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Preface

Those notes aim at presenting some recent quantitative estimates for transport
equations with rough, i.e. non-smooth, velocity fields. Our final goal is to use those
estimates to obtain new results on complex systems where the transport equation
is coupled to other PDE’s: A driving example is the compressible Navier-Stokes
system.

We will therefore investigate in these notes the regularity of weak solutions
ρ to the advection equation in conservative form

∂tρ+ div (ρ u) = 0 in (0, T )× Ω,

for a velocity field u that is not smooth with u ∈ L2([0, T ], H1(Ω)) as the typical
example from Fluid Mechanics and where Ω is some smooth domain. There already
exists a large body of literature around the well-posedness of such an equation with
fields u ∈ Lp([0, T ], W 1,p(Ω)) where p > 1; see for example the surveys [4, 22].
What makes our investigation in these notes specific is that

• We require quantitative estimates of regularity. While linear advection equa-
tions are interesting in themselves, we ultimately want to consider general
coupled systems for which quantitative bounds are easier to use.

• We want estimates that are compatible with strong compression effects, lead-
ing to large values of ρ, or rarefactions, leading to small values of ρ (or
even vacuum in extreme cases). This means that we cannot impose a bound
on divu, upper or lower bounds on ρ. Instead we will only assume that
ρ ∈ L∞([0, T ], Lp(Ω)) for some p > 1.

As we will see, there now exist several type of quantitative estimates that sat-
isfy our first constraint. But many of those are not obviously compatible with
our second constraint, so that we will only introduce our main such estimate in
Chapter 2.

Because compression or rarefaction plays a strong role here, the conservative
advection equation may have a different behavior from the advective form

∂tφ+ u · ∇φ = 0.

The duality between those two equations and their appropriate combination will
play an important role in our calculations. Finally we should mention here that
most of the material and ideas presented here are valid for many type of spatial
domains Ω: Either Ω = Rd with appropriate decay at infinity or Ω a smooth
bounded domain with appropriate boundary conditions. Because we want to focus
on the main ideas behind the method, we will however work in the torus Πd for
simplicity.
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Chapter 1

Lagrangian approaches

This chapter is devoted to the study of the trajectories of ODE’s flows. We of
course hope to derive the regularity of the solution to advection equations from
the regularity of the trajectories, through the method of characteristics. For this
reason, we consider all possible trajectories and consider the flow

d

dt
X(t, x, s) = u(t,X(t, x, s)), X(t = s, x, s) = x ∈ Πd. (1.1)

Our perspective here favors Eulerian approaches as they are easier to use when
transport equations are coupled to other PDE’s. But in other settings there can
be many advantages to direct Lagrangian methods, not least of all the simplic-
ity of the formulation. For reader’s convenience, we recall some researchers (and
corresponding dates) who have obtain important results on the subject: Lipschitz
(1868), Peano (1886), Lindenhöf (1894), Osgood (1900), Nagumo (1926), Filippov
(1960), Di Perna – Lions (1989), Ambrosio (2004), Crippa - De Lellis (2008) and
others.

1.1 The Cauchy-Lipschitz theory

We start with the best known approach to well-posedness of ODE’s and advection
equations whose main result can be summarized by

Theorem 1.1.1. Assume that u ∈ L∞([0, T ], W 1,∞(Πd)), then there exists a
unique solution X ∈W 1,∞([0, T ]×Πd × [0, T ]) to (1.1) which satisfies

|X(t, x, s)−X(t, y, s)| ≤ |x− y| exp

∫
[s, t]

‖∇xu(r, .)‖L∞(Πd) dr. (1.2)

Moreover the map x −→ X(t, x, s) is an homeomorphism of Πd for any fixed t
and s, with

X(t,X(s, x, r), s) = X(t, x, r), in particular X(t,X(s, x, t), s) = x. (1.3)
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We do not give the proof of this theorem which is already well-known (even
for u ∈ L1(0, T ;W 1,∞(Πd)), but we emphasize that the main point is to derive
estimate (1.2) through the use of Gronwall lemma and the well-known inequality

|u(t, x)− u(t, y)| ≤ ‖∇u‖L∞([0, T ]×Πd) |x− y|. (1.4)

We also observe that since we work on the torus, we are able to bypass all the
discussion about trajectories going to infinity and the need for maximal solutions.

The method of characteristics allows to translate such regularity on the so-
lution to advection equations as per

Theorem 1.1.2. Assume that u ∈ L∞([0, T ], W 1,∞(Πd)) and that φ0 ∈ L1(Πd),
then there exists a unique solution in the sense of distribution to

∂tφ+ u · ∇φ = 0, φ|t=0 = φ0, (1.5)

which is given by
φ(t, x) = φ0(X(0, x, t)).

In addition if φ0 ∈W s,p(Πd) then

‖φ(t, .)‖W s,p(Πd) ≤ ‖φ(t, .)‖W s,p(Πd) exp

∫
[0, t]

‖∇xu(r, .)‖L∞(Πd) dr.

We again skip the proof which is straightforward using Th. 1.1.1, and in
particular Eq. (1.3). If one instead wishes to solve the conservative form of the
transport equation, it is necessary to look at the Jacobian of the map X. Define
hence

J(t, x, s) = det∇xX(t, x, s).

Then this Jacobian solves the ODE

d

dt
JX(t, x, s) = J(t, x, s) divu(t,X(t, x, s)), (1.6)

which is well posed in this theory as divu is bounded. One then has

Corollary 1.1.3. Assume that u ∈ L∞([0, T ], W 1,∞(Πd)) and that φ0 ∈ L1(Πd),
then there exists a unique solution in the sense of distribution to

∂tρ+ div (ρ u) = 0, ρ|t=0 = ρ0, (1.7)

which is given by

ρ(t, x) =
ρ0(X(0, x, t))

J(t,X(0, x, t))
.

While we have well-posedness under the same condition, one immediately
sees that the regularity of the solution ρ also requires the corresponding regularity
of divu. This will be a recurring theme as the regularity for the convective or
conservative form (1.7) will be consistently more difficult to obtain.
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1.2 Lagrangian estimates for u ∈ L1(0, T ;W 1,p(Πd))

It is possible to slightly extend the Gronwall’s like estimates in the previous section,
for example to log-Lipschitz velocity field which is critical for the uniqueness theory
of 2d-Euler. But the first results on well-posedness for velocity fields in Sobolev
spaces were obtained in [24] in an Eulerian framework that we will present in the
next chapter.

Instead a corresponding Lagrangian approach was only introduced much later
in [21]. In addition, [21] also provided the first explicit regularity estimates when
u ∈W 1,p, which makes it especially relevant for our purpose. The approach intro-
duced in [21] has proved to be very fruitful with now many extensions. We only
quote a few examples: [8] and [10] are concerned with velocity field u that are
obtained from a singular integral or the Riesz transform of a measure; [18] and
[33] apply to special Hamiltonian dynamics similar to Newton’s second law and
use this specific structure to require less than one derivative on u.

Let us from now on assume that u ∈ L1([0, T ], W 1,p(Πd)) with p > 1. The
first question is in what sense we can solve Eq. (1.1) as u(t, x) may not be defined
at every point x. We hence rely on some a priori estimates on the flow, namely
we assume that for some exponent q with 1/p + 1/q ≤ 1, the Jacobian of the
transform x −→ X(t, x, s) is bounded in Lp in the sense that for any ψ ∈ C∞(Πd)∫

Πd
ψ(X(t, x, s)) dx =

∫
Πd
ψ(x)w(t, x, s) dx,

with sup
s∈[0, T ]

sup
t∈[0, s]

‖w(t, ., s)‖Lq(Πd) = L <∞.
(1.8)

The function w can be interpreted as the law of the random variable X(t, x, s)
and would correspond to the previous 1/J(t,X(s, x, t), s). But it may not always
be calculated directly like that as our flow may not be differentiable. In particular
and contrary to the Lipschitz case, w may in fact vanish over large sets.

The reason for (1.8) will become apparent in the next section as it corre-
sponds to natural Lq estimates on a solution ρ to (1.7). The original result in [21]
instead assumed that w is bounded from below and from above. This allows to
obtain additional properties from the regularity we present here, such as the full
reversibility of the flow.

With (1.8), we can now define our notion of solution: X(t, x, s) solves (1.1)
iff for all test function ψ ∈ C∞([0, s]×Πd),∫

Πd
ψ(t,X(t, x, s)) dx =

∫
Πd
ψ(s, x) dx

−
∫ s

t

∫
Πd

(∂tψ(r,X(t, x, s)) + u(r,X(r, x, s)) · ∇xψ(r,X(r, x, s))) dx dr.

(1.9)

The regularity estimate obtained in [21] reads
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Theorem 1.2.1 ([21]). Assume that u ∈ L1([0, T ], W 1,p(Πd)) for some 1 < p <∞.
Consider any solution X(t, x, s) to (1.1) in the sense of (1.9) which also satisfies
(1.8) with 1/p + 1/q ≤ 1. Then there exists a constant C depending only on the
dimension s.t. for any ω ∈ Sd−1 and any h∫

Πd
log

(
1 +
|X(t, x, s)−X(t, x+hω, s)|

h

)
dx ≤ C+C L

∫
[t,s]

‖∇u(r, .)‖Lp(Πd) dr.

