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Abstract
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1 Introduction

The question of global in time existence of solutions to fluid dynamics’ models goes
back to the pioneering work by J. Leray (1933) where he introduced the concept
of weak (turbulent) solutions to the Navier–Stokes systems describing the motion of
an incompressible fluid; this work has become the basis of the underlying math-
ematical theory up to present days. The theory for viscous compressible fluids
in a barotropic regime has, in comparison, been developed more recently in the
monograph by P.–L. Lions [49] (1993-1998), later extended by E. Feireisl and
collaborators [36] (2001) and has been since then a very active field of study.

When changes in temperature are not taken into account, the barotropic Navier-
Stokes system reads {

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− div σ = ρf,

(1.1)

where ρ and u denote respectively the density and the velocity field. The stress
tensor σ of a general fluid obeys Stokes’ law σ = S − P Id where P is a scalar
function termed pressure (depending on the density in the compressible barotropic
setting or being an unknown in the incompressible setting) and S denotes the viscous
stress tensor which characterizes the measure of resistance of the fluid to flow.

Our approach also applies to the Navier-Stokes-Fourier system, as explained in
section 10, which is considered more physically relevant. But our main purpose here
is to explain how the new regularity method that we introduce can be applied to a
wide range of Navier-Stokes like models and not to focus on a particular system. For
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this reason, we discuss the main features of our new theory on the simpler (1.1). We
indicate later in the article after the main ideas how to extend the result to some
Navier-Stokes-Fourier systems.

In comparison with Leray’s work on incompressible flows, which is nowadays
relatively ”simple” at least from the point of view of modern functional analysis (and
in the linear viscous stress tensor case), the mathematical theory of weak solutions to
compressible fluids is quite involved, bearing many common aspects with the theory
of nonlinear conservation laws.

Our focus is on the global existence of weak solutions. For this reason we will not
refer to the important question of existence of strong solutions or the corresponding
uniqueness issues.

Several important problems about global existence of weak solutions for com-
pressible flows remain open. We consider in this article the following questions

• General pressure laws, in particular without any monotonicity assumption;

• Anisotropy in the viscous stress tensor which is especially important in geo-
physics.

In the current Lions-Feireisl theory, the pressure law P is often assumed to be of
the form P (ρ) = aργ but this can be generalized, a typical example being

P ∈ C1([0,+∞)), P (0) = 0 with

aργ−1 − b ≤ P ′(ρ) ≤ 1

a
ργ−1 + b with γ > d/2 (1.2)

for some constants a > 0, b ≥ 0: See B. Ducomet, E. Feireisl, H. Petzeltova,
I. Straskraba [29] or E. Feireisl [33] for slightly more general assumptions.
However it is always required that P (ρ) be increasing after a certain critical value
of ρ.

This monotonicity of P is connected to several well known difficulties

• The monotonicity of the pressure law is required for the stability of the thermo-
dynamical equilibrium. Changes in monotonicity in the pressure are typically
connected to intricate phase transition problems.

• At the level of compressible Euler, i.e. when S = 0, non-monotone pressure
laws may lead to a loss of hyperbolicity in the system, possibly leading to
corrected systems (as by Korteweg in particular).

In spite of these issues, we are able to show that compressible Navier-Stokes sys-
tems like (1.1) are globally well posed without monotonicity assumptions on the pres-
sure law; instead only rough growth estimates are required. This allows to consider
for the first time several famous physical laws such as modified virial expansions.

As for the pressure law, the theory initiated in the multi-dimensional setting by
P.–L. Lions and E. Feireisl requires that the stress tensor has the very specific
form

σ = 2µD(u) + λdivu Id− P (ρ) Id
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with D(u) = (∇u+∇uT )/2, µ and λ such that λ+ 2µ/d ≥ 0. The coefficients λ and
µ do not need to be constant but require some explicit regularity, see for instance
[35] for temperature dependent coefficients.

Unfortunately several physical situations involve some anisotropy in the stress
tensor; geophysical flows for instance use and require such constitutive laws, see for
instance [61] and [16] with eddy viscosity in turbulent flows.

We present in this article the first results able to handle more general viscous
stress tensor of the form

σ = A(t)∇u+ λdivu Id− P (ρ) Id

with a d×d symmetric matrix A with regular enough coefficients. The matrix A can
incorporate anisotropic phenomena in the fluid. Note that our result also applies to
the case

σ = A(t)D(u) + λdivu Id− P (ρ) Id

where D(u) = (∇u+∇uT )/2 still.

Our new results therefore significantly expand the reach of the current theory
for compressible Navier-Stokes and make it more robust with respect to the large
variety of laws of state and stress tensors that are used. This is achieved through
a complete revisiting of the classical compactness theory by obtaining quantitative
regularity estimates. The idea is inspired by estimates obtained for nonlinear conti-
nuity equations in [7], though with a different method than the one introduced here.
Those estimates correspond to critical spaces, also developed and used for instance
in works by J. Bourgain, H. Brézis and P. Mironescu and by A.C. Ponce, see
[12] and [58].

Because of the weak regularity of the velocity field, the corresponding norm of the
critical space cannot be propagated. Instead the norm has to be modified by weights
based on a auxiliary function which solves a kind of dual equation adapted to the
compressible Navier–Stokes system under consideration. After proving appropriate
properties of the weights, we can prove compactness on the density.

The plan of the article is as follows

• Section 2 presents the classical theory by P. – L. Lions and E. Feireisl, with
the basic energy estimates. It explains why the classical proof of compactness
does not seem able to handle the more general equations of state that concern
us here. We also summarize the basic physical discussions on pressure laws and
stress tensors choices which motivates our study. This section can be skipped
by readers which are already familiar with the state of the art.

• In Section 3, we present the equations and the corresponding main results
concerning global existence of weak solutions for non-monotone pressure law
and then for anisotropic viscous stress tensor. Those are given in the barotropic
setting.

• Section 4 is devoted to an introduction to our new method. We give our
quantitative compactness criterion and we show the basic ideas in the simplex
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context of linear uncoupled transport equations and a very rough sketch of
proof in the compressible Navier–Stokes setting.

• Section 5 states the stability results which constitute the main contribution of
the paper.

• Section 6 states technical lemmas which are needed in the main proof and
are based on classical harmonic analysis tools: Maximal and square functions
properties, translation of operators.

• Section 7 and 8 constitutes the heart of the proof. Section 7 is devoted to
renormalized equation with definitions and properties of the weights. Section
8 is devoted to the proof of the stability results of section 5 both concerning
more general pressure laws and concerning the anisotropic stress tensor.

• Section 9 concerns the construction of the approximate solutions. It uses the
stability results of section 5 to conclude the proof of the existence theorems of
section 3.

• The extension for non-monotone pressure laws (with respect to density) to
the Navier–Stokes–Fourier system is discussed in Section 10. It contains a
discussion of the state of the art complementing section 2 in that case. It
follows some steps already included in the book [35] but also ask for a careful
check of the estimates at each level of approximation.

• We present in Section 11 some models occurring in other contexts where the
new mathematical techniques presented here could be useful in the future.

• Section 12 is a list of some of the notations that we use.

• Section 13 is an appendix recalling basic facts on Besov spaces which are used
in the article.

2 Classical theory by E. Feireisl and P.–L. Lions,
open problems and physical considerations

We consider for the moment compressible fluid dynamics in a general domain Ω
which can be the whole space Rd, a periodic box or a bounded smooth domain
with adequate boundary conditions. We do not precise the boundary conditions and
instead leave those various choices open as they may depend on the problem and we
want to insist in this section on the common difficulties and approaches. We will
later present our precise estimates in the periodic setting for simplicity.

2.1 A priori estimates

We collect the main physical a priori estimates for very general barotropic systems
on R+ × Ω {

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)−D u+∇P (ρ) = ρf,

(2.1)
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where D is only assumed to be a negative differential operator in divergence form on
u s.t. ∫

Ω

u · D u dx ∼ −
∫

Ω

|∇u|2 dx, (2.2)

and for any φ and u ∫
Ω

φ · D u dx ≤ C ‖∇φ‖L2 ‖∇u‖L2 . (2.3)

The following estimates form the basis of the classical theory of existence of weak
solutions and we will use them in our own proof. We only give the formal derivation
of the estimates at the time being.

First of all, the total energy of the fluid is dissipated. This energy is the sum of
the kinetic energy and the potential energy (due to the compressibility) namely

E(ρ, u) =

∫
Ω

(
ρ
|u|2

2
+ ρe(ρ)

)
dx,

where

e(ρ) =

∫ ρ

ρref

P (s)/s2ds

with ρref a constant reference density. Observe that formally from (2.1)

∂t
(
ρ
|u|2

2

)
+ div

(
ρ u
|u|2

2

)
− u · Du+ u · ∇P (ρ) = ρ f · u,

and thus
d

dt

∫
Ω

ρ
|u|2

2
−
∫

Ω

u · D u−
∫

Ω

P (ρ) div u =

∫
Ω

ρf · u.

On the other hand, by the definition of e, the continuity equation on ρ implies that

∂t(ρe(ρ)) + div (ρe(ρ)u) + P (ρ) divu = 0.

Integrating and combining with the previous equality leads to the energy equality

d

dt
E(ρ, u)−

∫
Ω

u · D u =

∫
Ω

ρf · u. (2.4)

Let us quantify further the estimates which follow from (2.4). Assume that P (ρ)
behaves roughly like ργ in the following weak sense

C−1 ργ − C ≤ P (ρ) ≤ C ργ + C, (2.5)

then ρe(ρ) also behaves like ργ . Note that (2.5) does not imply any monotonicity
on P which could keep oscillating. One could also work with even more general
assumption than (2.5): Different exponents γ on the left–hand side and the right–
hand side for instance... But for simplicity we use (2.5).
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Assuming that f is bounded (or with enough integrability), one now deduces
from (2.4) the following uniform bounds

sup
t

∫
Ω

ρ |u|2 dx ≤ C + E(ρ0, u0),

sup
t

∫
Ω

ργ dx ≤ C,∫ T

0

∫
Ω

|∇u|2 dx ≤ C.

(2.6)

We can now improve on the integrability of ρ, as it was first observed by P.-L. Lions.
Choose any smooth, positive χ(t) with compact support, and test the momentum
equation by χ g = χB ρa where B is a linear operator (in x) s.t.

div g = (ρa−ρa), ‖∇g‖Lp ≤ Cp ‖ρa−ρa‖Lp , ‖B φ‖Lp ≤ Cp ‖φ‖Lp , ∀ 1 < p <∞,

where we denote by ρa the average of ρa over Ω. Finding g is straightforward in the
whole space but more delicate in bounded domain as the right boundary conditions
must also be imposed. This is where E. Feireisl et al. introduce the BOGOVSKI
operator. We obtain that∫

χ(t)

∫
Ω

ρa P (ρ) dx dt ≤
∫
χ(t)

∫
Ω

g (∂t(ρ u) + div (ρ u⊗ u)−D u− ρ f) dx dt

+

∫
χ(t)

∫
Ω

ρaP (ρ).

By (2.5), the left–hand side dominates∫
χ(t)

∫
Ω

ρa+γ dx dt.

It is possible to bound the terms in the right–hand side. For instance by (2.3)

−
∫
χ(t) gD u dx dt ≤ C ‖∇u‖L2([0, T ], L2(Ω)) ‖χ∇g‖L2([0, T ], L2(Ω))

≤ C ‖∇u‖L2([0, T ], L2(Ω)) ‖χ (ρa − ρa)‖L2([0, T ], L2(Ω)),

by the choice of g. Given the bound (2.6) on ∇u, this term does not pose any
problem if 2 a < a+ γ. Next∫

χ g ∂t(ρ u) dx dt = −
∫

(g χ′(t) + χ(t)B (∂t(ρ
a − ρa))) ρ u dx dt. (2.7)

The first term in the right–hand side is easy to bound; as for the second one, the
continuity equation implies∫

χ(t)B (∂t(ρ
a − ρa)) ρ u dx dt = −

∫
χ [B (div (u ρa))] ρ u

−
∫
χ
[
(a− 1)B

(
ρa div u− div(uρa) + (a− 1)ρadivu)

)]
ρ u.

(2.8)
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Using the properties of B and the energy estimates (2.6), it is possible to control
those terms as well as the last one in (2.7), provided a ≤ 2γ/d−1 and γ > d/2 which
leads to ∫ T

0

∫
Ω

ργ+a dx dt ≤ C(T,E(ρ0, u0)). (2.9)

2.2 Heuristic presentation of the method by E. Feireisl and
P. –L. Lions

Let us explain, briefly and only heuristically the main steps to prove global exis-
tence of weak solutions in the barotropic case with constant viscosities and power
γ pressure law. Our purpose is to highlight why a specific form of the pressure or
of the stress tensor is needed in the classical approaches. We also refer for such a
general presentation of the theory to the book by A. Novotny and I. Straskraba
[53], the monograph Etats de la Recherche edited by D. Bresch [13] or the book
by P. Plotnikov and J. Sokolowski[57].

Let us first consider the simplest model with constant viscosity coefficients µ and
λ. In that case, the compressible Navier–Stokes equation reads on R+ × Ω{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇P (ρ) = ρf,

(2.10)

with P (ρ) = aργ . For simplicity, we work in a smooth, Lipschitz regular, bounded
domain Ω with homogeneous Dirichlet boundary conditions on the velocity

u|∂Ω = 0. (2.11)

A key concept for the existence of weak solutions is the notion of renormalized
solution to the continuity equation, as per the theory for linear transport equations
by R.J. DiPerna and P.–L. Lions. Assuming ρ and u are smooth and satisfy the
continuity equation, for all b ∈ C([0,+∞)), one may multiply the equation by b′(ρ)
to find that (ρ, u) also

∂tb(ρ) + div(b(ρ)u) + (b′(ρ)ρ− b(ρ))divu = 0. (2.12)

This leads to the following definition

Definition 2.1 For any T ∈ (0,+∞), f , ρ0, m0 satisfying some technical assump-
tions, we say that a couple (ρ, u) is a weak renormalized solution with bounded energy
if it has the following properties

• ρ ∈ L∞(0, T ;Lγ(Ω))∩C0([0, T ], Lγweak(Ω)), ρ ≥ 0 a.e. in (0, T )×Ω, ρ|t=0 = ρ0

a.e. in Ω;

• u ∈ L2(0, T ;H1
0 (Ω)), ρ|u|2 ∈ L∞(0, T ;L1(Ω)), ρu is continuous in time with

value in the weak topology of L
2γ/(γ+1)
weak (Ω), (ρu)|t=0 = m0 a.e. Ω;

• (ρ, u) extended by zero out of Ω solves the mass and momentum equations in
Rd, in D′((0, T )×Rd);
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• For any smooth b with appropriate monotony properties, b(ρ) solves the renor-
malized Eq. (2.12).

• For almost all τ ∈ (0, T ), (ρ, u) satisfies the energy inequality

E(ρ, u)(τ) +

∫ τ

0

∫
Ω

(µ|∇u|2 + (λ+ µ) |divu|2) ≤ E0 +

∫ τ

0

∫
Ω

ρf · u.

In this inequality, E(ρ, u)(τ) =
∫

Ω
(ρ|u|2/2 + ρe(ρ))(τ), with e(ρ) =

∫ ρ
ρref

P (s)/s2ds

(ρref being any constant reference density), denotes the total energy at time τ and
E0 =

∫
Ω
|m0|2/2ρ0 + ρ0e(ρ0) denotes the initial total energy.

Assuming P (ρ) = aργ (in that case e(ρ) may equal to aργ−1/(γ−1)), the theory de-
veloped by P.–L. Lions to prove the global existence of renormalized weak solution
with bounded energy asks for some limitation on the adiabatic constant γ namely
γ > 3d/(d+ 2). E. Feireisl et al. have generalized this approach in order to cover
the range γ > 3/2 in dimension 3 and more generally γ > d/2 where d is the space
dimension.

We present the initial proof due to P.–L. Lions and indicate quickly at the end
how it was improved by E. Feireisl et al.. The method relies on the construction
of a sequence of approximate solution, derivation of a priori estimates and passage
to the limit which requires delicate compactness estimate. We skip for the time
being the construction of such an approximate sequence, see for instance the book
by A. Novotny and I. straskraba for details.

The approximate sequence, denoted by (ρk, uk), should satisfy the energy in-
equality leading to a first uniform a priori bound, using that µ > 0 and λ+2µ/d > 0

sup
t

∫
Ω

(ρk |uk|2/2 + aργk/(γ − 1)) dx+ µ

∫ t

0

∫
Ω

|∇uk|2 dx dt ≤ C,

for some constant independent of n.
For γ > d/2, we also have the final a priori estimate (2.9) explained in the

previous subsection namely∫ ∞
0

∫
Ω

ργ+a
k ≤ C(R, T ) for a ≤ 2

d
γ − 1.

When needed for clarification, we denote by U the weak limit of a general sequence
Uk (up to a subsequence). Using the energy estimate and the extra integrability
property proved on the density, and by extracting subsequences, one obtains the
following convergence

ρk ⇀ ρ in C0([0, T ];Lγweak(Ω)),

ργk ⇀ ργ in L(γ+a)/γ((0, T )× Ω),

ρkuk ⇀ ρu in C0([0, T ];L2γ/(γ+1)(Ω)),

ρku
i
ku

j
k ⇀ ρui uj in D′((0, T )× Ω) for i, j = 1, 2, 3.
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The convergence of the nonlinear terms ρk uk and ρk uk ⊗ uk uses the compactness
in time of ρk deduced from the uniform estimate on ∂tρk given by the continuity
equation and the compactness in time of

√
ρkuk deduced form the uniform estimate

on ∂t(ρkuk) given by the momentum equation. This is combined with the L2 estimate
on ∇uk.

