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Abstract. In this paper, we revisit an interaction problem of two homogeneous Cucker-
Smale (in short C-S) ensembles with attractive-repulsive couplings, possibly under the ef-
fect of Rayleigh friction, and study three sufficient frameworks leading to bi-cluster flocking
in which two sub-ensembles evolve to two-clusters departing from each other. In previous
literature, the interaction problem has been studied in the context of attractive couplings.
In our interaction problem, inter-ensemble and intra-ensemble couplings are assumed to
be repulsive and attractive respectively. When the Rayleigh frictional forces are turned
on, we show that the total kinetic energy is uniformly bounded so that spatially mixed
initial configurations evolve toward the bi-cluster configuration asymptotically fast under
some suitable conditions on system parameters, communication weight functions and ini-
tial configurations. In contrast, when Rayleigh frictional forces are turned off, the flocking
analysis is more delicate mainly due to the possibility of an exponential growth of the
kinetic energy. In this case, we employ two mutually disjoint frameworks with constant
inter-ensemble communication function and exponentially localized inter-ensemble com-
munication functions respectively, and prove the bi-clustering phenomenon in both cases.
This work extends the previous work on the interaction problem of C-S ensembles. We also
conduct several numerical experiments and compare them with our theoretical results.

1. Introduction

Emergent dynamics of many-body systems are uniquitous in our nature and it has been
a renewed interest in recent years due to their possible engineering application in sensor
network, control of drones and driverless cars, etc [2, 8, 17, 19, 23, 22, 24, 25]. In this
work, we consider the Cucker-Smale flocking model [7] which has been extensively stud-
ied in literature [5]. More precisely, we consider a spatially mixed ensemble consisting of
two homogeneous Cucker-Smale (C-S) sub-ensembles denoted by G1 and G2 respectively,
and in each sub-ensemble Gi, C-S particles interact via the attractive flocking force with
communication weight function ψs, whereas C-S particles between different ensembles in-
teract by repulsive flocking force with communication weight function ψd. In this situation,
we are interested in the emergence of bi-cluster flocking from an initially mixed ensemble.
More precisely, let (xi,vi) and (yj ,wj) be the position-velocity configuration of the i-th
and j-th particles in G1 and G2, respectively. We set the number of particles in each group
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|G1| = N1, |G2| = N2. Then, the dynamics of the mixed ensemble G1 ∪ G2 are given by the
ordinary differential equations:

ẋi = vi, t > 0, i = 1, · · · , N1,

v̇i =
κs
N1

N1∑
k=1

ψs(‖xk − xi‖)(vk − vi)−
κd
N2

N2∑
k=1

ψd(‖yk − xi‖)(wk − vi) + δvi(1− ‖vi‖2),

ẏj = wj , t > 0, j = 1, · · · , N2,

ẇj =
κs
N2

N2∑
k=1

ψs(‖yk − yj‖)(wk −wj)−
κd
N1

N1∑
k=1

ψd(‖xk − yj‖)(vk −wj) + δwj(1− ‖wj‖2),

(1.1)

where κs and κd are nonnegative inter and intra coupling strengths respectively, and δ is a
nonnegative constant proportional to the Rayleigh friction. The Lipschitz continuous func-
tions ψs and ψd represent communication weight functions: there exist positive constants
ψ∞s and ψ∞d such that for ` = s, d,

0 ≤ ψ`(r) ≤ ψ∞` , r ≥ 0 and lim
r→∞

ψd(r) = 0,

(ψ`(r2)− ψ`(r1))(r2 − r1) ≤ 0, r1, r2 ≥ 0.

Note that the first two terms on the right hand sides of (1.1) represent attractive (repulsive)
interactions between C-S particles in the same (different) groups, and the last term is the
Rayleigh friction force. When the repulsive force is turned off (i.e., κd = 0), system (1.1)
with δ > 0 is a juxtaposition of two C-S systems with Rayleigh friction and they have been
studied in literature [10]. In this paper, we consider the situation where both attractive
and repulsive interactions exist simultaneously, i.e.,

κs > 0 and κd > 0,

and we would like to justify the emergent dynamics of bi-cluster flocking from spatially
mixed initial configurations. For the simplicity of presentation, we set

X := (x1, · · · ,xN ), Y := (y1, · · · ,yN ), V := (v1, · · · ,vN ), W := (w1, · · · ,wN ),

and we also recall the definition of bi-cluster flocking as follows.

Definition 1.1. [4] Let {(X,V ), (Y,W )} be a solution to system (1.1). Then, the solution
tends to the bi-cluster flocking asymptotically if the following relations holds.

(1) Each sub-ensemble exhibits mono-cluster flocking asymptotically:

sup
0≤t<∞

max
1≤i,j≤N1

‖xi(t)− xj(t)‖ <∞, lim
t→∞

max
1≤i,j≤N1

‖vi(t)− vj(t)‖ = 0,

sup
0≤t<∞

max
1≤i,j≤N2

‖yi(t)− yj(t)‖ <∞, lim
t→∞

max
1≤i,j≤N2

‖wi(t)−wj(t)‖ = 0.

(2) The two sub-ensembles separate from each other asymptotically: there exists a pair
i, j such that

lim
t→∞
‖xi(t)− yj(t)‖ =∞.

Remark 1.1. 1. Note that the relation

inf
0≤t<∞

min
i,j
‖vi(t)−wj(t)‖ > 0
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implies asymptotic separation of two clusters.

2. For the mono-cluster flocking to the C-S model, there are lots of literature [1, 3, 5, 6, 7,
9, 14, 15, 16, 18, 20, 21] under diverse physical situations.

The main question to be explored in this paper is to study dynamic patterns arising
from the interaction of two homogeneous C-S ensembles. In fact, this interaction problem
between two homogeneous C-S ensembles has already been addressed in [11, 12, 13] from
spatially well-separated initial configuration and attractive couplings only. Hence, compared
to the aforementioned works, this paper has two novelties. First, we relaxed our admissible
initial configurations to be mixed so that how many clusters will emerge from the initial
configuration is not clear a priori. Second, we allow our inter-ensemble interactions to be
repulsive, whereas the coupling inside the same homogeneous ensemble is attractive. The
presence of attractive and repulsive couplings at the same time make analysis much harder
than the pure attractive case.

The main goal of the paper is to provide three distinct frameworks leading to the bi-
cluster flocking for system (1.1) with spatially mixed initial configuration. Below, we set

D(X) := max
1≤i,j≤N1

‖xi − xj‖, D(V ) := max
1≤i,j≤N1

‖vi − vj‖.

In our first framework, we take system parameters, communication weight functions and
initial configurations to satisfyκs > 0, κd > 0, D(X(0)) > 0, D(Y (0)) > 0, ‖vc(0)−wc(0)‖ > 0, δ = 0,

ψd ≡ 1, D(V (0)) < κs

∫ ∞
D(X(0))

ψs(r)dr, D(W (0)) < κs

∫ ∞
D(Y (0))

ψs(r)dr,

In this setting, the inter-communication function is a constant, and the local averages and
local fluctuations are completely decoupled so that the dynamics of local averages is solvable
(see Lemma 3.1), whereas the local fluctuations are also completely decoupled so that each
sub-ensemble behaves like the C-S model itself without knowing the other sub-ensemble.
Thus, we can apply the Lyapunov functional approach developed for the mono-cluster
flocking of the C-S model to each sub-ensemble to get sufficient conditions (see Theorem 3.1).
In particular our sufficient framework yields that if ψs is long-ranged, i.e.,

∫∞
0 ψs(r)dr =∞,

then for any initial configuration, we have a bi-cluster flocking.
In the second framework, we consider an exponentially localized inter communication

weight functions
ψs(r) ≈ 1, ψd(r)� e−βκdψ

∞
d r, κs � κd > 0.

For more precise description for the framework, we refer to Theorem 4.1. In this setting,
again we show that from spatially mixed initial configuration, bi-cluster flocking will emerge
asymptotically.

In the third framework, we consider system (1.1) with the following setup:

δ > 0, κs � κd

In this case, we can show that the total kinetic energy which is the second velocity mo-
ment is uniformly bounded, thanks to the effect of the Rayleigh friction. With this uniform
bound for the second velocity moment, we can show that spatially mixed initial configura-
tion evolves toward a bi-cluster flocking state. In this relaxation process, the local velocity
fluctuations decay to zero exponentially fast, whereas the local average positions of each
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sub-ensemble move away at least linearly in time t (see Theorem 5.1 for details).

