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Abstract

Scattering interactions of swarms in potentials that are generated by an
attraction-repulsion model are studied. In free space, swarms in this model
form a well-defined steady state describing the translation of a stable forma-
tion of the particles whose shape depends on the interaction potential. Thus,
the collision between a swarm and a boundary or between two swarms can
be treated as (quasi)-particle scattering. Such scattering experiments result
in internal excitations of the swarm or in bound states, respectively. In addi-
tion, varying a parameter linked to the relative importance of damping and
potential forces drives transitions between elastic and inelastic scattering of
the particles. By tracking the swarm’s center of mass, a refraction rule is
derived via simulations relating the incoming and outgoing directions of a
swarm hitting the wall. Iterating the map derived from the refraction law
allows us to predict and understand the dynamics and bifurcations of swarms
in square boxes and in channels.
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1. Introduction

The collective behavior of many self-propelled particles has been the focus
of research: applications range from fish, bird, and locust swarms [1, 9, 11, 19]
to computer bots [23], pedestrian and crowd behavior [18], markets [3], and
opinion dynamics [17].

Parallel to these applications, there are simulation models based on agents
[25], analytic models based on ordinary differential equations [12], physical
models relating to phase transitions [13] and large scale continuum models
based on partial differential equations [16, 7].

Mostly, the analysis of these swarm models focusses on the onset of
swarming, the different swarming states and the stability and bifurcations
under parameter variations. This paper assumes fully formed swarms (flocks)
and studies their collisional behavior and scattering properties. As a model
swarming system, we use the attraction-repulsion model introduced by [14]
which treats a swarm in analogy to multi-particle interactions based on a
potential in atomic or nuclear physics.

Extending the physics analogy, we study the scattering interaction be-
tween flocks. Since a flock is a well-defined translational steady state and
all particles are governed by an interaction potential, the collision between
a flock and a boundary or between two flocks can be looked at as (quasi)-
particle scattering. We will show that such scattering results in internal
excitations of the flocks in the former case or in bound states for the latter.
We continue this approach to multiple scattering characterizing the motion
of a flock in boxes and channels.

This study is a companion study to the analysis of the interaction of the
Vicsek swarm model [25] with the boundaries of finite domains. Additional
references more specific to the analysis of the Vicsek model can be found
there [2].

1.1. The attraction-repulsion model

The model [14] describes particles that move according to Newton’s law in
a potential that is generated by the mutual interactions between all particles
depending on their relative distances:

dxi
dt

=vi
dvi
dt

=(α− β|vi|2)vi − λ∇xi

∑
j 6=i U(xi − xj), i = 1..N

(1)
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where N is the total number of particles and xi, vi are the position and
velocity of the ith particle. Here, αvi ≥ 0 is the self-propulsion force and
β|vi|2 ≥ 0 is a Raleigh type friction force. The potential strength λ intro-
duced by Carillo et al. [4] reflects the impact of the potential forces relative
to the self-propelling and damping forces. It will also be useful to think about
λ as the timescale associated to the potential forces relative to the timescales

of the self-propelling velocity v =
√

α
β
. λ large implies oscillations that are

faster than the swarm speed whereas small λ implies slow modulations.

The pairwise interaction force in Equation (1) is generally defined to be
attracting for large distances and repelling for short distances to represent
biological systems [22]. One typical example is the scaled Morse potential

U(x) = k(|x|), k(r) = Cexp(−r/l)− exp(−r), (2)

where C and l with Cl2 ≥ 1 are the ratios of the attractive and repulsive
strength and the typical lengths of attraction and repulsion, respectively.
Other potentials have been considered such as the quasi-Morse potential
[6, 8] or Log-Newtonian potential [15].

Ignoring the Morse potential, the self-acceleration force αvi and the self-
deceleration force β|vi|2vi tend to balance out and the system attains a con-
stant (nontrivial) speed |vF | =

√
α/β which has no influence on the orienta-

tion of the velocities. The orientation of the velocities depends on the initial
conditions.

Since we are interested in the interplay between swarms and walls, we
fix all the parameters in the system with the exception of λ. Specifically,
we choose l = 3

4
and C = 10

9
, placing us into the parameter region labelled

catastrophic in the analysis presented in [14]. For this case, the pairwise
interaction potential has a well defined minimum (see Figure 1a). The catas-
trophic region is characterized by the fact that increasing the number of
particles causes the spacing between particles to reduce, keeping the volume
constant. In this parameter region, the stationary solutions of the system
depend on the values of α and β. For larger values of α/β, particles disperse
while at relatively lower values, coherent structures form. When α is small,
a core-free mill state emerges (Figure 1c)) [10]. Since particles travel at a
non-zero uniform speed, the interaction potential is not strong enough to
support them too close to the center and an empty core forms. The size of
the empty core depends on N . As N → ∞, the core collapses since we are
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(a) Morse potential for C = 10/9 and
l = 3/4.
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Figure 1: a) Typical Morse potential in the catastrophic region, b) typical flock solution,
c) typical mill solution.
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in the catastrophic region [14].
As α increases, the milling formation cannot be sustained and a typical

steady state solution is the flock (Figure 1b)) [21] where all particles travel
with a unified velocity

√
α/β and maintain a minimal relative distance.

