 ∥A∥L∞

∆t

∆x
.

Therefore, 1 + |β| 6 K1

(
1 + ∆t

∆x

)
for some constant K1. In conclusion, on some bounded interval

of r and with M �xed, |p̃|1,0 =
∑

β |p̃β |1 is bounded and |p̃|0,1 =
∑

β |p̃β |0 (1 + |β|) = O
(
1 + ∆t

∆x

)
.

Next, with

q̃ = 1− p̃∗p̃ =
∑
ζ

q̃ζ(r)e
iζξ,

we now prove that, if |ζ| > 2M , q̃ζ = 0. Actually

q̃ = 1−

(∑
γ1

˜̃pγ1(r)e
iγ1ξ

)(∑
γ2

˜̃pγ2(r)e
−iγ2ξ

)

= ei0ξ −
∑
γ1,γ2

˜̃pγ1
˜̃pγ2e

i(γ1−γ2)ξ.

For any speci�c x, if the M−point interpolation is applied, the set {p̃γ(x)} has at most M nonzero

elements, we denote the corresponding indices by γ(1)(x), · · · , γ(M)(x), which are M consecutive

integers. Therefore, in the summation
∑

γ1,γ2
p̃γ1 p̃γ2e

i(γ1−γ2)ξ, one has p̃γ1(x)p̃γ2(x) = 0 unless

γ1, γ2 ∈
{
γ(1)(x), · · · , γ(M)(x)

}
. This implies, in this summation, the nonzero contributions occur

only when |γ1 − γ2| 6 2M . Due to the arbitrariness of x, one concludes, in the summation,

q̃ (x, ξ) =
∑

ζ q̃ζ(x)e
iζξ, one has |ζ| 6 2M .

So when M is �xed, 1 + |ζ| 6 2M + 1. Since the coe�cients q̃ζ(r) are also polynomials of r,

whose �rst and second derivatives with respect to xin are bounded on bounded intervals of r, so

|q̃β |0, |q̃β |1 and |q̃β |2 are bounded on bounded intervals of r. In conclusion, on bounded intervals of

r and with M �xed, |q̃|2,0 =
∑

β |q̃β |2 is bounded, and |q̃|0,2 =
∑

ζ |q̃ζ |0 (1 + |ζ|)2 is also bounded.

Therefore, the symbol q̃ is in C2,0 ∩ C0,2.

By Theorem1, the operator Q̃δ di�ers from I−
(
P̃ δ

)∗
P̃ δ in the L2 norm at most by δ |p̃|1,0 |p̃|0,1,

so there exists a constant K3, such that∥∥∥Q̃δ −
(
I −

(
P̃ δ

)∗
P̃ δ

)∥∥∥
L2

6 K3

(
1 +

∆t

∆x

)
δ = K3 (∆x+∆t) .

Then one gets,

−∥u∥2L2 + ∥Pδu∥2L2 = −
(
Tm0u,

(
I −

(
P̃ δ

)∗
P̃ δ

)
Tm0u

)
6 −

(
Tm0

u, Q̃δTm0
u
)
+
∥∥∥Q̃δ −

(
I −

(
P̃ δ

)∗
P̃ δ

)∥∥∥
L2

∥Tm0
u∥2L2

6 −
(
Tm0u, Q̃δTm0u

)
+K3 (∆x+∆t) ∥u∥2L2 . (2.35)

Recall that, we have shown that the symbol q̃ ∈ C2,0 ∩C0,2. Besides, one can easily verify that
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q is Hermitian, non-negative, which implies q̃ is also Hermitian and non-negative. Actually, by

de�nition, q̃ = 1− p̃∗p̃ is obviously Hermitian. And q̃ = 1− p̃∗p̃ = 1− |p̃|2 = 1− |p|2 > 0, because

|p| < 1 by assumption. Therefore, q̃ satis�es all the hypotheses in Theorem2, so there exists a

constant K4 such that

Re
(
Tm0u, Q̃δTm0u

)
> −K4δ ∥Tm0u∥

2
L2 = −K4∆x ∥u∥2L2 . (2.36)

If ∥u∥2L2 − ∥Pδu∥2L2 6 0, by (2.35) and (2.36), there exists some constant K (for example, one

can take K = K3 +K4), such that

−∥u∥2L2 + ∥Pδu∥2L2 = Re
(
−∥u∥2L2 + ∥Pδu∥2L2

)
6 K (∆x+∆t) ∥u∥2L2 ,

which implies

∥Pδu∥2L2 6 (1 +K (∆x+∆t)) ∥u∥2L2 .

If ∥u∥2L2 − ∥Pδu∥2L2 > 0, the estimate above is also satis�ed. Hence, we have shown when

Cc = ∥A∥L∞ ∆t/∆x > 1, the condition that |p(x, ξ)| 6 1 for all x and ξ implies that there is some

constant K, such that

∥Pδ∥L2 6 1 +K(∆x+∆t).

According to Lemma2, when the Courant number Cc = ∥A∥L∞ ∆t/∆x exceeds 1, which means

∆x < ∥A∥L∞ ∆t, one gets

∥u (x, t0 + n∆t)∥L2 6 ∥Pδ∥nL2 ∥u (x, t0)∥L2

6 (1 + C(∆x+∆t))
n ∥u (x, t0)∥L2

6 eCn(∆x+∆t) ∥u (x, t0)∥L2

6 eCn(1+∥A∥L∞)∆t ∥u (x, t0)∥L2

6 eC(1+∥A∥L∞)T ∥u (x, t0)∥L2 ,

with n∆t 6 T and C is independent of ∆x and ∆t.