Proof. Denote for simplicity

Qh(t) =

∫
Πd

log

(
1 +
|X(t, x, s)−X(t, x+hω, s)|

h

)
dx.

From the definition of a solution, one directly obtains that

Qh(t) ≤ Qh(s) +

∫
[t, s]

∫
Πd

|u(r,X(r, x, s))− u(r,X(r, x+ hω, s))|
h+ |X(t, x, s)−X(t, x+hω, s)|

dx dr.

The key is here instead of using Lipschitz estimate to use the more precise in-
equality: There exists a constant C depending only on the dimension s.t. for any
u ∈ BV (Πd)

|u(x)− u(y)| ≤ C |x− y| (M |∇u|(x) +M |∇u|(y)), (1.10)

where M f is the maximal function of f

M f(x) = sup
r

1

|B(x, r)|

∫
B(x,r)

f(y) dy.

We will later give a proof of (1.10) as we will require more precise estimates.
Assuming it for the time being (one can also see [45]), this leads to

Qh(t) ≤ Qh(s) + C

∫ s

t

∫
Πd

(M |∇u(r,X(r, x, s))|+M |∇u(r,X(r, x+hω, s))|) dx dr

= Qh(s) + 2C

∫ s

t

∫
Πd
M |∇u(r,X(r, x, s))| dx dr.

Using now (1.8), we obtain the precise intermediary estimate

Qh(t) ≤ Qh(s) + 2C

∫ s

t

∫
Πd
M |∇u(r, x)|w(r, x, s) dx dr. (1.11)

By Hölder estimate, this implies

Qh(t) ≤ Qh(s) + 2C sup
s∈[0, T ]

sup
t≤s
‖w(r, ., s)‖Lq

∫ s

t

∫
Πd
‖M |∇u(r, .)‖Lp dr,
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which allows us to conclude the proof by recalling that the maximal function is
bounded on Lp for p > 1, that is for some constant C depending only on d

‖M f‖Lp(Πd) ≤ C ‖f‖Lp(Πd).

�

Compactness. While its proof is relatively straightforward, the regularity that is
provided by Th. 1.2.1 may not be very clear at first. For example does it even imply
compactness in L1? From Rellich criterion an easy way to check for compactness
and to measure regularity is to study for a given smooth convolution kernel K∫

Πd
|X(t, x, s)−Kh ? X(t, ., s)| dx,

where as usual Kh(x) = h−dK(x/h). With a simple bound and the use of spherical
coordinates, one may bound∫

Πd
|X(t, x, s)−Kh ? X(t, ., s)| dx

≤
∫ ∫

Sd−1

∫
Πd
|X(t, x, s)−X(t, x+ h r ω, s)| dxK(r ω) dω rd−1 dr.

(1.12)

For any t, s, h, r, ω, denote I = {x ∈ Πd , |X(t, x, s)−X(t, x+ h r ω, s) ≥ Rhr},
then∫

Πd
log

(
1 +
|X(t, x, s)−X(t, x+h r ω, s)|

h r

)
dx ≥

∫
I

log

(
1 +
|X(t, x, s)−X(t, x+h r ω, s)|

h r

)
dx

≥ |I| log(1 +R)

and therefore using Th. 1.2.1

|I| = |{x , |X(t, x, s)−X(t, x+h r ω, s)| ≥ Rhr}| ≤
C L ‖∇u‖L1([0, T ], Lp(Πd)) + C

log(1 +R)

Therefore wrtting Πd = I ∪ (Πd\ I) and using (1.12):∫
Πd
|X(t, x, s)−Kh ? X(t, ., s)| dx ≤

CL‖∇u‖L1([0, T ], Lp(Πd)) + C

log(1 +R)
+ CK Rh,

where CK =
∫
|z|K(z) dz. By optimizing in R, we finally obtain∫

Πd
|X(t, x, s)−Kh ? X(t, ., s)| dx

≤
(CK + C)L ‖∇u‖L1([0, T ], Lp(Πd)) + (CK + C)

log 1/h
,

(1.13)

which proves that we control compactness through what is essentially a log of a
derivative on X. This regularity may now be translated as a regularity on the
transport equation in advective form
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Corollary 1.2.2. Assume that u ∈ L1([0, T ], W 1,p(Πd)) for some 1 < p < ∞.
Assume that there exists a solution X(t, x, s) to (1.1) in the sense of (1.9) which
also satisfies (1.8) with 1/p + 1/q ≤ 1. Then for any φ0 ∈ L1(Πd), there exists a
solution φ to Eq. (1.5) given by

φ(t, x) = φ0(X(0, x, t)).

Moreover if φ0 ∈W s,q for some s > 0 and q ≥ 1 then

‖φ(t, .)−Kh ? φ(t, .)‖L1 ≤
C L|∇u‖L1([0, T ], Lp(Πd)) + C

log 1/h
,

for some C depending only on moments of K, s and q.

As before we only obtain directly the advective equation. Obtaining the con-
servative form would require to also solve the differential equation on the Jacobian
and derive regularity from it which is not obvious in this framework.

1.3 A Eulerian formulation

A very natural question following from the previous analysis is whether one can
find a Eulerian formulation of those Lagrangian estimates. One could think for
example of trying Wasserstein distances; we will not pursue this idea here but
refer for example to [44]. Instead here we will interpret the proof of Th. 1.2.1 as
identifying the “good” trajectories where the flow has some regularity and then
proving through sort of equivalent of (1.8) that those good trajectories have large
probability.

The tracking of good trajectories may be done through an auxiliary equation
on an appropriate weight w(t, x) through

∂tw + u · ∇w = −λM |∇u| w, w|t=0 = 1. (1.14)

Then one may prove as a first step

Proposition 1.3.1. Assume that φ is a renormalized solution to the transport equa-
tion in advective form, Eq. (1.5). Then if w solves Eq. (1.14) with λ large enough,
one has that for any k > 0, any h∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy ≤
∫

Π2 d

|φ0(x)− φ0(y)|
(h+ |x− y|)k

dx dy.

Remark 1.3.2. We will define precisely what is meant by renormalized solutions
in the next chapter. At this time, it should be interpreted as allowing to perform
similar calculations as if u was smooth. Even in such a case, the proposition could
for example be used to consider a sequence of solutions φn for a sequence of
regularized velocity fields un. Quantitative regularity estimates would then be
used to derive compactness.
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Remark 1.3.3. Without weights, a quantity like∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

dx dy

would actually control a Besov regularity of φ at order k − d (and hence Sobolev
regularity at any lower order). Unfortunately such regularity cannot hold for so-
lutions to (1.5) with rough velocity fields, as the examples in [2] and [32].

Proof. Formal calculations show that

∂t|φ(t, x)−φ(t, y)|+ u(t, x) · ∇x|φ(t, x)−φ(t, y)|+ u(t, y) · ∇y|φ(t, x)−φ(t, y)| = 0.

Such an equality will again be justified in the next chapter. Hence still formally

∂t(|φ(t, x)− φ(t, y)|w(t, x)w(t, y)) + u(t, x) · ∇x(|φ(t, x)− φ(t, y)|w(t, x)w(t, y))

+ u(t, y) · ∇y(|φ(t, x)− φ(t, y)|w(t, x)w(t, y))

= −λ (M |∇u|(t, x) +M |∇u|(t, y)) |φ(t, x)− φ(t, y)|w(t, x)w(t, y).

Multiplying by (h+ |x− y|)k and integrating by parts yields

d

dt

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy

= k

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k+1

w(t, x)w(t, y) (u(t, x)− u(t, y)) · x− y
|x− y|

dx dy

+

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) (divu(t, x) + divu(t, y)) dx dy

− λ
∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) (M |∇u|(t, x) +M |∇u|(t, y)) dx dy.

Using inequality (1.4) and the symmetry in x and y, one finally deduces

d

dt

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy

≤
∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) (divu(t, x)− (λ− k)M |∇u|(t, x)) dx dy.

Since M |∇u|(t, x) ≥ |∇u(t, x)| ≥ divu(t, x), taking λ ≥ k+ 1 gives the result. �

Prop. 1.3.1 is in itself insufficient as obviously if w vanishes everywhere for
instance then it contains no information. It is hence necessary to control the set
where w is small, as per

Lemma 1.3.4. Assume that u ∈ L1([0, T ], W 1,p(Π2d)) with p > 1 and that there
exists a renormalized solution ρ ∈ L∞([0, T ], Lq(Π2d)) to Eq. (1.7) with 1/p +
1/q ≤ 1, then∫

Πd
| logw(t, x)| ρ(t, x) dx ≤ Cd λ ‖u‖L1([0, T ], W 1,p(Π2d)) ‖ρ‖L∞([0, T ], Lq(Π2d)).
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Proof. Note that since w solves (1.14) then w ≤ 1 a.e.. Hence | logw| = − logw
and

∂t| logw(t, x)|+ u · ∇x| logw(t, x)| = λM |∇u|(t, x).