Consequently, the extensions by zero to (0, T ) × R3/Ω of the functions ρ, u, ργ ,
denoted again ρ, u, ργ , satisfy the system in R+ × Rd{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+ a∇ργ = ρf.

(2.13)

The difficulty consists in proving that (ρ, u) is a renormalized weak solution with
bounded energy and the main point is showing that ργ = ργ a.e. in (0, T )× Ω.

This requires compactness on the density sequence which cannot follow from the
previous a priori estimates only. Instead P.–L. Lions uses a weak compactness of
the sequence {aργk − λ+ 2µdivuk}k∈N∗ which is usually called the viscous effective
flux. This property was previously identified in one space dimension by D. Hoff
and D. Serre. More precisely, we have the following property for all function
b ∈ C1([0,+∞)) satisfying some increasing properties at infinity

lim
k→+∞

∫ T

0

∫
Ω

(aργk − (2µ+ λ)divuk)b(ρk)ϕdxdt

=

∫ T

0

∫
Ω

(aργ − (2µ+ λ)divu)b(ρ)ϕdxdt (2.14)

where the over-line quantities design the weak limit of the corresponding quantities
and ϕ ∈ D((0, T ) × Ω). Note that such a property is reminiscent of compensated
compactness as the weak limit of a product is shown to be the product of the weak
limits. In particular the previous property implies that

ρdivu− ρdivu =
P (ρ)ρ− P (ρ) ρ

2µ+ λ
(2.15)

Taking the divergence of the momentum equation, we get the relation

∆[(2µ+ λ)divuk − P (ρk)] = div[∂t(ρkuk) + div(ρkuk ⊗ uk)].

Note that here the form of the stress tensor has been strongly used. From this
identity, P.–L. Lions proved the property (2.14) based on harmonic analysis due
to R. Coifman and Y. Meyer (regularity properties of commutators) and takes
the observations by D. Serre made in the one-dimensional case into account. The
proof by E. Feireisl is based on div-curl Lemma introduced by F. Murat and
L. Tartar.

To simplify the remaining calculations, we assume γ ≥ 3d/(d + 2) and in that
case due to the extra integrability on the density, we get that ρk ∈ L2((0, T ) × Ω).
This lets us choose b(s) = s ln s in the renormalized formulation for ρk and ρ and
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take the difference of the two equations. Then pass to the limit n→ +∞ and use the
identity of weak compactness on the effective flux to replace terms with divergence
of velocity by terms with density using (2.15), leading to

∂t(ρ ln ρ− ρ ln ρ) + div((ρ ln ρ− ρ ln ρ)u) =
1

2µ+ λ
(P (ρ)ρ− P (ρ)ρ).

Observe that the monotonicity of the pressure P (ρ) = aργ implies that

P (ρ)ρ− P (ρ)ρ ≤ 0.

This is the one point where the monotonicity assumption is used. It allows to show
that the defect measure for the sequence of density satisfies

dft[ρk − ρ](t) =

∫
Ω

ρ ln ρ(t)− ρ ln ρ(t) dx ≤ dft[ρk − ρ](t = 0).

On the other hand, the strict-convexity of the function s 7→ s ln s, s ≥ 0 implies that
dft[ρk − ρ] ≥ 0. If initially this quantity vanishes, it then vanishes at every later
time.

Finally the commutation of the weak convergence with a strictly convex function
yields the strong convergence of the density ρk in L1

loc. Combined with the uniform
bound of ρk in Lγ+a((0, T )×Ω), we get the strong convergence of the pressure term
ργk .

This concludes the proof in the case γ ≥ 3d/(d + 2). The proof of E. Feireisl
works even if the density is not a priori square integrable. For that E. Feireisl
observes that it is possible to control the amplitude of the possible oscillations on
the density in a norm Lp with p > 2 allowing to use an effective flux property with
some truncature. Namely he introduced the following oscillation measure

oscp[ρk − ρ] = sup
n≥1

[lim sup
k→+∞

‖Tn(ρk)− Tn(ρ)‖Lp((0,T )×Ω],

where Tn are cut-off functions defined as

Tn(z) = nT
( z
n

)
, n ≥ 1

with T ∈ C2(R)

T (z) = z for z ≤ 1, T (z) = 2 for z ≥ 3, T concave on R.

The existence result can then obtained up to γ > d/2: See again the review by
A. Novotny and I. Straskraba [53].

To the author’s knowledge there exists few extension of the previous study to
more general pressure laws or more general stress tensor. Concerning a generaliza-
tion of the pressure law, as explained in the introduction there exist the works by
B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskraba [29] and E. Feireisl
[33] where the hypothesis imposed on the pressure P imply that

P (z) = r3(z)− r4(z)

12



where r3 is non-decreasing in [0,+∞) with r4 ∈ C2([0,+∞)) satisfying r4 ≥ 0 and
r4(z) ≡ 0 when z ≥ Z for a certain Z ≥ 0. The form is used to show that it is possible
respectively to continue to control the amplitude of the oscillations oscp[ρk − ρ] and
then to show that the defect measure vanishes if initially it vanishes. The two papers
[33] and [29] we refer to allow to consider for instance the two important cases : Van
der Waals equation of state and some cold nuclear equations of state with finite
number of monomial (see the subsection on the physical discussion).

2.3 The limitations of the Lions-Feireisl theory

The previous heuristical part makes explicit the difficulty in extending the global
existence result for more general non-monotone pressure law or for non-isotropic
stress tensor. First of all the key point in the previous approach was

P (ρ) ρ− P (ρ) ρ ≤ 0.

This property is intimately connected to the monotonicity of P (ρ) or of P (ρ) for
ρ ≥ ρc with truncation operators as in [33] or [29]. Non-monotone pressure terms
cannot satisfy such an inequality and are therefore completely outside the current
theory.

The difficulty with anisotropic stress tensor is that we are losing the other key
relation in the previous proof namely (2.15). For non-isotropic stress tensor with an
additional vertical component and power pressure law for instance, we get instead
the following relation

ρdivu− ρdivu ≤ aρAµρ
γ − ρAµργ
µx + λ

with some non-local anisotropic operator Aµ = (∆ − (µz − µx)∂2
z )−1∂2

z where ∆ is
the total Laplacian in terms of (x, z) with variables x = (x1, · · · , xd−1), z = xd.

Unfortunately, we are again losing the structure and in particular the sign of the
right–hand side, as observed in particular in [16]. Furthermore even small anisotropic
perturbations of an isotropic stress tensor cannot be controlled in terms of the defect
measure introduced by E. Feireisl and collaborators: Remark the non-local behav-
ior in the right–hand side due to the term Aµ. For this reason, the anisotropic case
seems to fall completely out the theory developed by P.–L. Lions and E. Feireisl.

Those two open questions are the main objective of this monograph.

2.4 Physical discussions on pressure laws and stress tensors

The derivation of the compressible Navier–Stokes system from first principles is
delicate and goes well beyond the scope of this manuscript. In several respects the
system is only an approximation and this should be kept in mind in any discussion
of the precise form of the equations which should allow for some uncertainty.
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2.4.1 Equations of state

It is in general a non straightforward question to decide what kind of pressure law
should be used depending on the many possible applications: mixtures of fluids,
solids, and even the interior of stars. Among possible equation of state, one can find
several well known laws such as Dalton’s law of partial pressures (1801), ideal gas
law (Clapeyron 1834), Van der Waals equation of state (Van De Waals 1873), virial
equation of state (H. Hamerlingh Onnes 1901).

In general the pressure law P (ρ, ϑ) can depend on both the density ρ and the
temperature ϑ. We present the temperature dependent system in full later but
include the temperature already in the present discussion to emphasize its relevance
and importance.

Let us give some important examples of equations of state

• State equations are barotropic if P (ρ) depends only on the density. As ex-
plained in the book by E. Feireisl [34] (see pages 8–10 and 13–15), the simplest
example of a barotropic flow is an isothermal flow where the temperature is
assumed to be constant. If both conduction of heat and its generation by dissi-
pation of mechanical energy can be neglected then the temperature is uniquely
determined as a function of the density (if initially the entropy is constant)
yielding a barotropic state equation for the pressure P (ρ) = aργ with a > 0
and γ = (R+ cv)/cv > 1. Another barotropic flow was discussed in [29].

• The classical Van der Waals equation reads

(P + a ρ2) (b− ρ) = c ρ ϑ,

where a, b, c are constants. The pressure law is non-monotone if the temper-
ature is below a critical value, ϑ < ϑc, but it satisfies (1.2). In compressible
fluid dynamics, the Van des Waals equation of state is sometimes simplified by
neglecting specific volume changes and becomes

(P + a) (b− ρ) = c ρ ϑ,

with similar properties.

• Using finite-temperature Hartree-Fock theory, it is possible to obtain a tem-
perature dependent equation of state of the following form

P (ρ, ϑ) = a3(1 + σ)ρ2+σ − a0ρ
2 + kϑ

∑
n≥1

Bnρ
n, (2.16)

where k is the Boltzmann’s constant, and where the last expansion (a simplified
virial series) converges rapidly because of the rapid decrease of the Bn.

• Equations of state can include other physical mechanism. A good example
is found in the article [29] where radiation comes into play: a photon assem-
bly is superimposed to the nuclear matter background. If this radiation is in
quasi-local thermodynamical equilibrium with the (nuclear) fluid, the resulting

14



mixture nucleons+photons can be described by a one-fluid heat-conducting
Navier–Stokes system, provided one adds to the equation of state a Stefan-
Boltzmann contribution of black-body type

PR(ϑ) = aϑ4 with a > 0,

and provided one adds a corresponding contribution to the energy equation.
The corresponding models are more complex and do not satisfy (1.2) in general.

• In the context of the previous example, a further simplification can be intro-
duced leading to the so-called Eddington’s standard model. This approxima-
tion assumes that the ratio between the total pressure P (ρ, ϑ) = PG(ρ, ϑ) +
PR(ϑ) and the radiative pressure PR(ϑ) is a pure constant

PR(ϑ)

PG(ρ, ϑ) + PR(ϑ)
= 1− β,

where 0 < β < 1 and PG is given for instance by (2.16). Although crude, this
model is in good agreement with more sophisticated models, in particular for
the sun.

One case where this model leads to a pressure law satisfying (1.2) is when one
keeps only the low order term into the virial expansion. Suppose that σ = 1
and let us plug the expression of the two pressure laws in this relation,

2a3ρ
3 − a0ρ

2 + kB1ϑρ =
β

1− β
a

3
ϑ4.

By solving this algebraic equation to leading order (high temperature), one
gets

ϑ ≈
(6a3(1− β)

aβ

)
ρ3/4,

leading to the pressure law

P (ρ, ϑ) =
2a3

β
ρ3 − a0ρ

2 + kB1

(6a3(1− β)

aβ

)
ρ7/4,

which satisfies (1.2) because of the constant coefficients.

However in this approximation, only the higher order terms were kept. Consid-
ering non-constant coefficient or keeping all the virial sum in the pressure law
was out of the scope of [29] and leads to precisely the type of non- monotone
pressure laws that we consider in the present work.

• The virial equation of state for heat conducting Navier–Stokes equations can
be derived from statistical physics and reads

P (ρ, ϑ) = ρ ϑ
(∑
n≥0

Bn(ϑ)ρn
)

with B0 = cte and the coefficients Bn(ϑ) have to be specified for n ≥ 1.
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While the full virial pressure law is beyond the scope of this article, we can
handle truncated virial with appropriate assumptions or pressure laws of the
type P (ρ, ϑ) = Pe(ρ) + Pth(ρ, ϑ)

• Pressure laws can also incorporate many other type of phenomena. Compress-
ible fluids may include or model biological agents which have their own type of
interactions. In addition, as explained later, our techniques also apply to other
types of “momentum” equations. The range of possible pressure laws is then
even wider.

Based on these examples, the possibilities of pressure laws are many. Most are
not monotone and several do not satisfy (1.2), proving the need for a theory able to
handle all sort of behaviors.

2.4.2 Stress tensors

One finds a similar variety of stress tensors as for pressure laws. We recall that we
denote D(u) = (∇u+ (∇u)T )/2.

• The isotropic stress tensor with constant coefficients

D = µ∆u+ (λ+ µ)∇ divu,

which is the classical example that can be handled by the Lions-Feireisl
theory: See for instance [49], [53] and [57] with γ > d/2. See also the recent
interesting work by P.I. Plotnikov and W. Weigant (see [56]) in the two-
dimensional in space case with γ = 1.

• Isotropic stress tensors with non constant coefficients better represent the
physics of the fluid however. Those coefficients can be temperature ϑ dependent

D = 2 div (µ(ϑ)D(u)) +∇ (λ(ϑ)divu).

Provided adequate non-degeneracy conditions are made on µ and λ, this case
can still be efficiently treated by the Lions-Feireisl theory under some as-
sumptions on the pressure law. See for instance [34] or [35].

• The coefficients of the isotropic stress tensors may also depend on the density

D = 2 div (µ(ρ, ϑ)D(u)) +∇ (λ(ρ, ϑ) divu).

This is a very difficult problem in general. The almost only successful insight
in this case can be found in [15, 16, 17, 62] with no dependency with respect
to the temperature. Those articles require a very special form of µ(ρ) and λ(ρ)
and without such precise assumptions, almost nothing is known. Note also the
very nice paper concerning global existence of strong solutions in two-dimension
by A. Kazhikhov and V.A. Vaigant where µ is constant but λ = ρβ with
β ≥ 3, see [44].
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• Geophysical flow cannot in general be assumed to be isotropic but instead
some directions have different behaviors; this can be due to gravity in large
scale fluids for instance. A nice example is found in the Handbook written by
R. Temam and M. Ziane, where the eddy-viscous term D is given by

D = µh∆xu+ µz∂
2
zu+ (λ+ µ)∇divu,

with µh 6= µz. While such an anisotropy only requires minor modifications for
the incompressible Navier–Stokes system, it is not compatible with the Lions-
Feireisl approach, see for instance [16].

3 Equations and main results: The barotropic case

We will from now on work on the torus Πd. This is only for simplicity in order to
avoid discussing boundary conditions or the behavior at infinity. The proofs would
easily extend to other cases as mentioned at the end of the paper.

3.1 Statements of the results: Theorem 3.1 and 3.2

We present in this section our main existence results. As usual for global existence
of weak solutions to nonlinear PDEs, one has to prove stability estimates for se-
quences of approximate solutions and construct such approximate sequences. The
main contribution in this paper and the major part of the proofs concern the stability
procedure and more precisely the compactness of the density.

I) Isotropic compressible Navier–Stokes equations with general pressure.
Let us consider the isotropic compressible Navier–Stokes equations{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇P (ρ) = ρf,

(3.1)

with 2µ/d+λ, a pressure law P which is continuous on [0,+∞), P locally Lipschitz
on (0,+∞) with P (0) = 0 such that there exists C > 0 with

C−1ργ − C ≤ P (ρ) ≤ Cργ + C (3.2)

and for all s ≥ 0
|P ′(s)| ≤ P̄ sγ̃−1. (3.3)

One then has global existence

Theorem 3.1 Assume that the initial data u0 and ρ0 ≥ 0 with
∫

Πd
ρ0 = M0 > 0

satisfies the bound

E0 =

∫
Πd

( |(ρu)0|2

2ρ0
+ ρ0e(ρ0)

)
dx < +∞.
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Let the pressure law P satisfies (3.2) and (3.3) with

γ >
(
max(2, γ̃) + 1

) d

d+ 2
. (3.4)

Then there exists a global weak solution of the compressible Navier–Stokes system
(3.1) in the sense of Definition 2.1.

Remark. Let us note that the solution satisfies the explicit regularity estimate∫
Π2d

Iρk(x,t)≥η Iρk(y,t)≥ηKh(x− y)χ(δρk)(t) ≤ C ‖Kh‖L1

η1/2 | log h|θ/2
,

for some θ > 0 where Kh is defined in proposition 4.1, δρk and χ are defined in
Section 8, see (8.1).

II) A non-isotropic compressible Navier–Stokes equations. We consider an
example of non-isotropic compressible Navier–Stokes equations{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− div (A(t)∇u)− (µ+ λ)∇divu+∇P (ρ) = 0,

(3.5)

with A(t) a given smooth and symmetric matrix, satisfying

A(t) = µ Id + δA(t), µ > 0,
2

d
µ+ λ− ‖δA(t)‖L∞ > 0. (3.6)

where δA will be a perturbation around µ Id. We again take P locally Lipschitz on
[0,+∞) with P (0) = 0 but require it to be monotone after a certain point

C−1 ργ−1 − C ≤ P ′(ρ) ≤ C ργ−1 + C. (3.7)

with γ > d/2. The second main result that we obtain is

Theorem 3.2 Assume that the initial data u0 and ρ0 ≥ 0 with
∫

Πd
ρ0 = M0 > 0

satisfies the bound

E0 =

∫
Πd

( |(ρu)0|2

2ρ0
+ ρ0e(ρ0)

)
dx < +∞.

Let the pressure P satisfy (3.7) with

γ >
d

2

[(
1 +

1

d

)
+

√
1 +

1

d2

]
.