Therefore, by Lemma1 and Lemma2, we have shown that when the Courant number Cc =

∥A∥L∞ ∆t/∆x > c0 for some c0 > 0, the semi-Lagrangian method is stable if |p (x, ξ)| 6 1 for all

x and ξ. The stability requirement for the semi-Lagrangian method is basically the norm of the

symbol p(x, ξ) is bounded by 1 with the exception that the proof fails in the limit ∆t/∆x → 0

with ∆x �xed. In other words, as long as the Courant number Cc = ∥A∥L∞ ∆t/∆x > c0 for some

c0 > 0, the condition that the norm of the symbol p(x, ξ) is no greater than 1 is su�cient to prove

stability.

We summarize the result in the following theorem.
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Theorem 3. Consider the semi-Lagrangian scheme

u(t+∆t, x) = Pδu(t, x), (2.37)

where Pδ is the di�erence operator in the form (2.14), and δ = ∆x. Suppose, there is negligible

error in tracing the characteristics, and suppose there exists a positive constant c0 such that

∥A∥L∞ ∆t/∆x > c0 > 0. (2.38)

Then if for all x and ξ, the norm of the symbol p(x, ξ) is no greater than 1, |p (x, ξ)| 6 1, the

semi-Lagrangian scheme is stable in the sense that

∥u (T )∥L2 6 CT ∥u (0)∥L2

for all solutions to the scheme (2.37), where CT depends on T and c0, but is independent of ∆x,

∆t.

2.5 Semi-Lagrangian method with the fourth order polynomial interpo-

lation

According to Theorem3, as long as the Courant number is bounded away from 0, the semi-

Lagrangian method is stable when the norm of the symbol p(x, ξ) is no greater than 1. Therefore,

for speci�c orders of interpolation, one just needs to work out the requirement on the choice of

interpolation points such that this condition is satis�ed. Since in Section 6 we choose to use cubic

polynomial interpolation (M = 4) in numerical examples, we carry out the detailed calculation for

this choice.

De�ne r =
(
x0
j − xpj+2

)
/∆x, and the scheme can be written as

Un+1
j =

4∑
m=1

lm+pj
(r)Un

m+pj
, (2.39)

where

lpj+1(r) = −r(1− r)(2− r)

6
, lpj+2 =

(1 + r)(1− r)(2− r)

2
,

lpj+3(r) =
(1 + r)r(2− r)

2
, lpj+4 = − (1 + r)r(1− r)

6
.

To be more speci�c, one needs to work out the interval of r for this choice of interpolation, so that

the norm of the symbol of this semi-Lagrangian di�erence operator is no greater than 1.

For simplicity, we drop pj in the sub-indices, and instead write l1, l2, l3, l4. By direct calculation,

l1(r) + l4(r) = −r(1− r)

2
, l2(r) + l3(r) =

(1 + r)(2− r)

2
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l1(r) + l2(r) + l3(r) + l4(r) = 1. (2.40)

So the symbol of the di�erence operator is

p(x, ξ) =
(
l1(r)e

−i3ξ/2 + l2(r)e
−iξ/2 + l3(r)e

iξ/2 + l4(r)e
i3ξ/2

)
eiξ(pj−j+2+ 1

2 ).

Multiply by p̄ on both sides, one gets,

|p(x, ξ)|2 = l21 + l22 + l23 + l24 + 2l1l4 cos (3ξ) + 2 (l1l3 + l2l4) cos (2ξ)

+2 (l1l2 + l2l3 + l3l4) cos (ξ) .

Note, the identity (2.40) implies (l1 + l2 + l3 + l4)
2
= 1. So one gets,

|p(x, ξ)|2 = 1 + 2l1l4 (cos (3ξ)− 1) + 2 (l1l3 + l2l4) (cos (2ξ)− 1)

+2 (l1l2 + l2l3 + l3l4) (cos (ξ)− 1) .

With trigonometric identities cos (2ξ) = 2 cos2 (ξ) − 1 and cos (3ξ) = 4 cos3 (ξ) − 3 cos (ξ), one

gets

|p(x, ξ)|2 = 1− 1

3
r(1− r)(1 + r)(2− r) (1− cos (ξ))

2

−2

9
r2(1− r)2(1 + r)(2− r) (1− cos (ξ))

3

= 1 + r(1− r)(1 + r)(2− r) (1− cos (ξ))
2
S(r, ξ),

where,

S(r, ξ) =
1

9

(
2(1− cos (ξ))r2 − 2(1− cos (ξ))r − 3

)
.

S(r, ξ) is a quadratic function in r with parameter ξ in the coe�cients, we denote its roots

by r1 and r2, where r1 6 r2. When cos (ξ) = 1, one gets |p(x, ξ)|2 = 1. When 1
4 < cos (ξ) < 1,

r1 < −1, r2 > 2, and |p(x, ξ)|2 6 1 means r ∈ [r1,−1] ∪ [0, 1] ∪ [2, r2]. When cos (ξ) = 1
4 , r1 = −1,

r2 = 2, and |p(x, ξ)|2 6 1 means r ∈ {−1} ∪ [0, 1] ∪ {2}. When −1 6 cos (ξ) < 1
4 , −1 < r1 < 0,

1 < r2 < 2, and |p(x, ξ)|2 6 1 means r ∈ [−1, r1] ∪ [0, 1] ∪ [r2, 2]. Based on the analysis above, one

sees the condition |p(x, ξ)|2 6 1 is equivalent to r ∈ {−1} ∪ [0, 1]∪ {2}. So in practice, we take the

stability interval [0, 1] for r.

Therefore, the semi-Lagrangian method with the fourth order polynomial interpolation is stable

when the Courant number is bounded away from 0, and x0
j is between xpj+2 and xpj+3, namely,

when the shifted grid points are between the second points and the third points in interpolation.

Similarly, one can derive stability requirements for other polynomial interpolations, for example,

see calculations in [6].

We give the following two remarks for stability constraints.

Remark 4. For the semi-Lagrangian method with polynomial interpolation, the stability constraint
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comes from two parts: solving the characteristic ODE (2.10) and the polynomial interpolation.