When the kinetic energy greatly surpasses the strength of the interaction
potential, the swarm breaks apart and no aggregation can be found.

We focus our attention on the scattering interaction of the flock solution
with boundaries and with other flocks where a flock is analytically defined
as:

Definition 1. A flock solution of the particle model (1) is a spatial config-
uration x̂ with zero net interaction force on every particle, that translates
at a uniform velocity vF ∈ R2 with |vF | =

√
α/β, hence (xi(t), vi(t)) =

(x̂i + tvF , vF ). The spatial configuration x̂ is a stationary state to the first-
order interacting particle system

dxi
dt

= −
∑
j 6=i

∇iU(xi − xj). (3)

Notice that the flock is not rotationally invariant. A small rotation about
the center of mass of the flock still satisfies Eq. (3) but has a different spatial
representation. Carillo et al. [5] provide a stability analysis for this flock
solution and show that the flock is capable of withstanding small perturba-
tions.

1.2. Simulation Setup

We simulate the behavior of flocks satisfying Definition 1 and analyze the
results of the simulations via concepts from dynamical systems.

We use a 4th order Runge-Kutta method to compute the numerical ap-
proximation to system (1). For all considered values of the potential strength
λ, the eigenvalues of the system lie within the stability region for a time step
of ∆t = 0.1. We note that very long simulation runs produce reproducible re-
sults, indicating that even with the addition of reflecting walls, the algorithm
is still stable.

When reaching the reflecting boundary, a single particle will experience
specular reflection and its velocity is updated as vnew = vold − 2(vold · ~n)~n
where ~n is the normal vector to the boundary.
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Other numerical methods to represent the evolution of particles are possi-
ble. For instance, the authors in [14] implement a multistep method Adams-
Bashforth-Moulton. However, when implementing this method, a particle
interacting with the wall between time steps n− 1 and n is updated by the
numerical method which uses the time steps n − 3 to n to calculate the re-
flected velocity at time step n + 1. This leads to a discontinuity when the
velocity is updated at n + 1 and the resulting path of the particle does not
reflect specularly. We chose the 4th order Runge Kutta 4th since it is a one-
step method that creates no discontinuity and allows the particle to reflect
specularly.

For all simulations, we initialize the system with a flock where vF is
dependent on the initial heading θ0 ∈ [0, 2π) where the angle θ0 is calculated
from the positive x-axis

vF (θ0) =
√
α/β[cos(θ0), sin(θ0)]. (4)

The parameter choices for each simulation (unless stated otherwise) are: ratio
between strength of repulsion and attraction C = 10/9, ratio between the
length of repulsion and attraction l = 3/4, number of particles N = 100,
friction force β = 5, acceleration force α = 1, potential pre-factor λ = 25,
initial heading θ0 = 0, and ∆t = 0.1. We average all findings over 10 spatial
rotations and run most simulations for 500 time units to 10000 time units.
We run the same experiments with N = 200 and find similar results.

Simulations were run using MATLAB on 96gb RAM and 2 Intel(R)
Xeon(R) CPU E5-2620 0 @ 2.00GHz processors and the average time for
5000 time units took 1200 seconds.

The paper is structured as follows: Section 2.1 considers the collision
of a flock with a wall, focussing on the internal dynamics generated by the
interaction (section 2.1.1) and the refraction law for the path of the center
of mass of the flock in Section 2.1.2. Using the refraction law as an iterated
map, we analyze the dynamics of flocks in a channel (section 2.2.1) and a
square box (section 2.2.2). Applying principle component analysis to a single
flock on wall interaction, we find that the internal dynamics of a swarm can
be well understood as a damped elastic oscillation characterized by a single
eigenfunction (section 3). Swarm on swarm collisions are discussed in section
4 where we show that the two colliding swarms either pass each other, leading
to a change in the relative angles of their direction of motion or to the swarms
joining to become one or if they have an almost head-on collision, they will
form a bound state and become a mill solution.
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2. Scattering a Single Swarm at Boundaries

We seek to understand multiple swarm collisions within a bounded do-
main as a sequence of single wall collisions. We start with a single collision
of one swarm with a boundary.

2.1. Single Wall Collision

2.1.1. Individual Particle Motion

We consider the attraction-repulsion model (1) in an unbounded half-
space in R2 with a specularly reflecting wall at x = L. We initialize a flock
to collide with the wall with initial headings θ0 ∈ [0, π/2). When θ0 = π/2,
the flock translates upward, i.e. is parallel to the wall and hence never
interacts with the wall. We note that in free space, a flock will remain intact
and continue on its set trajectory for all time.

Our focus here are the individual particles in a swarm during a head on
collision event, i.e. θ0 = 0. We find two regimes: one in which all particles hit
the wall, the swarm reflects specularly and its internal order is unchanged
and another one where the swarm only partially hits the wall, the swarm
exhibits a damped oscillatory excitation and the internal structure of the
swarm becomes completely mixed.