There exists a universal constant C? > 0 such that if

‖δA‖∞ ≤ C? (2µ+ λ),
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then there exists a global weak solution of the compressible Navier–Stokes equation in
the sense of Definition 2.1 replacing the isotropic energy inequality by the following
anisotropic energy

E(ρ, u)(τ) +

∫ τ

0

∫
Ω

(∇xuT A(t)∇u+ (µ+ λ) |divu|2) ≤ E0.

Remark. Let us note that the constraint on γ corresponds to the constraint on p:
p > γ + γ/(γ − 1) where p is the extra integrability property on ρ.

3.2 Important comments/comparison with previous results

The choice was made to focus on explaining the new method instead of trying to
write results as general as possible but at the cost of further burdening the proofs.
For this reason, Theorems 3.1 and 3.2 are only two examples of what can be done.

We explain how to apply our new method to the Navier–Stokes–Fourier system
(with an additional equation for temperature) in section 10. The Navier–Stokes–
Fourier system is physically more relevant than the barotropic case and as seen from
the discussion in subsection 2.4, it exhibits even more examples of non-monotone
pressure laws.

I) Possible extensions. In section 11, we also present applications to various other
important models, in particular in the Bio-Sciences where the range of possible
pressure laws (or what plays their role such as chemical attraction/repulsion) is
wide. But there are many other possible extensions; for instance (3.2) could be
replaced with a more general

C−1 ργ1 − C ≤ P (ρ) ≤ C ργ2 + C,

with different exponents γ1 6= γ2. While the proofs would essentially remain the
same, the assumption (3.4) would then have to be replaced and would involve γ1

and γ2. Similarly, it is possible to consider spatially dependent stress tensor A(t, x)
in Theorem 3.2. This introduces additional terms in the proof but those can easily be
handled as long as A is smooth by classical methods for pseudo differential operators.

II) Comparison with previous results.

II-1) Non-monotone pressure laws. Theorem 3.1 is the first result to allow for com-
pletely non-monotone pressure laws. Among many important previous contributions,
we refer to [29, 33, 19, 49] and [34, 35, 53, 20] for the Navier–Stokes–Fourier system,
which are our main point of comparison. All of those require P ′ > 0 after a certain
point and in fact typically a condition like (3.7). The removal of the key assumption
of monotonicity has important consequences:

• From the physical and modeling point of view, it opens the possibility of work-
ing with a wider range of equations of state as discussed in subsection 2.4
and it makes the current theory on viscous, compressible fluids more robust to
perturbation of the model.
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• Changes of monotonicity in P can create and develop oscillations in the density
ρ (because some “regions” of large density become locally attractive). It was
a major question whether such oscillations remain under control at least over
bounded time intervals. This shows that the stability for bounded times is very
different from uniform in time stability as t → +∞. Only the latter requires
assumptions of thermodynamical nature such as the monotonicity of P .

• Obviously well posedness for non monotone P could not be obtained as is done
here for the compressible Euler system. As can be seen from the proofs, the
viscous stress tensor in the compressible Navier-Stokes system has precisely
the critical scaling to control the oscillations created by the non-monotonicity.
This implies for instance that in phase transition phenomena, the transition
occurs smoothly precisely at the scale of the viscosity.

• Our results could have further consequences for instance to show convergence
of numerical schemes (or for other approximate systems). Typical numerical
schemes for compressible Navier–Stokes raise issues of oscillations in the den-
sity which are reminiscent of the ones faced in this article. The question of
convergence of numerical schemes to compressible Navier–Stokes is an impor-
tant and delicate subject in its own, going well beyond the scope of this short
comment. We refer for instance to the works by R. Eymard, T. Gallouët,
R. Herbin, J.–C. Latché and T.K. Karper: See for instance [38, 31] for
the simpler Stokes case, [30, 37, 39] for Navier–Stokes and more recently to the
work [21, 45].

Concerning the requirement on the growth of the pressure at ∞, that is on the
coefficient γ in (3.4)

• In the typical case where γ̃ = γ, (3.4) leads to the same constraint as in P.–
L. Lions [49] for a similar reason: The need to have ρ ∈ L2 to make sense of
ρdivu. It is worse than the γ > d/2 required for instance in [34]. In 3d, we
hence need γ > 9/5 versus only γ > 3/2 in [34].

• It may be possible to improve on (3.4) while still using the method introduced
here but propagating compactness on appropriate truncation of ρ; for instance
by writing an equivalent of Lemma 7.1 on φ(ρ(x)) − φ(ρ(y)) as in the multi-
dimensional setting by E. Feireisl. This possibility was left to future works.
Note that the requirement on γ > d/2 comes from the need to gain integrability
as per (2.9) along the strategy presented in subsection 2.1. Our new method
still relies on this estimate and therefore has no hope, on its own, to improve
on the condition γ > d/2.

• In the context of general pressure laws, and even more so for Navier–Stokes–
Fourier, assumption (3.4) is not a strong limitation. Virial-type pressure laws,
where P (ρ) is a polynomial expansion, automatically satisfy it for instance as
do many other examples discussed in subsection 2.4.

II-2) Anisotropic stress tensor. Theorem 3.2 is so far the only result of global exis-
tence of weak solutions which is able to handle anisotropy in the stress tensor. It
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applies for instance to eddy-viscous tensor mentioned above for geophysical flows

D = µh∆xu+ µz∂
2
zu+ (λ+ µ)∇divu,

where µh 6= µz and corresponding to

Aij = µh δij for i, j = 1, 2, A33 = µz, Aij = 0 otherwise. (3.8)

This satisfies the assumptions of Theorem 3.2 provided |µh − µx| is not too large,
which is usually the case in the context of geophysical flows.

Additional examples of applications are given in section 11 but we wish to em-
phasize here that it is also possible to have a fully symmetric anisotropy, namely
div (ADu) with D(u) = ∇u +∇uT in the momentum equation. This is the equiv-
alent of the anisotropic case in linear elasticity and it is also an important case for
compressible fluids. Note that it leads to a different form of the stress tensor. With
the above choice of A, Eq. 3.8, one would instead obtain

div (ADu) = µh∆xu+ µz∂
2
zu+ µz∇∂zuz + (λ+ µ)∇divu.

Accordingly we chose to write Theorem 3.2 with the non-symmetric anisotropy
div (A∇u) as it corresponds to the eddy-viscous term by R. Temam and M. Ziane
mentioned above. But the extension to the symmetric anisotropy is possible although
it introduces some minor complications. For instance one cannot simply obtain divu
by solving a scalar elliptic system but one has to solve a vector valued one instead;
please see the remark just after (5.10) and at the end of the proof of Theorem 3.2 in
section 9.

Ideally one would like to obtain an equivalent of Theorem 3.2 assuming only
uniform elliptic bounds on A(t) and much lower bound on γ. Theorem 3.2 is a first
attempt in that direction, which can hopefully later be improved.

However the reach of Theorem 3.2 should not be minimized because non isotropy
in the stress tensor appears to be a level of difficulty above even non-monotone
pressure laws. Losing the pointwise relation between divu and P (ρ(x)) is a major
hurdle, as it can also be seen from the proofs later in the article. Instead one has to
work with

divu(t, x) = P (ρ(t, x)) + LP (ρ) + effective pressure,

with L a non local operator of order 0. The difficulty is to control appropriately this
non local term so that its contribution can eventually be bounded by the dissipation
due to the local pressure term.

Notations. For simplicity, in the rest of the article, C will denote a numerical
constant whose value may change from line to line. It may depend on some uniform
estimates on the sequences of functions considered (as per bounds (5.5) or (5.4) for
instance) but it will never depend on the sequence under consideration (denoted with
index k) or the scaling parameters h or h0.
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4 Sketch of the new compactness method

The standard compactness criteria used in the compressible Navier–Stokes frame-
work is the Aubin–Lions–Simon Lemma to get compactness on the terms ρu and
ρu ⊗ u. A more complex trick is used to get the strong convergence of the density.
More precisely it combines extra integrability estimates on the density and the effec-
tive flux property (a kind of weak compactness) and then a convexity-monotonicity
tool to conclude.

Here we present a tool which will be the cornerstone in our study to prove com-
pactness on the density and which will be appropriate to cover more general equation
of state or stress tensor form.

In order to give the main idea of the method, we present it first in this section
for the well known case of linear transport equations, i.e. assuming that u is given.
We then give a rough sketch of the main ideas we will use in the rest of the article.
This presents the steps we will follow for proofs in the more general setting.

4.1 The compactness criterion

We start by a well known result providing compactness of a sequence

Proposition 4.1 Let ρk be a sequence uniformly bounded in some Lp((0, T )× Πd)
with 1 ≤ p <∞. Assume that Kh is a sequence of positive, bounded functions s.t.

i. ∀η > 0, sup
h

∫
|x|≥η

Kh(x) dx <∞, suppKh ∈ B(0, R),

ii. ‖Kh‖L1(Πd) −→ +∞.

If ∂tρk ∈ Lq([0, T ]×W−1,q(Πd)) with q ≥ 1 uniformly in k and

lim sup
k

[ 1

‖Kh‖L1

lim sup
t∈[0,T ]

∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)|p dx dy
]
−→ 0, as h→ 0

then ρk is compact in Lp([0, T ]×Πd). Conversely if ρk is compact in Lp([0, T ]×Πd)
then the above quantity converges to 0 with h.

For the reader’s convenience, we just quickly recall that the compactness in space is
connected to the classical approximation by convolution. Denote K̄h the normalized
kernel

K̄h =
Kh
‖Kh‖L1

.

Write

‖ρk − K̄h ?x ρk‖pLp ≤
1

‖Kh‖pL1

∫
Πd

(∫
Πd
Kh(x− y)|ρk(t, x)− ρk(t, y)|dx

)p
dy

≤ 1

‖Kh‖L1

∫
Π2d

Kh(x− y)|ρk(t, x)− ρk(t, y)|pdx dy
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which converges to zero as h → 0 uniformly in k by assumption. On the other–
hand for a fixed h, the sequence Kh ?x uk in k is compact in x. This complete the
compactness in space. Concerning the compactness in time, we just have to couple
everything and use the uniform bound on ∂tρk as per the usual Aubin-Lions-Simon
Lemma.

The Kh functions. In this paper we choose

Kh(x) =
1

(h+ |x|)a
, for |x| ≤ 1/2.

with some a > d and Kh non negative, independent of h for |x| ≥ 2/3, Kh constant
outside B(0, 3/4) and periodized such as to belong in C∞(Πd \ B(0, 3/4)). For
convenience we denote

Kh(x) =
Kh(x)

‖Kh‖L1

.

This is enough for linear transport equations but for compressible Navier–Stokes
we also need

Kh0
(x) =

∫ 1

h0

Kh(x)
dh

h
.

We will see that
C−1

(h0 + |x|)d
≤ Kh0(x) ≤ C

(h0 + |x|)d
.

4.2 Compactness for linear transport equation

Consider a sequence of solutions ρk, on the torus Πd (so as to avoid any discussion
of boundary conditions or behavior at infinity) to

∂tρk + div (ρk uk) = 0, (4.1)

where uk is assumed to satisfy for some 1 < p ≤ ∞

sup
k
‖uk‖LptW 1,p

x
<∞, (4.2)

with divuk compact in x, i.e.

lim sup
k

εk(h) =
1

‖Kh‖L1

∫ T

0

∫
Π2d

Kh(x−y) |divuk(t, x)−divuk(t, y)|p −→ 0, (4.3)

as h→ 0. The condition on the divergence is replaced by bounds on ρk

1

C
≤ inf

x
ρk ≤ sup

x
ρk ≤ C, ∀ t ∈ [0, T ]. (4.4)

One then has the well known
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Proposition 4.2 Assume ρk solves (4.1) with the bounds (4.2), (4.3) and (4.4);
assume moreover that the initial data ρ0

k is compact. Then ρk is locally compact and
more precisely∫

Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)| dx dy ≤ C ‖Kh‖L1

| log(h+ εk(h) + ε̃k(h))|
,

where

ε̃k(h) =
1

‖Kh‖L1

∫
Π2d

Kh(x− y) |ρ0
k(x)− ρ0

k(y)| dx dy.

This type of results for non Lipschitz velocity fields uk was first obtained by R.J.
Di Perna and P.–L. Lions in [27] with the introduction of renormalized solutions
for uk ∈ W 1,1 and appropriate bounds on div uk. This was extended to uk ∈ BV ,
first by F. Bouchut in [9] in the kinetic context (see also M. Hauray in [41]) and
then by L. Ambrosio in [4] in the most general case. We also refer to C. Le Bris
and P.–L. Lions in [46, 49], and to the nice lecture notes written by C. De Lellis
in [25]. In general uk ∈ BV is the optimal regularity as shown by N. Depauw in
[26]. This can only be improved with specific additional structure, such as provided
by low dimension, see [3, 11, 22, 23, 40], Hamiltonian properties [18, 43], or as a
singular integral [10].

Of more specific interest for us are the results which do not require bounds on
divuk (which are not available for compressible Navier–Stokes) but replace them by
bounds on ρk, such as (4.4). The compactness in Prop. 4.2 was first obtained in [5].

Explicit regularity estimates of ρk have first been derived by G. Crippa and
C. De Lellis in [24] (see also [42] for the W 1,1 case). These are based on explicit
control on the characteristics. While it is quite convenient to work on the charac-
teristics in many settings, this is not the case here, in particular due to the coupling
between div uk and p(ρk).

In many respect the proof of Prop. 4.2 is an equivalent of the method of
G. Crippa and C. De Lellis in [24] at the PDE level, instead of the ODE level. Its
interest will be manifest later in the article when dealing with the full Navier–Stokes
system. The idea of controlling the compactness of solutions to transport equations
through estimates such as provided by Prop. 4.1 was first introduced in [7] but relied
on a very different method.

Proof One does not try to propagate directly∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)| dx dy.

Instead one introduces the weight w(t, x) solution to the auxiliary equations

∂tw + uk · ∇w = −λM |∇uk|, w|t=0 = 1, (4.5)
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where M f denotes the maximal function of f (recalled in Section 6) and λ is constant
to be chosen large enough.

First step: Propagation of a weighted regularity. We propagate

R(t) =

∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y) dx dy.

Using (4.1), we obtain that

∂t|ρk(x)− ρk(y)|+ div x (uk(x) |ρk(x)− ρk(y)|) + div y (uk(y) |ρk(x)− ρk(y)|)

≤ 1

2
(divuk(x) + divuk(y)) |ρk(x)− ρk(y)|

− 1

2
(divuk(x)− divuk(y)) (ρk(x) + ρk(y)) sk,

where sk = sign (ρk(x)−ρk(y)). We refer to subsection 7.1 for the details of this cal-
culation, which is rigorously justified for a fixed k through the theory of renormalized
solutions in [27]. From this equation on |ρk(x)− ρk(y)|, we deduce

d

dt
R(t) =

∫
Π2d

∇Kh(x− y) (uk(x)− uk(y)) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y)

− 1

2

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y)) (ρk(x)− ρk(y)) sk w(x)w(y)

+

∫
Π2d

Kh(x− y) |ρk(x)− ρk(y)|
(
∂tw + uk · ∇w +

1

2
divuk w

)
w(y)

+ symmetric.

Observe that by (4.5), w ≤ 1 and therefore by (4.4) and the definition of εk in (4.3),
the second term in the right–hand side is easily bounded∫

Π2d

Kh(x− y) (divuk(x)− divuk(y)) (ρk(x)− ρk(y)) sk w(x)w(y) ≤ C εk(h).

For the first term, one uses the well known inequality (see [59, 60] or section 6)

|uk(x)− uk(y)| ≤ Cd |x− y| (M |∇uk|(x) +M |∇uk|(y)),

combined with the remark that from the choice of Kh

|∇Kh(x− y)| |x− y| ≤ C Kh(x− y).

Therefore∫
Π2d

∇Kh(x− y) (uk(x)− uk(y)) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y)

≤ C
∫

Π2d

Kh(x− y) (M |∇uk|(x) +M |∇uk|(y)) |ρk(x)− ρk(y)|w(x)w(y),
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and combining everything

d

dt
R(t) ≤ C ‖Kh‖L1 εk(h)

+

∫
Π2d

Kh |ρk(x)− ρk(y)|
(
∂tw + uk · ∇w + C (divuk +M |∇uk|)w

)
w(y)

+ symmetric.

Since div uk ≤ d |∇uk| ≤ dM |∇uk|, by taking the constant λ large enough in (4.5),

∂tw + uk · ∇w + C (divuk +M |∇uk|)w ≤ 0,

and hence

R(t) ≤
∫

Π2d

Kh |ρ0
k(x)−ρ0

k(y)|+C t ‖Kh‖L1 εk(h) ≤ C ‖Kh‖L1 (εk(h)+ε̃k(h)). (4.6)

Second step: property of the weight. We need to control the measure of the set where
the weight w is small. Obviously if w were to vanish everywhere then the control of
R(t) would be trivial but of very little interest. From Eq. (4.5)

∂t(ρk | logw|) + div (ρk| logw|) = λ ρkM |∇uk|.
And thus

d

dt

∫
Πd
| logw| ρk dx = λ

∫
Πd
ρkM |∇uk| dx ≤ λ ‖ρk‖Lp∗ ‖M |∇uk|‖Lp ≤ C, (4.7)

by (4.2), (4.4) and the fact that the maximal function is bounded on Lp for p > 1.

Third step: Conclusion of the proof. Using again (4.4)

|{x, w(t, x) ≤ η}| ≤ C

| log η|

∫
Πd
| logw| ρk dx ≤

C

| log η|
.