The latter aspect has been studied in depth so far. On the other hand, solving the characteristic

equation (2.10) with time step ∆̃t requires

∥∂xA∥L∞ ∆̃t 6 C, (2.41)

for some constant C to guarantee stability. Actually, one can take su�ciently small ∆̃t in solving

the ODE (2.10) to get a very accurate approximation for the characteristics. This can be done in

a preprocessed step, and thus does not a�ect the computational cost in time evolution.

Remark 5. Another widely used necessary stability criterion for the semi-Lagrangian method is the

deformation constraint proposed in [18, 27], which means characteristics initiated from adjacent

grid points do not intersect in ∆̃t time. This criterion actually leads to the same constraint (2.41).

So one concludes, for stability, ∆t in the semi-Lagrangian method is ∆x−independent, and
thus ε−independent in the sense that it requires that the interpolation points are chosen properly,

as is stated in Theorem3. Especially, one is allowed to take ∆t ≫ ∆x. In comparison, the

stability constraint for TESP method is ∥A∥L∞ ∆t/∆x 6 C for some constant C, which indicates

∆t = O(∆x) = O(ε).

Note that, since the numerical schemes in the kinetic step and the potential step are realized

by exact time integration, the numerical methods are unconditionally stable. As is analyzed

above, the stability constraint for the semi-Lagrangian method in solving the convection part is

∆x−independent, and thus ε−independent. Therefore, one concludes the SL-TS method allows ∆t

to be independent of ∆x and ε. We will show in later sections, the SL-TS method possesses great

advantages in relaxing the time step restriction over TESP time splitting method in computing

physical observables.

3 Error estimates in the presence of vector potential

In this section, we study the error in approximating the wave function and the meshing strategy

of the SL-TS method. We use || · ||l2 to denote the discrete l2 norm

|||U ||l2 =

b− a

N

N−1∑
j=0

|Uj |2
 1

2

. (3.1)

We further assume that, the wave functions are ε−oscillatory in space and time but the potentials

are not oscillatory. So there are t, ε, x independent positive constants Bm, Cm, Dm so that∥∥∥∥ ∂m1+m2

∂xm1∂tm2
u(t, x)

∥∥∥∥C([0,T ];L2(a,b)) 6
1

εm1+m2
Cm1+m2

,
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∥∥∥∥ ∂m

∂xm
A(x)

∥∥∥∥ L2(a,b) 6 Dm,

∥∥∥∥ ∂m

∂xm
U(x)

∥∥∥∥ L2(a,b) 6 Bm. (3.2)

Note that the di�erentiation operator is unbounded for general smooth functions, but it is

bounded in the subspace of smooth L2 function which are at most ε−oscillatory. We use fI to

denote the spectral approximation based on the discrete data fj or f(xj). Now we are ready to

prove the following error estimate for the �rst order SL-TS method. The proof basically follows

Theorem4.1 in [5], though the situation here is more complicated due to the convection step.

Theorem 4. Let uε(t, x) be the exact solution of equation (2.1), uε,n be the discrete approximation

by the �rst order SL-TS method. We assume the characteristic equations (2.10) are numerically

solved with minimal error in the preprocessed step, the M th order polynomial interpolation is taken

in the semi-Lagrangian method for the convection step and the corresponding stability condition is

satis�ed. Under assumption (3.2), we further assume ∆x/ε = O(1) and ∆t/ε = O(1); then for all

positive integers m > 1 and t ∈ [0, T ],

||uε(tn)− uε,n
I ||L2 6 Gm,M

T

∆t

[(
∆x

ε

)
m +

(
∆x

ε

)
M

]
+

CT∆t

ε
, (3.3)

where C is a positive constant independent of ∆t, ∆x, ε, m and M , and Gm,M are positive

constants independent of ∆t, ∆x and ε.

Proof. Recall that, we have de�ned operator splitting solution (without spatial discretization)

(2.6) wn+1 = eA∆teB∆teC∆tuε(tn). We �rstly show, by studying the commutators between three

operators in (2.5), when potentials are spatially variant, the local splitting error in equations (2.2),

(2.3), (2.4) for equation (2.1) is:

||uε(tn+1)− wn+1||L2 = O

(
∆t2

ε

)
. (3.4)

Clearly, the exact solution to (2.1) at t = tn+1 with initial data uε(tn) is given by

uε(tn+1) = e(A+B+C)∆tuε(tn).

The operator splitting error results from the non-commutativity of the operators A, B and C. In
[5], it was shown that

[A∆t, B∆t]uε = O

(
∆t2

ε

)
,

where [·, ·] denotes the commutator. Similarly, by a direct computation:

[A∆t, C∆t]uε = (∆t)
2 iε

2
(∂xxA∂xu

ε + ∂xA∂xxu
ε) = O

(
∆t2

ε

)
;

[B∆t, C∆t]uε = (∆t)
2

(
− i

ε

)(
A∂x

(
1

2
|A|2 + V

))
uε = O

(
∆t2

ε

)
.
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Therefore, we have shown the local operator splitting error is O
(

∆t2

ε

)
as in (3.4).

By triangle inequality,

||uε(tn+1)− uε,n+1
I ||L2 6 ||uε(tn+1)− wn+1||L2 + ||wn+1 − wn+1

I ||L2 + ||wn+1
I − uε,n+1

I ||L2 (3.5)

where wn+1
I denotes the spectral interpolation approximation of wn+1. On the right hand side of

(3.5), the �rst term gives the operator splitting error (3.4), and the second term gives the spectral

approximation error which is bounded by Cm

(
∆x
ε

)m
, where m can be any positive integer, which

depends on the regularity of the solution (see [22]).