The first regime is valid for small λ. Figure 2a) and c) shows that all
particles hit the wall and bounce back specularly. The second regime applies
for large λ: Approximately the leading 2/3 of the particles physically hit the
wall and bounce back. The other particles experience a changed interaction
potential due to the change in velocity and position of the leading particles.
The changed potential creates a differential slowing down within the swarm,
influencing the trailing particles to turn around before they hit the wall.
This is illustrated in figure 2b): the maroon colored particles on the left of
the swarm will not hit the wall but will turn around earlier. The resulting
reflected swarm experiences strong internal mixing. Figure 2d) shows that
the initially leading particles and the initially trailing particles mix strongly.

To characterize the internal remixing of the swarm after its collision, we
determine the initial position in the swarm along the x-axis that separates
particles directly hitting the wall and to those that do not (see Fig. 2b).

Figure 3a) shows that for λ < 13 the position that separates the two
behaviors is at the trailing edge of the swarm, i.e. all particles hit the wall,
whereas for λ > 13 that point moves approximately linearly forward.
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(a) Initial State: λ = 1 (b) Initial State: λ = 25

(c) End State: λ = 1 (d) End State: λ = 25

Figure 2: Initial and end states for a swarm impacting a vertical wall at the right. Particles
that will directly interact with the wall are colored black and particles that do not interact
with the wall are colored maroon. a) All particles hit the wall for λ = 1, b) the trailing
particles turn around before they hit the wall for λ = 25. c) and d) depict the end states
i.e., the location of particles of both types after the swarms reflect. Note that for λ = 25
the trailing edge of the swarm will not hit the wall but the particles in that group will be
spread in an apparently random way within the swarm after the collision.
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(a) Particle position
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Figure 3: a) Position of the first particle in the direction of motion of the flock that
turns around without hitting the wall. The position is measured as a fraction of the total
diameter of the swarm. b) Turning time for the most distant particles (red) and for the
ones that turn last (black),

Figure 3b) presents the turning time (blue curve) when the last particle
of the swarm turns around (i.e. vx changes direction) as a function of λ.
The red curve shows the the time for the most distant particle from the
wall to turn around. Both values coincide and increase with λ until λ ≈ 13.
Increasing λ further, the most distant particle is no longer the last to turn.

Studying the kinetic energies in the x and y direction (Figure 4) helps
clarify the swarm-wall interaction. For λ ≈ 1, the swarm reflection is totally
specular, all the kinetic energy is in the x direction and it stays constant
throughout the wall interaction.

As λ increases, the swarm slows down (decreasing total kinetic energy)
and is compressed, i.e. kinetic energy is converted into potential elastic
energy. As the potential energy is released, the swarm undergoes internal
damped oscillations and kinetic energy in both the x and y directions is
involved. As a result, the flock experiences a breathing or pulsing motion.
We further examine this motion in section 3 where we perform a Proper
Orthogonal Decomposition of the simulation data.

2.1.2. Refraction Law

To characterize the behavior of the swarm as a whole, we track the center
of mass of the flock and measure the outgoing angle of its trajectory as a
function of the incoming angle θ0. Figure 5a) illustrates the definition of the
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Figure 4: Kinetic energy transfer from the x-direction to the y-direction for several λ
values. For λ = 1 the flock reflects specularly, ie. the kinetic energy stays constant and
is only coming fro vx. As λ increases, the kinetic energy during the collision converts to
potential energy creating a damped pulsating motion that involves motion in the x and y
directions.
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measurement of the outgoing angle. If the trajectory of the center of mass
is specularly reflected, the incoming and outgoing angles are equal. If the
outgoing angle is different than the incoming, the wall interaction does not
follow the reflection law but rather a refraction law.

Figure 5b) shows the outgoing angles as a function of the incoming angle
and λ.1 We see that as λ increases the outgoing angle aligns more with the
wall. Figure 5c) emphasizes this result by plotting the difference between
the outgoing angle and the initial angle θ0. For small λ the flock reflects
specularly while as λ increases, this difference increases. In particular, when
only a fraction of the particles hit the wall (λ > 13, see section 2.1.1), the
outgoing swarm strongly aligns with the wall.

Summarizing, we find two types of reflection at the wall:

1. The swarm as a whole interacts elastically with the wall, characterized
by specular reflection of all particles leading to a specular reflection of
the swarm.

2. The swarm as a whole interacts inelastically with the wall, caused by
the fact that some particles do not hit the wall when they turn around.
As a result, the swarm exhibits damped oscillatory excitations and its
outgoing direction tends to align with the wall.

The behavior of the swarm bifurcates from type 1 to type 2 at about λ = 13.

2.2. Multiple Reflections

We assume that, after a collision with a wall, the swarm fully stabilizes
to the free equilibrium solution before it hits the next wall. Thus, we can
consider the refraction law at a wall as a one-dimensional map, relating
the incoming angle to an outgoing angle and analyzing multiple reflections
as iterated maps. We study their limiting behavior as the number of wall
interactions goes to infinity. Convergence of the iterated map to a fixed point
or to a periodic orbit corresponds to a stable periodic or period-doubled
trajectory of the swarm in the geometrical domain. An unstable fixed point
corresponds to an unstable periodic orbit of the swarm. We restrict our study
to both a channel and a square geometry.