The rest of this paper is organized as follows. In Section 2, we study a priori estimates for
(1.1) such as propagation of the first two velocity moments and reformulation of the macro-
micro dynamics of (1.1). In Section 3, we present our first framework for bi-cluster flocking
where constant inter communication function and zero Rayleigh friction are employed. In
Section 4, we consider exponential localized inter communication weight function. In this
case, we provide a priori sufficient framework leading to the bi-cluster flocking. In Section 5,
we consider system (1.1) with a positive Rayleigh friction. In this case, under less restrictive
conditions compared to the second framework in Section 4, we show that bi-cluster flocking
will emerge from spatially mixed initial configuration. In Section 6, we conduct several
numerical experiments to illustrate our theoretical results in previous sections and compare
them with numerical results. Finally, Section 7 is devoted to a brief summary of our main
results and remaining issues to be explored in future works. In Appendix, we briefly present
several Gronwall type lemmas which serves as needed ingredients in the flocking analysis.

Notation: We use simplified notation for a double sum:

N∑̀
i,k=1

:=

N∑̀
i=1

N∑̀
k=1

, ` = 1, 2.

2. Preliminaries

In this section, we study two preparatory materials “propagation of velocity moments” and
“macro-micro decomposition” of system (1.1) which will be used crucially in later sections.

2.1. Propagation of velocity moments. We first introduce normalized velocity moments
for a velocity configuration (V,W ):

M1(V ) :=
1

N1

N1∑
i=1

vi, M1(W ) :=
1

N2

N2∑
i=1

wi, M1 := M1(V ) +M1(W ),

M2(V ) :=
1

N1

N1∑
i=1

‖vi‖2, M2(W ) :=
1

N2

N2∑
i=1

‖wi‖2, M2 := M2(V ) +M2(W ).

Lemma 2.1. Let {(X,V ), (Y,W )} be a solution to (1.1). Then M1 and M2 satisfy

(i)
dM1

dt
= δ
[ 1

N1

N1∑
i=1

vi(1− ‖vi‖2) +
1

N2

N2∑
i=1

wi(1− ‖wi‖2)
]
.

(ii)
dM2

dt
= −κs

[ 1

N2
1

N1∑
i,k=1

ψs(‖xk − xi‖)‖vk − vi‖2 +
1

N2
2

N2∑
j,k=1

ψs(‖yk − yj‖)‖wk −wj‖2
]

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)‖vi −wj‖2 +
2δ

N1

N1∑
i=1

‖vi‖2(1− ‖vi‖2)

+
2δ

N2

N2∑
j=1

‖wj‖2(1− ‖wj‖2).
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Proof. (i) We add (1.1)2 over all i and divide the resulting relation by N1 to get

d

dt
M1(V ) =

κs
N2

1

N1∑
k,i=1

ψs(‖xk − xi‖)(vk − vi)

− κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)(wk − vi) +
δ

N1

N1∑
i=1

vi(1− ‖vi‖2)

= − κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi|)(wk − vi) +
δ

N1

N1∑
i=1

vi(1− ‖vi‖2),

(2.1)

where we used a symmetry trick i ↔ j to see that the first term in the right hand side of
(2.1) is zero. By the same argument,

(2.2)
d

dt
M1(W ) = − κd

N1N2

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)(vk −wj) +
δ

N2

N2∑
j=1

wj(1− ‖wj‖2).

Now, adding (2.1) and (2.2) and using the relabeling trick give

dM1

dt
= − κd

N1N2

[ N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)(wk − vi) +

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)(vk −wj)
]

+
δ

N1

N1∑
i=1

vi(1− ‖vi‖2) +
δ

N2

N2∑
j=1

wj(1− ‖wj‖2)

=
δ

N1

N1∑
i=1

vi(1− ‖vi‖2) +
δ

N2

N2∑
j=1

wj(1− ‖wj‖2).

(ii) For the estimate of M2(V ), we take an inner product (1.1)2 with 2vi, sum it over all i
and divide the resulting relation by N1 to obtain

d

dt
M2(V ) =

2κs
N2

1

N1∑
i,k=1

ψs(‖xk − xi‖)vi · (vk − vi)

− 2κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(|yk − xi‖)vi · (wk − vi) +
2δ

N1

N1∑
i=1

‖vi‖2(1− ‖vi‖2)

= − κs
N2

1

N1∑
i,k=1

ψs(‖xk − xi‖)‖vk − vi‖2 −
2κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)vi · (wk − vi)

+
2δ

N1

N1∑
i=1

‖vi‖2(1− ‖vi‖2).

(2.3)
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Similarly,

d

dt
M2(W ) = − κs

N2
2

N2∑
j,k=1

ψs(‖yk − yj‖)|wk −wj |2

− 2κd
N1N2

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)wj · (vk −wj) +
2δ

N2

N2∑
j=1

‖wj‖2(1− ‖wj‖2).

(2.4)

Finally, one combines (2.3) and (2.4) and uses summation index exchanges to get the desired
estimate. �

Remark 2.1. Note that for κd > 0 and δ > 0, the total sum of normalized energies may
not be monotonically decreasing. In fact, it may grow exponentially for the special case with
κs = 0 and δ = 0 (see Section 3.1 and Section 3.2). This is why we do not expect the
emergence of mono-cluster flocking in general.

As will be seen in Section 3.1, M2 may grow exponentially in general, when the Rayleigh
friction term is turned off. However, for the case with δ > 0, M2 is uniformly bounded as
we will see below. This is one of virtue of the nonlinear frictional force.

Corollary 2.1. Suppose that the system parameters satisfy

κs ≥ 0, κd > 0, δ > 0,

and let {(X,V ), (Y,W )} be a solution to (1.1). Then, M2 is uniformly bounded: there exists
a positive constant M∞2 = M∞2 (κd, ψ

∞
d , δ,M2(0)) such that

sup
0≤t<∞

M2(t) ≤M∞2 <∞.

Proof. It follows from Lemma 2.1 that

dM2

dt
≤

2κdψ
∞
d

N1N2

N1∑
i=1

N2∑
j=1

‖vi −wj‖2 +
2δ

N1

N1∑
i=1

‖vi‖2(1− ‖vi‖2)

+
2δ

N2

N2∑
j=1

‖wj‖2(1− ‖wj‖2).

(2.5)

On the other hand, it follows from the Cauchy-Schwarz inequality that( N1∑
i=1

‖vi‖2
)2
≤ N1

N1∑
i=1

‖vi‖4,
( N2∑
j=1

‖wj‖2
)2
≤ N2

N2∑
j=1

‖wj‖4,

and ‖vi −wj‖2 ≤ 2(‖vi‖2 + ‖wj‖2).
These relations and (2.5) yield a Riccati type differential inequality:

(2.6)
dM2

dt
≤ (4κdψ

∞
d + 2δ)M2 − δ(M2)

2.

Let y be a solution of the following Riccati equation:

(2.7) y′ = (4κdψ
∞
d + 2δ)y − δy2, t > 0, y(0) = M2(0).

Then, we use phase line analysis to see

sup
0≤t<∞

y(t) ≤ max
{

2 +
4κdψ

∞
d

δ
, M2(0)

}
.
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By the comparison principle of ODE between (2.6) and (2.7), one has

M2(t) ≤ y(t) ≤ max
{

2 +
4κdψ

∞
d

δ
, M2(0)

}
=: M∞2

which yields the desired estimate. �

Remark 2.2. Note that δ > 0 is crucially used to get the uniform bound of M2. If δ = 0,
it follows from (2.6) that

dM2

dt
≤ (4κdψ

∞
d )M2, i.e., M2(t) ≤M2(0)e4κdψ

∞
d t, t ≥ 0.

Thus, the upper bound of M2 can grow exponentially. This can be seen explicitly in the
two-particle and three-particle systems in Section 3.

2.2. The micro-macro decomposition. For given ensemble {(X,V ), (Y,W )}, we set
local averages and fluctuations around them:

xc :=
1

N1

N1∑
i=1

xi, yc :=
1

N2

N2∑
j=1

yj , vc :=
1

N1

N1∑
i=1

vi, wc :=
1

N2

N2∑
j=1

wj ,

x̂i := xi − xc, ŷi := yi − yc, v̂i := vi − vc, ŵi := wi −wc.

In analogy with kinetic theory, we call (xc,vc) and (x̂i, v̂i) as “macro” and “micro” com-
ponents of the state (xi,vi), respectively. Next, we study the dynamics of macro and micro
components.