Now we focus on the last term on the right hand side of (3.5). With the spectral approximation,

we have for any periodic function f ∈ L2(a, b), ||fI ||L2 = ||f ||l2 . In the SL-TS method, the

potential step governed by operator B is solved analytically, while the kinetic step and convection

step governed by operators A and C are evolved by numerical approximations, denoted by ASP

and CSL respectively. So once again, by triangle inequality:

||wn+1
I − uε,n+1

I ||L2 = ||wn+1 − uε,n+1||l2

= ||eC∆teB∆teA∆tuε(tn)− eCSL∆teB∆teASP∆tuε,n||l2

6 ||eC∆teB∆teA∆tuε(tn)− eC∆teB∆teASP∆tuε(tn)||l2

+||eC∆teB∆teAsp∆tuε(tn)− eCSL∆teB∆teAsp∆tuε(tn)||l2

+||eCSL∆teB∆teAsp∆tuε(tn)− eCSL∆teB∆teAsp∆tuε,n||l2 . (3.6)

Note that, the �rst term on the right hand side of (3.6) measures the spectral approximation of

uε(tn), so by Theorem3 from [22], this term is of order O
((

∆x
ε

)m)
for any positive integer m.

According to Remark 3 , the error in computing the shifted grid points is much smaller than the

interpolation error, so the second term on the right hand side is bounded by the M th order polyno-

mial interpolation error, which is O
((

∆x
ε

)M)
. It can easily be shown that the operators eA∆t, eB∆t

and eC∆t (in the Coulomb gauge) are unitary operators with respect to periodic smooth functions

in the L2 norm, which implies
∥∥eA∆t

∥∥
L2 =

∥∥eB∆t
∥∥
L2 =

∥∥eC∆t
∥∥
L2 = 1. Bao, Jin and Markowich in

[5] have proved that ASP is also unitary with respect to uε
I , the spectral approximation of smooth

L2 function. Note, eCSL∆t is not a unitary operator, but with stability constraint as in Section 2.3,

we have
∥∥eCSL∆t

∥∥n
L2 6 C ′ for some constant C ′ and n∆t 6 T . So, the last term on the right hand

side of (3.6)

||eCSL∆teB∆teASP∆tuε(tn)− eCSL∆teB∆teASP∆tuε,n||l2

6
∥∥eCSL∆t

∥∥
L2

∥∥eB∆teASP∆tuε(tn)− eB∆teASP∆tuε,n
∥∥
l2

6
∥∥eCSL∆t

∥∥
L2 ∥uε(tn)− uε,n

I ∥L2 .
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This leads to

||wn+1
I − uε,n+1

I ||L2 6
∥∥eCSL∆t

∥∥
L2 ∥u(tn)− uε,n

I ∥L2 + C ′
m

(
∆x

ε

)m

+ C ′′
M

(
∆x

ε

)M

,

where C ′
m and C ′′

M are some constants, which are t, x, ε independent. So now, we have derived a

recursive relation

||uε(tn+1)− uε,n+1
I ||L2 6

∥∥eCSL∆t
∥∥
L2 ||uε(tn)− uε,n

I ||L2

+C1

(
∆x

ε

)m

+ C2

(
∆x

ε

)M

+ C3

(
∆t2

ε

)
where C1, C2 and C3 are some constants, which are t, x, ε independent.

Based on the recursive relation for ||uε(tn)− uε,n
I ||L2 , by induction, one concludes that,

||uε(tn)− uε,n
I ||L2 6 Gm,M

T

∆t

[(
∆x

ε

)
m +

(
∆x

ε

)
M

]
+

CT∆t

ε
. (3.7)

This completes the proof.

We remark that, in practice, if the solution is su�ciently regular, the error introduced by

polynomial interpolation is dominant in spatial discretization since m can be chosen to be fairly

large. Then in practice, it su�ces to consider the following error bound

||uε(tn)− uε,n
I ||L2 6 G̃M

T

∆t

(
∆x

ε

)
M +

CT∆t

ε
. (3.8)

This implies that, if one wants to control the error of the wave function in the L2norm so that

||uε(tn)− uε,n
I ||L2 < δ, the corresponding meshing strategy is

∆t

ε
= O(δ),

∆x

ε
= O

(
δ1/M∆t1/M

)
. (3.9)

For higher order operator splitting technique, similar analysis can be done, which is omitted in

this paper.

4 Computing the physical observables

In general, if one only cares about the physical observables, weaker conditions in the meshing

strategy may be su�cient (see [20, 5]). The Wigner transform can be used to illustrate this point.

For f, g ∈ L2(Rd), the Wigner transform is de�ned as a phase-space function

wε(f, g) (t, x, ξ) =
1

(2π)d

ˆ
Rd

eiy·ξ f̄
(
x+

ε

2
y
)
g
(
x− ε

2
y
)
dy. (4.1)
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Recall that uε(t, x) is the exact solution of equation (2.1). Denote wε = wε(uε, uε), which

satis�es the Wigner equation

∂tw
ε + ξ · ∇xw

ε +Θ[V + |A|2/2]wε + Γ[A]wε = 0, (4.2)

in which two pseudo-di�erential operators are de�ned by

Θ[U ]wε :=
i

(2π)dε

ˆ
Rd

(
U
(
x+

ε

2
α
)
− U

(
x− ε

2
α
))

ŵε(x, α, t)eiα·ξdα; (4.3)

Γ[A]wε := − 1

(2π)d

ˆ
Rd

A
(
x+

ε

2
α
)
· ∇xū

(
x+

ε

2
α
)
u
(
x− ε

2
α
)
eiα·ξdα (4.4)

− 1

(2π)d

ˆ
Rd

ū
(
x+

ε

2
α
)
A
(
x− ε

2
α
)
· ∇xu

(
x− ε

2
α
)
eiα·ξdα.

By Weyl's Calculus, as ε → 0, the Wigner measure w0 = limε→0 w
ε(uε, uε) satis�es the classical

Liouville equation

w0
t + (ξ −A) · ∇xw

0 + ((ξ −A) · ∇xA−∇xU) · ∇ξw
0 = 0, (4.5)

with

w0(t = 0, x, ξ) = w0
I (x, ξ) := lim

ε→0
wε(uε

0, u
ε
0). (4.6)

All the limits above are de�ned in an appropriate weak sense (see [31, 11]).