Multiplying by u and integrating yields∫
Πd
| logw(t, x)| ρ(t, x) dx ≤ λ

∫ t

0

∫
Πd
M |∇u|(s, x) ρ(s, x) dx ds,

or by Hölder estimate∫
Πd
| logw(t, x)| ρ(t, x) dx ≤ λ ‖M |∇u|‖L1([0, T ], Lp(Π2d)) ‖ρ‖L∞([0, T ], Lq(Π2d)).

Using the fact that the maximal operator is continuous on Lp for p > 1 concludes
the proof. �

It is now relatively simple to combine Lemma 1.3.4 to Prop. 1.3.1 to obtain

Theorem 1.3.5. Assume that u ∈ L1([0, T ], W 1,p(Π2d)) with p > 1 and that
there exists a renormalized solution ρ ∈ L∞([0, T ], Lq(Π2d)) to Eq. (1.7) with
1/p+ 1/q ≤ 1. Consider any renormalized solution φ ∈ L∞([0, T ], Lr(Πd)) then
for any α > 0∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ h−α
∫

Π2 d

|φ0(x)− φ0(y)|
(h+ |x− y|)k

dx dy

+ C
λhd−k

| log h|1−1/r
‖φ‖L∞([0, T ], Lr(Πd)) ‖u‖

1−1/r

L1([0, T ], W 1,p(Π2d))
‖ρ‖1−1/r

L∞([0, T ], Lq(Π2d))
,

for some constant C depending only on the dimension d and α.

Remark 1.3.6. The theorem provides compactness on φ where ρ does not vanish.
For instance if ρ(t, x) ≥ ρ̄ > 0 and φ0 ∈Wα,1, then we may deduce that∫

Πd
|φ(t, x)−Kh ? φ(t, x)| dx ≤ L | log h|−1,

where L depends on the various norm and Kh = C−1 (h + |x|)d−k can be in-
terpreted as a convolution kernel. We hence have in that case an equivalent of
Corollary 1.2.2.

Remark 1.3.7. In general however, and contrary to Corollary 1.2.2, we only control
the regularity of φ where ρ > 0. This is because the assumption that there exists a ρ
in Lq is much weaker than the assumption on the Jacobian (1.8). In fact, translated
in Eulerian framework, (1.8) is equivalent to asking that for any t0 ∈ [0, T ], there
exists ρto ∈ L∞t Lpx solving

∂tρt0 + div (ρt0 u) = 0, ρt0 |t=t0 = 1.
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Unfortunately in our applications, we will not have such a family of solutions but
only one...

Proof. The first part of the proof would be to prove that there exists an appropriate
weight w(t, x) solving (1.14) and such that we may apply Prop. 1.3.1 and Lemma
1.3.4. We will however skip this argument at the time being before we go back to
the existence question for transport equations in the next chapter.

The rest of the proof is a simple interpolation, by decomposing Π2d into the
set {x, y | w(t, x) > η, w(t, y) > η} and the complementary set∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ 1

η2

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy

+

∫
x, y | w(t,x)>η, or w(t,y)>η

|φ(t, x)|+ |φ(t, y)|
(h+ |x− y|)k

1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy.

By symmetry the last term is bounded by∫
x, y | w(t,x)≤η, or w(t,y)≤η

|φ(t, x)|+ |φ(t, y)|
(h+ |x− y|)k

1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ C hd−k
∫
x, w(t,x)≤η

(|φ(t, x)|+Kh ? |φ|) 1 ∧ ρ(t, x) dx,

where Kh(x) = C−1 hk−d (h+ |x|)k with C s.t. ‖Kh‖L1 = 1. By Hölder estimate∫
x, w(t,x)≤η

(|φ(t, x)|+Kh ? |φ|) 1 ∧ ρ(t, x) dx

≤ ‖φ‖L∞([0, T ], Lr(Πd))

(∫
x, w(t,x)≤η

1 ∧ ρ(t, x) dx

)1−1/r

.

Now ∫
x, w(t,x)≤η

1 ∧ ρ(t, x) dx ≤ 1

| log η

∫
x, w(t,x)≤η

| logw(t, x)| ρ(t, x) dx

≤ Cd
λ

| log η|
‖u‖L1([0, T ], W 1,p(Π2d)) ‖ρ‖L∞([0, T ], Lq(Π2d)),

by using Lemma 1.3.4. Using now Prop. 1.3.1 and combining our estimates, we
find∫

Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ 1

η2

∫
Π2 d

|φ(t, x)− φ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy

+ C
λ1−1/r hd−k

| log η|1−1/r
‖φ‖L∞([0, T ], Lr(Πd)) ‖u‖

1−1/r

L1([0, T ], W 1,p(Π2d))
‖ρ‖1−1/r

L∞([0, T ], Lq(Π2d))
,
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which gives the desired result after taking η = hα/2. �

We can develop almost the same estimates and theory for the conservative
form, starting with

Proposition 1.3.8. Assume that ρ is a renormalized solution to the transport equa-
tion in conservative form, Eq. (1.7). Then if w solves Eq. (1.14) with λ large
enough, one has that for any k > 0, any h∫

Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy ≤
∫

Π2 d

|ρ0(x)− ρ0(y)|
(h+ |x− y|)k

dx dy

+
1

2

∫ t

0

∫
Π2 d

|divu(s, x)− divu(s, y)|
(h+ |x− y|)k

(ρ(s, x) + ρ(s, y)) dx dy ds.

Proof. The argument follows exactly the same steps as before, starting with the
modified equation

∂t|ρ(t, x)− ρ(t, y)|+ u(x) · ∇x|ρ(t, x)− ρ(t, y)|+ u(y) · ∇y|ρ(t, x)− ρ(t, y)|

≤ |divu(t, x)− divu(t, y)|
2

(ρ(t, x) + ρ(t, y))

+
|ρ(t, x)− ρ(t, y)|

2
(|divu(t, x)|+ |divu(t, y)|.

Hence, we obtain

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) dx dy

= k

∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k+1

w(t, x)w(t, y) (u(t, x)− u(t, y)) · x− y
|x− y|

dx dy

+ 2

∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) (|divu(t, x)|+ |divu(t, y)|) dx dy

− λ
∫

Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k

w(t, x)w(t, y) (M |∇u|(t, x) +M |∇u|(t, y)) dx dy

+
1

2

∫
Π2 d

|divu(t, x)− divu(t, y)|
(h+ |x− y|)k

(ρ(t, x) + ρ(t, y)) dx dy.

The rest follows as before with only the last term remaining. �

Lemma 1.3.4 does not need to be modified and thus from Prop. 1.3.8, we
may deduce

Theorem 1.3.9. Assume that u ∈ L1([0, T ], W 1,p(Π2d)) with p > 1 and that
there exists a renormalized solution ρ ∈ L∞([0, T ], Lq(Π2d)) to Eq. (1.7) with
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1/p+ 1/q ≤ 1. Then for any α > 0∫
Π2 d

|ρ(t, x)− ρ(t, y)|
(h+ |x− y|)k

1 ∧ ρ(t, x) 1 ∧ ρ(t, y) dx dy

≤ h−α
∫

Π2 d

|ρ0(x)− ρ0(y)|
(h+ |x− y|)k

dx dy

+
1

2hα

∫ t

0

∫
Π2 d

|divu(s, x)− divu(s, y)|
(h+ |x− y|)k

(ρ(t, x) + ρ(t, y)) dx dy ds

+ C
λhd−k

| log h|1−1/r
‖u‖1−1/q

L1([0, T ], W 1,p(Π2d))
‖ρ‖2−1/q

L∞([0, T ], Lq(Π2d))
,

for some constant C depending only on the dimension d and α.

Compared to the result for the advective equation (1.5), this new estimate
includes a term with divu(t, x)−divu(t, y). As we have seen early on, it is natural
that the regularity of ρ involve the corresponding regularity of divu.

As before the regularity is obtained only where ρ does not vanish. However
there is an added twist that shows grounds for some optimism here, as now ρ is
the same function for weight and for the regularity.

So for instance if ρ(t, x) = ρ(t, y) = 0 then obviously one has as well that
ρ(t, x)− ρ(t, y) = 0 and there is nothing to control.

Unfortunately this does not quite work: The problem occurs when only one
of ρ(t, x) or ρ(t, y) vanishes (or is small). If ρ(t, y) = 0 then Theorem 1.3.9 does
not provide any bound and therefore ρ(t, x)− ρ(t, y) could well be large.

The problem is that we are using the products, 1∧ρ(t, x) 1∧ρ(t, y) and earlier
w(t, x)w(t, y), as weights. Instead one would like to work with weights which only
vanish if both ρ(t, x) and ρ(t, y) vanish; a good example is the sum

1 ∧ ρ(t, x) + 1 ∧ ρ(t, y), w(t, x) + w(t, y).

Contrary to what it may first seem, this will impose major changes in our approach.
Theorem 1.3.9 compares between them “good” trajectories and we would now have
compare a “good” to a “bad” trajectory. This will require proving that there are
not too many bad trajectories around a good one and forces to move away from
Lagrangian approaches.
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Chapter 2

Examples of Eulerian
approaches: Renormalized
solutions

We now start by reviewing the classical notion of renormalized solutions. Those
provide the basic tools to obtain well posedness for the various equations (or
auxiliary equations) and are hence useful to justify our formal calculations. By
emphasizing the notion of commutator estimates central to Eulerian approaches,
they also lead to the method presented at the end of this chapter which is finally
able to answer our main question.