Lemma 2.2. Let {(X,V ), (Y,W )} be a solution to (1.1). Then, the micro-macro dynamics
are given by the coupled system:

(2.8)



ẋc = vc, ẏc = wc, t > 0,

v̇c = − κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)
(
wk − vi

)
+

δ

N1

N1∑
i=1

vi(1− ‖vi‖2),

ẇc = − κd
N1N2

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)
(
vk −wj

)
+

δ

N2

N2∑
i=1

wi(1− ‖wi‖2),

and

(2.9)



˙̂xi = v̂i, ˙̂yi = ŵi, t ≥ 0,

˙̂vi = −v̇c +
κs
N1

N1∑
k=1

ψs(‖x̂k − x̂i‖)
(
v̂k − v̂i

)
− κd
N2

N2∑
k=1

ψd(‖yk − xi‖)
(
wk − vi

)
+ δvi(1− ‖vi‖2),

˙̂wj = −ẇc +
κs
N2

N2∑
k=1

ψs(‖ŷk − ŷj‖)
(
ŵk − ŵj

)
− κd
N1

N1∑
k=1

ψd(‖xk − yj‖)
(
vk −wj

)
+ δwj(1− ‖wj‖2).

Proof. • (The macroscopic dynamics): The derivation of the first two equations are almost
trivial. So, let us focus on the derivation of v̇c. For this, we add all i = 1, · · · , N1 and
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divide the resulting relation by N1 to get

v̇c =
1

N1

N1∑
i=1

v̇i

=
κs
N2

1

N1∑
k=1

N1∑
i=1

ψs(‖x̂k − x̂i‖)
(
vk − vi

)
− κd
N1N2

N2∑
k=1

N1∑
i=1

ψd(‖yk − xi‖)
(
wk − vi

)
+

δ

N1

N1∑
i=1

vi(1− ‖vi‖2).

(2.10)

Note that due to the skew-symmetric property of ψs(‖xk − xi‖)
(
vk − vi

)
in the exchange

of i ↔ k, the first term in the right hand side of (2.10) becomes zero, which yields (2.9)2.
The derivation of (2.9)3 can be done similarly.

• (The microscopic dynamics): We use vi = vc + v̂i and (1.1)2 to find

˙̂vi = v̇i − v̇c

= −v̇c +
κs
N1

N1∑
k=1

ψs(‖x̂k − x̂i‖)
(
v̂k − v̂i

)
− κd
N2

N2∑
k=1

ψd(‖yk − xi‖)
(
wk − vi

)
+ δvi(1− ‖vi‖2).

The other case can be calculated similarly. �

Before we close this section, we derive the differential equation for vc −wc as follows.

Lemma 2.3. Let {(X,V ), (Y,W )} be a solution to (1.1). Then vc −wc satisfies

v̇c − ẇc =
2κd
N1N2

N2∑
j=1

N1∑
i=1

(
ψd(‖xi − yj‖) + δ

)
(vc −wc)

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)
(
v̂i − ŵj

)
− δ

N1

N1∑
i=1

vi‖vi‖2 +
δ

N2

N2∑
i=1

wi‖wi‖2.

(2.11)
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Proof. It follows from (2.8) that

v̇c − ẇc =− κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)
(
wk − vi

)
+

κd
N1N2

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)
(
vk −wj

)
+

δ

N1

N1∑
i=1

vi(1− ‖vi‖2)−
δ

N2

N2∑
i=1

wi(1− ‖wi‖2)

=− κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)
(
wc − vc + ŵk − v̂i

)
+

κd
N1N2

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)
(
vc −wc + v̂k − ŵj

)
+ δ(vc −wc)−

δ

N1

N1∑
i=1

vi‖vi‖2 +
δ

N2

N2∑
i=1

wi‖wi‖2.

This yields the desired estimate. �

3. Constant inter-communication and zero Rayleigh friction

In this section, we study the emergent dynamics of system (1.1) with constant inter-
communication:

(3.1) ψs(r) ≥ 0, (ψs(r2)− ψs(r1))(r2 − r1) ≤ 0, r1, r2 ≥ 0, ψd ≡ 1, δ = 0.

In this setting, system (1.1) can be rewritten as follows.

ẋi = vi, i = 1, · · · , N1,

v̇i =
κs
N1

N1∑
k=1

ψs(|xk − xi|)(vk − vi)−
κd
N2

N2∑
k=1

(wk − vi),

ẏj = wj , j = 1, · · · , N2,

ẇj =
κs
N2

N2∑
k=1

ψs(|yk − yj |)(wk −wj)−
κd
N1

N1∑
k=1

(wk − vi).

(3.2)

Before we deal with the above many-body system, we first begin with two or three-body
systems as a warm-up problem.

3.1. A small system with constant communication weights. First, we consider the
two-particle system with N1 = N2 = 1:

ẋ = v, ẏ = w, t > 0,

v̇ = −κd(w− v), ẇ = −κd(v−w).
(3.3)

To reduce the number of equations in (3.3), consider spatial and velocity differences:

z := x− y, u := v−w.

Then, (z,u) satisfies

ż = u, u̇ = κdu.
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This yields

u(t) = v(t)−w(t) = (v0 −w0)e
κdt,

z(t) = x(t)− y(t) =
v0 −w0

κd
eκdt + (x0 − y0)−

v0 −w0

κd
.

(3.4)

Hence, as long as v0 6= w0, one gets trivial bi-cluster flocking:

lim
t→∞
|u(t)| =∞, lim

t→∞
|z(t)| =∞.

On the other hand,

(3.5) v(t) + w(t) = v0 + w0, x(t) + y(t) = x0 + y0 + t(v0 + w0), t ≥ 0.

Then, it follows from (3.4) and (3.5) that

v(t) =
v0 + w0

2
+

(v0 −w0)e
κdt

2
,

w(t) =
v0 + w0

2
− (v0 −w0)e

κdt

2
,

x(t) = x0 + y0 −
v0 −w0

2κd
+
t

2
(v0 + w0) +

v0 −w0

2κd
eκdt,

y(t) =
v0 −w0

2κd
+
t

2
(v0 + w0)−

v0 −w0

2κd
eκdt.

Note that particle 1 and particle 2 are completely separated and the velocities are not
bounded, and one can also see that global flocking occurs if and only if initial velocities are
the same, i.e.,

v0 = w0.

Next, we consider a three-particle system with system parameters:

(N1, N2) = (2, 1), ψs ≡ 1, ψd ≡ 1.

In this case, system (1.1) becomes

ẋ1 = v1, ẋ2 = v2, ẏ1 = w1,

v̇1 =
κs
2

(v2 − v1)−
κd
2

(w1 − v1),

v̇2 =
κs
2

(v1 − v2)−
κd
2

(w1 − v2),

ẇ1 = −κd
2

(v1 −w1)−
κd
2

(v2 −w1).

Set

z1 := x1 − x2, z2 := x2 − y1, z1 + z2 = x1 − y1,

u1 := v1 − v2, u2 := v2 −w1, u1 + u2 = v1 −w1.

Since the velocity dynamics is decoupled from the spatial dynamics, we first consider the
velocity dynamics. Note that the dynamics for u1 and u2 is governed by the following
system:

u̇1 =
(
− κs +

κd
2

)
u1, u̇2 =

κs + κd
2

u1 +
3κd
2

u2, t > 0.
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A direct calculation gives

u1(t) = u1(0)e−(κs−
κd
2
)t, t ≥ 0,

u2(t) = (u1(0) + u2(0))e
3κd
2
t − u1(0)e−(κs−

κd
2
)t.

(3.6)

From this explicit formula (3.6), it is easy to see that bi-cluster flocking occurs for nontrivial
initial data if and only if

κs >
κd
2
> 0.

3.2. A many-body system with N ≥ 4. It is easy to see that macro-micro system in
Lemma 3.1 is completely decoupled:

(3.7)

{
ẋc = vc, ẏc = wc, t > 0,

v̇c = κd(vc −wc), ẇc = κd(wc − vc),

and

(3.8)


˙̂xi = v̂i, ˙̂vi =

κs
N1

N1∑
k=1

ψs(‖x̂k − x̂i‖)
(
v̂k − v̂i

)
, t > 0,

˙̂yj = ŵj , ˙̂wj =
κs
N2

N2∑
k=1

ψs(‖ŷk − ŷj‖)
(
ŵk − ŵj

)
.

Note that the micro-system (3.8) is also juxtaposition of two decoupled sub-ensembles. Since
the macro-system is linear, one can find an explicit dynamics for the average quantities as
in the following Lemma.