Thus ∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)|

=

∫
w(x)>η, w(y)>η

Kh |ρk(t, x)− ρk(t, y)|

+

∫
w(x)≤η or w(y)≤η

Kh(x− y) |ρk(t, x)− ρk(t, y)|,

and so∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)| ≤ 1

η2

∫
Kh |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y)

+
C

| log η|
‖Kh‖L1

≤ C ‖Kh‖L1

(
εk(h) + ε̃k(h)

η2
+

1

| log η|

)
,

which by minimizing in η finishes the proof. �
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4.3 A rough sketch of the extension to compressible Navier–
Stokes

The aim of this subsection is to provide a rough idea of how to extend the previous
method. We will only consider the case of general pressure laws and assume that
the stress tensor is isotropic. When now considering the compressible Navier–Stokes
system, the divergence divuk is not given anymore but has to be calculated from ρk
through a relation of the kind

divuk = P (ρk) +Rk, (4.8)

where Rk includes the force applied on the fluid, the effective stress tensor... To keep
things as simple as possible here, we temporarily assume that

sup
k
‖Rk‖L∞ <∞,

lim sup
k

εk(h) =
1

‖Kh‖L1

∫ T

0

∫
Π2d

Kh(x− y) |Rk(t, x)−Rk(t, y)|p −→ 0.
(4.9)

We do not assume monotonicity on the pressure P but simply the control

|P ′(ρ)| ≤ C ργ−1. (4.10)

A modification of the previous proof then yields

Proposition 4.3 Assume ρk solves (4.1) and the bounds

sup
k
‖ρk‖L∞t L1

x
<∞, sup

k
‖ρk‖Lpt,x <∞ with p ≥ γ + 1.

Assume moreover that supk ‖uk‖L2
tH

1
x
< ∞, that (4.8) holds with the bounds (4.9)

on Rk and (4.10) on P . Then ρk is locally compact away from vacuum and more
precisely∫
ρk(x)≥η, ρk(y)≥η

Kh(x− y) |ρk(t, x)−ρk(t, y)| dx dy ≤ Cη
‖Kh‖L1

| log(h+ (εk(h)) + ε̃k(h))|
,

where

ε̃k(h) =
1

‖Kh‖L1

∫
Π2d

Kh(x− y) |ρ0
k(x)− ρ0

k(y)| dx dy.

Unfortunately Prop. 4.3 is only a rough and unsatisfactory attempt for the following
reasons

• The main problem with Prop. 4.3 is that it does not imply compactness on the
sequence ρk because it only controls oscillations of ρk for large enough values
but we do not have any lower bounds on ρk. In fact not only can ρk vanish
but for weak solutions, vacuum could even form: That is there may be a set of

27



non vanishing measure where ρk = 0. This comes from the fact that the proof
only give an estimate on∫

Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)|w(x)w(y) dx dy,

but since there is no lower bound on ρk anymore, estimates like (4.7) only
control the set where w(x)w(y) is small and both ρk(x) and ρk(y) are small.
Unfortunately |ρk(t, x) − ρk(t, y)| could be large while only one of ρk(x) and
ρk(y) is small (and hence w(x)w(y) is small as well).

• The solution is to work with w(x) + w(y) instead of w(x)w(y). Now the sum
w(x) + w(y) can only be small if |ρk(t, x) − ρk(t, y)| is small as well, meaning
that a bound on∫

Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)| (w(x) + w(y)) dx dy,

together with estimates like (4.7) would control the compactness on ρk. Un-
fortunately this leads to various additional difficulties because some terms are
now not localized at the right point. For instance one has problems estimating
the commutator term in ∇Kh · (uk(x)− uk(y)) or one cannot directly control
terms like divuk(x)w(y) by the penalization which would now be of the form
M |∇uk|(x)w(x). Some of these problems are solved by using more elaborate
harmonic analysis tools, others require a more precise analysis of the structure
of the equations. Those difficulties are even magnified for anisotropic stress
tensor which add even trickier non-local terms.

• The integrability assumption on ρk, p > γ + 1 is not very realistic and too
demanding. If p = γ(1+2/d)−1 as for the compressible Navier-Stokes equations
with power law P (ρ) = aργ , then this requires γ > d. Improving it creates
important difficulty in the interaction with the penalization. It forces us to
modify the penalization and prevent us from getting an inequality like (4.7)
and in fact only modified inequalities can be obtained, of the type

sup
k

∫
Πd
| logw(t, x)|θ ρk(t, x) dx <∞.

• The bounds (4.9) that we have assumed for simplicity on Rk cannot be deduced
from the equations. The effective pressure is not bounded in L∞ and it is not a
priori compact (it will only be so at the very end as a consequence of ρk being
compact). Instead we will have to establish regularity bounds on the effective
pressure when integrated against specific test functions; but in a manner more
precise than the existing Lions-Feireisl theory, see Lemma 8.3 later.

• This is of course only a stability result, in order to get existence one has to
work with appropriate approximate system. This will be the subject of Section
9.
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Proof One now works with a different equation for the weight

∂tw + uk · ∇w = −λ (M |∇uk|+ ργk) , w|t=0 = 1, (4.11)

where M f is again the maximal function of f .

First step: Propagation of some weighted regularity The beginning of the first step
essentially remains the same as in the proof of Prop. 4.1: One propagates

R(t) =

∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y) dx dy.

The initial calculations are nearly identical. The only difference is that we do not
have (4.3) any more so we simply keep the term with divuk(x) − divuk(y) for the
time being. We thus obtain

d

dt
R(t) ≤

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))

(ρk(t, x) + ρk(t, y)) sk w(t, x)w(t, y)

− λ
∫

Π2d

(ργk(x) + ργk(y)) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y),

(4.12)

by taking the additional term in Eq. (4.11) into account. This is of course where
the coupling between uk and ρk comes into play, here only through the simplified
equation (4.8). Thus∫

Π2d

Kh(x− y) (divuk(x)− divuk(y)) (ρk(t, x) + ρk(t, y)) sk w(t, x)w(t, y)

=

∫
Π2d

Kh(x− y) (P (ρk(x))− P (ρk(y)))

(ρk(t, x) + ρk(t, y)) sk w(t, x)w(t, y)

+

∫
Π2d

Kh(x− y) (Rk(x)−Rk(y)) (ρk(t, x) + ρk(t, y)) sk w(t, x)w(t, y).

(4.13)

By the uniform Lp bound on ρk and the estimate (4.9), one has∫ t

0

∫
Π2d

Kh(x− y) (Rk(x)−Rk(y)) (ρk(t, x) + ρk(t, y)) sk w(t, x)w(t, y)

≤ C ‖Kh‖L1 (εk(h))1−1/p.

(4.14)

Using now (5.9), it is possible to bound

|P (ρk(x))− P (ρk(y))| ≤ |ρk(t, x)− ρk(t, y)|
∫ 1

0

|P ′(s ρk(x) + (1− s) ρk(y))| ds

≤ C (ργ−1
k (x) + ργ−1

k (y)) |ρk(t, x)− ρk(t, y)|,
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leading to∫
Π2d

Kh(x− y) (P (ρk(x))− P (ρk(y))) (ρk(t, x) + ρk(t, y)) sk w(t, x)w(t, y)

≤ C
∫

Π2d

Kh(x− y) (ργ−1
k (x) + ργ−1

k (y)) (ρk(t, x) + ρk(t, y))

|ρk(t, x)− ρk(t, y)|w(t, x)w(t, y)

≤ C
∫

Π2d

Kh(x− y) (ργk(x) + ργk(y)) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y).

Using now this estimate, the Equality (4.13), the compactness (4.14) and by taking
λ large enough one finds from (4.12)

R(t) ≤ R(0) + C ‖Kh‖L1 (εk(h))1−1/p.

Second step and third steps: Property of the weight and conclusion. The starting
point is again the same and gives∫

Πd
| logw(t, x)| ρk(t, x) dx ≤ C,

with C independent of k but where we now need ρk ∈ Lp with p ≥ γ + 1 because of
the additional term in Eq. (4.11). Now∫

ρk(x)≥η, ρk(y)≥η
Kh(x− y) |ρk(t, x)− ρk(t, y)|

=

∫
ρk(x)≥η, ρk(y)≥η, w(x)≥η′, w(y)≥η′

Kh(x− y) |ρk(t, x)− ρk(t, y)|

+ ‖K‖L1

∫
ρk(x)≥η, w(x)≤η′

(1 + ρk(x)).

On the one hand,∫
ρk(x)≥η, w(x)≤η′

(1 + ρk(x)) ≤ (
1

η
+ 1)

∫
w(x)≤η′

ρk(x)

≤ (
1

η
+ 1)

1

| log η′|

∫
| logw(x)| ρk(x) ≤ (

1

η
+ 1)

C

| log η′|
.

On the other hand∫
ρk(x)≥η, ρk(y)≥η, w(x)≥η′, w(y)≥η′

Kh(x− y) |ρk(t, x)− ρk(t, y)|

≤ 1

(η′)2

∫
Π2d

Kh(x− y) |ρk(t, x)− ρk(t, y)|w(t, x)w(t, y).
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Therefore ∫
ρk(x)≥η, ρk(y)≥η

Kh(x− y) |ρk(t, x)− ρk(t, y)| ≤ (
1

η
+ 1)

C

| log η′|

+
C

(η′)2
‖Kh‖L1

(
ε̃k(h) + (εk(h))1−1/p

)
,

which concludes the proof by optimizing in η′. �

5 Stability results

5.1 The equations

5.1.1 General pressure law.

Let (ρk, uk) solve
∂tρk + div (ρk uk) = αk∆ρk. (5.1)

and

µk(t, x) divuk = Pk(ρk) + ∆−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)) + Fk. (5.2)

The viscosity of the fluid is assumed to be bounded from below and above

∃µ̄, 1

µ̄
≤ µk(t, x) ≤ µ̄ (5.3)

We consider the following control on the density (for p > 1)

sup
k

[
‖ρk‖L∞([0, T ], L1(Πd)∩Lγ(Πd)) + ‖ρk‖Lp([0, T ]×Πd)

]
<∞. (5.4)

and the following control for uk

sup
k

[
‖ρk |uk|2‖L∞([0, T ], L1(Πd)) + ‖∇uk‖L2(0,T ;L2(Πd))

]
< +∞. (5.5)

We also need some control on the time derivative of ρkuk through

∃p̄ > 1, sup
k
‖∂t(ρkuk)‖L2

tW
−1,p̄
x

<∞, (5.6)

and on the time derivative of ρk namely

∃q > 1, sup
k
‖∂tρk‖LqtW−1,q

x
<∞. (5.7)

Remark. Note that usually (see for instance [34]–[49]), 5.6 and 5.7 are consequences
of the momentum equation and the mass equation using the uniform estimates given
by the energy estimates and the extra integrability on the density.

Concerning the equation of state, we will consider Pk continuous on [0,+∞),
Pk(0) = 0, Pk locally Lipschitz on (0,+∞) with one of the two following cases:
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• i) Pressure laws with a quasi-monotone property: There exists ρ0 s.t.

(Pk(s)/s)′ ≥ 0 for all s ≥ ρ0, lim
s→+∞

Pk(s) = +∞. (5.8)

• ii) Non-monotone pressure laws, where we only assume for all s ≥ 0

|P ′k(s)| ≤ P̄ sγ̃−1. (5.9)

Remark Note that i) with the lower bound P (ρ) ≥ C−1ργ − C provides the same
assumptions than in the article [33] by E. Feireisl. Point i) will be used to construct
approximate solutions in the non-monotone case.

5.1.2 A non-isotropic stress tensor.

In that case, assume (ρk, uk) solve (5.1) with αk = 0

∂tρk + div (ρk uk) = 0.

and
divuk = νk Pk(ρk) + νk aµAµ Pk(ρk)

+νk (∆− aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)) (5.10)

where Aµ = (∆− aµEk)−1Ek.

Remark. If one considers a symmetric anisotropy, div (ADu) in Theorem 3.2, then
instead of (5.10) we have the more complicated formula

divuk =νk Pk(ρk) + νk aµAµ Pk(ρk)

+ νk div (∆ I − aµEk)−1 (∂t(ρk uk) + div (ρk uk ⊗ uk)),
(5.11)

where Aµ = (∆ I − aµEk)−1 · Ẽk. But now Ek and Ẽk may be different and are
vector-valued operators, so that in particular (∆ I − aµEk)−1 means inverting a
vector valued elliptic system. Except for the formulation there would however be no
actual difference in the rest of the proof.

Coming back to (5.10), we assume ellipticity on νk

0 < ν ≤ νk ≤ ν <∞. (5.12)

We assume that Ek is a given operator (differential or integral) s.t.

• (∆− aµEk)−1 ∆ is bounded on every Lp space,

• Aµ = (∆− aµEk)−1Ek is bounded of norm less than 1 on every Lp space and
can be represented by a convolution with a singular integral denoted by Aµ
still

Aµ f = Aµ ?x f, |Aµ(x)| ≤ C

|x|d
,

∫
Aµ(x) dx = 0.
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Note here that to make more apparent the smallness of the non isotropic part, we
explicitly scale it with aµ. We consider again the control (5.4) on the density but for
p > γ2/(γ − 1), and the bound (5.5) for uk. We also need the same controls: (5.6)
on the time derivative of ρkuk and (5.7) on the time of the ρk.

The main idea in this part is to investigate the compactness for an anisotropic
viscous stress obtained as the perturbation of the usual isotropic viscous stress tensor,
namely −div (A∇u) + (λ + µ)∇divu assuming A = µ Id + δA and aµ = ‖δA‖ ≤ ε
for some small enough ε.

5.2 The main stability results: Theorems 5.1, 5.2 and 5.4

5.2.1 General pressure laws

The main step in that case is to prove the two compactness results

Theorem 5.1 Assume that ρk solves (5.1), uk solves (5.2) with the bounds (5.3),
(5.5), (5.6), (5.7), and that µk and Fk are compact in L1. Moreover

i) If αk > 0, we assume the estimate (5.4) on ρk with γ > 3/2 and p > 2 and
quasi-monotonicity on Pk through (5.8).

ii) if αk = 0, it is enough to assume (5.4) with γ > 3/2 and p > max(2, γ̃) and
only (5.9) on Pk.

Then the sequence ρk is compact in L1
loc.

We also provide a complementary result which is a more precise rate of compact-
ness away from the vacuum namely

Theorem 5.2 Assume again that ρk solves (5.1) with αk = 0, uk solves (5.2) with
the bounds (5.3), (5.5), (5.6), (5.7) and that µk and Fk are compact in L1. Assume
that (5.4) holds with γ > d/2 and p > max(2, γ̃) and that Pk satisfies (5.9). Then
there exists θ > 0 and a continuous function ε with ε(0) = 0, depending only on µk
and Fk s.t.∫

Π2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) ≤ C ‖Kh‖L1

η1/2 | log(ε(h) + hθ)|θ/2
.

For instance if µk and Fk are uniformly in W s,1 for s > 0, then for some constant
C > 0 ∫

Π2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) ≤ C ‖Kh‖L1

η1/2 | log h|θ/2
.

Since those results depend on the regularity of µk and Fk, we denote ε0(h) a contin-
uous function with ε0(0) = 0 s.t.∫ T

0

∫
Π2d

Kh(x− y) (|Fk(t, x)− Fk(t, y)|+ |µk(t, x)− µk(t, y)|) ≤ ε0(h). (5.13)
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Remark 5.3 Note, for use in the Navier-Stokes-Fourier system, that in Theorems
5.1 or 5.2, it is possible to consider instead a pressure law Pk(ρ, t, x) with explicit
dependence on time and space. One still assumes (5.8) or (5.9) with a constant C
independent of t and x but one needs in addition to assume compactness in x, that
is for any L > 0∫ T

0

∫
Π2d

Kh(x− y)

(
sup
ρ≤L
|Pk(ρ, t, x)− Pk(ρ, t, y)|

)
= εL(h) −→ 0, (5.14)

as h→ 0.

5.2.2 Non isotropic stress tensor

In that case our result reads

Theorem 5.4 Assume that ρk solves (5.1), uk solves (5.10) with the bounds (5.5),
(5.6), (5.7) and (5.12) together with all the assumptions on Ek below (5.10). Assume
as well that Pk satisfies (5.8) and that (5.4) with γ > d/2 and p > γ2/(γ−1). There
exists a universal constant C∗ > 0 s.t. if

aµ ≤ C∗,

then ρk is compact in L1
loc.

Remarks. Theorems 5.1, 5.2, 5.4 are really the main contributions of this arti-
cle. For instance, deducing Theorems 3.1 and 3.2 follows usual and straightforward
approximation procedures.

As such the main improvements with respect to the existing theory can be seen
in the fact that point ii) in Theorem 5.1 does not require monotonicity on Pk and in
the fact that Theorem 5.4 does not require isotropy on the stress tensor.

Our starting approximate system involves diffusion, αk 6= 0, in the continuity
equation (5.1). As can be seen from point i) of Theorem 5.1, our compactness result
in that case requires an isotropic stress tensor and a pressure Pk which is monotone
after a certain point by (5.8). This limitation is the reason why we have to consider
also approximations Pk and Ek of the pressure and the stress tensor. While it may
superficially appear that we did not improve the existing theory in that case with
diffusion, we want to point out that

• We could not have used P.–L. Lions’ approach because this requires strict
monotonicity: P ′k > 0 everywhere. Instead any non-monotone pressure P sat-
isfying (5.9) can be approximated by Pk satisfying (5.8) simply by considering
Pk = P + εk ρ

γ̄ as long as γ̄ > γ̃ and thus without changing the requirements
on γ.