Now let a(x, ξ) be a smooth real-valued phase space function with su�cient decay at in�nity,

called a semi-classical symbol. Then the self-adjoint pseudo-di�erential operator Aε := a(x, εD)W

is called an observable, where D = i∇x, and W stands for the Weyl quantization (see [11]). If one

speci�es a quantum state uε(t, x), then the average of this observable in this state is de�ned as

Eε
a(t) =

ˆ
Rd

ūε(t, x)
(
a(x, εD)Wuε(t, x)

)
dx. (4.7)

One signi�cant property of the Wigner transform is that it establishes the duality identity in the

following sense

ˆ
Rd

ūε(t, x)
(
a(x, εD)Wuε(t, x)

)
dx =

ˆ
Rd×Rd

wε(t, x, ξ)a(x, ξ)dxdξ. (4.8)

As a consequence, Eε
a(t) can be taken to the semi-classical limit via

lim
ε→0

Eε
a(t) =

ˆ
Rd×Rd

w0(t, x, ξ)a(x, ξ)dxdξ. (4.9)

These semi-classical limits have been mathematically justi�ed in [30, 23].

Let w̃ε be the Wigner transform of the numerical approximation solution. One can easily prove
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the following inequality (see [5])

|Eε
a − Ẽε

a| 6 ||a||E · ||wε − w̃ε||E∗ 6 C||a||E · ||uε − ũε||L2(a,b), (4.10)

where E is the Banach space

E =
{
ϕ ∈ C0

(
Rd

x × Rd
ξ

)
: (Fξ→vϕ) ∈ L1

(
Rd

v;C0

(
Rd

x

))}
.

F denotes the Fourier transform and E∗ is the dual space of E (see [19]). This inequality is not

sharp, but it shows that, the L2 approximation of the wave function at least implies approximation

of mean value of physical observables in the same order.

In each time step t ∈ [tn, tn+1] after operator splitting, the error in the wave function is

introduced due to spectral approximation and polynomial approximation. By Theorem4 and the

estimate (4.10), the error in the corresponding Wigner transform can be estimated. Although it

might not be optimal, the spatial meshing strategy ∆x
ε = O

(
δ1/M∆t1/M

)
is su�cient to guarantee

an O(δ) error in all physical observables caused by spectral and polynomial approximations on the

time interval [0, T ].

The splitting error in computing the physical observables can be understood in the following

way. The time splitting in solving the Schrödinger equation corresponds to the time splitting of

the Wigner equations: one �rstly solves

wε
t + ξ · ∇xw

ε = 0, t ∈ [tn, tn+1],

followed by solving

wε
t + Γ[A]wε = 0, t ∈ [tn, tn+1],

and then followed by solving

wε
t +Θ[V +

1

2
|A|2]wε = 0, t ∈ [tn, tn+1].

For �xed ∆t, one can take the limit ε → 0, and obtain the time splitting of the classical Liouville

equation: one �rstly solves

w0
t + ξ · ∇xw

0 = 0, t ∈ [tn, tn+1],

followed by solving

w0
t −A · ∇xw

ε + ξ · ∇xA · ∇ξw
0 = 0, t ∈ [tn, tn+1],

and then followed by solving

w0
t − (A · ∇xA+∇xV ) · ∇ξw

0 = 0, t ∈ [tn, tn+1].
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Consider the SL-TS method introduced in Section 2. As is summarized at the end of Sec-

tion 2, if the interpolation points are chosen properly according to Theorem3, the whole SL-TS

method is stable even when ∆t ≫ ε. Next, note that no ε−dependent error is introduced by the

splitting. In the kinetic step and the potential step, the time integrations are performed exactly.

In the convection part, the backward characteristic tracing is done in a preprocessed step with

su�ciently �ne yet ε independent time steps. Therefore, there is no ε−dependent error at all in
time discretizations.

After all these considerations, we conclude that with the SL-TS method, large time steps

satisfying ∆t ≫ ε can be taken to capture correct physical observables. In other words, with time

step ∆t = O(δ) and spatial meshing strategy (3.9), one gets numerical solutions with O(δ) error

in the Wigner functions as ε → 0 , and as a result, O(δ) error in all the physical observables.

Remark 6. When the vector potential A is time dependent, the above analysis still holds, because A

is ε−independent, and thus in the backward characteristic tracing step, ∆̃t is also ε−independent.

5 Extension to multidimensional cases

In this section, we discuss how to extend the SL-TS method to the multidimensional cases. The

Schrödinger equation (1.1) can be written as

iε∂tu
ε = −ε2

2
∆uε + iεA · ∇uε +

1

2
|A|2uε + V uε, x ∈ Πi=1,··· ,d[ai, bi], t ∈ R+; (5.1)

uε(0, x) = uε
0(x), x ∈ Πi=1,··· ,d[ai, bi]

with periodic boundary condition. By operator splitting technique, for every time step t ∈
[tn, tn+1], we solve the kinetic step

iε∂tu
ε = −ε2

2
∆uε = −ε2

2

d∑
l=1

∂2
xl
uε, t ∈ [tn, tn+1]; (5.2)

followed by the potential step

iε∂tu
ε =

1

2
|A|2uε + V uε, t ∈ [tn, tn+1], (5.3)

and then followed the convection step

∂tu
ε = A · ∇uε =

d∑
l=1

Al(x1, · · · , xd)∂xl
uε, t ∈ [tn, tn+1]. (5.4)

We remark that the kinetic step and the potential step are exactly the original TSSP method

as in [5] without vector potential, while the convection step can be done by dimensional splitting.

In fact the dimensional splitting will not introduce ε dependent error in time because the classical
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Liouville equation is also well separated in the same dimensional splitting for the convection step.