2.1 Basic notions of renormalized solutions

Renormalized solutions were introduced in the seminal [24]. This was the first
result to obtain well posedness for transport equations with velocity fields in W 1,p.
And whereas almost all previous contributions were based on the study of the
characteristics, [24] introduced a purely Eulerian method from which one could
deduce the properties of the ODE and the flow if so desired.

We recall here our conservative or continuity equation

∂tρ+ div (ρ u) = 0, ρ|t=0 = ρ0, (2.1)

and its dual advective form

∂tφ+ u · ∇φ = 0, φ|t=0 = φ0. (2.2)

Following the presentation of the theory given in [22], one first defines
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Definition 2.1.1. A function ρ ∈ L∞([0, T ], Lq(Πd)) is a renormalized solution
to Eq. (2.1), where u ∈ L1([0, T ], Lp(Πd)) and divu ∈ L1([0, T ], Lp(Πd)) with
1/p+ 1/q ≤ 1, if ρ is a weak solution and for any χ ∈ C1 ∩W 1,∞(R), one has in
the sense of distributions

∂tχ(ρ) + div (χ(ρ)u) = div u (χ(ρ)− ρχ′(ρ)). (2.3)

Remark that the various products ρu, χ(ρ)u from the assumed bounds on
ρ, u and divu since |χ(ρ)| ≤ C + C |ρ|. Of course a similar definition could be
introduced for the advective form (2.2).

Ideally for a given velocity field u, all weak solutions would automatically be
renormalized, leading to the definition

Definition 2.1.2. Assume that u ∈ L1([0, T ], Lp(Πd)), divu ∈ L1([0, T ], Lp(Πd)).
The equation 2.1 is said to have the renormalization property for this particular u
if any weak solution ρ ∈ L∞([0, T ], Lq(Πd)) with 1/p+ 1/q ≤ 1 is renormalized.

Readers will immediately perceive the convenience of having renormalized
solution as it easily allows to manipulate various non-linear quantities. However
the key point is that a renormalized equation is essentially well-posed. Starting
with uniqueness

Theorem 2.1.3 ([24]). Assume u ∈ L1([0, T ], Lp(Πd)), divu ∈ L1([0, T ], Lp(Πd)).
Assume moreover that the equation 2.1 has the renormalization property for u.
Then there exists at most one weak solution ρ ∈ L∞([0, T ], Lq(Πd)) with 1/p +
1/q ≤ 1 for a given ρ0.

Proof. Given two solutions ρ1 and ρ2 in L∞([0, T ], Lq(Πd)), we define ρ = ρ1−ρ2.
ρ is also a weak solution and hence a renormalized one.

Choose a sequence χn ∈ C1 ∩W 1,∞ s.t. χn(ξ) → |ξ| in L∞. By applying
the definition of renormalized solution to χn(ρ) and passing to the limit in n, one
finds that in the sense of distributions

∂t|ρ|+ div (|ρ|u) = 0.

Let us now use the function constant and equal to 1 as test function; one has that

d

dt

∫
Πd
|ρ(t, x)| dx = 0.

Since ρ0 = 0, we conclude that ρ(t, x) = 0 for a.e. t, x. �

Existence can be obtained trivially but is a priori more demanding as it
requires a L∞ bound on the divergence

Theorem 2.1.4. Assume u ∈ L1([0, T ], Lp(Πd)) for p < ∞, and assume now
that divu ∈ L1([0, T ], L∞(Πd)). Then for a given ρ0 ∈ Lq(Πd) with q > 1 and
1/q + 1/p ≤ 1, there exists at least one weak solution ρ ∈ L∞([0, T ], Lq(Πd)) to
Eq. (2.1) .
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Proof. We consider a sequence of smooth (for example Lipschitz) un which con-
verges to u in L1([0, T ], Lp(Πd)). Since un is smooth, the Cauchy-Lipschitz theory
provides a sequence ρn of solutions to

∂tρn + div (ρn un) = 0, ρn|t=0 = ρ0.

Since divu ∈ L1([0, T ], L∞(Πd)), it is possible to choose the sequence un s.t.

sup
n
‖divu‖L1([0, T ], L∞(Πd)) <∞.

On the other hand a direct calculation shows that

‖ρn(t, .)‖q
Lq(Πd)

≤ (q − 1) ‖ρn(t, .)‖q
Lq(Πd)

exp ‖divu‖L1([0, T ], L∞(Πd)).

Therefore ρn is uniformly bounded in L∞([0, T ], Lq(Πd)). We may hence extract
a weak-* subsequence converging to ρ ∈ L∞([0, T ], Lq(Πd)).

Passing to the limit in every term, one obtains a weak solution to (2.1). �

This existence result does not use the renormalization property and it is
natural to ask if it can be improved so that we may obtain strong convergence of
the sequence of approximation. We give such an argument below based on using
χ(ξ) = ξ log ξ which forms the basis of the compactness method introduced in [37]
for the compressible Navier-Stokes.

Theorem 2.1.5 ([24, 37]). Consider a sequence un converging strongly to u ∈
L1([0, T ], Lp(Πd)) for p < ∞, and assume moreover that divun converges to
divu ∈ L1([0, T ], L∞(Πd)). Consider further any sequence ρn of renormalized
solutions to

∂tρn + div (ρn un) = 0.

Assume that ρn is uniformly bounded in ρ ∈ L∞([0, T ], Lq(Πd)) with q > 1
and 1/q + 1/p ≤ 1, that ρn converges weak-* to ρ, that ρ0

n converges strongly to
ρ0 ∈ Lq(Πd) and that ρ is a renormalized solution to (2.1). Then ρn converges
strongly to ρ in L1([0, T ]×Πd).

Proof. First of all remark that we may use χ(ξ) = ξ log ξ in the definition of a
renormalized solution even though χ 6∈ W 1,∞. Consider any velocity field u ∈
L1([0, T ], Lp(Πd)) with divu ∈ L1([0, T ], Lp(Πd)), and a renormalized solution
to (2.1), ρ ∈ L∞([0, T ], Lq(Πd)) with 1/p+ 1/q < 1.

Choose any sequence χk ∈ C1∩W 1,∞ converges pointwise to χ and bounded
by χ(ξ) for ξ large. Since 1/p+1/q < 1, it is straightforward to check that χk(ρ)u
converges to χ(ρ)u and that Eq. (2.3) holds for χ(ξ) = ξ log ξ.

We first apply this to ρn and un to find that

∂tρn log ρn + div (ρn log ρn un) = −divun ρn.
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We may pass to the limit in this equation. But of course since we have not proved
compactness of ρn yet, we cannot identify the weak-* limit of ρn. Let us hence
denote

ρ log ρ = weak-* lim ρn log ρn.

We obtain

∂tρ log ρ+ div (ρ log ρ u) = −divu ρ.

From the proof of Theorem 2.1.4, we know that ρ and u solve (2.1) which by
assumption has the renormalization property. Therefore we also have

∂tρ log ρ+ div (ρ log ρ u) = −divu ρ.

By taking the difference and integrating over Πd, this leads to

d

dt

∫
Πd

(ρ log ρ− ρ log ρ) dx = 0.

By the compactness of ρ0
n, we finally deduce that∫

Πd
(ρ log ρ− ρ log ρ) dx = 0.

But by the convexity of χ = ξ log ξ, one has that

ρ log ρ− ρ log ρ ≥ 0,

concluding that

ρ log ρ = ρ log ρ,

and proving the compactness of ρn. �

Th. 2.1.5 is our first result proving compactness of a sequence ρn without
any assumption of boundedness on the divergence or any comparable assumption
on the vacuum. Of course it does not provide a quantitative regularity estimate
and it relies explicitly on the structure of the limit equation, which can be a clear
drawback to study non-linear coupled models. It also remains an if-theorem at this
stage as we have not yet found any sufficient condition on u to guarantee that Eq.
(2.1) has the renormalization property. This will be the object of the next chapter
around the so-called commutator estimates.

One may make a last remark on our approach so far, which is the requirement
that 1/p + 1/q ≤ 1. We of course need to make sense of the product ρ u but also
of the product ρdivu. However this last requirement does not seem optimal as a
more clever use of the renormalization χ should make it unnecessary. This is in
fact the basis for the improvement on the Lions theory developed in particular in
[28, 29].
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2.2 Proving the renormalization property: Commuta-
tor estimates

The main breakthrough of [24] was to present a very straightforward proof of

Theorem 2.2.1 ([24]). Assume that u ∈ L1([0, T ], W 1,p(Πd)), then Eq. (2.1) has
the renormalization property.

Obviously if u ∈ L1([0, T ], W 1,p(Πd)) then divu ∈ L1([0, T ], Lp(Πd)) and
all the results of the previous section automatically apply. There are even more
consequences to having the renormalization property and we refer again to [4, 22]
for a more thorough treatment.