Lemma 3.1. Suppose that system parameters and communication weight functions satisfy
(3.1). Then for any solution {(X,V ), (Y,W )} to (3.2), one has

vc(t) =
1

2
(wc(0) + vc(0))− 1

2
(wc(0)− vc(0))e2κdt, t ≥ 0,

wc(t) =
1

2
(wc(0) + vc(0)) +

1

2
(wc(0)− vc(0))e2κdt.

Proof. It follows from (3.7) that

d

dt
(vc −wc) = 2κd(vc −wc).

This yields

(3.9) vc(t)−wc(t) = (vc(0)−wc(0))e2κdt.

On the other hand,

(3.10)
d

dt
(vc(t)−wc(t)) = 0, i.e., vc(t) + wc(t) = vc(0) + wc(0).

Finally, we combine (3.9) and (3.10) to derive the desired estimates. �

Note that the micro-dynamics for (X̂, V̂ ) and (Ŷ , Ŵ ) are completely decoupled, and each
satisfies the same dynamics for the C-S model. For reader’s convenience, we briefly sketch
the Lyapunov functional introduced in [15]. Introduce the nonlinear functionals:

D(X̂) := max
1≤i,j≤N1

‖x̂i − x̂j‖, D(V̂ ) := max
1≤i,j≤N1

‖v̂i − v̂j‖.
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Note that

D(X) = D(X̂), D(V ) = D(V̂ ).

Then, these functionals satisfy a system of differential inequality:

(3.11)
∣∣∣ d
dt
D(X̂)

∣∣∣ ≤ D(V̂ ),
d

dt
D(V̂ ) ≤ −κdψs(D(X̂))D(V̂ ), a.e. t > 0.

Now, we introduce Lyapunov-type functionals L±(t) ≡ L±(X̂(t), V̂ (t)):

L±(t) := D(V̂ )± κd
∫ D(X̂)

0
ψs(η)dη, t ≥ 0.

Then, it is easy to see the non-increasing property of L± using (3.11):

L±(t) ≤ L±(0), t ≥ 0,

which leads to the stability estimate of L±(t):

(3.12) D(V̂ )(t) + κd

∣∣∣ ∫ D(X̂(t)

D(X̂(0))
ψs(η)dη

∣∣∣ ≤ D(V̂ )(0), t ≥ 0.

The same arguments can be done for (Ŷ , Ŵ ) to derive a stability estimate:

(3.13) D(Ŵ )(t) + κd

∣∣∣ ∫ D(Ŷ (t)

D(Ŷ (0))
ψs(η)dη

∣∣∣ ≤ D(Ŵ )(0), t ≥ 0.

Then, the stability estimates (3.12) and (3.13) yield the emergence estimate for the micro-
system (3.8).

Theorem 3.1. Suppose that the system parameters, the communication weight function
and initial data satisfy

κs > 0, κd > 0, D(X(0)) > 0, D(Y (0)) > 0, ‖vc(0)−wc(0)‖ > 0,

D(V (0)) < κs

∫ ∞
D(X(0))

ψs(r)dr, D(W (0)) < κs

∫ ∞
D(Y (0))

ψs(r)dr,
(3.14)

and let {(X,V ), (Y,W )} be a solution to (3.2). Then, bi-cluster flocking occurs asymptoti-
cally in the sense that there exists a positive number xM and yM such that

(i) sup
t≥0

D(X(t)) ≤ xM , D(V (t)) ≤ D(V (0))e−κsψs(xM )t, t ≥ 0,

(ii) sup
t≥0

D(Y (t)) ≤ xM , D(W (t)) ≤ D(W (0))e−κsψs(yM )t,

(iii) ‖vc(t)−wc(t)‖ = ‖vc(0)−wc(0)‖e2κdt.

Proof. The first two estimates (i) and (ii) follow from the same argument in [15] and the
third assertion also follows from Lemma 4.1. �

Remark 3.1. Note that the conditions in (3.14) are certainly sufficient conditions. As
already studied in [4] for the C-S model, once the conditions (3.14) are violated, there can
be emerging multi-clusters arising from the initial configuration.
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4. Localized inter-communication and zero Rayleigh friction

In this section, we present the emergent flocking dynamics of system (1.1) with a localized
inter-communication in a priori setting:

ψs(r) ≥ 0, (ψs(r2)− ψs(r1))(r2 − r1) ≤ 0, r1, r2 ≥ 0, ψd(r) . e
−βr, δ = 0,

where β is a positive constant.

Consider system (1.1) with δ = 0:

ẋi = vi, t > 0, i = 1, · · · , N1,

v̇i =
κs
N1

N1∑
k=1

ψs(‖xk − xi‖)(vk − vi)−
κd
N2

N2∑
k=1

ψd(‖yk − xi‖)(wk − vi),

ẏj = wj , j = 1, · · · , N2,

ẇj =
κs
N2

N2∑
k=1

ψs(‖yk − yj‖)(wk −wj)−
κd
N1

N1∑
k=1

ψd(‖xk − yj‖)(vk −wj).

(4.1)

4.1. A priori estimates on the micro-macro dynamics. In this subsection, we present
some a priori estimates on the evolution of the micro-macro component. Before moving on,
we introduce extremal communication weights ψs, ψs, ψd and ψ

d
as follows. For t ≥ 0 and

α = s, d,

ψα(X(t), Y (t)) := max
{

max
i,j

ψα(‖xi(t)− xj(t)‖),max
i,j

ψα(‖yi(t)− yj(t)‖)
}
,

ψα(X(t), Y (t)) := min
{

min
i,j

ψα(‖xi(t)− xj(t)‖),min
i,j

ψα(‖yi(t)− yj(t)‖)
}
.

(4.2)

For notational simplicity, we set

ψα(t) := ψα(X(t), Y (t)), ψα(t) := ψα(X(t), Y (t)), M̂2 := M2(V̂ ) +M2(Ŵ ),

where M2(·) is a normalized second velocity moment.

Lemma 4.1. (The micro-dynamics) Let {(X,V ), (Y,W )} be a solution to (4.1). Then, M̂2

satisfies

dM̂2

dt
≤ 2
(
κdψd − κsψs

)
M̂2 + 2κdψd‖vc −wc‖

√
M̂2, t > 0.

Proof. (i) It follows from (2.8) and (2.9) that

˙̂vi =
κd

N1N2

N1∑
i=1

N2∑
k=1

ψd(‖ŷk − x̂i‖)
(
wk − vi

)
+
κs
N1

N1∑
k=1

ψs(‖x̂k − x̂i‖)
(
v̂k − v̂i

)
− κd
N2

N2∑
k=1

ψd(‖yk − xi‖)
(
wk − vi

)
.

(4.3)



14 FANG, HA, AND JIN

By taking an inner product 2v̂i with (4.3) and summing it over all i = 1, · · · , N1 using
N1∑
i=1

v̂i = 0 and dividing the resulting relation by N1, one obtains

d

dt
M2(V̂ )

=
2κs
N2

1

N1∑
i,k=1

ψs(‖x̂k − x̂i‖)v̂i ·
(
v̂k − v̂i

)
− 2κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)v̂i ·
(
wk − vi

)
≤ − κs

N2
1

N1∑
i,k=1

ψs(‖x̂k − x̂i‖)‖v̂k − v̂i‖2 −
2κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)v̂i ·
(
wk − vi

)
,

(4.4)

where we used the standard index interchange trick. Similarly, one has

d

dt
M2(Ŵ ) ≤− κs

N2
2

N2∑
j,k=1

ψs(‖ŷk − ŷj‖)‖ŵk − ŵj‖2

− 2κd
N1N2

N2∑
j=1

N1∑
k=1

ψd(‖xk − yj‖)ŵj ·
(
vk −wj

)
.

(4.5)

Then, combining (4.4), (4.5) and using the micro-macro decomposition:

vi −wj = v̂i − ŵj + vc −wc

gives

d

dt
M̂2 ≤−

κs
N2

1

N1∑
i,k=1

ψs(‖x̂k − x̂i‖)‖v̂k − v̂i‖2 −
κs
N2

2

N2∑
j,k=1

ψs(‖ŷk − ŷj‖)‖ŵk − ŵj‖2

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)‖v̂i − ŵj‖2

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)(v̂i − ŵj) ·
(
vc −wc

)
=:I11 + I12 + I13 + I14.

(4.6)

Below, we estimate the terms I1i separately.

• (Estimate of I11): We use

ψs(‖xk − xi‖) ≥ ψs,
N1∑
i,k=1

‖v̂i − v̂k‖2 = 2N2
1M2(V̂ )

to get

(4.7) I11 = − κs
N2

1

N1∑
i,k=1

ψs(‖xk − xi‖)‖v̂k − v̂i‖2 ≤ −2κsψsM2(V̂ ).
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• (Estimate of I12): Similarly, one also has

(4.8) I12 ≤ −2κsψsM2(Ŵ ).