Note that, the convection step of the Liouville equation can be reformulated as

∂tw
0 −

d∑
l=1

Al∂xl
w0 +

d∑
l=1

ξl∇xAl · ∇ξw
0 = 0, t ∈ [tn, tn+1]. (5.5)

After dimensional splitting one still observes the one-to-one correspondence between the equations

(5.4) and (5.5). In addition, the semi-classical limit of the Schrödinger equation in each dimension

is exactly the counterpart of the classical Liouville equation. Therefore, all numerical methods can

be carried out by the same means and the meshing strategy would stay unchanged.

We remark that, the dimension splitting is only one of possible techniques to use. Multidimen-

sional semi-Lagrangian method is also applicable, see [28, 18, 6] .

In Section 6, we implement this method to a particular three dimensional model from physics,

which can be reduced to a two dimensional one, to verify the numerical properties of the SL-TS

method in higher dimensions.

6 Numerical examples

In the series of numerical tests, the reference solution is computed by time splitting method with

su�ciently �ne mesh grids, but the convection part is numerically evolved by the time-explicit

spectral method (TESP), which means we apply the spectral approximation for spatial derivative

and an explicit ODE solver (here we use the fourth order Runge-Kutta method) is used in time

discretization. The SL-TS method is implemented with the fourth order (four-point) Lagrange

polynomial interpolation. In the following sets of examples, we want to test improved stability,

convergence in space and time and the ability of capturing correct physical observables with large

time step when the vector potential is time dependent, or when caustics are formed. We also test

an essentially 2-D problem to verify the SL-TS in higher dimensions.

The error in wave functions is measured in the L2 norm, but the error in physical observables

is measured in the weak sense. We de�ne cumulative distribution function of physical observable

b(x, t) as

B(x, t) =

ˆ x

−∞
b(s, t)ds.

We compute the l2 norm of the error in these cumulative distribution functions instead since the

physical observables may converge only in the weak sense (see [7, 12]).

Example 1. In the construction of the SL-TS scheme, we assume the vector potential is time

independent. But, this method can handle time dependent vector potentials with little modi�ca-

tion. In this example, we test the following one dimensional problem with a time dependent vector

potential. We choose the computation domain C = [0, 2π] and compute from t0 = 0 till T = 0.5.

The scalar potential is chosen as V (x) = (x− π)
2 and the vector potential is A(x, t) = sin(x− 2t).

The initial condition is chosen as φ0 = e−5(x−π)2ei cos(x)/ε.
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We �rstly test the improved stability condition of the scheme and convergence in time. We

choose ε = 1
128 , the reference solution is computed by the TESP method with ∆x = 2π

5120 and

∆t = 1
4096 . We test the scheme with the same spatial mesh grids but di�erent time steps: ∆t =

1
50 ,

1
100 ,

1
200 ,

1
400 ,

1
800 . As can be seen from Figure 6.1, even with∆t ≫ ∆x, the scheme is still stable

and gives correct �rst order of convergence in time for wave functions and physical observables.
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Wave function uε
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Figure 6.1: Reference solution: ∆x = 2π
5120

, ∆t = 1
4096

. SL-TS method: ∆x = 2π
5120

, ∆t = 1
50

, 1
100

, 1
200

, 1
400

, 1
800

.

◦ ◦ ◦: error in wave function uε; ∗ ∗ ∗: error in mass density n; · · ·: error in �ux density I.

Next, we test whether one can compute physical observables with the meshing strategy ∆t =

O(σ) and roughly ∆x = O(ε). We test our scheme for ε = 1
128 ,

1
256 ,

1
512 ,

1
1024 ,

1
2048 with ∆t = 0.01

and su�ciently �ne spatial grids. We plot numerical approximation of mass density n and current

density I (in circles) together with the reference solution (in solid lines) for ε = 1
128 ,

1
2048 in Figure

6.2.
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Figure 6.2: Left: ε = 1
128

, reference solution ∆x = 2π
2560

, ∆t = 1
1280

; SL-TS mthod ∆x = 2π
2560

, ∆t = 0.01. Right:

ε = 1
2048

, reference solution ∆x = 2π
40960

, ∆t = 1
20480

; SL-TS method ∆x = 2π
40960

, ∆t = 0.01.
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With �xed large time step and∆x = O(ε), we expect that error in the wave function increases as

ε decreases, but the error in physical observables would stay the same order. This set of numerical

tests have con�rmed the expectation as shown in Figure 6.3.
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Figure 6.3: SL-TS method: �xed ∆t = 0.01 for ε = 1
128

, 1
256
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, 1
1024

, 1
2048

, and correspondingly ∆x =
2π

2560
, 2π
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, 2π

10240
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20480
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40960
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To show that meshing strategy with ∆t = O(δ) gives correct physical observables but not the

correct wave function, we can examine the error in wave functions and in physical observables

when ε = 1
2048 with the ∆t = 0.01 and ∆x = 2π

40960 . Since ∆t ≫ ε, one sees in Figure 6.4 O(1)

error in wave function but O(∆t) error in physical observables.
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Figure 6.4: Left: L2 error in wave functions. Right: L2 error in mass density and current density.

We remark that, one can get similar numerical results for the problem with time-independent

vector potentials.
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Example 2. In this test, we check the solution after caustics formation. As shown in previ-

ous research, most prevailing schemes for Schrödinger equation, for example the Crank−Nicolson
spectral method (CNSP) and the Crank−Nicolson �nite di�erence method (CNFD), may fail to

capture the correct physical observable when wave functions are not resolved either in space or in

time (see [5]) . In addition, these methods even require �ner mesh both in spatial grids and time

steps to compute accurate wave functions. The failure in obtaining accurate physical observables

with unresolved mesh is most obvious after caustics formation.