• E. Feireisl et al can handle “quasi-monotone” pressure laws satisfying (5.8)
together with diffusion but they require higher integrability on ρk for this:
p ≥ 4 in (5.4). This in turn leads to a more complex approximation procedure.
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6 Useful technical lemmas

Let us recall the well known inequality, which we used in subsection 4.2 and will use
several times in the following (see [59] for instance)

|Φ(x)− Φ(y)| ≤ C |x− y| (M |∇Φ|(x) +M |∇Φ|(y)), (6.1)

where M is the localized maximal operator

M f(x) = sup
r≤1

1

|B(0, r)|

∫
B(0,r)

f(x+ z) dz. (6.2)

As it will be seen later, there is a technical difficulty in the proof, which would lead
us to try (and fail) to control M |∇uk|(y) by M |∇uk|(x). Instead we have to be more
precise than (6.1) in order to avoid this. To deal with such problems, we use more
sophisticated tools. First one has

Lemma 6.1 There exists C > 0 s.t. for any u ∈W 1,1(Πd), one has

|u(x)− u(y)| ≤ C |x− y| (D|x−y|u(x) +D|x−y|u(y)),

where we denote

Dhu(x) =
1

h

∫
|z|≤h

|∇u(x+ z)|
|z|d−1

dz.

Proof A full proof of such well known result can for instance be found in [42] in
a more general setting namely u ∈ BV . The idea is simply to consider trajectories
γ(t) from x to y which stays within the ball of diameter |x− y| to control

|u(x)− u(y)| ≤
∫ 1

0

γ′(t) · ∇u(γ(t)) dt.

And then to average over all such trajectories with length of order |x − y|. Similar
calculations are also present for instance in [32]. �

Note that this result implies the estimate (6.1) as

Lemma 6.2 There exists C > 0, for any u ∈W 1,p(Πd) with p ≥ 1

Dh u(x) ≤ CM |∇u|(x).
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Proof Do a dyadic decomposition and define i0 s.t. 2−i0−1 < h ≤ 2−i0

Dh u(x) ≤ 1

h

∑
i≥i0

∫
2−i−1<|z|≤2−i

|∇u(x+ z)|
|z|d−1

dz

≤
∑
i≥i0

2(i+1) (d−1)

h

∫
2−i−1<|z|≤2−i

|∇u(x+ z)| dz

≤ 2d−1
∑
i≥i0

|B(0, 1)| 2
−i

h
M |∇u|(x) ≤ CM |∇u|(x).

�

The key improvement in using Dh is that small translations of the operator Dh

are actually easy to control

Lemma 6.3 For any 1 < p <∞, there exists C > 0 s.t. for any u ∈ H1(Πd)∫ 1

h0

∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz

dh

h
≤ C ‖u‖B1

p,1
, (6.3)

where the definition and basic properties of the Besov space B1
p,1 are recalled in

section 13. As a consequence∫ 1

h0

∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖L2 dz

dh

h
≤ C | log h0|1/2 ‖u‖H1 . (6.4)

It is also possible to disconnect the shift from the radius in Dru and obtain for
instance∫ 1

h0

∫
Π2d

Kh(z)Kh(w)‖D|z| u(.)−D|z| u(.+ w)‖L2 dz dw
dh

h
≤ C | log h0|1/2 ‖u‖H1 .

(6.5)

We can in fact write a more general version of Lemma 6.3 for any kernel

Lemma 6.4 For any 1 < p <∞, any family Nr ∈W s,1(Πd) for some s > 0 s.t.

sup
|ω|≤1

sup
r
r−s

∫
Πd
|z|s |Nr(z)−Nr(z + r ω)| dz <∞,

sup
r

(‖Nr‖L1 + rs ‖Nr‖W s,1) <∞,

there exists C > 0 s.t. for any u ∈ Lp(Πd)∫ 1

h0

∫
Πd
Kh(z) ‖Nh ? u(.)−Nh ? u(.+ z)‖Lp dz

dh

h
≤ C | log h0|1/2 ‖u‖Lp . (6.6)
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We will mostly use the specific version in Lemma 6.3 but will need the more general
Lemma 6.4 to handle the anisotropic case in Lemma 8.6. Both lemmas are in fact a
corollary of a classical result

Lemma 6.5 For any 1 < p <∞, any family Lr of kernels satisfying for some s > 0∫
Lr = 0, sup

r
(‖Lr‖L1 + rs ‖Lr‖W s,1) ≤ CL, sup

r
r−s

∫
|z|s |Lr(z)| dz ≤ CL.

(6.7)
Then there exists C > 0 depending only on CL above s.t. for any u ∈ Lp(Πd)∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤ C ‖u‖B0

p,1
. (6.8)

As a consequence for p ≤ 2∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤ C | log h0|1/2 ‖u‖Lp . (6.9)

Note that by a simple change of variables in r, one has for instance for any fixed
power l ∫ 1

h0

‖Lrl ? u‖Lp
dr

r
≤ Cl | log h0|1/2 ‖u‖Lp .

Remark. The bounds (6.4) and (6.9) could also be obtained by straightforward
application of the so-called square function, see the book written by E.M. Stein [59].
We instead use Besov spaces as this yields the interesting and optimal inequalities
(6.3)-(6.8) as an intermediary step.

Proof of Lemma 6.3 and Lemma 6.4 assuming Lemma 6.5. First of all
observe that Dh u = Nh ? u with

Nh =
1

h |z|d−1
I|z|≤h|

which satisfies all the assumptions of Lemma 6.4. Therefore the proofs of Lemmas
6.3 and 6.4 are identical, just by replacing Dh by Nh?. Hence we only give the proof
of Lemma 6.3, Calculate∫ 1

h0

Kh(z)
dh

h
≤
∫ 1

h0

C hν−d

(h+ |z|)ν
dh

h
≤ C

(|z|+ h0)d
.

Note also for future use that the same calculation provides∫ 1

h0

Kh(z)
dh

h
≥ 1

C (|z|+ h0)d
. (6.10)
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Therefore, using spherical coordinates∫ 1

h0

∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz dh

≤ C
∫
Sd−1

∫ 1

h0

‖Dr u(.)−Dr u(.+ r ω)‖Lp
dr

r + h0
dω.

Denote

Lω(x) =
I|x|≤1

|x|d−1
−

I|x−ω|≤1

|x− ω|d−1
, Lω,r(x) = r−d Lω(x/r),

and remark that Lω ∈W s,1 with a norm uniform in ω and with support in the unit
ball. Moreover

Dru(x)−Dru(x+ rω) =

∫
|∇u|(x− r z)Lω(z) dz = Lω,r ? |∇u|.

We hence apply Lemma 6.5 since the family Lω,r satisfies the required hypothesis
and we get ∫ 1

h0

‖Lω,r ?∇u‖Lp
dr

r
≤ C ‖u‖B1

1,p
,

with a constant C independent of ω and so∫ 1

h0

∫
Πd
Kh(z) ‖D|z| u(.)−D|z| u(.+ z)‖Lp dz dh

≤ C
∫
Sd−1

∫ 1

h0

‖Lω,r ?∇u‖Lp
dr

r
dω ≤ C

∫
Sd−1

‖u‖B1
1,p
dω,

yielding (6.3). The bound (6.4) is deduced in the same manner. The proof of the
bound (6.5) follows the same steps; the only difference is that the average over the
sphere is replaced by a smoother integration against the weight 1/(1 + |w|)a. �

Proof of Lemma 6.5. First remark that Lr is not smooth enough to be used as
the basic kernels Ψk in the classical Littlewood-Paley decomposition (see section 13)
as in particular the Fourier transform of Lr is not necessarily compactly supported.
We use instead the Littlewood-Paley decomposition of u. Denote

Uk = Ψk ? u.

The kernel Lr has 0 average and so

Lr ? Uk =

∫
Πd
Lr(x− y) (Uk(y)− Uk(x)) dy.

Therefore

‖Lr ? Uk‖Lp ≤
∫

Πd
Lr(z) ‖Uk(.)− Uk(.+ z)‖Lp dz

≤
∫

Πd
Lr(z) |z|s ‖Uk‖W s,p dz,
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yielding by the assumption on Lr, for k < | log2 r|

‖Lr ? Uk‖Lp ≤ C rs 2k s ‖Uk‖Lp , (6.11)

by Prop. 13.2. Note that C only depends on
∫
|z|s Lr(z) dz.

We now use similarly that Lr ∈W s,1 and deduce for k ≥ | log2 r| by Prop. 13.2,

‖Lr ? Uk‖Lp ≤ ‖Lr‖W s,1 ‖Uk‖W−s,p ≤ C r−s 2−k s ‖Uk‖Lp , (6.12)

where C only depends on supr r
s ‖Lr‖W s,1 . From the decomposition of f∫ 1

h0

‖Lr ? u‖Lp
dr

r
=

∞∑
k=0

∫ 1

h0

‖Lr ? Uk‖Lp
dr

r

≤ C
∞∑
k=0

‖Uk‖Lp
(
Ik≤| log2 h0|

∫ 2−k

h0

rs 2k s
dr

r
+

∫ 1

max(h0,2−k)

r−s 2−k s
dr

r

)
,

by using (6.11) and (6.12). This shows that∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤C

∑
k≤| log2 h0|

‖Uk‖Lp + C
∑

k>| log2 h0|

2−k s

hs0
‖Uk‖Lp . (6.13)

Now simply bound∑
k≤| log2 h0|

‖Uk‖Lp +
∑

k>| log2 h0|

2−ks

hs0
‖Uk‖Lp ≤ C

∞∑
k=0

2k ‖Uk‖Lp

= C ‖u‖B0
p,1
,

which gives (6.8).

Next remark that ∑
k>| log2 h0|

2−ks

hs0
‖Uk‖Lp ≤ C sup

k
‖Uk‖Lp ≤ C ‖u‖B0

p,∞
.

Therefore (6.13) combined with Lemma 13.3 yields∫ 1

h0

‖Lr ? u‖Lp
dr

r
≤ C

√
| log2 h0| ‖u‖Lp + C ‖u‖B0

p,∞
,

which gives (6.9) by Prop. 13.2.�

Finally we emphasize that

Lemma 6.6 The kernel

Kh0
(z) =

∫ 1

h0

Kh(z)
dh

h

also satisfies i) and ii) of Prop. 4.1.

39



Proof This is a straightforward consequence of using (6.10). �

7 Renormalized equation and weights

We explain here the various renormalizations of the transport equation satisfied by
ρk, We then define the weights we will consider and give their properties.

7.1 Renormalized equation

We explain in this subsection how to obtain the equation satisfied by various quan-
tities that we will need and of the form Zx,yk χ(ρxk − ρyk) where Zx,yk is chosen as
Zx,yk = Kh(x− y)W x,y

k,h with W x,y
k,h = Wk,h(t, x, y) appropriate weights.

Lemma 7.1 Assume ρk solves (5.1) with (5.4) for p > 2 and that uk satisfies (5.5).
Denote for convenience

ρxk = ρk(t, x), ρyk = ρ(t, y), uxk = uk(t, x), uyk = uk(t, y),

δρk = ρxk − ρ
y
k, ρ̄k = ρxk + ρyk.

Then for any χ ∈W 2,∞∫
Π2d

[
Kh(x− y)W x,y

k,h χ(δρk)
]
(t)−

∫
Π2d

[
Kh(x− y)W x,y

k,h χ(δρk)
]
(0)

+

∫ t

0

∫
Π2d

(
χ′(δρk)δρk − χ(δρk)

)(
div xu

x
k + div yu

y
k

)
Kh(x− y)W x,y

k,h

−
∫ t

0

∫
Π2d

χ(δρk)
[
uxk · ∇xKh(x− y) + uyk · ∇yKh(x− y)

+ αk(∆x + ∆y)Kh(x− y)
]
W x,y
k,h

− 2

∫ t

0

∫
Π2d

αk∇Kh(x− y)χ(δρk)
[
∇xW x,y

k,h −∇yW
x,y
k,h

]
− 2αk

∫ t

0

∫
Π2d

Kh(x− y)χ(δρk)
[
∆xW

x,y
k,h + ∆yW

x,y
k,h

]
=

∫ t

0

∫
Π2d

χ(δρk)[∂tW
x,y
k,h + uxk · ∇xW

x,y
k,h + uyk · ∇yW

x,y
k,h

− αk(∆x + ∆y)W x,y
k,h ]Kh(x− y)

− 1

2

∫ t

0

∫
Π2d

χ′(δρk)Kh(x− y)W x,y
k,h

(
div xu

x
k − div yu

y
k)ρ̄k

+
1

2

∫ t

0

∫
Π2d

χ′(δρk)Kh(x− y)W x,y
k,h (div xu

x
k + div yu

y
k)δρk

− αk
∫ t

0

∫
Π2d

χ′′(ρk)Kh(x− y)W x,y
k,h

(
|∇xδρk|2 + |∇yδρk|2

)
.
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Proof The result essentially relies on a doubling of variable argument and straight
forward algebraic calculations.

Since ρk solves (5.1), one has that

∂tρ
x
k + divx(ρxku

x
k) = αk∆xρ

x
k,

∂tρ
y
k + divy(ρyku

y
k) = αk∆yρ

y
k.

Recalling δρk = ρxk − ρ
y
k, and using that ρk ∈ Lpt,x with p > 2 and hence ρkdiv uk is

well defined, one can check that

∂tδρk + div x(uxk δρk) + div y(uyk δρk) = αk(∆x + ∆y) δρk − ρyk div xu
x
k + ρxk div yu

y
k.

Then, recalling the notation ρ̄k = ρxk + ρyk, we observe that

− ρyk div xu
x
k + ρxk div yu

y
k =

1

2

(
div xu

x
k ρ

x
k − div xu

x
k ρ

y
kdiv yu

y
k ρ

x
k − div yu

y
kρ
y
k

− div xu
x
k ρ

x
k − div xu

x
k ρ

y
k + div yu

y
k ρ

x
k + div yu

y
k ρ

y
k

)
=

1

2
(div xu

x
k + div yu

y
k) δρk −

1

2
(divuxk − divuyk) ρ̄k.

Consequently, we can write

∂tδρk + div x(uxk δρk) + div y(uyk δρk) = αk (∆x + ∆y) δρk

+
1

2
(div xu

x
k + div yu

y
k) δρk −

1

2
(divuxk − divuyk) ρ̄k,

(7.1)

We now turn to the renormalized equation that means the equation satisfied by
χ(δk) for a nonlinear function s 7→ χ(s). Formally the equation can be obtained
by multiplying (7.1) by χ′(δρk). If αk = 0 and ρk is not smooth then the formal
calculation can be justified following Di Perna–Lions techniques using regularizing
by convolution and the estimate (5.5), i.e. uk ∈ L2

tH
1
x. Then

∂tχ(δρk) + div x(uxkχ(δρk)) + div y(uykχ(δρk))

+
(
χ′(δρk)δρk − χ(δρk)

)(
div xu

x
k + div yu

y
k

)
= αk(∆x + ∆y)χ(δρk)− 1

2
χ′(δρk)

(
div xu

x
k − div yu

y
k)ρ̄k

+
1

2
χ′(δρk)(div xu

x
k + div yu

y
k)δρk − αkχ′′(ρk)

(
|∇xδρk|2 + |∇yδρk|2

)
.

For any V xk , V yk and smooth enough Zx,yk,h , one has in the sense of distributions

Zx,yk,h∆xV
x
k = div x(Zx,yk,h∇xV

x
k )− div x(V xk ∇xZ

x,y
k ) + V xk ∆xZ

x,y
k,h .

Zx,yk,h∆yV
y
k = div y(Zx,yk,h∇yV

y
k )− div y(V yk ∇yZ

x,y
k,h) + V yk ∆yZ

x,y
k,h .
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Consequently, we get the following equation for Zx,yk,hχ(δρk):

∂t[Z
x,y
k,hχ(δρk)] + div x(uxkχ(δρk)Zx,yk,h) + div y(uykχ(δρk)Zx,yk,h)

+
(
χ′(δρk)δρk − χ(δρk)

)(
div xu

x
k + div yu

y
k

)
Zx,yk,h

− χ(δρk)[∂tZ
x,y
k,h + uxk · ∇xZ

x,y
k,h + uyk · ∇yZ

x,y
k,h − αk(∆x + ∆y)Zx,yk,h ] = r.h.s,

with

r.h.s. = −1

2
χ′(δρk)Zx,yk,h

(
div xu

x
k − div yu

y
k)ρ̄k +

1

2
χ′(δρk)Zx,yk,h(div xu

x
k + div yu

y
k)δρk

− αkχ′′(ρk)Zx,yk,h
(
|∇xδρk|2 + |∇yδρk|2

)
+ 2αk Z

x,y
k,h (∆x + ∆y)χ(δρk) + αk

[
div x(Zx,yk,h∇xχ(δρk))− div x(χ(δρk)∇xZx,yk,h)

+ div y(Zx,yk,h∇yχ(δρk))− div y(χ(δρk)∇yZx,yk,h)
]
.

Integrating in time and space and performing the required integration by parts, we
get the desired equality writing Zx,yk,h = Kh(x− y)W x,y

k,h . �

7.2 The weights: Choice and properties

In this subsection, we choose the PDEs satisfied by the weights, we state and then
prove some of their properties.