• (Estimate of I13): We use

ψd(‖xk − xi‖) ≤ ψd and

N1∑
i=1

N2∑
j=1

‖v̂i − ŵj‖2 = N1N2M̂2

to get

(4.9) I13 =
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)‖v̂i − ŵj‖2 ≤ 2κdψdM̂2.

• (Estimate of I14): By the Cauchy-Schwarz inequality, one gets

(4.10) I14 ≤
2κdψd
N1N2

N1∑
i=1

N2∑
j=1

‖v̂i − ŵj‖ · ‖vc −wc‖ ≤ 2κdψd‖vc −wc‖
√
M̂2.

In (4.6), we combine all estimates (4.7), (4.8), (4.9) and (4.10) to obtain the desired estimate.
�

Lemma 4.2. (The macro-dynamics) Let {(X,V ), (Y,W )} be a solution to (4.1). Then,
‖vc −wc‖ satisfies

(i)
d

dt
‖vc −wc‖ ≤ 2κdψd‖vc −wc‖+ 2κdψd

√
M̂2, t > 0,

(ii)
d

dt
‖vc −wc‖ ≥ 2κdψd‖vc −wc‖ − 2κdψd

√
M̂2.

Proof. • (The first differential inequality): It follows from (2.8) that

d

dt

(
vc −wc

)
=

2κd
N1N2

N2∑
j=1

N1∑
i=1

ψd(‖xi − yj‖)(vc −wc) +
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖xi − yj‖)
(
v̂i − ŵj

)
.

(4.11)

By taking an inner product 2(vc −wc) with (4.11), one obtains

d

dt
‖vc −wc‖2 =

4κd
N1N2

N2∑
j=1

N1∑
i=1

ψd(‖xi − yj‖)‖vc −wc‖2

+
4κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)(vc −wc) ·
(
v̂i − ŵj

)
.

We again use the same argument in (4.9) to get

(4.12)
d

dt
‖vc −wc‖2 ≤ 4κdψd(t)‖vc −wc‖2 + 4κdψd‖vc −wc‖

√
M̂2.

This implies the desired first differential inequality.
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• (The second differential inequality): It follows from (4.11) that

(4.13)
d

dt
‖vc −wc‖2 ≥ 4κdψd‖vc −wc‖2 − 4κdψd‖vc −wc‖

√
M̂2.

Hence, (4.12) and (4.13) yield the desired estimates. �

Lemma 4.3. Let {(X,V ), (Y,W )} be a solution to (4.1). Then,

‖vc‖ ≤
√
M2(V ), ‖wc‖ ≤

√
M2(W ), M2(t) ≤M2(0)e4κdψ

∞
d t.

Proof. (i) By the Cauchy-Schwarz inequality,

‖vc‖ ≤
1

N1

N1∑
i=1

‖vi‖ ≤
1√
N1

( N1∑
i=1

‖vi‖2
) 1

2
=
√
M2(V ).

The other estimate can be done exactly the same way.

(ii) It follows from Lemma 2.1 that

dM2

dt
=− κs

[ 1

N2
1

N1∑
i,k=1

ψs(|x̂k − x̂i|)|v̂k − v̂i|2 +
1

N2
2

N2∑
j,k=1

ψs(|ŷk − ŷj |)|ŵk − ŵj |2
]

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(|yj − xi|)|vi −wj |2 ≤ 4κdψ
∞
d M2.

This yields the desired estimate. �

4.2. Emergence of bi-cluster flocking. As a direct application of Lemma 4.1 and Lemma
4.2, we have the following bi-cluster flocking estimate.

Theorem 4.1. Suppose that the initial velocity and the following a priori conditions hold:
there exist positive constants C0, ε0, ε̃0, η0 and η̃0 such that

|ψd(t)e2κdψ
∞
d t| ≤ C0e

−ε0κdψ∞
d t, ψd(t) ≥ C̃0e

−ε̃0κdψ∞
d t, t ≥ 0,

‖vc(0)−wc(0)‖ � 1, sup
0≤t<∞

(
κdψd(t)− κsψs(t)

)
≤ −η0

2
,

(4.14)

then, we have a bi-cluster flocking in the sense of Definition 1.1.

Proof. Note that Lemma 4.1, Lemma 4.2 and (4.14) imply

dM̂2

dt
≤ −η0M̂2 + 2κdψd‖vc −wc‖

√
M̂2, t > 0,

d

dt
‖vc −wc‖ ≤ 2κdψd‖vc −wc‖+ 2κdψd

√
M̂2,

d

dt
‖vc −wc‖ ≥ 2κdψd‖vc −wc‖ − 2κdψd

√
M̂2.

(4.15)

Below, we present a bi-cluster flocking estimate in several steps.

• Step A (The exponential bound for ‖vc −wc‖): It follows from Lemma 4.3 that

‖vc −wc‖ ≤ ‖vc‖+ ‖wc‖ ≤
√
M2(V ) +

√
M2(W )

≤
√

2M2 ≤
√

2M2(0)e2κdψ
∞
d t.

(4.16)
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• Step B (The exponential decay of M̂2): We substitute the estimate (4.16) into (4.15)1
and use a priori condition (4.14)1 to obtain

dM̂2

dt
≤ −η0M̂2 + 2

√
2M2(0)κdψde

2κdψ
∞
d t

√
M̂2

≤ −η0M̂2 + 2C0

√
2M2(0)κde

−ε0κdψ∞
d t

√
M̂2.

To convert the above differential inequality into a familiar Gronwall’s differential inequality,
set

M(t) :=

√
M̂2(t)

Then, it is easy to see that M satisfies

dM
dt
≤ −η0

2
M+ C0

√
2M̂2(0)κde

−ε0κdψ∞
d t.

We now apply Lemma A.2 in Appendix A with the choices:

α =
η0
2
, f = C0

√
2M̂2(0)κde

−ε0κdψ∞
d t

to get

M(t) ≤
2C0

√
2M̂2(0)κd

η0
e−

ε0κdψ
∞
d

2
t +

√
M̂2(0)e−

η0
2
t +

2C0

√
2M̂2(0)κd

η0
e−

η0
4
t.

We set

C1 := max
{2C0

√
2M̂2(0)κd

η0
,

√
M̂2(0)

}
.

Then,

(4.17)

√
M̂2(t) =M(t) ≤ 3C1 max{e−

ε0κdψ
∞
d

2
t, e−

η0
4
t}.

• Step C (Uniform boundness of ‖vc − wc‖): In (4.15)2, by using (4.17) and (4.14)1 one
gets

d

dt
‖vc −wc‖ ≤ 2κdC0e

−(2+ε0)κdψ∞
d t‖vc −wc‖

+ 6C0C1κde
−(2+ε0)κdψ∞

d t max{e−
ε0κdψ

∞
d

2
t, e−

η0
4
t}.

(4.18)

We again apply Lemma A.3 for (4.18) with

α(t) := 2κdC0e
−(2+ε0)κdψ∞

d t,

f(t) := 6C0C1κde
−(2+ε0)κdψ∞

d t max{e−
ε0κdψ

∞
d

2
t, e−

η0
4
t} ≤ 6C0C1κde

−(2+ε0)κdψ∞
d t

to obtain

(4.19) ‖vc(t)−wc(t)‖ ≤
(
‖vc(0)−wc(0)‖+

6C0C1

(2 + ε0)ψ∞d

)
e

2C0
(2+ε0)ψ

∞
d =: C2.

• Step D (Improving the decay estimate of M̂2): We use (4.19) and (4.15)1 to get

dM̂2

dt
≤ −η0M̂2 + 2κdC0C2e

−(2+ε0)κdψ∞
d t

√
M̂2.
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By the same argument as in Step B,

dM
dt
≤ −η0

2
M+ κdC0C2e

−(2+ε0)κdψ∞
d t.

Then, √
M̂2(t) =M(t) ≤ 3C3 max

{
e−

(2+ε0)κdψ
∞
d

2
t, e−

η0
4
t
}
.

With this improved estimate, we can also slightly refine the upper bound estimate for
‖vc(t)−wc(t)‖.