1Note: For θ0 = 0, the flock has equal chance of reflecting upward or downward. When
averaging over the spatial rotations, we take the absolute value of the outgoing angle for
each rotation. Whether the flock aligns upward or downward is irrelevant at θ0 = 0.
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Figure 5: Refraction law of a flock interacting with a wall. a) Schematic definition of the
outgoing angle. b) Outgoing angle as a function of incoming angle and λ. c) The outgoing
angle minus the initial angle θ0. λ grid spacing is 0.5, θ grid spacing is π
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Figure 6: One-dimensional maps and the staircase diagrams for the outgoing angles as a
function of the incoming angles. a) For λ = 5 the equilibrium at zero is weakly unstable
and the equilibrium at π/2 is weakly stable. b) For λ = 25 the equilibrium at 0 is linearly
unstable (i.e. has eigenvalue > 1).

2.2.1. Channel

In a vertical channel, the outgoing angle of a flock leaving a sidewall
is the incoming angle for the next wall collision. Figure 6 shows two such
maps for the outgoing angle as a function of the incoming angle with an
associated staircase diagram. The staircase diagram shows a trajectory under
the iteration of the map for λ = 5 and λ = 25. In both cases, there are
two equilibria: θe1 = 0 and θe2 = π

2
, the former being unstable and the

latter being stable. Notice that both equilibria for λ = 5 have a slope of
1, i.e. an eigenvalue of 1 (within the accuracy of the numerical simulation).
Nevertheless, the graph indicates that θ = 0 is unstable and θ = π

2
is stable.

We call these cases weakly stable (unstable).
In Figure 6 the Channel width is chosen large enough, such that the swarm

will equilibrate completely before it hits the next wall. Formally this is the
case for the width to be infinite, but for a width of 100 units, the swarm
is very well organized when it hits. If we reduce the channel width, the
swarm is not given enough time to equilibrate before the next wall collision.
For really small width, the perturbations generated by the wall interactions
are additive and eventually causes the flock to break apart. When the flock
breaks apart and the milling state is not stable i.e. for small λ values [10],
particles move randomly. For larger λ where the milling state is stable, they
coalesce to that state. The influence of the noise generated by fast repetition
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Figure 7: Swarm trajectory for a narrow channel (width 14 units) and λ = 5: a) weakly
unstable equilibrium at θ = 0. Inset- the flock starts to drift downward but switches
direction and drifts upward. b) Sample trajectory of a swarm that is stuck in a horizontal
periodic orbit for 5000 time units (different initial condition than in a).

of the wall interaction is seen when λ is small. For a starting angle close to
zero, i.e. the unstable equilibrium, the instability is very weak and hence
susceptible to noise. The inset in figure 7a) shows a case where the swarm
bounces back and forth between the sidewalls without settling on an upward
or downward movement before eventually aligning with the channel in the
upwards direction. Noise may even trap the swarm in a horizontal back and
forth motion that does not align with the channel for a long simulation time
(Figure 7b) ).

2.2.2. Square

Prediction of the dynamics based on the iterated refraction map.
We characterize the trajectory of a swarm in a square by the outgoing angle
η ∈ [−π/2, π/2] calculated from the boundary in the direction that the swarm
is moving. For clockwise rotation, η < 0 while for counterclockwise rotation
η > 0. Notice that by simple geometry, the outgoing angle ηn after the
nth wall interaction leads to an incoming angle at the next wall of the form
π/2− ηn. Then, for specular reflection in a square, the sequence of outgoing
angles is η0 → π

2
−η0 → η0 for any starting angle η0, filling the square densely

with periodic orbits.
Assuming a square that is big enough and a swarm that hits a boundary is

far enough away from the lateral boundaries, the internal excitations decay
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before the swarm hits the next wall and we can, again, assume that the
refraction law discussed in section 2.1.2 holds and remains the same at every
boundary. Given the geometry of the domain, we iterate the refraction map
twice and study its fixed points and stability to predict the swarm behavior
in a square box. We then simulate actual swarms in such a box and compare
the prediction with the simulation results.

Figure 8 shows the twice iterated map ηn → ηn+2 for different values
of λ. A fixed point of this map is a periodic trajectory of the swarm in
the square domain. Figure 8a) shows that for small λ there are three fixed
points: ηe1 = 0 corresponding to a motion parallel to a boundary, ηe2 slightly
less than π

4
corresponding to a symmetric orbit connecting approximately

the midpoints of the sides of the square, and ηe3 = π
2

corresponding to a
motion parallel to a boundary and orthogonal to the one associated with ηe1.
Inspection of the staircase diagrams shows that the motions parallel to the
boundary are attracting while the symmetric trajectory is unstable.

Near λ = 6 (figure 8(b)) the reflection law becomes specular, i.e. every
angle results in a periodic orbit. In terms of a bifurcation, we have a de-
generate bifurcation leading from an unstable fixed point in the interior of
the interval [0, π/2] to a stable fixed point shown Figure 8c) and d) via a
completely linear map. As a result of the bifurcation, the motions parallel to
the boundaries become unstable. The bifurcation leading to the instability
of the orbits parallel to the boundaries and the stability of a rotating orbit is
not instantaneous in the parameter λ. In fact, there is an interval of angles
containing π/4 for which the map ηn → ηn+2 is approximately linear, giving
a continuum of periodic orbits. Figure 9 shows the intervals in η for which
the refraction map is approximately linear as a function of λ. Any map that
contains an interval over which the map is linear has a continuum of periodic
orbits for the angles associated with that interval. Figure 10a) and b) shows
these periodic orbits for different values of λ. Figure 10c) shows the stable
rotating periodic orbit associated with the equilibrium near η = π/4.