7.2.1 Basic considerations

We define weights w(t, x) which satisfy

∂tw + uk(t, x) · ∇xw = −Dw + αk∆xw, w(t = 0, x) = w0(x) (7.2)

for some appropriate penalization D depending on the case under consideration.
Note that w depends on k, but we do not precise the index to keep notations simple.
The choice of D will be based on the need to control “bad” terms when looking at
the propagation of the weighted quantity. The choice will also have to ensure that
the weights are not too small, too often.

7.2.2 Isotropic viscosity, general pressure laws.

The case with αk > 0 and monotone pressure. The simplest choice for the penaliza-
tion D to define w0 is

D0 = λM |∇uk|, (7.3)

with λ a fixed constant (chosen later on) and M the localized maximal operator as
defined by (6.2). We choose accordingly in that case

w0|t=0 = w0
0 ≡ 1.
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The case αk = 0 and non-monotone pressure. In the absence of diffusion in (5.1)
(αk = 0) and when the pressure term Pk is non-monotone for instance, one needs to

add a term ργ̃k in the penalization. This would lead to very strong assumptions, in
particular on the exponent p in (5.4) (and hence γ) as explained after Prop. 4.3. It
is possible to obtain better results by taking the more refined

D1

λ
=ρp−1

k (p− 1) |divuk|+ |divuk|+M |∇uk|+ ργ̃k , (7.4)

for the general compactness result. We take for simplicity

w1|t=0 = w0
1 ≡ exp

(
−λ(sup ρ0

k)p−1
)
.

The reason for the first term in D1 compared to D0 is to ensure that w1 ≤ e−λρ
p−1
k

which helps compensates the penalization in ργ̃k to get the property on ρk| logw1|θ
for some θ > 0. The three last terms are needed to respectively counterbalance:
Additional divergence terms in the propagation quantity compared to w0, the same
M |∇uk| as for w0 and the ργ̃k for terms coming from the pressure.

7.2.3 Anisotropic stress tensor.

The choice for the penalization, denoted Da in this case and leading to the weight
wa, is now

Da

λ
= M |∇uk|+Kh ? (|divuk|+

∣∣Aµργk∣∣). (7.5)

Note that the second term in the penalization is used to control the non local part
of the pressure terms. As initial condition, we choose accordingly

wa|t=0 = w0
a ≡ 1.

7.2.4 The forms of the weights.

Two types of weights W are used

W (t, x, y) = w(t, x) + w(t, y), or W (t, x, y) = w(t, x)w(t, y).

The first one will provide compactness and will be used with (7.3) or (7.4). The
second, used with (7.4) gives better explicit regularity estimates but far from vacuum
and is considered for the sake of completeness. Therefore one defines

W0(t, x, y) = w0(t, x) + w0(t, y), W1(t, x, y) = w1(t, x) + w1(t, y),

W2(t, x, y) = w1(t, x)w1(t, y), Wa(t, x, y) = wa(t, x) + wa(t, y).
(7.6)

As for the penalization, we use the notation W when the particular choice is not
relevant and Wi, i = 0, 1, 2 or a otherwise. For all choices, one has

∂tW + uk(x) · ∇xW + uk(y) · ∇yW = −Q+ αk∆x,yW. (7.7)
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The term Q depends on the choices of penalizations and weights with the four pos-
sibilities

Q0 = D0 w0(t, x) +D0 w0(t, y), Q1 = D1 w1(t, x) +D1 w1(t, y),

Q2 = (D1(t, x) +D1(t, y))w1(t, x)w1(t, y), Qa = Da wa(t, x) +Da wa(t, y).

7.2.5 The weight properties

We summarize the main estimates on the weights previously defined

Proposition 7.2 Assume that ρk solves (5.1) with the bounds (5.4) for p ≥ 2 and
(5.5) on uk. Then

i) For any t,x:

0 ≤ w0(t, x) ≤ 1, 0 ≤ wa(t, x) ≤ 1, 0 ≤ w1(t, x) ≤ e−λ ρk(t, x)p−1
.

ii) One has ∫
ρk(t, x) | logw0(t, x)| dx ≤ C (1 + λ),

if αk = 0 and p > max(2, γ̃) then similarly there exists θ > 0 s.t.∫
ρk(t, x) | logw1(t, x)|θ dx ≤ Cλ.

while finally if p ≥ γ + 1∫
ρk(t, x) | logwa(t, x)| dx ≤ C(1 + λ). (7.8)

iii) For any η, we have the two estimates∫
Πd
ρk IKh ? w0 ≤ η

dx ≤ C 1 + λ

| log η|
,

and if p ≥ γ + 1 ∫
Πd
ρk IKh ? wa ≤ η

dx ≤ C 1 + λ

| log η|
.

iv) Denoting wa,h = Kh ? wa, if p > γ, we have for some 0 < θ < 1∫ 1

h0

∫ t

0

∥∥∥Kh ?
(
Kh ? (|divuk|+ |Aµργk |)wa

)
−

(
Kh ? (|divuk|+ |Aµργk |)

)
ωa,h

∥∥∥
Lq
dt
dh

h
≤ C | log h0|θ,

with q = min(2, p/γ).
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Remark 7.3 Part i) tells us that wi is small at the right points (in particular when
ρk is large). On the other hand we want wi to be small only on a set of small mass
otherwise one obviously does not control much. This is the role of part ii). We use
part iv) to regularize weights in the anisotropic case. Part iii) is also used to get
control under the form given in 4.1 from the estimates with weights.

Remark 7.4 Even when αk > 0, it would be possible to define D1 in order to have
a bound like w1 ≤ e−λρk(t,x)q−1

. For instance take

D1

λ
=ρq−1

k (q − 1) |divuk|+
αk,λ
λ
|∇ logw1|2

+ |divuk|+M |∇uk|+ Lργk ,

with

αk,λ = αk

(
1− ᾱλ

1 + λ ρq−1
k

)
, ᾱλ =

q − 2

(q − 1)
.

However one needs q ≤ p/2 and q > 2 which already forces p > 4. Moreover the
main difficulty when αk > 0 comes from the proof of Lemma 8.1 which forces us to
work with Kh ? w0 and not w0. Because of that any pointwise inequality between
w(x) and ρk(x) is mostly useless.

Proof Point i). The penalizations D0 and Da are positive hence, since w0 and wa
solve (7.2), 0 ≤ w0 ≤ 1 and 0 ≤ wa ≤ 1. Similarly 0 ≤ w1 ≤ 1. Now for the upper
bound on w1 in terms of ρk, assume that αk = 0. Note that since ρk solves (5.1)

∂te
−λρp−1

k + uk · ∇e−λρ
p−1
k = λ (p− 1) ρp−1

k divuk e
λρp−1
k .

Remark that

D1 ≥ λ (p− 1) ρp−1
k |divuk| ≥ −λ (p− 1) ρp−1

k divuk w1,

and hence by (7.2)

∂tw1 + uk · ∇w1 ≤ λ (p− 1) ρp−1
k divuk w1.

Denoting g = e−λ ρ
p−1
k − w1, we obtain

∂tg + uk · ∇g ≥ (λ (p− 1) ρp−1
k divuk) g.

By the maximum principle, g ≥ 0 which finishes the proof of i). Note that no
assumption on p was needed here but if ρk is not smooth the theory of renormalized
solutions is used.

Point ii). By point i), w ≤ 1, hence | logw| = − logw and from (7.2), denoting
| logwi| = Ai,

∂t(Ai) + uk · ∇x(Ai)−Di = −αk
wi

∆wi

= αk∆Ai − αk |∇Ai|2.
(7.9)
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For A0, we directly apply

∂t(ρk A0) +∇x · (ρk A0) = D0 ρk + αk∆(ρk A0)− 2αk∇ρk · ∇A0 − αkρk|∇A0|2,

and integrate to find∫
ρk A0 dx =C +

∫ t

0

∫
D0(t, x) ρk dx ds− αk

∫ t

0

∫
ρk|∇A0|2 dx ds

− 2αk

∫
∇ρk · ∇A0 dx ds.

Simply bound ∫
∇ρk · ∇A0 ≤

1

4

∫
ρk|∇A0|2 +

∫
|∇ρk|2

ρk
.

On the other hand, using renormalization techniques,

d

dt

∫
ρk log ρk dx = −

∫
ρk divuk dx− αk

∫
|∇ρk|2

ρk
dx.

However as p ≥ 2 then ρk divuk is bounded uniformly in L1
t,x and ρk log ρk in

L∞t (L1
x). This implies, from the previous equality, that

αk

∫ t

0

∫
|∇ρk|2

ρk
dx ds ≤ C,

and consequently

−2αk

∫ t

0

∫
∇ρk · ∇Ai dx ds ≤

αk
2

∫ t

0

∫
ρk|∇Ai|2 dx ds+ C.

Using this in the equality on

∫
ρk A0 given previously, we get

∫
ρk A0 dx = C +

∫ t

0

∫
D0(t, x) ρk dx ds−

αk
2

∫ t

0

∫
ρk|∇A0|2 dx ds.

In that case, we know that ‖D0‖L2 ≤ C λ and since p ≥ 2 we get∫
ρk | logw0| dx+ αk

∫ t

0

∫
ρk |∇A0|2 dx ds ≤ C(1 + λ). (7.10)

Concerning wa, the estimate is similar, even simpler as αk = 0, to get∫
ρk | logwa| dx ≤ C(1 + λ)
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assuming p ≥ γ + 1. Indeed M |∇uk| and Kh ? |divuk| are bounded in L2 by (5.5).
Finally

∫ T

0

∫
Πd
ρkKh ? (|Aµ ργk |) ≤

(∫ T

0

∫
Πd
ργ+1
k

)1/(γ+1)(∫ T

0

∫
Πd
|Aµ ργk |

(γ+1)/γ

)γ/(γ+1)

≤ C
∫ T

0

∫
Πd
ργ+1
k ,

since Aµ is continuous on any Lq space for 1 < q < +∞. The right–hand side is
bounded assuming p > γ + 1.

For ω1, the estimate is as before a bit different. We now assume that αk = 0,
define Ã1 = (1 +A1)θ and obtain from (7.9)

∂tÃ1 + uk · ∇Ã1 = θ
D1

(1 +A1)1−θ .

Integrating and recalling A1 ≥ λ ρp−1
k∫

ρk Ã1 dx ≤ C + C

∫ t

0

∫
1 + ρpk

1 + ρ
(p−1) (1−θ)
k

|divuk| dx ds

+ C

∫ t

0

∫
ρk

1 + ρ
(p−1) (1−θ)
k

M |∇uk| dx ds

+ C

∫ t

0

∫
ργ̃+1
k

1 + ρ
(p−1) (1−θ)
k

dx ds ≤ C,

for some θ > 0 provided p > max(2, γ̃). If p > 2 and p > γ̃ then γ̃ + 1− p + 1 < p.
This gives the desired control regarding ρ| logw1|θ for an exponent θ small enough.

Point iii) Estimate (7.10) will not be enough in the proof and we will need to control
the mass of ρk where Kh ? w0 is small. Denote

Ωh,η = {x ∈ Πd, Kh ? w0(x) ≤ η}, Ω̃h,η = {x ∈ Ωh,η, w0(x) ≥ √η}.

The time t is fixed during this argument and for simplicity we omit it.
One cannot easily estimate |Ωh,η| directly but it is straightforward to bound

|Ω̃h,η|. Assume x ∈ Ωh,η i.e. Kh ? w0(x) ≤ η. From the expression of Kh, if |δ| ≤ h

Kh(z + δ) ≤
‖Kh‖−1

L1

(h+ |z + δ|)a
≤ C Kh(z),

we deduce that for any y ∈ B(x, h)

Kh ? w0(y) ≤ C η.
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Now cover Ω̃η,h by
⋃
i C

h
i with Chi disjoint hyper-cubes of diameter h/C. For any i,

denote Ω̃iη,h = Ω̃η,h ∩ Chi .

If Ω̃iη,h 6= ∅ then Kh ? w0(x) ≤ C η on the whole Chi . In that case

Cη hd ≥
∫
Chi

Kh ? w0 ≥
∫
Chi

∫
Ω̃iη,h

Kh(x− y)w0(y) dy dx

≥
√
η

C
|Ω̃iη,h|.

We conclude that |Ω̃iη,h| ≤ C
√
η hd. Summing over the cubes, we deduce that one

has
|Ω̃η,h| ≤ C

√
η.

Finally∫
Ωη,h

ρk dx ≤
∫

Ω̃η,h

ρk dx+
2

| log η|

∫
Πd
ρk | logw0| dx ≤ C η1/2−1/2γ +

C

| log η|
,

since ρ ∈ L∞t (Lγx) for some γ > 1. This is the desired bound.
The same bound may be obtained on the quantity ρkIKh?wa≤η in a similar way

when p > γ + 1 because of bound (7.8) on ρk| logwa|.

Point iv) Denote to simplify f = |divuk|+ |Aµ ργk |, then by the definition of wa,h∫ 1

h0

∫ t

0

∥∥∥Kh ?
(
Kh ? f wa

)
−
(
Kh ? f

)
ωa,h

∥∥∥
Lq
dt
dh

h

≤
∫ 1

h0

∫ t

0

Kh(z)
∥∥∥(Kh ? f(.+ z)−Kh ? f(.)

)
ωa(.+ z)

∥∥∥
Lq
dt
dh

h

≤
∫ t

0

∫ 1

h0

Kh(z)
∥∥∥(Kh ? f(t, .+ z)−Kh ? f(t, .)

)∥∥∥
Lq

dh

h
dt

≤ C | log h0|1/2
∫ t

0

‖f(t, .)‖Lqx dt ≤ C | log h0|1/2,

by a direct application of Lemma 6.4 with Nh = K̄h provided f is uniformly bounded
in L1

tL
q
x which is guaranteed by q ≤ min(2, p/γ).

�

8 Proof of Theorems 5.1, 5.2 and 5.4

We start with the propagation of regularity on the transport equation in terms of
the regularity of divuk, more precisely div xu

x
k − div yu

y
k. We prove in the second

subsection some estimates on the effective pressure. This allows to write a Lemma
in the third subsection controlling div xu

x
k−div yu

y
k and then to close the loop in the

fourth subsection thus concluding the proof.
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8.1 The propagation of regularity on the transport equation

This subsection uses only Eq. (5.1) on ρk without yet specifying the coupling between
divuk and ρk (for instance through (5.2)). Recall that we denote

δρk = ρk(t, x)− ρk(t, y), ρ̄k = ρk(t, x) + ρk(t, y).

Choose any C2 function χ s.t.∣∣∣∣χ(ξ)− 1

2
χ′(ξ) ξ

∣∣∣∣ ≤ 1

2
χ′(ξ) ξ, χ′(ξ) ξ ≤ C χ(ξ) ≤ C |ξ|. (8.1)

It is for instance possible to take χ(ξ) = ξ2 for |ξ| ≤ 1/2 and χ(ξ) = |ξ| for |ξ| ≥ 1/2.
Note however that the first inequality on the right forces χ(ξ) ≥ |ξ|/C.

Similarly for the anisotropic viscous term, for some ` > 0, choose any χa ∈ C2∣∣∣∣χa(ξ)− 1

2
χ′a(ξ) ξ

∣∣∣∣ ≤ 1− `
2

χ′a(ξ) ξ, χ′a(ξ) ξ ≤ C χa(ξ) ≤ C |ξ|1+`,

(ξγ + ξ̃γ)
(
−χ′a(ξ − ξ̃)(ξ − ξ̃) + 2χa(ξ − ξ̃)

)
≥ −(ξγ − ξ̃γ)

`− 1

`
χ′a(ξ − ξ̃)(ξ + ξ̃).

(8.2)

Note that it is possible to simply choose χa = |ξ|1+`. But to unify the notations and
the calculations with the other terms involving χ, we use the abstract χa.

The properties on this non-linear function will be strongly used to characterize
the effect of the pressure law in the contribution of div xuk(x) − div yuk(y) in the
anisotropic case. The form of χa and the choice of ` will have to be determined very
precisely so that the corresponding which will be exactly counterbalanced by the λ
terms in Lemma 8.2.

We can write two distinct Lemmas respectively concerning the non monotone
pressure law case and the anisotropic tensor case.

Lemma 8.1 Assume that ρk solves (5.1) with estimates (5.4) and (5.5) on uk.
i) With diffusion, αk > 0, if p > 2, ∃εh0(k)→ 0 as k →∞ for a fixed h0∫ 1

h0

∫
Π4d

Kh(x− z)Kh(y − w)W0(t, z, w)Kh(x− y)χ(δρk) dx dy dz dw
dh

h

≤ C (εh0
(k) + | log h0|1/2)

− 1

2

∫ 1

h0

∫ t

0

∫
Π4d

Kh(x−y) (divuk(x)−divuk(y))χ′0 ρ̄kW0Kh(x−z)Kh(y−w)
dh

h

− 1

2

∫ 1

h0

∫ t

0

∫
Π4d

Kh(x− y) (divuk(x) + divuk(y))

(χ′(δρk) δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w)
dh

h

− λ

2

∫ 1

h0

∫ t

0

∫
Π3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|(z)w0(z)
dh

h
,
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where we recall that W0 = w0(t, x) + w0(t, y).

ii) Without diffusion, αk = 0, if p ≥ 2,∫ 1

h0

∫
Π2d

Kh(x− y)χ(δρk) (w1(t, x) + w1(t, y)) dx dy
dh

h

≤ C | log h0|1/2 ‖uk‖H1 − 2λ

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y) ργ̃k(x)w1(x)χ(δρk)
dh

h

− 2

∫ t

0

∫ 1

h0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))
(1

2
χ′(δ ρk) ρ̄k

+ χ(δρk)− 1

2
χ′(δ ρk) δρk

)
w1(x)

dh

h
.