The ideas introduced in [24] started a now very active field of research about
the minimal conditions on u guaranteeing that (2.1) has the renormalization prop-
erty. A crucial initial effort culminated in [3] (after corresponding results in the
kinetic case in [9]) to lower the requirement to u ∈ L1

tBVx with divu ∈ L1
t,x, which

is critical to many applications to hyperbolic systems. In view of the counterex-
ample developed in [23], the BV regularity seems to be optimal in such a general
setting.

The commutator estimates can also be partially translated on the charac-
teristics as in [31] and renormalized solutions applied to various settings such as
degenerate diffusion in [34].

It is possible to study further the regularity of renormalized solutions to (2.1);
almost everywhere differentiability in [5] for instance. But as we mentioned before
the first quantitative regularity estimate had been obtained in [21].

Proof. Consider any ρ ∈ L∞([0, T ], Lq(Πd)), weak solution to (2.1). For any
χ ∈ C1 ∩W 1,∞, we have to prove that (2.3) holds. If ρ was smooth then showing
(2.3) would be a straightforward consequence of the chain rule. The main idea in
the proof of Th. 2.2.1 is hence simply to regularize ρ by convolution.

Hence choose any smooth K ∈ C1(Πd) with suppK concentrated near 0 so
that Kε(x) = ε−dK(x/ε) is an approximation of the identity as ε→ 0.

Denote ρε = Kε ? ρ. ρε cannot solve (2.1) exactly (unless u is constant) but
one may write

∂tρε + div (ρε u) = Rε, (2.4)

where the commutator reads

Rε(x) =

∫
Πd
∇Kε(x− y) · (u(t, x)− u(t, y)) ρ(t, y) dy + ρε(t, x) divu(t, x). (2.5)

The heart of the method is hence to prove through a commutator estimate that
Rε converges strongly to 0. For a fixed ρ and u, this is straightforward through

Proposition 2.2.2 (Commutator estimate from [24]). u ∈ L1([0, T ], W 1,p(Πd))
and that ρ ∈ L∞([0, T ], Lq(Πd)) then Rε −→ 0 in L1([0, T ] × Πd) as ε → 0
where Rε is defined by (2.5).
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Assuming for the time being that Prop. 2.2.2 holds, we can easily conclude.
Now ρε is smooth and we may apply the chain rule on Eq. (2.4) to find

∂tχ(ρε) + div (χ(ρε)u) = divu (χ(ρε)− ρε χ′(ρε)) + χ′(ρε)Rε.

Since χ′ is bounded we know from the proposition that χ′(ρε)Rε → 0.
Since Kε is an approximation of the identity as ε → 0, then ρε converges

strongly to ρ in Lr([0, T ], Lq(Πd)) for any r < ∞. Therefore χ(ρε) converges
strongly to χ(ρε) in the same space. Therefore χ(ρε) converges weak-* to χ(ρ) in
L∞([0, T ], Lq(Πd)). Passing to the limit in each term in Eq. (2.4), we deduce Eq.
(2.3).

Proof of proposition 2.2.2. There only remains to prove Prop. 2.2.2. Note that for
a.e. x, y

u(t, x)− u(t, y) =

∫ 1

0

(x− y) · ∇u(t, θ x+ (1− θ) y) dθ,

which lets us write∫
Πd
∇Kε(x− y) · (u(t, x)− u(t, y)) ρ(t, y) dy

=

∫ 1

0

∫
Πd

(x− y)⊗∇Kε(x− y) : ∇u(t, θ x+ (1− θ) y) ρ(t, y) dy dθ.

Remark that

(x−y)⊗∇Kε(x−y) = ε−d
x− y
ε
⊗∇K((x−y)/ε) = ε−d L((x−y)/ε) = Lε(x−y),

with L(x) = x⊗∇K(x). Observe that by integration by parts∫
Πd
Lij(x) dx =

∫
Πd
xi ∂jK(x) dx = −δij

∫
Πd
K(x) dx = −δij .

Hence as a convolution operator, Lε is an approximation of δ I with I the identity
matrix. Therefore strongly in L1∫ 1

0

∫
Πd

(x−y)⊗∇Kε(x−y) : ∇u(t, θ x+(1−θ) y) ρ(t, y) dy dθ −→ −divu(t, x) ρ(t, x),

proving that Rε −→ 0 in L1. �

As simple as the previous proof is, since we are looking for quantitative esti-
mates, a natural question is whether it would be possible to quantify the previous
argument and in particular Prop. 2.2.2. This does not seem easy as it would imply
giving an explicit rate of convergence on the commutator Rε without using any
additional regularity on ρ or ∇u.

Such an approach was nevertheless initiated in [6] and simplified in [7] from
which we quote
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Proposition 2.2.3. Let 1 < p <∞, ∃C <∞ depending only on p and the dimension
s.t. ∀u ∈W 1,p(Πd) with 1 ≤ p ≤ 2 and ∀g ∈ L2p∗ with 1/p∗ = 1− 1/p,∫

Π2d

∇Kh (x− y) (u (x)− u (y)) |g (x)− g (y)|2 dx dy

≤ C ‖∇u‖B0
p,q
|log h|1−1/q ‖g‖2L2 p∗

+ C ‖divu‖L∞
∫
R2d

Kh (x− y) |g (x)− g (y)|2 dx dy,

where Kh(x) = (h+ |x|)d for x small enough.
In particular using q = 2,∫

Π2d

∇Kh (x− y) (u (x)− u (y)) |g (x)− g (y)|2 dx dy

≤ C ‖∇u‖Lp |log h|1/2 ‖g‖L2 p∗

+ C ‖divu‖L∞
∫
R2d

Kh (x− y) |g (x)− g (y)|2 dx dy.

The proof of this proposition will not be given here, as it is rather complex
and requires a careful analysis of the cancellations in the expression. We emphasize
that this commutator estimate only works for kernels with the critical singularity
in |x|−d at x = 0; we will understand better the reason for that in the next section.

The straightforward estimate would give∫
Π2d

∇Kh (x− y) (a (x)− a (y)) |g (x)− g (y)|2 dx dy ∼ | log h|,

and therefore Prop. 2.2.3 gains a factor | log h|1/2 as a rate of convergence and
would later yield a corresponding gain of derivative. We are hence again, as in the
first chapter, at a log scale for the gain of regularity.

The underlying result behind Prop. 2.2.3 has recently been improved in [43]
to a gain of a full | log h| (at the cost of a much more complicated analysis), see
also [35]. This kind of critical semi-norm has also been used in other contexts, see
for example [11].

However from our point of view in these notes, the major drawback of Prop.
2.2.3 is that it requires divu to be bounded. There are major benefits to having
a self contained and quantitative commutator estimate, which would be more
apparent if we were to consider vanishing viscosity or other approximations of
(2.1). But our goal of obtaining estimates that do not require a bounded divergence
will instead lead us to combine some of the ideas in the proof of Prop. 2.2.3 with
the Lagrangian approach (or the Eulerian formulation of the Lagrangian approach)
explained in the previous chapter.
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2.3 The log log scale for compressible transport equa-
tions

We here present the main estimate of these notes for the linear convective equation
(2.1). This estimate will also form the basis for the analysis of some simple non-
linear models in the next chapter. We follow closely here [16, 17] where the method
has been introduced.

2.3.1 Technical preliminaries

As we had seen in the previous chapter, there is a technical difficulty if we try
to use weights like w(t, x) + w(t, y). To be more precise here, we would have to
try (and fail) to control M |∇uk|(y) by M |∇uk|(x). Instead we have to be more
precise than (1.10) in order to avoid this and use more sophisticated tools. First
one replaces (1.10) by

Lemma 2.3.1. There exists C > 0 s.t. for any u ∈W 1,1(Πd), one has

|u(x)− u(y)| ≤ C |x− y| (D|x−y|u(x) +D|x−y|u(y)),

where we denote

Dhu(x) =
1

h

∫
|z|≤h

|∇u(x+ z)|
|z|d−1

dz.

Proof. A full proof of such well known result can for instance be found in [18]
in a more general setting namely u ∈ BV . One possibility is simply to consider
trajectories γ(t) from x to y which stays within the ball of diameter |x − y| to
control

|u(x)− u(y)| ≤
∫ 1

0

γ′(t) · ∇u(γ(t)) dt.

And then to average over all such trajectories with length of order |x− y|. �

Note that this result actually implies the estimate (1.10) as one can check,
through a simple dyadic decomposition, that there exists C > 0, for any u ∈
W 1,p(Πd) with p ≥ 1

Dh u(x) ≤ CM |∇u|(x). (2.6)

We leave such proof to the reader and instead emphasize that the key improvement
in using Dh is that small translations of the operator Dh are actually easy to
control.

Let us first specify precisely the kernel Kh that we will use from now on.
Choosing [−1, 1]d as a representative of the torus Πd, we choose Kh ∈W 1,∞ with

Kh(x) =
1

(h+ |x|)d
, for |x| ≤ 1

2
, 0 ≤ Kh(x) ≤ 1, suppKh ⊂ [−3/4, 3/4]d.

(2.7)
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We insist here about the precise exponent d in Kh which is critical for integrability
and that we have seen in Prop. 2.2.3. In particular

| log h|
C

≤
∫

Πd
Kh(x) dx ≤ C | log h|.