• Step E (Spatial boundedness of each subensemble): Since M̂2(t) decays to zero exponen-
tially, it is easy to see that

sup
0≤t<∞

max
i
|xi(t)− xc(t)| ≤ sup

0≤t<∞
max
i
|xi(0)− xc(0)|+ C(N, ε0, κd, ψ

∞
d , η0),

sup
0≤t<∞

max
i
|yi(t)− yc(t)| ≤ sup

0≤t<∞
max
i
|yi(0)− yc(0)|+ C(N, ε0, κd, ψ

∞
d , η0).

• Step F (Separation of two sub-ensembles): We use (4.14)1 and (4.15)3 to find

d

dt
‖vc −wc‖ ≥ 2κdψd‖vc −wc‖ − 2κdψd

√
M̂2

≥ 2κdC̃0e
−ε̃0κdψ∞

d t‖vc −wc‖ − 6κdC0C3 max{e−
3(2+ε0)κdψ

∞
d

2
t, e−(

η0
4
+(ε0+2)κdψ

∞
d )t}.

We set

α := 2κdC̃0e
−ε̃0κdψ∞

d t, f(t) := 6κdC0C3 max{e−
3(2+ε0)κdψ

∞
d

2
t, e−(

η0
4
+(ε0+2)κdψ

∞
d )t},

Then,

‖α‖L1 =
2C̃0

ε̃0ψ∞d
, ||f ||L1 ≤ max

{ 4C0C3

(2 + ε0)ψ∞d
,

6κdC0C3
η0
4 + (ε0 + 2)κdψ

∞
d

}
=: C4.

We again apply Lemma A.4 to get the separation of two groups:

‖vc(t)−wc(t)‖ ≥ ‖vc(0)−wc(0)‖ − C4e
2C̃0
ε̃0ψ

∞
d =: C5 > 0.

�

Remark 4.1. Note that a constant inter communication weight ψd ≡ 1 does not satisfy a
priori condition (4.14)1. Thus, the framework in Theorem 4.1 does not cover the framework
in Section 3. In contrast, for the choices:

ψs(r) ≡ 1, ψd(r) = e−βκdψ
∞
d r, β � 1, κd � κs

it is easy to see that a priori conditions (4.14) hold.

5. Emergence of bi-cluster flocking with the Rayleigh friction

In this section, we study the emergence of bi-cluster flocking from spatially mixed config-
urations to the bi-cluster flocking configuration under the effect of Rayleigh friction. Similar
to the previous section, we take the following two steps:

• Step A (Decay of the local fluctuations): We show that M2 decays to zero as t→∞:

(5.1) lim
t→∞

M̂2(t) = 0.
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• Step B (Emergence of separation): We show that the relative difference of local
average velocities is bounded away from zero uniformly in time:

inf
0≤t<∞

‖vc(t)−wc(t)‖ > 0.

5.1. Evolution of the micro dynamics. Next, we establish the estimate (5.1) by focusing
on the effect of the Rayleigh friction.

Lemma 5.1. Let {(X,V ), (Y,W )} be a solution to (1.1) with δ > 0. Then, M̂2 satisfies

dM̂2

dt
≤ 2
(
κdψd − κsψs + δ

)
M̂2 + 2κdψd‖vc −wc‖

√
M̂2, t > 0,

where ψd and ψs are extremal functions in (4.2) depending on the solution itself.

Proof. Since the estimates will be similar to that in Lemma 4.1 except the terms involving
with the Rayleigh friction, we mainly focus on the terms involved with the Rayleigh friction.

(i) It follows from (2.8) and (2.9) that

˙̂vi =
κs
N1

N1∑
k=1

ψs(‖x̂k − x̂i‖)
(
v̂k − v̂i

)
− κd
N2

N2∑
k=1

ψd(‖yk − xi‖)
(
wk − vi

)
+ δvi(1− ‖vi‖2)− v̇c.

(5.2)

We take the inner product 2v̂i with (5.2), sum it over all i = 1, · · · , N1 using
∑

i v̂i = 0
and symmetry trick to get

d

dt
M2(V̂ ) = − κs

N2
1

N1∑
i,k=1

ψs(‖x̂k − x̂i‖)‖v̂k − v̂i‖2

− 2κd
N1N2

N1∑
i=1

N2∑
k=1

ψd(‖yk − xi‖)
(
wc − vc + ŵk − v̂i

)
· v̂i +

2δ

N1

N1∑
i=1

v̂i · vi(1− ‖vi‖2).

(5.3)

Similarly,

d

dt
M̂2(Ŵ ) = − κs

N2
2

N2∑
j,k=1

ψs(‖ŷk − ŷj‖)‖ŵk − ŵi‖2

− 2κd
N1N2

N1∑
k=1

N2∑
j=1

ψd(‖yj − xk‖)(vc −wc + v̂k − ŵj) · ŵj +
2δ

N2

N2∑
j=1

ŵj ·wj(1− ‖wj‖2).

(5.4)
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Now, combining (5.3) and (5.4) yields

d

dt
M̂2 =− κs

N2
1

N1∑
i,k=1

ψs(‖x̂k − x̂i‖)‖v̂k − v̂i‖2 −
κs
N2

2

N2∑
j,k=1

ψs(‖ŷk − ŷj‖)‖ŵk − ŵj‖2

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)‖v̂i − ŵj‖2

+
2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)(v̂i − ŵj) ·
(
vc −wc

)
+

2δ

N1

N1∑
i=1

(1− ‖vi‖2)vi · v̂i +
2δ

N2

N2∑
j=1

|(1− ‖wj‖2)wj · ŵj

=:

6∑
l=1

I2l.

(5.5)

Below, we estimate the terms I2l, l = 1, · · · , 6 as follows.

• (Estimates of I2l, l = 1, 2, 3, 4): By the same arguments as in Section 4 one gets

I21 ≤ −2κsψsM2(V̂ ), I22 ≤ −2κsψsM2(Ŵ ),

I23 ≤ 2κdψdM̂2, I24 ≤ 2κdψd‖vc −wc‖ ·
√
M̂2.

(5.6)

• (Estimate of I2l, l = 5, 6): Using vi = v̂i + vc and
∑N1

i=1 v̂i = 0 gives

I25 =
2δ

N1

N1∑
i=1

(1− ‖vi‖2)‖v̂i‖2 +
2δ

N1

N1∑
i=1

(1− ‖vi‖2)vc · v̂i

= 2δM2(V̂ )− 2δ

N1

N1∑
i=1

‖vi‖2‖v̂i‖2 −
2δ

N1

N1∑
i=1

‖vi‖2vc · v̂i

= 2δM2(V̂ )− 2δ

N1

N1∑
i=1

‖vi‖2vi · v̂i.

(5.7)

Now, we further estimate the second term in (5.7) as follows.

N1∑
i=1

‖vi‖2vi · v̂i =

N1∑
i=1

‖vi‖2(‖vi‖2 − vc · v̂i)

=
1

2

N1∑
i=1

‖vi‖2(‖vi‖2 − ‖vc‖2 + ‖vi − vc‖2) ≥
1

2

N1∑
i=1

‖vi‖2(‖vi‖2 − ‖vc‖2)

=
1

2

N1∑
i=1

‖vi‖4 −
1

2

N1∑
i=1

‖vi‖2‖vc‖2 ≥
1

2

N1∑
i=1

‖vi‖4 −
1

2N1
(

N1∑
i=1

‖vi‖2)2 ≥ 0,

(5.8)
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where in the last inequality, we used the fact:

‖vc‖2 ≤
1

N1

N1∑
i=1

‖vi‖2.

Then, it follows from (5.7) and (5.8) that

(5.9) I25 ≤ 2δM2(V̂ ).

Similarly, one has

(5.10) I26 ≤ 2δM2(Ŵ ).

In (5.5), one can combine all estimates (5.6), (5.7), (5.9) and (5.10) to get desired estimates.
�

5.2. Emergence of bi-cluster flocking. In this subsection, we provide a proof of our third
main result on the emergence of bi-cluster flocking for (1.1) under the Rayleigh friction.

Lemma 5.2. (Macro-dynamics) Let {(X,V ), (Y,W )} be a solution to (1.1) with δ > 0.
Then, ‖vc −wc‖ satisfies

d

dt
‖vc −wc‖ ≥

 2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖xi − yj‖) + δ

 ‖vc −wc‖

− 2κdψd

√
M̂2 − δ

√
max{N1, N2}M

3
2
2 .