For the derivation of explicit regularity estimates, we have as well the version with
the product weight, namely∫

Π2d

Kh(x− y)χ(δρk)w1(t, x)w1(t, y) dx dy ≤ C

−
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))χ′(δ ρk) ρ̄k w1(x)w1(y)

−λ
∫ t

0

∫
Π2d

Kh(x− y)
(
ργ̃k(x) + ργ̃k(y)

)
χ(δρk) w1(x)w1(x).

For convenience, we write separately the result we will use in the anisotropic case

Lemma 8.2 Assume that ρk solves (5.1) with estimates (5.5)-(5.4). Without diffu-
sion, αk = 0, assume (8.2) on χa with p > γ + `+ 1, and denote wa,h = Kh ? wa,∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)(t)

≤
∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)|t=0 + C | log h0|θ + I + II −Πa,

with the dissipation term

Πa = λ

∫ t

0

∫ 1

h0

∫
Π2d

wa,h(x)χa(δρk)Kh ? (|divuk|+ |Aµργ |)(x) K̄h
dh

h
,

while

I = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(divuk(x)− divuk(y))χ′a(δρk) ρ̄k

(wa,h(x) + wa,h(y)),
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and

II = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(divuk(x) + divuk(y))

(χ′a(δρk)δρk − 2χa(δρk)) (wa,h(x) + wa,h(y)).

Remark. We emphasize that the λ terms in relations i) and ii) of Lemma 8.1 come
from the penalization in the definition of the weights w0 and w1. They will help
to counterbalance terms coming from the contribution by div xuk(x) − div yuk(y).
Similarly the nonlocal term Πa follows from the definition of the weights wa. bad
terms coming from the viscosity anisotropy.

Proof

Case i). Denote

W0,h(t, x, y) =

∫
Π2d

Kh(x− z)Kh(y − w)W0(t, z, w) dz dw,

and let us use χ in the renormalized equation from Lemma 7.1. We get∫
Πd
W0,h(t, x, y)Kh(x− y)χ(δρk) dx dy = A+B +D + E

− 1

2

∫ t

0

∫
Kh(x− y) (divuk(x)− divuk(y))χ′(δρk) ρ̄kW0,h dx dy,

− 1

2

∫ t

0

∫
Kh(x− y) (divuk(x) + divuk(y)) (χ′(δρk) δρk − 2χ(δρk))W0,h dx dy,

with, by the symmetry of Kh, Kh and W0,h, and in particular since ∇xW0,h(x, y) =
∇yW0,h(y, x)

A =

∫ t

0

∫
Π2d

(uk(t, x)− uk(t, y)) · ∇Kh(x− y) χ(δ ρk)W0,h dx dy dt,

B = 2

∫ t

0

∫
Π2d

Kh(x− y) (∂tW0,h(x) + uk · ∇xW0,h − αk∆xW0,h)χ(δ ρk) dx dy dt,

D = 2αk

∫ t

0

∫
Π2d

χ(δ ρk) [∆xKh(x− y)W0,h + 2Kh(x− y) ∆xW0,h] dx dy dt,

E = −2αk

∫ t

0

∫
Π2d

KhW0,h χ
′′(δ ρk) |∇xδρk|2 dx dy dt.

Now note that by the convexity of χ, E ≤ 0. Then simply bound using (8.1),

D ≤ 8αk h
−2 ‖Kh‖L1 ‖ρ‖L1 ≤ C αk h−2 ‖Kh‖L1 ,
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leading us to choose εh0
(k) = αk

∫ 1

h0
h−2 dh

h .

As for B, using Eq. (7.2)

B = B1 − 2

∫
Kh(x− y)χ(δρk) K̃h ?x,y R0 dx dy dt,

with

B1 = 2

∫
Kh(x− y)χ(δρk) (uk(x)− uk(z)) · ∇xKh(x− z)

Kh(y − w)W0(t, z, w) dx dy dz dw dt.

We recall that R0(x, y) = D0(x)w0(x) + D0(y)w0(y) with D0 = λKh ? (M |∇uk|)
and we thus only have to bound B1. By Lemma 6.1, we have

B1 ≤ C
∫
Kh(x− y)χ(δρk) (D|x−y|uk(x) +D|x−y|uk(z))

|x− z| |∇Kh(x− z)|Kh(y − w)W0(t, z, w)

≤ C
∫
Kh(x− y)χ(δρk) (D|x−y|uk(x) +D|x−y|uk(z))Kh(x− z)Kh(y − w)W0,

as |x| |∇Kh| ≤ C Kh.
Next recalling that W0(t, z, w) = w0(t, z) + w0(t, w), by symmetry

B1 ≤ C
∫
Kh(x− y)χ(δρk)D|x−y|uk(z)Kh(x− z)Kh(y − w)w0(t, z)

+ C

∫
Kh(x− y)χ(δρk) (D|x−y|uk(x) +D|x−y|uk(w)− 2D|x−y|uk(z))

Kh(x− z)Kh(y − w) w0(t, z).

SinceD|x−y|uk(z) ≤ CM |∇uk|(z), for λ large enough, the first term may be bounded
by

−λ
2

∫
Kh(x− y)χ(δρk)Kh ?x (M |∇uk|w0) dx dy dt.

Use the uniform bound on ‖ρk‖Lp with p > 2, to find∫
Kh(x− y)χ(δρk) (D|x−y|uk(x) +D|x−y|uk(w)− 2D|x−y|uk(z))K̃h w0(t, z)

≤ C
∫ ∥∥D|r|uk(.) +D|r|uk(.+ r + u)− 2D|r|uk(.+ v)

∥∥
L2 Kh(r)Kh(u)Kh(v),

where we used that w = x + (y − x) + (w − y). We now use Lemma 6.3 and more
precisely the inequality (6.5) to obtain∫ 1

h0

∫
Kh(x− y)χ(δρk) (D|x−y|uk(x) +D|x−y|uk(w)− 2D|x−y|uk(z))K̃h w0

dh

h

≤ C | log h0|1/2
∫ t

0

‖uk(t, .)‖H1 dt ≤ C | log h0|1/2.
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Therefore we have that∫ 1

h0

B
‖Kh‖−1

L1

h
dh ≤ C εh0(k) + C | log h0|1/2

− 3λ

4

∫ 1

h0

∫ t

0

∫
Kh(x− y)χ(δρk)M |∇uk|(z)Kh(x− z)w0(z) dz dx dy dt

dh

h
.

The computations are similar for A and we only give the main steps. We have, using
again Lemma 6.1∫

Π2d

∇Kh(x− y) · (uk(t, x)− uk(t, y))χ(δρk)W0,h

≤ C
∫

Π2d

Kh(x− y) (D|x−y| uk(x) +D|x−y| uk(y))χ(δ ρk)W0,h.

By decomposing W0,h, we can write just as for B1∫
Π2d

∇Kh(x− y) · (uk(t, x)− uk(t, y))χ(δρk)W0,h

≤ C
∫

Π2d

Kh(x− y)M |∇uk|(z)χ(δ ρk)Kh(x− z)w0(z)

+ C

∫
Π2d

Kh(x− y) (D|x−y| uk(x) +D|x−y| uk(y) +D|x−y| uk(w)− 3D|x−y| uk(z))

χ(δ ρk)Kh(x− z)Kh(y − w)w0(z).

The first term in the r.h.s. can again be bounded by

−λ
2

∫
Kh(x− y)χ(δρk)Kh ?x (M |∇uk|w0) dx dy dt.

The second term in the r.h.s. is now integrated in h and controlled as before thanks
to the bound (6.5) in Lemma 6.3 and the uniform Lp bound on ρk and H1 on uk.
This leads to∫

h1
0

A ‖Kh‖−1
L1

dh

h
≤ C | log h0|1/2

+
λ

4

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)M |∇uk|(z)χ(δ ρk)Kh(x− z)w0(z) dx dy dz dt
dh

h
.

Now summing all the contributions we get∫ 1

h0

(A+B +D + E) ‖Kh‖−1
L1

dh

h
≤ C εh0(k) + C | log h0|1/2

− λ

2

∫ 1

h0

∫ t

0

∫
Kh(x− y)χ(δρk)Kh ? (M |∇uk|w0).
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Note that indeed εh0
(k) → 0 as k → ∞ for a fixed h0. This concludes the proof in

that first case.

Case ii). In this part, we assume αk = 0. We may not assume that ρk is smooth
anymore. However by [27] since ρk ∈ L2 and so is∇uk, one may use the renormalized
relation with ϕ = χ and choose W x,y

k,h = Wi. We then can use the identity given in
Lemma 7.1. Denoting

χ̃(ξ) =
1

χ(ξ)

(
χ(ξ)− 1

2
χ′(ξ) ξ

)
,

we get for i = 1, 2∫
Π2d

Kh(x− y)χ(δρk)Wi(t, x, y) dx dy ≤ Ai +Bi +Di,

where by the symmetry in x and y

A1 =

∫ t

0

∫
Π2d

(uk(t, x)− uk(t, y)) · ∇Kh(x− y)χ(δ ρk)W1 dx dy dt

− λ
∫ t

0

∫
Π2d

Kh(x− y) (M |∇uk|(x)w1(x) +M |∇uk|(y)w1(y))χ(δ ρk),

while

A2 =

∫ t

0

∫
Π2d

(uk(t, x)− uk(t, y)) · ∇Kh(x− y)χ(δ ρk)W2 dx dy dt

− λ
∫ t

0

∫
Π2d

Kh(x− y) (M |∇uk|(x) +M |∇uk|(y))w1(x)w1(y))χ(δ ρk).

And

B1 = 2

∫ t

0

∫
Π2d

Kh(x− y)
(
∂tw1(x) + uk(x) · ∇xw1 + 2div xuk(x) χ̃(δρk)w1

+ λM |∇uk|(x)w1

)
χ(δ ρk) dx dy dt,

while

B2 = 2

∫ t

0

∫
Π2d

Kh(x− y)
(
∂tw1(x) + uk(x) · ∇xw1 + div xuk(x) χ̃(δρk)w1

+ λM |∇uk|(x)w1

)
w1(y)χ(δ ρk) dx dy dt.

Finally

D1 = −2

∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))
(1

2
χ′(δ ρk) ρ̄k

+ χ(δρk)− 1

2
χ′(δ ρk) δρk

)
w1(x) dx dy dt,
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and

D2 = −
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))χ′(δ ρk) ρ̄k

w1(x)w1(y) dx dy dt.

Note that we have split in several parts a null contribution in terms of the maximal
function namely the ones with M |∇uk|2. Notice also the additional terms in D1 that
come from cross products such as divuk(y) χ̃ χw1(x) which would pose problems in
B1.

The contributions D1 and D2 are already under the right form. Using Eq. (7.2)
with (7.4), one may directly bound

B1 ≤ −2λ

∫ t

0

∫
Π2d

Kh(x− y) ργ̃k(t, x)w1(t, x)χ(δ ρk) dx dy dt,

and

B2 ≤ −2λ

∫ t

0

∫
Π2d

Kh(x− y) ργ̃k(t, x)w1(t, x)w1(t, y)χ(δ ρk) dx dy dt.

The term A2 is straightforward to handle as well. Use (6.1) to get

A2 ≤
∫ t

0

∫
Π2d

|∇Kh(x− y)| |x− y| (M |∇uk|(x) +M |∇uk|(y))χ(δ ρk)W2

− λ
∫ t

0

∫
Π2d

Kh(x− y) (M |∇uk|(x) +M |∇uk|(y))w1(x)w1(y))χ(δ ρk).

Since |x| |∇Kh| ≤ CKh, by taking λ large enough, one obtains

A2 ≤ 0.

The term A1 is more complex because it has no symmetry. By Lemma 6.1

A1 ≤ C
∫ t

0

∫
Π2d

|∇Kh(x− y)| |x− y| (D|x−y| uk(x) +D|x−y| uk(y))χ(δ ρk)

w1(t, x) dx dy dt

− λ
∫ t

0

∫
Π2d

Kh(x− y)M |∇uk|(x)w1(t, x)χ(δ ρk) + similar terms in w1(t, y).

The key problem here is the Dh u(y)w1(x) term which one has to control by the term
M |∇u|(x)w1(x). This is where integration over h and the use of Lemma 6.3 is needed
(the other term in w1(y) is dealt with in a symmetric manner). For that we will add
and subtract an appropriate quantity to see the quantity D|x−y|uk(x)−D|x−y|uk(y).
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By the definition ofKh, |z| |∇Kh(z)| ≤ C Kh(z) and by (8.1), χ(δρk) ≤ C (ρk(x)+
ρk(y)) with ρk ∈ L2 uniformly moreover w1 in uniformly bounded. Hence using
Cauchy-Schwartz and denoting z = x− y∫ 1

h0

A1

‖Kh‖L1

dh

h
≤ 2C

∫ 1

h0

∫ t

0

∫
Πd
Kh(z) ‖D|z| uk(.)−D|z|uk(.+ z)‖L2

dh

h

+ 4C

∫ t

0

∫
Π2d

Kh0
(x− y)D|x−y| uk(x)χ(δ ρk)W1

− 2λ

∫ t

0

∫
Π2d

Kh0
(x− y)M |∇uk|(x)w1(x)χ(δ ρk)

≤ 2C

∫ 1

h0

∫
Πd
Kh(z) ‖D|z| uk(.)−D|z|uk(.+ z)‖L2

dh

h
,

by taking λ large enough since Lemma 6.2 bounds D|x−y| uk(x) by M |∇uk|(x).

Finally using Lemma 6.3∫ 1

h0

A1

‖Kh‖L1

dh

h
≤ C | log h0|1/2 ‖uk‖H1 .

Summing up Ai + Bi + Di, and integrating against
dh

‖Kh‖L1 h
for i = 1, concludes

the proof.
�

Proof of Lemma 8.2. In this part, we again assume αk = 0 and still use [27] to
obtain the renormalized relation of Lemma 7.1 with ϕ = χa and W x,y

k,h = Kh ?Wa =
wa,h+wa,h. With this exception the proof follows the lines of point i) in the previous
Lemma 8.1, so we only sketch it here.

From Lemma 7.1, we get∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)(t)

≤
∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)|t=0 +A+B +D + I + II + Πa,

with the terms

A =

∫ t

0

∫
Π2d

(uk(t, x)− uk(t, y)) · ∇Kh(x− y)χa(δρk)(wa,h(x) + wa,h(y)),

while

B = 2
[ ∫ t

0

∫
Π3d

Kh(x− y)χa(δρk)(uk(x)− uk(z)) · ∇xKh(x− z)wa(t, z)

− λ
∫ t

0

∫
Π2d

Kh(x− y)χa(δρk)Kh ? (M |∇uk|wa)
]
,
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and

D =− λ
[∫ t

0

∫ 1

h0

∫
Π2d

χa(δρk)Kh ? ((|divuk|+ |Aµργ |)wa )(x)Kh(x− y)
dh

h

−
∫ t

0

∫ 1

h0

∫
Π2d

wa,h(x)χa(δρk)Kh ? (|divuk|+ |Aµργ |)(x)Kh(x− y)
dh

h

]
.

The dissipation term is under the right form

Πa = −λ
∫ t

0

∫ 1

h0

∫
Π2d

wa,h(x)χa(δρk)Kh ? (|divuk|+ |Aµργ |)(x)Kh(x− y)
dh

h
,

and so are by symmetry

I = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(divuk(x)− divuk(y))χ′a(δρk) ρ̄k wa,h(x),

and

II = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(divuk(x) + divuk(y))

(χ′a(δρk)δρk − 2χa(δρk))wa,h(x).

The terms A and B are treated exactly as in case i) of Lemma 8.1; they only require
the higher integrability p > γ + 1 + `.

The only additional term is hence D which is required in order to write the
dissipation term Πa in the right form. D is bounded directly by point iv) in Lemma
7.2. Thus

A+B +D ≤ C | log h0|θ,
for some 0 < θ < 1 which concludes the proof. �

8.2 The control on the effective flux

Before coupling the previous estimate with the equation on divuk, we start with a
lemma which will be used in every situation as it controls the regularity properties
of

Dρuk = ∆−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)) ,

per

Lemma 8.3 Assume that ρk solves (5.1), that (5.5)-(5.6) hold and (5.4) with γ >
d/2. Assume moreover that Φ ∈ L∞([0, T ]×Π2d) and that

Cφ :=

∥∥∥∥∫
Πd
Kh(x− y) Φ(t, x, y) dy

∥∥∥∥
W 1,1
t W−1,1

x

+

∥∥∥∥∫
Πd
Kh(x− y) Φ(t, x, y) dx

∥∥∥∥
W 1,1
t W−1,1

y

<∞,
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then there exists θ > 0 s.t.∫ t

0

∫
Πd
Kh(x− y) Φ(t, x, y) (Dρuk(t, y)−Dρuk(t, x)) dx dy dt

≤ C ‖Kh‖L1 hθ
(
‖Φ‖L∞t,x + CΦ

)
.