In this example, the scalar potential is chosen as V (x) = 1 and the vector potential is A(x) =

sin(x/2π)/5+1/5. Note that, the constant part in vector potential gives purely spatial translation

while the varying part a�ects the pro�le of the wave functions and therefore modify the pro�le of

physical observables. The initial condition is chosen as in the WKB form, where

φ0 = n0(x)e
iS0(x)/ε, n0(x) = e−25(x−0.5)2 , S0 = −1

5
ln
(
e5(x−0.5) + e−5(x−0.5)

)
.

Due to the compressive initial velocity d
dxS0(x), caustics will form. We now test whether one

obtains accurate physical observables with ∆t = O(σ) and roughly ∆x = O(ε) meshing strategy.

Note that, in order not to a�ect the caustics too much, we choose scalar and vector potential to

be less spatially varying.

We choose the computation domain C = [0, 1] and compute from t0 = 0 till T = 0.54. We test

the SL-TS scheme for ε = 1
128 ,

1
256 ,

1
512 ,

1
1024 ,

1
2048 with ∆t = 0.01 and O(ε) spatial grids. We plot

numerical approximation of mass density and current density (in dots) together with the reference

solution (in solid lines) for ε = 1
128 ,

1
2048 in Figure 6.5, which shows good agreements.
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Figure 6.5: Left: ε = 1
128

, reference solution ∆x = 1
2560

, ∆t = 1
1280

; SL-TS method ∆x = 1
2560

, ∆t = 0.01.

Right: ε = 1
2048

, reference solution ∆x = 1
40960

, ∆t = 1
20480

; SL-TS method ∆x = 1
40960

, ∆t = 0.01.

With �xed large time step and ∆x = O(ε), we expect that error in the wave function increases

as ε decreases, but the error in physical observables would stay almost the same order. This set of
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numerical tests have con�rmed the expectation as shown in Figure 6.6.
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Figure 6.6: SL-TS method: �xed ∆t = 0.01 for ε = 1
128

, 1
256

, 1
512

, 1
1024

, 1
2048

, and correspondingly ∆x =
1

2560
, 1

5120
, 1

10240
, 1

20480
, 1

40960
.

At last, we test spatial convergence. We �x ε = 1
128 , and compute this test problem with �ne

time steps and ∆x/ε = 1
5 ,

1
10 ,

1
20 ,

1
40 . The reference solution is computed with su�ciently �ne

mesh, ∆x = 1
10240 and ∆t = 1

20480 . We plot the reference wave function (both real and imaginary

parts) and physical observables in Figure 6.7.
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Figure 6.7: ε = 1
128

. Left: the wave function (real part and imaginary part). Right: mass density and current

density.

Since we use the four-point Lagrangian interpolation approximation for the convection step,

according to meshing strategy (3.9), the convergence order in spatial grids should be slightly worse

than O(∆x4). Figure 6.13 shows the convergence order in spatial grids is between 3 and 4.
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Figure 6.8: Spatial grids convergence for ε = 1
128

, with �xed ∆t = 1
2560

and ∆x = 1
640

, 1
1280

, 1
2560

, 1
5120

.

Example 3. In this example, we test our method for an essentially 2-D model. This is a

commonly-used physics model (see [25]). A charged particle is moving in the three dimensional

space when the magnetic �eld is pointing along z axis and the scalar potential vanishes, namely

V = 0. We write wave function as uε(t,X), where X = (x, y, z) ∈ R3. For simplicity, we assume

the components of the vector potential are

Ax = A1(x, y), ,Ay = A2(x, y), Az = 0.

Note that, when Ax = −1
2By, Ay = 1

2Bx, Az = 0, the vector potential corresponds to uniform

magnetic �eld with magnitude B along z direction. Obviously, the Coulomb gauge is satis�ed,

∇X ·A = 0. The magnitude of the magnetic �eld in this simpli�ed model is ∂xA2 − ∂yA1. Then

the Hamiltonian can be written as

H = −ε2

2
(∆x +∆y) + iεA1∂x + iεA2∂y +

1

2

(
|A1|2 + |A2|2

)
− ε2

2
∆z. (6.1)

This means that, the particles have only free motion in the z direction. So it makes perfect sense to

consider the motion of the particle on the x−y plane only by introducing the reduced Hamiltonian,

H̃ = −ε2

2
(∆x +∆y) + iεA1∂x + iεA2∂y +

|A1|2 + |A2|2

2
. (6.2)

We remark that, this simple model can help to derive the Larmor frequency, which plays an

essential role in magnetic or spin resonance.

For numerical simulation, the computation domain is chosen as [−π, π] × [−π, π]. The vector

potential is chosen as A = (A1, A2, 0) =
(
−1

2 cos(y),
1
2 cos(x), 0

)
and scalar potential vanishes
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V = 0. The initial wave function is well localized at the point (0.05, 0.1) with O(ε) oscillation

u0(x, y) = e−20(x−0.05)2−20(y−0.1)2ei sin(x) sin(y)/ε.

We choose ε = 1
64 , ∆x = ∆y = 2π

1280 , and compare numerical solutions by �ne time step

∆t = 1
640 and by coarse time step ∆t = 1

20 at T = 0.2 and T = 0.4, respectively. We plot level

curves of mass density in each case in Figure 6.9.

x

y

∆ t=1/640, ε=1/64, T=0.2

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

∆ t=0.05, ε=1/64, T=0.2

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

∆ t=1/640, ε=1/64, T=0.4

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

∆ t=0.05, ε=1/64, T=0.4

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.9: Level curves of mass density for ε = 1
64

at T = 0.2, 0.4. Left: ∆x = ∆y = 2π
1280

, ∆t = 1
640

. Right:

∆x = ∆y = 2π
1280

, ∆t = 1
20
.

We choose ε = 1
128 and repeat this test. We choose ∆x = ∆y = 2π

2560 , and compare numerical

solutions by �ne time step ∆t = 1
1280 and by coarse time step ∆t = 1

20 at T = 0.2 and T = 0.4,

respectively. The level curves of mass density in each case are plotted in Figure 6.10.