We hence also define the normalized kernel

Kh(x) =
Kh(x)∫

Πd
Kh(y) dy

, (2.8)

which is now a standard convolution kernel or approximation of identity.

The main point here is the estimate

Lemma 2.3.2. For any 1 < p <∞, there exists C > 0 s.t. for any u ∈ H1(Πd)∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz ≤ C ‖u‖B1

p,1
, (2.9)

where B1
p,1 is the classical Besov space. As a consequence for any 1 < p < 2∫

Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz ≤ C | log h|1/2 ‖u‖W 1,p . (2.10)

This lemma is in fact a corollary of a classical result

Lemma 2.3.3. For any 1 < p < ∞, any family Lr of kernels satisfying for some
s > 0∫

Lr = 0, sup
r

(‖Lr‖L1 + rs ‖Lr‖W s,1) ≤ CL, sup
r
r−s

∫
|z|s |Lr(z)| dz ≤ CL.

(2.11)
Then there exists C > 0 depending only on CL above s.t. for any u ∈ Lp(Πd)∫ 1

0

‖Lr ? u‖Lp
dr

h+ r
≤ C ‖u‖B0

p,1
. (2.12)

As a consequence for p ≤ 2∫ 1

0

‖Lr ? u‖Lp
dr

h+ r
≤ C | log h|1/2 ‖u‖Lp . (2.13)

Remark. The bounds (2.10) and (2.13) could also be obtained by straightforward
application of the so-called square function, see the book written by E.M. Stein
[45].
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Proof of Lemma 2.3.2 assuming Lemma 2.3.3. Using spherical coordinates∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz

≤ C
∫
Sd−1

∫ 1/2

0

‖Dr u(.)−Dr u(.+ r ω)‖Lp
dr

r + h
dω.

Denote

Lω(x) =
I|x|≤1/2

|x|d−1
−

I|x−ω|≤1/2

|x− ω|d−1
, Lω,r(x) = r−d Lω(x/r),

and remark that Lω ∈ W s,1 with a norm uniform in ω and with support in the
unit ball. Moreover

Dru(x)−Dru(x+ rω) =

∫
|∇u|(x− r z)Lω(z) dz = Lω,r ? |∇u|.

We hence apply Lemma 2.3.3 since the family Lω,r satisfies the required hypothesis
and we get ∫ 1

h0

‖Lω,r ?∇u‖Lp
dr

r
≤ C ‖u‖B1

1,p
,

with a constant C independent of ω and so∫ 1

h0

∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz dh

≤ C
∫
Sd−1

∫ 1

h0

‖Lω,r ?∇u‖Lp
dr

r
dω ≤ C

∫
Sd−1

‖u‖B1
1,p
dω,

yielding (2.9). The bound (2.10) is deduced in the same manner. �

2.3.2 Propagating regularity with weights

We now come back to the basic strategy outlined at the end of the previous chapter
and consider again the auxiliary equation on the weights

∂tw + u · ∇xw = −λM |∇u|w −Dw, (2.14)

where we allow for an abstract additional penalization D(t, x) which we will need
in the next chapter.

By using the tools for renormalized solutions that we briefly explained at the
beginning of the chapter, one can ensure

Lemma 2.3.4. Assume D ≥ 0, u ∈ L1([0, T ], W 1,p(Πd)), then there exists a
renormalized solution to Eq. (2.14).
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We skip the proof of Lemma 2.3.4 which essentially follows the existence
strategy of Th. 2.1.4 while using Th. 2.2.1 for the renormalization property.

We are now ready to prove an equivalent of Prop. 1.3.1 or Prop. 1.3.8 but
for the weight w(t, x) + w(t, y).

Proposition 2.3.5. Assume u ∈ L1([0, T ], W 1,p(Πd)), ρ ∈ L∞([0, T ], Lq(Πd)) is
a renormalized solution to Eq. (2.1) with 1/p+1/q ≤ 1. Then for w a renormalized
solution to Eq. (1.14) with λ large enough, one has that for any h∫

Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤
∫

Π2 d

|ρ0(x)− ρ0(y)|Kh(x− y) dx dy

+ C | log h|1/2 ‖u‖L1([0, T ], W 1,p(Πd)) ‖ρ‖L∞([0, T ], Lq(Πd))

− 2

∫ t

0

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x) dx dy dt

− 2

∫ t

0

∫
Π2 d

(divu(t, x)− divu(t, y))Kh w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy dt,

where s(x, y) = sign(ρ(t, x)− ρ(t, y)).

Proof. The argument initially follows the same steps as Prop. 1.3.1 or Prop. 1.3.8.
We first specify more (for further use in the next chapter) the equation

∂t|ρ(t, x)− ρ(t, y)|+ u(x) · ∇x|ρ(t, x)− ρ(t, y)|+ u(y) · ∇y|ρ(t, x)− ρ(t, y)|

=
divu(t, y)− divu(t, x)

2
(ρ(t, x) + ρ(t, y)) s(x, y)

− |ρ(t, x)− ρ(t, y)|
2

(divu(t, x) + divu(t, y)),

where again s(x, y) = sign(ρ(t, x)−ρ(t, y)) and where we can now fully justify the
calculations as ρ is a renormalized solution. Multiplying by w(t, x) + w(t, y) and
using Eq. (2.14) and the symmetry between x and y, we find the modified

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ 2

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)∇Kh(x− y) · (u(t, x)− u(t, y)) dx dy

+

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh w(t, x) (divu(t, x) + divu(t, y)) dx dy

− 2

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh w(t, x) (D + λM |∇u|(t, x)) dx dy

−
∫

Π2 d

(divu(t, x)− divu(t, y))Kh w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy.
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Remark that∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh w(t, x) divy u(t, y)) dx dy

=

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh w(t, x) divu(t, x)) dx dy

−
∫

Π2 d

(divu(t, x)− divu(t, y))Kh w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy.

Recalling that div u(t, x) ≤M |∇u|(t, x), we may thus simplify for λ large enough

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ 2

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)∇Kh(x− y) · (u(t, x)− u(t, y)) dx dy

− λ
∫

Π2 d

|ρ(t, x)− ρ(t, y)|Kh w(t, x)M |∇u|(t, x) dx dy

− 2

∫ t

0

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x) dx dy dt

− 2

∫
Π2 d

(divu(t, x)− divu(t, y))Kh w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy,

and we are back to our commutator estimate. However now we cannot use estimate
(1.10) as we would then have to bound w(t, x)M |∇u|(t, y) by w(t, x)M |∇u|(t, x)
which is simply not possible absent some more regularity on ∇u.

Instead we use Lemma 2.3.1 to bound∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)∇Kh(x− y) · (u(t, x)− u(t, y)) dx dy

≤ C
∫

Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x) (1 +Kh) (D|x−y|u(t, x) +D|x−y|u(t, y)) dx dy,

since we recall that for small x, |∇Kh(x)| ≤ C |x|−1Kh(x) and that Kh is smooth
for x of order 1.

By (2.6), we may bound directly the term without Kh∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x) (D|x−y|u(t, x) +D|x−y|u(t, y)) dx dy

≤ ‖ρ(t, .)‖Lq(Πd) ‖M |∇u(t, .)|‖Lp(Πd).

As for the other term, we may now use Lemma 2.3.2 to move D|x−y|u(t, y) to
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D|x−y|u(t, x). By a change of variable∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)KhD|x−y|u(t, y) dx dy

=

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)KhD|x−y|u(t, y) dx dy

+

∫
Π2 d

|ρ(t, x)− ρ(t, x+ z)|w(t, x)Kh(z) (D|z|u(t, x+ z)−D|z|u(t, x)) dx dz.

Therefore∫
Π2 d

|ρ(t, x)− ρ(t, x+ z)|w(t, x)Kh(z) (D|z|u(t, x+ z)−D|z|u(t, x)) dx dz

≤
∫

Πd
‖ρ(t, .)− ρ(t, .+ z)‖Lq Kh(z) ‖D|z|u(t, .+ z)−D|z|u(t, .)‖Lp dz

≤ C | log h|1/2 ‖ρ(t, .)‖Lq(Πd) ‖u‖W 1,p ,

by bounding ‖ρ(t, .) − ρ(t, . + z)‖Lq ≤ 2‖ρ(t, .)‖Lq(Πd) and a direct application of
Lemma 2.3.2. We want to emphasize here that this is the key part of the proof.
Even though it remains relatively straightforward technically (also thanks to the
preliminaries), this is what forces us to use this specific Kh.

Combining those estimates, we get that

d

dt

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ 2

∫
Π2 d

|ρ(t, x)− ρ(t, y)|w(t, x)Kh(x− y)D|x−y|u(t, x) dx dy

− 2

∫ t

0

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y)w(t, x) dx dy dt

− λ
∫

Π2 d

|ρ(t, x)− ρ(t, y)|Kh w(t, x)M |∇u|(t, x) dx dy

+ C | log h|1/2 ‖ρ(t, .)‖Lq(Πd) ‖u‖W 1,p

− 2

∫
Π2 d

(div, u(t, x)− divu(t, y))Kh w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy,

which lets us conclude the proof by applying (2.6) and integrating in time. �

2.3.3 The final estimate

We are now ready to state the concluding result of our linear analysis,

Theorem 2.3.6. Assume u ∈ L1([0, T ], W 1,p(Πd)), ρ ∈ L∞([0, T ], Lq(Πd)) is a
renormalized solution to Eq. (2.1) with 1/p+ 1/q ≤ 1. Assume that∫

Πd
‖divu(t, .)− divu(t, .+ z)‖L1([0, T ], Lp(Πd))Kh(z) dz ≤ L,
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and that ∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy ≤ L.