The degenerate bifurcation at λ = 6 in theory may well be a quick succes-
sion of multiple generic bifurcations manifesting itself as intermittency and
very long transients. However, given the inherent noise level in the swarm,
for all simulations we studied, close to λ = 6 we had specular reflections
and a continuum of periodic orbits. A better characterization of the bifur-
cation might be the following: For λ < 6 the eigenvalues at the equilibria
at η = 0 and η = π

2
are always 1, i.e. the equilibria are non-hyperbolic. At

λ = 6 the bifurcation changes the system from a conservative one (implying
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Figure 8: Mapping of the reflection angles ηn to ηn+2 for swarms in a square for various
λ values. a) λ = 3: unstable fixed point at η = π/4 , stable fixed points at η = 0 and
π/2. b) Linear map indicates specular reflection. c) and d) λ ≥ 10: the fixed points at
η = 0, π/2 become unstable and a fixed point at η < π/4 becomes stable.
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Figure 9: Fixed points for the iteration map of the square domain as a function of λ. For
4 ≤ λ ≤ 10, the fixed points form a continuum.

non-hyperbolic fixed points) to a dissipative one generating hyperbolic fixed
points.

When we analyze the dynamics of the iterated map, we rely on the simula-
tion study of a swarm hitting a wall to generate the map discussed in section
2.1.2. Hence, the continuum of solutions indicated in figures 9 and 10 may
not be all neutrally stable analytically. However, the interaction with the wall
is a noisy process and depends on small variations in the initial conditions of
the swarm particles. That noise level is overwhelming any small attraction or
repulsion that may be analytically close to the bifurcation point. The situ-
ation is similar to the weakly stable transversal flow in the channel (figure 7).

Full simulation of the swarm in a square.
We numerically test our predictions based on the iterated refraction law. We
perform two fundamental sets of experiments when simulating a flock set
inside a 10 × 10 units square: i) we prepare an initial condition representing
a flock solution of the attraction-repulsion model aligned with the walls of
the square and ii) we prepare an initial condition representing a rotating flock
solution.
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Figure 10: a,b): Trajectories, derived from the iterated maps, for the minimal (black) and
maximal (red) fixed angles seen in figure 9. The grey trajectories indicate some of the
periodic orbits in between the black and the red orbits. c): The single stable periodic
orbit occurring for λ = 11.
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We confirm the local stability results of the iterated map system when
the attraction or repulsion to a fixed point is strong: For λ < 4 the rotating
solution is unstable while the solution parallel to the wall is stable. For
λ = 25 the rotating solution is stable and is depicted in figure 10c) while
the flock moving parallel to a wall is unstable. However, the attraction to
these fixed points is typically not global: Starting near the unstable rotating
trajectory for small λ, the flock will disintegrate when it hits the corners of
the square instead of transitioning to the stable orbit of a swarm parallel to
the walls. Similarly, when the fixed points for the iterated maps are weakly
stable, e.g. 4 ≤ λ < 7, flocks mostly disintegrate.

Increasing λ ≥ 7, we find a superposition of the neutrally stable solutions
found via the iterative map. Figure 11a) shows the trajectory of the center
of mass of a flock. It is strikingly similar to the set of neutrally stable cycles
found via the iterated map analysis (figure 10a). Notice that there is a
frequent change in the rotation direction with no preference on average for
a clockwise or counterclockwise motion. As λ increases, the set of neutrally
stable periodic orbits shrinks. Comparing the center of mass trajectory in
figure 10b) with figure 11b) again shows good agreement between the actual
trajectory and the neutrally stable set of periodic orbits. Notice though that
the two figures do not correspond to exactly the same values of λ: While
the transition region characterized in the iterated map by a continuum of
periodic orbits can be found for 5 ≤ λ ≤ 10 (see Figure 9), the transition
region for the full swarm simulations (characterized by disintegrating flocks
or by frequent changes of the direction of rotation) is found for 4 ≤ λ ≤ 14.

Increasing λ beyond 14, solutions cease to switch their rotation direction
and move continuously from symmetry type C2 corresponding to a trajectory
that is symmetric under a rotation by π (figure 11c)) to a symmetry type C4

corresponding to a rotation by π/2 (figure 11d)).