Proof. Basically, one follows the same argument as in Lemma 4.2. First, taking inner
product of 2(vc −wc) with (2.11) leads to

d

dt
‖vc −wc‖2 =

4κd
N1N2

N2∑
j=1

N1∑
i=1

(
ψd(‖xi − yj‖) + δ

)
‖vc −wc‖2

+
4κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖yj − xi‖)
(
v̂i − ŵj

)
· (vc −wc)

− 2δ

N1

N1∑
i=1

‖vi‖2vi · (vc −wc) +
2δ

N2

N2∑
i=1

‖wi‖2wi · (vc −wc)

=
4κd
N1N2

N2∑
j=1

N1∑
i=1

(
ψd(‖xi − yj‖) + δ

)
‖vc −wc‖2

+ I31 + I32 + I33.

(5.11)

• (Estimate of I31): By the same argument in Lemma 4.2, one has

(5.12) |I31| ≤ 2κdψd

√
M̂2.

• (Estimate of I32 + I33): For the estimate of the last two terms, note that

(5.13)

∥∥∥∥∥− δ

N1

N1∑
i=1

vi‖vi‖2
∥∥∥∥∥ ≤ δmax

i
‖vi‖M2(V ) ≤ δ

√
N1M2(V )

3
2 .
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Similarly, one has

(5.14)

∥∥∥∥∥ δ

N2

N2∑
i=1

wi‖wi‖2
∥∥∥∥∥ ≤ δ√N2M2(W )

3
2 .

Then, we use (5.13) and (5.14) to get

2(vc − vc) ·

(
− δ

N1

N1∑
i=1

vi‖vi‖2 +
δ

N2

N2∑
i=1

wi‖wi‖2
)

≥ −2 ‖vc − vc‖

∥∥∥∥∥− δ

N1

N1∑
i=1

vi‖vi‖2 +
δ

N2

N2∑
i=1

wi‖wi‖2
∥∥∥∥∥

≥ −2 ‖vc −wc‖ δ
√

max{N1, N2}M2(t)
3
2 .

(5.15)

In (5.11), one can combine all estimates (5.12) and (5.15) to obtain the desired estimate. �

Now, we are ready to present our third main result on the emergence of bi-cluster flocking.

Theorem 5.1. Suppose that δ > 0, the initial center velocity are separated enough and the
intra-interaction outweighs the inter-interaction, namely

‖vc(0)−wc(0)‖ � 1, sup
0≤t<∞

(
δ + κdψd(t)− κsψs(t)

)
≤ −η1.

Then, we have a bi-cluster flocking in the sense of Definition 1.1.

Proof. Below, we present a bi-cluster flocking estimate in several steps.

• Step A (Uniform upper bound of ‖vc −wc‖): By Cauchy’s inequality and Corollary 2.1,

‖vc −wc‖ =
∥∥∥ 1

N1

N1∑
i=1

vi −
1

N2

N2∑
i=1

wi

∥∥∥ ≤ 1

N1

N1∑
i=1

‖vi‖+
1

N2

N2∑
i=1

‖wi‖

≤ 2

√√√√ 1

N1

N1∑
i=1

‖vi‖2 +
1

N1

N2∑
i=1

‖wi‖2 = 2
√
M2(t) ≤ 2

√
M∞2 .

(5.16)

• Step B (Uniform boundedness of M̂2): We combine Lemma 5.1 and (5.16) to obtain

d

√
M̂2(t)

dt
≤ −η1

√
M̂2(t) + κdψd(t)‖vc −wc‖ ≤ −η1

√
M̂2(t) + 2κdψd(t)

√
M∞2(5.17)

Note that here ψd(t) still depends on t. In this step we simply use a rough bound ψd(t) ≤
ψ∞d , and use Gronwall’s lemma to obtain√

M̂2(t) ≤
√
M̂2(0)e−η1t +

2κdψ
∞
d

√
M∞2

η1
(1− e−η1t)

≤ max{
√
M̂2(0),

2κdψ
∞
d

√
M∞2

η1
} := C6.

(5.18)
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• Step C (Separation of the center velocities): By Lemma 5.2, Corollary 2.1 and (5.18),

d

dt
‖vc −wc‖ ≥

 2κd
N1N2

N1∑
i=1

N2∑
j=1

ψd(‖xi − yj‖) + δ

 ‖vc −wc‖

− 2κdψdC6 − δ
√

max{N1, N2}(M∞2 )
3
2 .

By Gronwall’s lemma, we have a rough bound:

‖vc(0)−wc(0)‖ ≥
2κdψ

∞
d C6 + δ

√
max{N1, N2}(M∞2 )

3
2

δ
:=

C7

δ
,

The center velocities stay separated for later time

‖vc(t)−wc(t)‖ ≥
C7

δ
+

(
‖vc(0)−wc(0)‖ − C7

δ

)
eδt ≥ C7

δ
.

• Step D (Spatial separation of the two sub-ensembles): First, we consider for any i =
1, · · · , N1 and j = 1, · · · , N2,

‖vi(t)−wj(t)‖ ≥‖vc(t)−wc(t)‖ − ‖v̂i(t)− ŵj(t)‖

≥‖vc(t)−wc(t)‖ −
√

2 max{N1, N2}M̂2

≥C7

δ
+
(
‖vc(0)−wc(0)‖ − C7

δ

)
eδt

−
√

2 max{N1, N2}
(√

M̂2(0)e−η1t +

√
M∞2
η1

(1− e−η1t)
)
.

Then, there exists some time T ∗ and constant C8 such that for any time t ≥ T ∗,

‖vi(t)−wj(t)‖ ≥ C8 > 0.

As a direct consequence, for t ≥ T ∗ the minimum distance between the two groups has at
least linear growth with respect to time, namely,

min
i∈G1,j∈G2

‖xi(t)− yj(t)‖ ≥ C8t+ γ0.

Hence, we have

ψd(t) ≤ ψd
(

min
i∈G1,j∈G2

‖xi(t)− yj(t)‖
)
≤ ψd (C8t+ γ0)→ 0, as t→∞.(5.19)

Note that here the sign of γ0 does not matter.

• Step E (Emergence of the bi-cluster flocking): In this step, we use (5.19) to improve the
estimate of the velocity fluctuations (5.17). To be specific, one has

d

√
M̂2(t)

dt
≤ −η1

√
M̂2(t) + κd

√
M∞2 ψd (C8t+ γ0) .
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The Gronwall-type lemma in Lemma A.2 yields√
M̂2(t) ≤

1

η1
max
s∈[t/2,t]

κd
√
M∞2 |ψd

(
C8s+ γ0

)
|

+

√
M̂2(0)e−η1t +

κd
√
M∞2 ψ∞d
η1

e−
η1t
2 t ≥ T ∗.

This completes the bi-cluster flocking estimate. �

Remark 5.1. Note that the condition δ > 0 is crucially used to show the uniform bounded-
ness of M2 (see Corollary 2.1). Otherwise, M2 may not be bounded uniformly in time as can
be seen from the explicit example in Section 3.1 and one needs to impose some restrictions
on ψs and ψd as in Theorem 4.1.

6. Numerical experiments

In this section, we perform several numerical experiments to confirm the analytical results
presented in previous sections. For numerical implementation, the fourth order Runge-
Kutta scheme is used.

6.1. The growth of the kinetic energy. As mentioned in Remark 4.1, the Rayleigh
friction term is crucial for the uniform bound of the kinetic energy M2. In the case of δ = 0,
M2 could grow exponentially initially, and keep growing even after flocking phenomenon
occurs.

Example 6.1 (Case I: δ = 0). Consider the case δ = 0 with mixed initial configurations in
both position and velocity. Here the initial positions of the two sub-ensembles are both gen-
erated randomly in the unit square [0, 1]× [0, 1] while the initial velocities are also randomly
generated and then normalized to mean 0, as plotted in Fig. 1. The parameters of the two
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velocity plane

Figure 1. Example 6.1: Initial spatial and velocity mixed configurations

groups are chosen as N1 = N2 = 50, κs = κd = 10, and the communication functions are

ψs(r) = ψd(r) =
1

(1 + r2)β
,
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with β = 0.4. Note that this is the commonly-used communication function in the compu-
tation and sometimes analysis of the flocking dynamics. In this example, the kinetic energy
M2 first grows exponentially, and it keeps growing after spatial separation and even till
velocity fluctuations are about 0. To make it clearer, the kinetic energy M2 and velocity
fluctuation M̂2 are plotted side by side in Fig.2, and the initial growth of kinetic energy is
zoomed in. Note that this is an interesting phenomenon that is different from many tradi-
tional mono-flocking models where the kinetic energy decreases and hence can be trivially
bounded by its initial data. The growth of kinetic energy makes our model interesting and
also more difficult from analysis point of view.
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(a) Kinetic energy M2 till flocking occurs
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(b) Velocity fluctuations
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Figure 2. Example 6.1: The kinetic energy M2 grows exponentially at the
beginning, as is made clear in the plot of semilogy scale, and then keeps
growing even till the velocity fluctuations are about 0.