Then there exists a constant C depending only the dimension and L such that one
has that for any h∫

Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy ≤ C N | log h|
log | log h|

,

with
N = (1 + ‖ρ‖L∞([0, T ], Lq(Πd))) (1 + ‖u‖L1([0, T ], W 1,p(Πd))).

This is the result that we had been looking for:

• It does not require any bound on divu or on the Jacobian of the flow in
general. It only requires one solution ρ bounded in some Lq.

• It provides an explicit regularity estimate on the solution ρ. And it only
requires minimal regularity on divu (in fact any compactness on divu would
give compactness on ρ by an easy modification of the proof).

Th. 2.3.6 essentially provides a log log derivative on ρ. This appears to be a new
scale in the problem (recall that we had a log scale previously), one that is due to
possible concentration or vacuum.

Proof. Remark that by a change of variable∫ t

0

∫
Π2 d

(divu(t, x)− divu(t, y))Kh w(t, x) (ρ(t, x) + ρ(t, y)) s(x, y) dx dy dt

≤ 2

∫
Πd
‖divu(t, .)− divu(t, .+ z)‖L1([0, T ], Lp(Πd))Kh(z) ‖ρ‖L∞([0, T ], Lq(Πd)) dz

≤ L ‖ρ‖L∞([0, T ], Lq(Πd))

Then we choose D = 0 and since there exists a weight by Lemma 2.3.4, we may
directly apply Prop. 2.3.5 to find∫

Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ L (1 + ‖ρ‖L∞([0, T ], Lq(Πd)))

+ C | log h|1/2 ‖u‖L1([0, T ], W 1,p(Πd)) ‖ρ‖L∞([0, T ], Lq(Πd))

≤ N (L+ C | log h|1/2).

where we recall the definition of N

N = (1 + ‖ρ‖L∞([0, T ], Lq(Πd))) (1 + ‖u‖L1([0, T ], W 1,p(Πd))).
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Now it only remains to remove the weight w(t, x) +w(t, y). But those only vanish
if both w(t, x) and w(t, y) vanish. Defining

Ω = {x, w(t, x) ≤ η},

we may simply write∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy ≤
∫

Ω2

. . .+

∫
x 6∈Ω or y 6∈Ω

. . .

If x 6∈ Ω or y 6∈ Ω then w(t, x) + w(t, y) ≥ η, thus∫
x 6∈Ω or y 6∈Ω

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy

≤ 1

η

∫
Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) (w(t, x) + w(t, y)) dx dy

≤ N

η
(L+ C | log h|1/2).

On the other hand by symmetry∫
Ω2

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy ≤ C | log h|
∫

Ω

ρ(t, x) dx

≤ C | log h|
| log η|

∫
Πd
| logw| ρ(t, x) dx

≤ C | log h|
| log η|

N,

by Lemma 1.3.4 which we may directly use as we chose D = 0.
Finally∫

Π2 d

|ρ(t, x)− ρ(t, y)|Kh(x− y) dx dy ≤ C | log h|
| log η|

N +
N

η
(L+ C | log h|1/2),

which finishes the proof by choosing for example η = | log h|−1/4. �
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Chapter 3

Example of application: A
coupled Stokes system

3.1 The compressible Navier-Stokes’ system

The theory introduced in the last section of the previous chapter had in fact been
developed in [16] for the study of the compressible Navier-Stokes system in various
unstable regimes such as non monotone pressure laws or anisotropic stress tensors.

In its simplest form the Navier-Stokes system reads{
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇p(ρ) = ρf,

(3.1)

with 2µ/d + λ, and p is the barotropic pressure law (s 7→ p(s) given) which is
typically continuous on [0,+∞), and locally Lipschitz on (0,+∞). The initial
condition reads

ρ|t=0 = ρ0, (ρu)|t=0 = m0.

The main difficulty in obtaining global existence for system (3.1) is to prove com-
pactness of the density ρ which exactly solves the continuity equation that was
the object of our previous investigations.

The first global existence result has been obtained in [37], using the (non-
quantitative) theory for renormalized solution introduced at the beginning of the
second chapter. This was the start of many works, for instance [19, 47, 20], pushing
the theory and in particular the required growth at infinity of the pressure. Those
culminated in the estimates in [27, 30] and exposed at length in [28] (see also
[39]). This also enabled to treat the more physically realistic Navier-Stokes-Fourier
system for which we refer to [29]. We also mention the recent [42] which is able to
handle the isothermal system.

While system (3.1) is written with a constant viscosity, realistic physical
settings often involve density dependent viscosities. This requires a different type
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of approach with new regularity estimates explicited in [14], new integrability
bounds in [38], and leading to the existence of weak solutions in this setting in
[15, 48]. Those regularity estimates are based on a two-velocity interpretation of
the Navier-Stokes system, which has several other applications as in [40].

The Navier-Stokes system is also a classical model for geophysical flows as il-
lustrated in [26] and [46]. We finally refer to [12] for an example of recent important
topics.

Because the classical theory of existence relies on non-quantitative regularity
estimates for ρ, it requires pressure laws that are thermodynamically stable. We
hence conclude this introduction by quoting, as an illustration, one of the results
from [16]. The assumption on the pressure are only that there exists C > 0 with

C−1ργ − C ≤ p(ρ) ≤ Cργ + C (3.2)

and for all s ≥ 0
|p′(s)| ≤ p̄sγ̃−1. (3.3)

This allows oscillating pressure laws, alternating stable and unstable regions. Nev-
ertheless this still leads to global existence as per

Theorem 3.1.1. Assume that the initial data u0 and ρ0 satisfies the bound

E0 =

∫
Πd

(
ρ0 |u0|2

2
+ ρ0e(ρ0)

)
dx < +∞.

Let the pressure law p satisfies (3.2) and (3.3) with

γ >
(
max(2, γ̃) + 1

) d

d+ 2
. (3.4)

Then there exists a global weak solution of the compressible Navier–Stokes system
(3.1). Moreover the solution satisfies the explicit regularity estimate∫

Π2d

1ρk(x)≥η 1ρk(y)≥ηKh(x− y)χ(δρk) ≤ C ‖Kh‖L1

η1/2 | log h|θ/2
,

for some θ > 0.

3.2 The result on the Stokes’ system

In the rest of this chapter, we mostly follow the presentation in [17] and focus on
a example of application, namely the coupled Stokes’ system{

∂tρ+ div(ρu) = 0,
−µ∆u+ αu+∇p(ρ) = S,

(3.5)

with µ, α > 0 endowed with the following initial condition

ρ|t=0 = ρ0. (3.6)
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In addition of being a limit of the compressible Navier-Stokes system (3.1) in some
regime, system (3.5) (with many variants) is commonly used to model various
biological systems, tumor for example in [13, 25, 41].

We consider a pressure law p which is continuous on [0,+∞), p locally Lips-
chitz on (0,+∞) with p(0) = 0 such that there exists C > 0 with

C−1ργ − C ≤ p(ρ) ≤ Cργ + C, (3.7)

and for all s ≥ 0
|p′(s)| ≤ p̄sγ−1. (3.8)

One can then used the linear theory that we previously developed to prove

Theorem 3.2.1. Assume that S ∈ L2(0, T ; H−1(Πd)) and the initial data ρ0 sat-
isfies the bound

ρ0 ≥ 0, 0 < M0 =

∫
Πd
ρ0 < +∞, E0 =

∫
Πd
ρ0 e(ρ0) dx < +∞,

where e(ρ) =
∫ ρ
ρ?
p(s)/s2ds with ρ? a constant reference density. Let the pressure

law p satisfies (3.7) and (3.8) with γ > 1. Then there exists a global weak solution
(ρ, u) of the compressible system (3.5)–(3.6)with

ρ ∈ L∞(0, T ;Lγ(Πd)) ∩ L2γ((0, T )×Πd), u ∈ L2(0, T ;H1(Πd)).

Remark. As noted in [17], the regularity of S is not optimized and could be far
less smooth.

3.3 Sketch of the proof of Theorem 3.2.1

The proof of global weak solutions of PDEs is usually divided in three steps:

• A priori energy estimates,

• Stability of weak sequences: Compactness,

• Construction of approximate solutions.

We mostly focus on the first two points here as they best illustrate the main ideas.
We refer to [16, 17] for more technical precisions.

3.3.1 Construction of approximate solutions.

To keep our analysis simple, we in fact consider a sequence ρk, uk of solutions
to the exact system (3.5) and will prove that the limit of the sequence is also a
solution to (3.5). Even though it is not a complete proof, such a result of weak
stability gives the main ideas behind Theorem 3.2.1.
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We only briefly indicate in this subsection what would be the approximate
system from which (3.5) is obtained, namely{

∂tρk + div(ρkuk) = αk∆ρk,
−µ∆uk − (λ+ µ)∇divuk +∇pε(ρk) + αk∇ρk · ∇uk = S,

(3.9)

with the fixed source term S and the fixed initial data

ρk|t=0 = ρ0. (3.10)

The pressure pε is defined as follows:

pε(ρ) = p(ρ) if ρ ≤ c0,ε, pε(ρ) = p(C0,ε) + C(ρ− c0,ε)β if ρ ≥ c0,ε,

with a large enough β. We defer to [16, 17] and the references therein for the
existence of such an approximate system.