3. Internal Swarm Dynamics

To gain further insight into the oscillating behavior seen in the kinetic
energy (section 2.1), we perform a principal component analysis of the simu-
lation data (see [20]). We consider the simulation as a series of M snapshots
x(k), k = 1..M where x(k) is a 4N column vector containing the position and
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Figure 11: Center of mass trajectory for flocks set in a 10 × 10 box: typical trajectories
as λ increases. a) Trajectories rotate in both a clockwise and counterclockwise direction.
b), c), and d) Trajectories only rotate in a clockwise direction.
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velocity of each particle at time tk,

x =

 x
(1)
1 . . . x

(k)
1 . . . x

(M)
1

. . . . . .

x
(1)
4N . . . x

(k)
4N . . . x

(M)
4N

 .
We subtract the center of mass from the position components and the

mean velocity from the velocity components so that the ensemble is centered
at 0. Principal component analysis seeks an orthonormal basis Φ that max-
imizes the mean squared projection of the data onto itself by solving the
eigenvalue problem[20]

Cφ = γφ, (5)

where

C = 〈xxT 〉 =
1

M
xxT

averages the space and velocity over time. Since the set of eigenvectors of C,
Φ = {φ(j)}j=1..M forms a basis for the field x(k), we can write

x(k) =
M∑
j=1

a
(k)
j φ(j) (6)

where the expansion coefficients aj are uncorrelated. We order the eigenval-
ues and the eigenvectors according to γ1 ≥ γ2 ≥ · · · ≥ γ4N ≥ 0 implying that
φ(1) gives the optimal projection. Then the fraction of energy (variance) that
each mode i contributes to the total energy (variance) of the system is

σi∑
i σi

where σi =
√
M
√
γi.

To generate the data for the principle component analysis, we initialize a
flock with a horizontal heading for λ = 5 and collect the spatial and velocity
data from the moment the center of mass changes horizontal direction to
time 100 seconds. We perform a principal component analysis described
above and find that 67% of the energy is contained in the first mode shown
in figure 12a. Note that the velocity components of Φ1 are very small and
all the energy of the motion is in the positional pattern of the particles.

Projecting the data onto Φ1, we find an exponentially damped oscillation
for the coefficient a1 in equation (6), (Figure 12b). The oscillation in a1 cor-
responds to a periodic scaling of the corresponding particle pattern creating
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Figure 12: a) The first principle component of the oscillation of the swarm for λ = 5.
The particle positions are shown as circles, the velocities as blue arrows. Note that the
velocities are very small. b) Time series of the amplitude of the first principle component.
The red curve is an approximation for the decaying envelope of the oscillation.

a pulsating swarm. The fact that the velocity components in Φ1 are almost
zero implies that the velocity of each particle is pretty much only in the radial
direction. Any deviation from the pulsation shows up in the structure of the
velocity components of the second principal component, which represents a
small component of the energy of the motion.

4. Swarm on swarm scattering

We prepare two initial flocks satisfying Definition 1 as equilibrium solu-
tions of the particle system (1) with initial velocity directions θ0 ∈ [0, π/2)
and positioned far enough apart that their interaction is negligible. We ar-
range the positions in such a way that the two flocks are moving with the
velocities

mL =
√
α/β[cos(θ0), sin(θ0)] and mR =

√
α/β[− cos(θ0), sin(θ0)],

(7)
and hit each other at x = 0.

We use a 4th order Adams-Bashforth-Moulton multi-step method to com-
pute the numerical approximation to system (1). Otherwise, the simulation
parameters are the defaults as discussed in section 1.2.
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4.1. Two Particles

To understand the basic interaction, we study the scattering of just
two particles in a planar configuration i.e. each flock is represented by
a single particle described by position vectors (xi, yi) and velocity vectors
(vxi , vyi), i = 1, 2.

The evolution equation Eq. (1) simplifies to the following eight equations

ẋ1 = vx1 ẏ1 = vy1
ẋ2 = vx2 ẏ2 = vy2

v̇x1= (α− β(v2x1 + v2y1))vx1 − x1−x2
r

λU ′(r)
v̇y1= (α− β(v2x1 + v2y1))vy1 −

y1−y2
r
λU ′(r)

v̇x2= (α− β(v2x2 + v2y2))vx2 + x1−x2
r

λU ′(r)
v̇y2= (α− β(v2x2 + v2y2))vy2 + y1−y2

r
λU ′(r)

(8)

with r =
√

(x1 − x2)2 + (y1 − y2)2 and U ′(r) = (−C/l exp[−r/l]+exp[−r]).
Defining the relative distance X = x1− x2, Y = y1− y2, the relative velocity
Vx = vx1−vx2 , Vy = vy1−vy2 , and the average velocity v̄x = 1/2(vx1+vx2), v̄y =
1/2(vy1 + vy2), the distance between the particles becomes R =

√
X2 + Y 2

and system (8) reduces to six equations

Ẋ =Vx
Ẏ =Vy
V̇x =(α− β((v̄x + Vx/2)2 + (v̄y + Vy/2)2)(v̄x + Vx/2)
−(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄x − Vx/2)− 2X

R
λU ′(R)

V̇y =(α− β((v̄x + Vx/2)2 + (v̄y + Vy/2)2)(v̄y + Vy/2)
−(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄y − Vy/2)− 2Y

R
λU ′(R)

˙̄vx =(α− β((v̄x + Vx/2)2 + (v̄y + Vy/2)2)(v̄x + Vx/2)
+(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄x − Vx/2)

˙̄vy =(α− β((v̄x + Vx/2)2)) + (v̄y + Vy/2)2)(v̄y + Vy/2)
+(α− β((v̄x − Vx/2)2 + (v̄y − Vy/2)2)(v̄y − Vy/2))