Example 6.2 (Case II: δ > 0). Now consider the same parameters, as well as the spatial
and velocity mixed initial configurations in Example 6.1 but turn on the Rayleigh friction,
namely δ > 0. It can be seen in Fig. 3 that the existence of the Rayleigh friction drastically
changes the profile of the kinetic energy. Fig. 3 plots the kinetic energy M2 with δ = 1 and
δ = 0.1, respectively. In both cases although M2 is not monotone – as in many traditional
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mono-flocking models, it decays eventually and hence still has a uniform bound. For larger
δ, the kinetic energy is bounded by initial data while for smaller δ, the uniform bound is
different, which agrees with the estimate in Corollary 2.1.
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(a) δ = 1
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(b) δ = 0.1

Figure 3. Example 6.2: The kinetic energy M2 is not monotone for δ > 0,
but are still uniformly bounded.

6.2. The emergence of bi-clustering.

Example 6.3 (Different Stages for δ = 0). In this example, we shall show different stages
of the emergence of bi-cluster flocking. Consider the spatially and velocity mixed initial
configuration in Fig. 4, the bi-clustering phenomenon occurs in the following stages: (a)
Stage 1: velocity separation of two sub-ensembles; (b) Stage 2: spatial separation of two
sub-ensembles; (c) Stage 3: emergence of bi-cluster flocking.
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Figure 4. Initial configurations of Example 6.3 and 6.4.
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(a) Stage 1: velocity separation.
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(b) Plot of the velocity differ-
ence between the two subensembles,
where velocity separation happens
around t = 0.45.
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(c) Stage 2: spatial separation
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(d) Plot of the spatial difference be-
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Figure 5. Example 6.2: δ = 0. From mixed initial configuration, the
emergence of flocking occurs in three stages as plotted.
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Example 6.4 (Different Stages for δ > 0). In this example, the Rayleigh friction is turned
on with δ = 1. We test the influence incurred by the Rayleigh friction. Consider the
spatially and velocity mixed initial configuration in Fig. 4. Similar as previous example, the
bi-clustering phenomenon occurs in the following stages: (a) Stage 1: velocity separation
of two sub-ensembles; (b) Stage 2: spatial separation of two sub-ensembles; (c) Stage 3:
emergence of bi-cluster flocking. It can be seen from Fig. 6 that the existence of Rayleigh
friction does not change qualitatively the three stages, but make the initial layer of the
velocity fluctuation (the time interval before it decays) narrower.

7. Conclusion

In this paper, we have studied the emergent dynamics from the interactions between two
homogeneous C-S ensembles under the attractive-repulsive couplings and Rayleigh frictions.
The interactions among the particles in the same group are assumed to be “attractive”,
whereas the interactions between particles from different groups are assumed to be “repul-
sive”. In this situation, we have provided three frameworks for the emergence of bi-cluster
flocking from a mixed Cucker-Smale ensemble. As aforementioned in the introduction, prior
to the current work, all references dealing with the Cucker-Smale model were focused on
the emergent property under only attractive interaction. Thus, we believe that this work
is the first step for the understanding of the complex dynamics of the C-S ensemble under
attractive and repulsive interactions.

In the absence of Rayleigh friction, the total kinetic energy can grow exponentially for
the C-S ensemble with a general repulsive communication function. This can cause lots
of technical difficulties in the flocking analysis. In this work, we assume that the commu-
nication mechanism for intra and inter communication weights are different. Under this
relaxed setting, we provide two sufficient frameworks leading to the formation of bi-cluster
flocking. In the first framework, the communication weight function for inter coupling is a
constant. This leads to the complete decoupling of macro dynamics and micro dynamics,
moreover the micro-dynamics of each sub-ensemble is also decoupled. Hence we can apply
for the previously used Lyapunov functional approach to derive sufficient conditions for the
mono-cluster flocking of each sub-ensemble. In the second framework, we take an exponen-
tially decaying function as an inter communication weight function, and provide an a priori
setting for the bi-cluster flocking. In the presence of the Rayleigh friction, we show that the
total kinetic energy can be uniformly bounded in time, so some restrictive conditions for the
inter and intra communication weight functions in the aforementioned two frameworks can
be removed, and when the intra coupling strength is much larger than the inter coupling
strength, we show that bi-cluster flocking can emerge from well-prepared spatially mixed
configuration.

Of course, there are several interesting issues that we could not deal with. When inter
and inter communication weight functions are comparable, it seems to be very difficult to
show the finite-time segregation from spatially mixed configurations. We will leave this
interesting problem for a future work.
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Figure 6. Example 6.2: δ = 1. From mixed intial configuration, the emer-
gence of flocking occurs in three stages as plotted.
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Appendix A. Grownall type lemmas

In this section, we list four Gronwall type lemmas which have been used in the bi-cluster
flocking estimates in Section 3 and Section 4.

Lemma A.1. Let y : R+ ∪ {0} → R+ ∪ {0} be a differentiable function satisfying

y′ ≥ αy − f, t > 0, y(0) = y0,

where α is a positive constant and f : R+ ∪ {0} → R is a continuous function decaying to
zero as its argument goes to infinity. Then y satisfies

y(t) ≥ − 1

α
max
τ∈[ t

2
,t]
|f(τ)|+

(
y0 −

‖f‖L∞

α

)
eαt +

(‖f‖L∞

α
+

1

α
max
τ∈[ t

2
,t]
|f(τ)|

)
e
αt
2 .

Proof. Note that y satisfies
y′ − αy ≥ −f.

Multiplying the above differential inequality by e−αt and integrating the resulting relation
from s = 0 to s = t gives

e−αty − y0 ≥ −
∫ t

0
f(τ)e−ατdτ

= −
∫ t

2

0
f(τ)e−ατdτ −

∫ t

t
2

f(τ)e−ατdτ

≥ −f(0)

∫ t
2

0
e−ατdτ − max

τ∈[ t
2
,t]
|f(τ)|

∫ t

t
2

e−ατdτ

≥ f(0)

α

(
e−

αt
2 − 1

)
− 1

α
max
τ∈[ t

2
,t]
|f(τ)|

(
e−αt − e−

αt
2

)
.

Hence,

y(t) ≥ − 1

α
max
τ∈[ t

2
,t]
|f(τ)|+

(
y0 −

f(0)

α

)
eαt +

(f(0)

α
+

1

α
max
τ∈[ t

2
,t]
|f(τ)|

)
e
αt
2 .

�

Next, we recall a basic Gronwall type lemma from the bi-cluster flocking paper [4]

Lemma A.2. [4] Let y : R+ ∪ {0} → R+ ∪ {0} be a differentiable function satisfying

y′ ≤ −αy + f, t > 0, y(0) = y0,

where α is a positive constant and f : R+ ∪ {0} → R is a continuous function decaying to
zero as its argument goes to infinity. Then y satisfies

y(t) ≤ 1

α
max
s∈[t/2,t]

|f(s)|+ y0e
−αt +

‖f‖L∞

α
e−

αt
2 , t ≥ 0.

Proof. Since the detailed proof can be found in Lemma A.1 in [4], we omit its proof here. �

Lemma A.3. Suppose that α and f are nonnegative integrable functions defined on R+.
Let y : R+ ∪ {0} → R+ ∪ {0} be a differentiable function satisfying

y′(t) ≤ α(t)y(t) + f(t), t > 0, y(0) = y0,

Then y is uniformly bounded: there exists a y∞ such that

‖y‖L∞ ≤ (y0 + ‖f‖L1)e‖α‖L1 , t ≥ 0.
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Proof. By the method of integrating factor, one has

y(t) ≤ y0e
∫ t
0 α(s)ds +

∫ t

0
e
∫ t
s α(τ)dτf(s)ds.

This clearly implies the desired upper bound. �

Lemma A.4. Suppose that α and f be nonnegative integrable functions defined on R+, and
;et y : R+ ∪ {0} → R+ ∪ {0} be a differentiable function satisfying

y′(t) ≥ α(t)y(t)− f(t), t > 0, y(0) = y0,

Then y satisfies

y(t) ≥ y0 − ||f ||L1e||α||L1 t ≥ 0.

Proof. By the method of integrating factor, one has

y(t) ≥ y0e
∫ t
0 α(s)ds +

∫ t

0
e
∫ t
s α(τ)dτf(s)ds ≥ y0 − ||f ||L1e||α||L1 .

�
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