3.3.2 Energy estimates

Let us start with the basic kinetic energy estimate. Multiply the Stokes equation
by u and integrate by parts,

µ

∫
Πd
|∇uk|2 + α

∫
Πd
|uk|2 +

∫
Πd
∇p(ρk) · u =

∫
Πd
Sk · uk.

Now we write the equation satisfied by ρke(ρk) where e(ρk) =
∫ ρk
ρref

p(s)/s2ds, with
ρref a constant reference density,

∂t(ρe(ρ)) + div(ρe(ρ)u) + p(ρ)divu = 0.

Integrating in space and adding to the first equation we get

d

dt

∫
Πd
ρke(ρk) + µ

∫
Πd
|∇uk|2 =

∫
Πd
Sk · uk.

One only needs Sk ∈ L2([0, T ], H−1(Πd)) uniformly and using the behavior of p,
then we get the uniform bound

ργk ∈ L
∞(0, T ;L1(Πd)), uk ∈ L2(0, T ;H1(Πd)).

When now considering the compressible system (3.5), the divergence divuk
is given by

divuk =
1

µ
p(ρk) +

1

µ
∆−1divRk

with Rk = Sk − αuk. Therefore, since ρk ∈ L∞(0, T ;Lγ(Πd)), if we multiply by
ρθk, we obtain

I =

∫ T

0

∫
Πd
p(ρk)ρθk = µ

∫ T

0

∫
Πd

divukρ
θ
k −

∫ T

0

∫
Πd

∆−1divRk ρ
θ
k,
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which is easily bounded as follows

I ≤
[
µ‖divuk‖L2((0,T )×Πd) + ‖∆−1divRk‖L2((0,T )×Πd)

]
‖ρθk‖L2((0,T )×Πd)

Thus using the behavior of p and information on uk and Rk, we get for large
density ∫ T

0

∫
Πd

(ργ+θ) ≤ C + ε

∫ T

0

∫
Πd

(ρ2θ).

Thus we get a control on ργ+θ
k if θ ≤ γ. Therefore, we get ρk ∈ Lp((0, T ) × Πd)

with for any p ≤ 2 γ and in particular some p > 2 if γ > 1.

3.3.3 Stability of weak sequences: Compactness

From the energy estimates we can extract converging subsequences

Sk −→ S in L2
tH
−1
x ,

ρk −→ ρ weak-* in L∞t Lγx, L
2γ
t,x

uk −→ ρ weak-* in L2
tH

1
x.

This is enough to pass to the limit in every term of system (3.5) except for p(ρk).
This requires the compactness of ρk for which we prove the following result which
is the main part of the proof

Proposition 3.3.1. Assume (ρk, uk) are weak solutions to system (3.5) with a pres-
sure law satisfying (3.7)–(3.8) and with the following uniform bounds

sup
k
‖ργk‖L∞t L1

x
<∞, sup

k
‖ρk‖Lpt,x <∞ with p ≤ 2γ,

and

sup
k
‖uk‖L2

tH
1
x
<∞.

Assume moreover that the source term Sk is compact in L2([0, T ], H−1(Πd)) and
that the initial density sequence (ρk)0 is compact and hence satisfies

lim sup
k

[
1

| log h|

∫
Π2d

Kh(x− y)|(ρxk)0 − (ρyk)0|
]

= ε(h)→ 0 as h→ 0,

then ρk is locally compact.

Remark 3.3.2. Here and in the following, we use the convenient notation ρxk =
ρk(t, x), ρyk = ρk(t, y) and (ρxk)0 = ρk(t = 0, x), (ρyk)0 = ρk(t = 0, y). Similarly
wxk = wk(t, x), uxk = uk(t, x), wyk = wk(t, y), uyk = uk(t, y).
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Proof. Introduce as before the auxiliary equation on the weight wk

∂twk + uk · ∇wk = −λM |∇u|w − (1 + ργk)w. (3.11)

We start by using Prop. 2.3.5 from last chapter to find that∫
Π2d

Kh(x− y) |ρxk − ρ
y
k| (w

x
k + wyk) dx dy ≤ | log h| ε(h) + C | log h|1/2N +A

− 2

∫ t

0

∫
Π2d

Kh(x− y) (1 + (ρxk)γ)|ρxk − ρ
y
k|w

x
k dx dy dt

(3.12)

where

N = sup
k
‖ρk‖L2γ

t,x
‖uk‖L2

tH
1
x
,

A = −2

∫ t

0

∫
Π2d

(divuk(t, x)− divuk(t, y))Kh(x− y)wxk (ρxk + ρyk) sk(x, y) dx dy,

with sk(x, y) = sign(ρxk − ρ
y
k).

Use the relation between div uxk (respectively div uyk) with ρxk (respectively
ρyk), to obtain

A = −2

∫ t

0

∫
Π2d

Kh(x− y) (p(ρxk)− p(ρyk)) (ρxk + ρyk) sk w
x dx dy dt− 2

µ
Qh

where

Qh =

∫ t

0

∫
Π2d

Kh(x−y) (∆−1divRk(t, x)−∆−1divRk(t, y)) (ρxk+ρyk) sk w
x dx dy dt,

encodes the compactness in space of ∆−1divRk and therefore has the right be-
havior. Indeed in particular

1

| log h|

∫ t

0

∫
Π2d

Kh(x− y) (∆−1divRk(t, x)−∆−1divRk(t, y)) dx dy dt→ 0,

as h→ 0 since Rk is compact in L2
tH
−1
x and hence ∆−1divRk is compact in L2

t,x

by the gain of one derivative.
However the “bad” term p(ρyk)wxk cannot a priori be bounded directly with

weights, again because it mixes points x and y. We review the various configura-
tions

First note that we have ρxk + ρyk ≥ |ρxk − ρ
y
k|.

– Case 1: p(ρxk)−p(ρyk))(ρxk−ρ
y
k) ≥ 0. We then directly have that p(ρxk)−p(ρyk)) sk

and this yields the right sign and a dissipation term in A.

– Case 2: p(ρxk)− p(ρyk))(ρxk − ρ
y
k) < 0 and ρyk ≤ ρxk/2 or ρyk ≥ 2ρxk.
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Assume we are in the case ρyk ≥ 2ρxk, then

(p(ρxk)− p(ρyk))(ρxk + ρyk)sk ≥ −C (ρxk)γ |ρxk − ρ
y
k|,

since p(ξ) ≤ p(0) + Cξγ−1ξ ≤ Cξγ . If we now look at the case p(ρxk) ≤ p(ρyk) and
ρyk ≤ ρxk/2, then we again bound

(p(ρxk)− p(ρyk))(ρxk + ρyk)sk ≥ −C (ρxk)γ |ρxk − ρ
y
k|.

— Case 3: The case where p(ρxk) − p(ρyk) and ρxk − ρyk have different signs but
ρxk/2 ≤ ρ

y
k ≤ 2ρxk. Then it is easy to get again

(p(ρxk)− p(ρyk))(ρxk + ρyk)sk ≥ −C (1 + (ρxk)γ) |ρxk − ρ
y
k|.

Therefore combining all cases, we obtain

A ≤ C
∫ t

0

∫
Kh(x− y) (1 + (ρxk)γ)) |ρxk − ρ

y
k|w

x
k dx dy dt−

2

µ
Qh,

with Qh/| log h| → 0. Inserting this in (3.12), we deduce that∫
Π2d

Kh(x− y) |ρxk − ρ
y
k| (w

x
k + wyk) dx dy ≤ | log h| ε̃(h), (3.13)

with

ε̃(h) = ε(h) + C | log h|−1/2N − 2

µ
Qh −→ 0, as h→ 0.

We now need to remove the weight just as in the proof of Theorem 2.3.6. First of
all since Eq. (3.11) has an additional term with respect to (1.14), we remark that
we have the easy extension of Lemma 1.3.4, namely

Lemma 3.3.3. Assume that uk ∈ L2([0, T ], H1(Π2d)) and that ρk ∈ L2γ([0, T ]×
Π2d)) with γ > 1 then if wk solves (3.11)∫

Πd
| logwk(t, x)| ρk(t, x) dx ≤ C (‖uk‖L2

tH
1
x

+ ‖ρk‖L2γ
t,x

) ‖ρk‖L2γ
t,x
.

The proof of Lemma 3.3.3 is essentially identical to the one of Lemma 1.3.4
and we skip it here.

Using the same decomposition as in the proof of Theorem 2.3.6, we obtain
from (3.13) that∫

Π2d

Kh(x− y) |ρxk − ρ
y
k| (w

x
k + wyk) dx dy ≤ C | log h|

| log η|
N2 + C | log h| ε̃(h),

which finishes the proof by optimizing in η. �
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