(9)

4.1.1. One-Dimensional Case

Restricting our collision to a head on collision, we start the two par-
ticles with a distance of µ apart on the x-axis and with initial velocities
vx1 =

√
α/β, vx2 = −vx1 . The average velocity remain at zero for all time

and System (9) reduces to two equations where we assume, without loss of
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generality, X > 0

Ẋ =Vx
V̇x =(α− β(V 2

x /4))Vx − 2λU ′(X).
(10)

Equation (10) has an equilibrium at (x̂, 0) where x̂ solves U ′(X) = 0 with
eigenvalues γ1,2(α) = 1/2(α±

√
α2 − 8λU ′′(x̂)). Since α is positive, the equi-

librium is always unstable.
It is possible to determine the global dynamics of the system by analyzing

the nullclines of (10) and using the Poincaré-Bendixson theorem [24]. Since
the equilibrium is unique and always unstable, there are only two possible
cases for the ω-limit sets: Trajectories either diverge to infinity or there
exists a trapping region leading to a stable periodic orbit. Figure 13 shows
direction fields and nullclines for the two cases. In the former all solutions
go to infinity; whereas, in the latter there is a separatrix separating initial
conditions with large relative velocities leading to solutions that diverge to
infinity from initial conditions that have similar initial velocities that lead to
periodic oscillations of the relative position and the relative velocity.

The analysis corresponds nicely to intuition. For small λ the potential
is never strong enough to trap the two particles, regardless of the initial
velocity. If the potential is strong enough, particles, whose initial relative
velocity is small, are captured and the relative distance between the two
particles oscillate. For any λ and any initial relative position, if the relative
initial velocity is too large, the two particles move past each other and are
not captured. The essential quantity is the time that the two particles spend
within the reach of their attractive potential. For large velocities that time
is too short to allow capture.

4.1.2. Two Particles (Two-Dimensional)

We consider the collision of two particles starting at a position (x1, y1) =
(−µ, 0) and (x2, y2) = (µ, 0) and moving upwards with the same speed and
symmetric angles with respect to the vertical. Thus, they collide at x = 0
and a vertical position determined by the scattering angle between them.
The initial velocities are given by vx1 = −vx2 and vy1 = vy2 , making the
relative distance in y, the relative velocity in y, and the average velocity in
x, Y , Vy, and vx, respectively, zero for all time. System (9) then reduces to
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(a) λ = 5

(b) λ = 22

Figure 13: Phase diagram for the one-dimensional two particle model. The dashed lines
represent isoclines, the full lines are trajectories. a) λ = 5, all trajectories diverge, b)
λ = 22, there is a trapping region and a stable limit cycle.
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(a) Average Velocity v̄y
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(b) Change in Average Velocity: v̄y− v̄y0

Figure 14: a) Average velocity v̄y after the collision of two interacting particles with various
initial headings θ0 and potential pre-factors λ. An average velocity of zero implies that the
two particles after collision head in different directions, ie. the paths diverge. An average
velocity of one indicates that the two particles move together in the same direction. b)
Change in average velocity: final average velocity v̄y minus initial average velocity v̄y0 .

three differential equations

Ẋ =Vx
V̇x =(α− β(V 2

x /4 + v̄2y))(Vx/2) + (α− β(V 2
x /4 + v̄2y))(Vx/2)− 2 X1

|X1|λU
′(|X1|)

˙̄vy =1/2[(α− β(V 2
x /4 + v̄2y))v̄y + (α− β(V 2

x /4 + v̄2y))v̄y].
(11)

Setting V = 2Vx and dropping the tilde for convenience, we rephrase system
(11) in polar terms where r2 = V 2 + v̄2y and ζ = tan(v̄y/V ):

Ẋ =2r cos(ζ)
ṙ =r(α− βr2)− λU ′(X) cos(ζ)

ζ̇ =1/rλU ′(X) sin(ζ).

(12)

The steady state (X, r, ζ) = (x̂,
√
α/β, π/2) describes two parallel parti-

cles moving with the equilibrium speed at a distance given by the minimum
of the potential. It is linearly stable, with one negative real eigenvalue as-
sociated to r and two purely imaginary eigenvalues associated to X and ζ.
Performing a center manifold reduction we find that r is of at least order
two, leaving

Ẋ =0

ζ̇ =λ
2

√
β/αU ′′′(x̂)X2 (13)

as the leading order terms on the CM. Since U ′′′(x̂) < 0 the fixed point is
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asymptotically stable. However, the attraction is quadratic and very weak,
indicating the system will take very long to settle.

To determine the scattering for arbitrary initial conditions, we study sys-
tem (11) numerically for (α, β) = (1, 5), various initial angles θ0 > 0 and
various potential pre-factors λ. We choose initial conditions (X0, Vx0 , v̄y0) =
(2,−2 cos θ0, sin θ0). Each simulation is ran for 500 time units. Figure 14
shows the average velocity in the y-direction v̄y after the collision.