In Figures 6.9 and 6.10, the pictures on the left column show particle density when ε−dependent,
fully resolved time step is taken. The pictures on the right side are plots of particle density when

ε−independent time step is taken. One can see the good agreements in results from the two sets

of tests. This numerical example shows that the SL-TS method can successfully capture correct

physical observables when ε−independent time step is taken in the multidimensional cases.

7 Conclusion

In this paper, we introduced and studied a semi-Lagrangian time splitting scheme for the Schrödinger

equation in the presence of electromagnetic �eld when the semi-classical parameter ε ≪ 1. Numer-
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Figure 6.10: Level curves of mass density for ε = 1
128

at T = 0.2, 0.4. Left: ∆x = ∆y = 2π
2560

, ∆t = 1
1280

. Right:

∆x = ∆y = 2π
2560

, ∆t = 1
20
.

ically, the burden from O(ε) oscillations both in space and time have been reduced by the spectral

approximation and the semi-Lagrangian method with polynomial interpolation. This method is

easy to implement, can be extended to multidimensional cases and has better stability constraints.

We proved the unconditional stability properties when the vector potential is spatially variant,

which allows one to take ∆t ≫ ε. We established the error estimate for the SL-TS method in

the L2 approximation of the wave function, and derived the corresponding meshing strategy. It

was also shown that the meshing strategy can be much relaxed, namely ∆t = o(1), ∆x = O(ε), if

only physical observables are needed, with the help of the Wigner transform and its classical limit.

Many numerical tests have con�rmed our numerical analysis results.

In the future, we will explore the extension of this method to the Schrödinger equation with

fast varying periodic potentials.

References

[1] Y. Aharonov a1�nd D. Bohm, Signi�cance of electromagnetic potentials in the quantum theory,

Phys. Rev. 115, 485491 (1959).

[2] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic �elds. I. General interac-

tions, Duke Math. J. Volume 45, Number 4, 847-883 (1978).

[3] G. Bal, A. Fannjiang, G. Papanicolaou and L. Ryzhik, Radiative transport in a periodic

structure, J. Stat. Phys. 95, 479494 (1999).

34



[4] W. Bao and S. Jin, Weakly compressible high-order I-stable central di�erence schemes for

incompressible viscous �ows, Computer methods in applied mechanics and engineering 190.37,

5009-5026 (2001).

[5] W. Bao, S. Jin, and P. A. Markowich, On Time-Splitting Spectral Approximations for the

Schrödinger Equation in the Semi-classical Regime, Journal of Computational Physics 175,

487524 (2002).

[6] J. R. Bates, A. McDonald, Multiply-Upstream, Semi-Lagrangian Advective Schemes: Analysis

and Application to a Multi-Level Primitive Equation Model. Mon. Wea. Rev., 110, 18311842

(1982).

[7] Y. Brenier, E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Num. Anal. 38,

2317-2328 (1998).

[8] M. Falcone, R. Ferretti, Convergence analysis for a class of high-order semi-Lagrangian ad-

vection schemes, SIAM J. Numer. Anal., 35(3), 909940 (1998).

[9] R. Feynman, R. Leighton, M. Sands, S. Treiman, The Feynman lectures on physics, Physics

Today (1964).

[10] I. Gasser and P. A. Markowich, Quantum hydrodynamics, Wigner transforms and the classical

limit, Asymptotic Anal. 14, 97-116 (1997).

[11] P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization limits and

Wigner transforms, Comm. Pure Appl. Math. 50, 323-379 (1997).

[12] L. Gosse and N. J. Mauser, Multiphase semiclassical approximation of an electron in a one-

dimensional crystalline lattice. III. From ab initio models to WKB for Schr¨odinger- Poisson,

J. Comput. Phys., 211, 326-346 (2006).

[13] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods, Soc. for Industr. &

Appl. Math., Philadelphia (1977).

[14] S. Gottlieb, C. W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput.,

67, 73-85 (1998).

[15] S. Jin, P. Markowich, C. Sparber, Mathematical and computational methods for semiclassical

Schrodinger equations, Acta Numerica, Volume 20, 121-209 (2011).

[16] W. Kohn. Theory of Bloch electrons in a magnetic �eld: the e�ective Hamiltonian, Phys. Rev.

115, 14601478 (1959).

[17] P. D. Lax, L. Nirenberg, On stability for di�erence schemes; a sharp form of g
o
arding's in-

equality, Communications on Pure and Applied Mathematics Volume 19, Issue 4, 473492,

(1966).

35



[18] S. J. Lin, R. B. Rood, Multidimensional �ux-form semi-Lagrangian transport schemes,

Monthly Weather Review, Vol. 124, No. 9., 2046-2070 (1996).

[19] P. A. Markowich, N. J. Mauser, and F. Poupaud, A Wigner function approach to semi-classical

limits: Electrons in a periodic potential, J. Math. Phys. 35, 1066-1094 (1994).

[20] P. A. Markowich, P. Pietra, and C. Pohl, Numerical approximation of quadratic observables

of Schrödinger equations in the semi-classical limit, Numer. Math. 81, 595-630 (1999).

[21] G. Panati, H. Spohn and S. Teufel. Space-adiabatic perturbation theory, Adv. Theor. Math.

Phys. Volume 7, Number 1, 145-204 (2003).

[22] J. E. Pasciak, Spectral and pseudo-spectral methods for advection equations, Math. Comp.

35, 1081-1092 (1980).

[23] T. Paul, P. L. Lions, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9, 553618 (1993) .

[24] J. M. Qiu, A. Christlieb, A conservative high order semi-Lagrangian WENO method for the

Vlasov equation, Journal of Computational Physics, Volume 229, Issue 4, Pages 11301149

(2010)

[25] J. Sakurai, S. Tuan, E. Commins, Modern Quantum Mechanics, American Journal of Physics

(1995).

[26] M. O. Scully, M. S. Zubairy, Quantum optics, Cambridge University Press (1997).
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