Our results match nicely to those analyzed in section 2.1. For small λ,
the two particles do not influence each other enough to change the trajectory
of both particles. As a result, they just pass each other and continue on their
track Hence they do not reach the equilibrium of Eq. 12. As λ increases,
the potential gains enough strength to capture the two particles and the
particles oscillate around a common heading. For almost head on collisions,
i.e. θ0 small, the velocity in the x-direction is transferred to a velocity in
the y-direction. As discussed, that oscillation decays algebraically until both
particles move in parallel straight lines.

4.2. Interacting Flocks

Extending the observations made in the two particle system, we consider
the full N particle system Eq. (1). We initially set the center of mass of the
left flock at the origin and the center of mass of the right flock at position
(5, 0). The velocities are given by Eq. 7 with θ0 ∈ [0, π/2). We characterize
the degree of swarming using the polarization observable

P (t) =

∣∣∣∣ ∑i vi(t)∑
i |vi(t)|

∣∣∣∣.
Systems that settle into a flocking state will have high polarization P ≈ 1,
while two equal flocks on equal and opposite paths, as well as mills and
double mills have P ≈ 0.

As in the previous sections, we analyze the behavior of the system after
the collision as a function of the potential pre-factor λ and the collision angles
θ0. Figure 15 shows the polarization after the collision and its change.

We find that the flocks act as quasi-particles and show different behavior
for three regions in parameter space, which is very similar to the scattering
of two particles.

1. For weak potential (i.e. small λ) and almost head on collisions (small
θ0), the two flocks just pass each other and diverge. The short time
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(b) Change in Polarization: Final - Ini-
tial

Figure 15: a) Polarization for two interacting flocks. b) Change in polarization: final
polarization minus initial polarization. We run the simulation for 500 time units and
average over the last 50 time units of the simulation.

interaction results in a small change of the departing angles towards
each other but the change is not significant enough to merge the two
flocks.

2. For glancing collisions (θ0 large enough) and all λ, the two flocks merge
and move as a single flock with uniform velocity.

3. For large λ and almost head-on collisions, the two flocks generate a
bound state in the form of a milling solution. The transition region
between the single flock and the bound state shows unpredictable and
complicated behavior - in addition to the milling solution, double mills
and disintegrating flocks can be found.

5. Discussion

We study the attraction-repulsion model by simulating the impact of a
flock on a flat, reflecting surface. We find that, although the model is not
very sophisticated, the wall interactions have a high level of complexity that
is tunable from hard specular reflection of the whole flock to inelastic oscil-
lations that only graze the boundaries via a single parameter in the model.
In addition, we find that the wall interaction creates new and previously not
described internal excitations of the swarm.

Specifically, we find that if the dynamics of the flock is dominated by the
kinetic terms (low potential strength), the reflection of the swarm is elastic
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and follows a specular reflection law for the flock represented as a quasi-
particle. If the dynamics of the flock is determined by the potential term,
the flock shows internal oscillations that lead to an inelastic refraction law
at the boundary. A principal component analysis reveals that the internal
oscillation is a radial pulsation akin to a breathing motion.

The inelastic scattering leads to a “stickiness” to the wall, producing a
refraction law that tilts towards a motion of the swarm aligning to the wall.
The resulting refraction map, which relates incoming and outgoing angles of
the swarm, can be used as an iterated map to study multiple reflections of
the swarm in a channel and in a square. Stable and unstable fixed points of
the iterated refraction map are the associated stable and unstable directions
of the flock. In a channel the attractor is the stable motion parallel to the
channel, whereas, in a square there is a bifurcation from a stable motion
parallel to the sides to a stable, rotating motion.

This bifurcation is degenerate: At bifurcation the refraction map becomes
linear, representing exact specular reflection for a continuum of incoming an-
gles that correspond to a continuum of oscillations that are neutrally stable.
Comparing the analysis of the iterated maps with actual flock simulations,
we found good agreement.

We extend the simulations for flock on wall scattering to flock on flock
collisions. Reducing the flocks to two particle scattering, we analyze a six-
dimensional dynamical system analytically. It can be shown that the two
particles either diverge or form an oscillatory solution where they move in
parallel but oscillate around a common direction. Simulations of scattering of
full flocks show three qualitatively different dynamical regions, two of which
are analogous to the two particles scattering: If the ratio of kinetic energy to
potential energy is large, the paths of the two flocks cross, the angle between
the two directions decreases but the two flocks still diverge. As the potential
energy increases, the two flocks converge to a common direction but in an
oscillatory way. For large enough potential energy and head on collisions, a
bounded state appeared in the form of a milling solution.

Our analysis here extends the analysis of the Vicsek swarm in finite do-
mains [2]. The interaction of the swarm with the boundary is similar for
both models, i.e. a swarm typically aligns with the boundary and leads to
similar periodic orbits in a square box. The details of the dynamical solutions
are different and may be used to discriminate models and their experimen-
tal realization. In addition, since the Vicsek model is a first order model,
no internal oscillations are possible which are a key feature of the inelastic
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behavior of the flock in the attraction-repulsion model.
It is intriguing to think about the analogy between swarms and particle

physics, inherent in the attraction-repulsion model a bit further. Our study
shows that the analogy extends to the concepts of internal excitations, scat-
tering angles and bound states. This in particular leaves open the question
of exciting internal swarm resonances leading to swarm fission.
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