Proof This proof is divided in four steps: The first one concerns a control on
ρk|uk − uk,η| where uk,η is a regularization of uk defined later-on; The second step
concerns the proof of an estimate for Φx =

(
Kh ? Φ

)
(t, x) and Φy =

(
Kh ? Φ

)
(t, y)

in L2
tL

p̄′

x with p̄′ = p̄/(p̄ − 1); The third step concerns a control with respect to h
when Φx, Φy in L2

tL
p̄′

x ∩W
1,+∞
t W−1,∞−0 with p̄′ = p̄/(p̄− 1); The last term is the

end of the proof obtained by interpolation.

i) A control on ρk|uk −uk,η| where uk,η is a regularization in space and time defined
later-on. Choose a kernel Kη ∈ C∞c (R+ × R+) s.t. Kη(t, s) = 0 if |t − s| ≥ η, for
smoothing in time. We still denote, with a slight abuse of notation

Kη ?t uk(t) =

∫
R+

Kη(t, s)uk(s) ds.

Now since uk is uniformly bounded in L2
tH

1
x ⊂ L2

tL
6
x in dimension d = 3 and in

L2
tL

q
x for any q <∞ in dimension d = 2, one has∫

ρk(t, x)
(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Kη(t, s) dt ds dx

≤
∫
ρk(t, x) (uk(t, x)− uk(s, x))Kη(t, s)Kη′ ?x

uk(t, .)− uk(s, .)

1 + |uk(t, .)|+ |uk(s, .)|
+ C (η′)θ ‖ρk‖L∞t Lγx ,

with θ > 0 if γ > d/2 for d = 2, 3. Note that

‖∂tρk‖L1
tW
−1,1
x
≤ C,

and by interpolation, as γ > d/2 and thus γ > 2d/(d+ 2), there exists θ > 0 s.t.

‖∂θt ρk‖L2
tH
−1
x
≤ C.

Thus∫
ρk(t, x)

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Kη(t, s) dt ds dx

≤
∫

(ρk(t)uk(t, x)− ρk(s)uk(s, x))Kη(t, s)Kη′ ?
uk(t, .)− uk(s, .)

1 + |uk(t, .)|+ |uk(s, .)|

+ C (η′)θ + C
ηθ

η′d
‖uk‖L2

tH
1
x
.
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Using (5.6), one deduces that∫
ρk(t, x)

(uk(t, x)− uk(s, x))2

1 + |uk(t, x)|+ |uk(s, x)|
Kη(t, s) dt ds dx

≤ Cη′θ + C
ηθ

η′d
+ C

η

η′d
.

Optimizing in η′ and interpolating (using again γ > d/2), one finally gets that for
some θ > 0 ∫

ρk(t, x) (uk(t, x)− uk(s, x))2Kη(t, s) dt ds dx ≤ Cηθ.

Define for some ν > 0
uk,η = Kην ?x Kη ?t uk.

Using the regularity in x of uk,η, one has that∫
ρk(t, x) |uk(t, x)− uk,η(t, x)|2 dx dt ≤ C ηθ,

and finally by (5.5), there exists θ > 0 s.t.

‖ρk (uk − uk,η)‖L1+0
t L1+0

x
≤ C ηθ. (8.3)

ii) The case where Φx, Φy is only in L2
tL

p̄′

x with p̄′ = p̄/(p̄− 1). We recall that p̄ is
the exponent in (5.6). Denote

IΦ =

∫ t

0

∫
Π2d

Kh(x− y) Φ(t, x, y) (Dρuk(t, y)−Dρuk(t, x)) dx dy dt

which can be seen as a linear form on Φ. Recall as well

Φx =

∫
Πd
Kh(x− y) Φ(t, x, y) dy, Φy =

∫
Πd
Kh(x− y) Φ(t, x, y) dx.

By (5.6), Dρuk is uniformly bounded in L2
tL

p̄
x. Therefore

|I Φ| ≤ C ‖Kh‖L1

(
‖Φx‖L2

tL
p̄′
x

+ ‖Φy‖L2
tL

p̄′
x

)
,

1

p̄′
= 1− 1

p̄
> 0. (8.4)

iii) The case Φx, Φy in L2
tL

p̄′

x ∩W
1,+∞
t W−1,∞−0 with p̄′ = p̄/(p̄− 1). Denote

C̃Φ = ‖Φx‖L2
tL

p̄′
x

+ ‖Φy‖L2
tL

p̄′
x

+ ‖Φx‖W 1,∞
t W−1,∞−0 + ‖Φy‖W 1,∞

t W−1,∞−0 ,

and
R1 = ∆−1 div ρk (uk − uk,η).
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Observe that by (8.3) and integration by part in time∫ t

0

∫
Πd

Φx ∂tR1 dx dt ≤ C̃Φ η
θ ‖Kh‖L1 .

The same procedure can be performed with div (ρk uk ⊗ uk). Denoting

Dρuk,η = ∆−1 div (∂t(ρk uk,η) + div (ρk uk ⊗ uk,η)) ,

one then has

I Φ ≤C̃Φ ‖Kh‖L1 ηθ

+

∫ t

0

∫
Π2d

Kh(x− y) Φ(t, x, y) (Dρuk,η(t, y)−Dρuk,η(t, x)) dx dy dt.

However using (5.1)

∂t(ρk uk,η) + div (ρk uk ⊗ uk,η) = ρk(∂tuk,η + uk · ∇uk,η) + αk uk,η ∆ρk.

For some exponent κ∥∥∆−1div (ρk(∂tuk,η + uk · ∇uk,η))
∥∥
L1
tW

1,1
x
≤ C η−κ,

and
αk
∥∥∆−1div (αk uk,η ∆ρk)

∥∥
L2
t L

2
x
≤ C η−κ

√
αk.

Therefore ∫ t

0

∫
Πd
Kh(x− y) Φ(t, x, y) (Dρuk,η(t, y)−Dρuk,η(t, x)) dx dy dt

≤ C̃Φ η
−κ ‖Kh‖L1 (h+

√
αk)1−0.

Finally

I Φ ≤ C̃Φ ‖Kh‖L1

(
ηθ + η−κ (h+

√
αk)
)
,

and by optimizing in η, there exists θ > 0 s.t.

I Φ ≤ C ‖Kh‖L1 hθ
(
‖Φx‖W 1,∞

t W−1,∞−0 + ‖Φy‖W 1,∞
t W−1,∞−0

)
. (8.5)

iv) Interpolation between the two inequalities (8.4) and (8.5). For any s ∈ (0, 1)
there exists θ > 0 s.t.

I Φ ≤ C ‖Kh‖L1 hθ
(
‖Φx‖L2

tL
p̄′
x

+ ‖Φy‖L2
tL

p̄′
x

+ ‖Φx‖W s,q+0
t W−s,r+0

x
+ ‖Φy‖W 1,q+0

t W−1,r+0
x

)
,
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with
1

q
=

1− s
2

,
1

r
=

1− s
p̄′

.

On the other hand, if for example Φx belongs to L∞t,x and to W 1,1
t W−1,1

x then by

interpolation Φx is in W
s,1/s−0
t W

−s,1/s−0
x . Hence Cφ controls the W s,q+0

t W−s,r+0
x

norm provided

s < 1/q =
1− s

2
, s < 1/r =

1− s
p̄′

.

This is always possible by taking s small enough (but strictly positive) as p̄ > 1 and
hence p̄′ <∞. This concludes the proof.

Note finally that the interpolations between Sobolev spaces are not exact which
is the reason for the 1/s− 0 or q + 0 and r+ 0 (one would have to use Besov spaces
instead, see for instance [47]). �

8.3 The coupling with the pressure law

We handle all weights at the same time. For convenience, we denote

χ1(t, x, y) =
1

2
χ′(δρk) ρ̄k + χ(ρk)− 1

2
χ′(δρk) δρk.

In the case without viscosity, one has

Lemma 8.4 Assume that ρk solves (5.1) with αk = 0, that (5.6), (5.5), (5.4) with
γ > d/2 and p > 2 hold. Assume moreover that u solves (5.2) with µk compact in
L1 and satisfying (5.3), Fk compact in L1, Pk satisfying (5.9).
i) Then there exists a continuous function ε(.) with ε(0) = 0 s.t.

−
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))χ1 w1(x)

≤ C ‖Kh‖L1 ε(h) + C

∫ t

0

∫
Π4d

Kh(x− y)
(

1 + ργ̃k(x)
)
χ(δρk)w1(x).

ii) There exist θ > 0 and a continuous function ε with ε(0) = 0, depending only on
p and the smoothness of µk and Fk, s.t.

−
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))χ′(δρk) ρ̄k w1(x)w1(y)

≤ C ‖Kh‖L1

(
ε(h) + hθ

)
+ C

∫ t

0

∫
Π4d

Kh(x− y)
(

1 + ργ̃k(x) + ργ̃k(y)
)
χ(δρk)w1(x)w1(y).

For instance if µk and Fk belong to W s,1 for some s > 0 then one may take ε(h) = hθ

for some θ > 0.
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Lemma 8.5 Assume that ρk solves (5.1), that (5.6), (5.5), (5.4) with γ > d/2 and
p > 2 hold. Assume moreover that u solves (5.2) with µk compact in L1 and satisfying
(5.3), Fk compact in L1, Pk satisfying (5.8). Then there exists a continuous function
ε(.) with ε(0) = 0 and depending only on the smoothness of µk and Fk s.t.

− 1

2

∫ t

0

∫
Π4d

Kh(x− y) (divuk(x)− divuk(y))χ′(δρk) ρ̄kW0Kh(x− z)Kh(y − w)

− 1

2

∫ t

0

∫
Π4d

Kh(x− y)(divuk(x) + divuk(y))(χ′(δρk)δρk − 2χ(δρk))

W0(z, w)Kh(x− z)Kh(y − w)

− λ

2

∫ t

0

∫
Π3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|w0(z)

≤ C ‖Kh‖L1 ε(h) + C

∫ t

0

∫
Π4d

Kh(x− y)χ(δρk)W0Kh(x− z)Kh(y − w).

Proof The computations are very similar for i) and ii) in Lemma 8.4 and for
Lemma 8.5. For simplicity, in order to treat the proofs together as much as possible,
we denote

G1(t, x, y) = χ1(t, x, y)w1(x), G2(t, x, y) = χ′(δρk) ρ̄k w1(t, x)w1(t, y),

G0(t, x, y) =
1

2
χ′0(δρk) ρ̄k

∫
Π2d

W0(t, z, w)Kh(x− z)Kh(y − w) dz dw.

The first step is to truncate: Denote ILk (t, x, y) = φ(ρk(t, x)/L)φ(ρk(t, y)/L) for
some smooth and compactly supported φ,

−
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))Gi

≤ C ‖Kh‖L1 L−θ0 −
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))Gi I
L
k .

Here for i = 0, 1, 2, Gi ≤ C (ρk(t, x) + ρk(t, y)) (even G2 ≤ 2) and consequently, as
divuk ∈ L2 uniformly, only p > 2 is required with θ0 = (p− 2)/2 > 0.

Introduce an approximation µk,η of µk, satisfying (5.3) and s.t.

‖µk,η‖W 2,∞
t,x
≤ C η−2, ‖µk,η − µk‖L1 ≤ ε0(η),∫ T

0

∫
Π2d

Kh(x− y) |µk,η(t, x)− µk,η(t, y)| dx dy dt ≤ ‖Kh‖L1 ε0(h),
(8.6)

from (5.13). Use (5.2) to decompose

−
∫
Kh(x− y) (divuk(x)− divuk(y))Gi I

L
k dx dy

= 2Ai + 2Bi + 2Ei,
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with

Ai = −
∫
Kh(x− y) (Pk(ρk(x))− Pk(ρk(y)))Gi

ILk
µk,η(x)

dx dy,

and

Bi =

∫
Kh(x− y) F̃k(t, x, y)Gi

ILk
µk,η(x)

dx dy,

where

F̃k(t, x, y) =Fk(t, x)− Fk(t, y) + µk(y)µk,η(x) divuk(t, y)

(
1

µk,η(x)
− 1

µk(y)

)
− µk(x)µk,η(x) divuk(t, x)

(
1

µk,η(x)
− 1

µk(x)

)
.

Finally

Ei =

∫
Kh(x− y) (Dρuk(t, y)−Dρuk(t, x))Gi

ILk
µk,η(x)

dx dy,

with as before

Dρuk = ∆−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

For Bi by the compactness of Fk, µk, estimates (8.6) and (5.13), and by (5.3)

Bi ≤ C L
∫ t

0

∫
Π2d

Kh(x− y) |F̃k(t, x, y)| ≤ C L (ε0(h) + ε0(η)) ‖Kh‖L1 . (8.7)

Note that again |Gi| ≤ C (ρk(x) + ρk(y)) for i = 0, 1, 2.
For Ei, we use Lemma 8.3 by defining simply

Φi(t, x, y) = Gi I
L
k (t, x, y)

1

µk,η(t, x)
.

By (5.3),
‖Φi‖L∞t,x ≤ C L.

As for the time derivative of Φ, for i = 1, 2, Gi is a combination of functions of
ρk(t, x), ρk(t, y) and wi which all satisfy the same transport equation (with different
right-hand sides). By (5.1),

∂tGi + div x (uk(x)Gi) + div y (uk(y)Gi) = f1,i div xuk(x) + f2,i div yuk(y)

+ f3,iDi(x) + f4,iDi(y),

where the Di are the penalizations introduced in Section 7.2 and the fn,i are again
combinations of functions of ρk(t, x), ρk(t, y) and wi. Every fn,i contains as a factor
φ(ρk(x)/L) or a derivative of φ and thus

‖fn,i‖L∞ ≤ C L, ∀n, i.

63



Finally by the smoothness of µk,η

∂tΦi + div x (uk(x) Φi) + div y (uk(y) Φi) = f̃1,i div xuk(x) + f̃2,i div yuk(y)

+ f̃3,iDi(x) + f̃4,iDi(y) + Φi gη,

and it is easy to check that the constant CΦi as defined in Lemma 8.3 is bounded
by C Lη−1.

The case i = 0 is slightly more complicated as W0 is integrated against Kh so the
equation on Φ0 involves non local terms and we have to take into account extra terms
as mentioned in the statement of Lemma 8.4. By (7.2), denoting w0,h = Kh ? w0

∂tw0,h + uk(t, x) · ∇w0,h − αk∆xw0,h = −Kh ? (D0 w0) +Rh −Kh ? (divuk w0),

with

Rh =

∫
Πd
∇Kh(x− z) · (uk(t, x)− uk(t, z))w0(t, z) dz.

Remark that Rh is uniformly bounded in L2
t,x by usual commutator estimates.

Finally as µk,η is smooth in time, one has

∂tΦ0 + div x (uk(x) Φ0) + div y (uk(y) Φ0)− αk (∆x + ∆y) Φ0

= f1,0 div xuk(t, x) + f2,0 div yuk(t, y) + αk
(
f3,0 |∇xρk(x)|2 + f4,0 |∇xρk(y)|2

)
− Φρ
µk,η

(
Kh ? (D0 w0) +Rh −Kh ? (divuk w0)

)
− 2

αk
µk,η

∇xΦρ · ∇xw0,h

+ Φ0 gη,

where Φρ = δρk ρ̄k I
L
k (t, x, y), gη is a function involving first and second derivatives

of µk,η in t and x and ∇uk. The fj,0 are combinations of functions of ρk(t, x) and
ρk(t, y), multiplied by w0,h, and involving φ(ρk(x)/L), φ′(ρk(x)/L), or φ′′(ρk(x)/L)
and the corresponding term with ρk(y).

By the L∞ bounds on Φρ, w0, each fj,0 and by (5.5), one obtains∥∥∥∥∂t ∫ Kh(x− y) Φ0(t, x, y) dy

∥∥∥∥
L1
t W

−1,1
x

≤ C Lη−1.

Therefore Cφ ≤ C Lη−1. Thus for all three cases, Lemma 8.3 yields

Ei ≤ C Lη−1 ‖Kh‖L1 hθ, (8.8)

for some θ > 0.

Proof of Lemma 8.5: The term A0. The terms Ai are where lies the main
difference between Lemmas 8.4 and 8.5 as Pk is not monotone in the first case and
monotone after a certain threshold in the second. For this reason we now proceed
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separately for Lemma 8.5 and Lemma 8.4. In the case with diffusion for Lemma 8.5,
there exist extra terms to handle in , namely J + I with

J = −λ
2

∫ t

0

∫
Π3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|(z)w0(z),

and

I =− 1

2

∫ t

0

∫
Π4d

Kh(x− y) (divuk(x) + divuk(y))

(χ′(δρk) δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w).

We decompose this last term in a manner similar to what we have just done, first of
all by introducing the truncation of ρk

I ≤C ‖Kh‖L1 L−θ0

− 1

2

∫ t

0

∫
Π4d

Kh(x− y) (divuk(x) + divuk(y))

(χ′(δρk) δρk − 2χ(δρk)) ILk W0Kh(x− z)Kh(y − w),

with again θ0 = (p− 2)/2. Now introduce the µk

I ≤ C ‖Kh‖L1 Lθ − 1

2

∫ t

0

∫
Π4d

Kh(x− y) (µk(t, x)divuk(x) + µk(t, y)divuk(y))

ILk
µk,η(t, x)

(χ′(δρk) δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w)

+
1

2

∫ t

0

∫
Π4d

Kh(x− y)Hk(x, y)(χ′ δρk − 2χ(δρk)) ILk W0Kh(x− z)Kh(y − w)

where

Hk(t, x, y) = µk(x)divuk(x)
( 1

µk,η(x)
− 1

µk(x)

)
− µk(y)divuk(y)

( 1

µk(y)
− 1

µk,η(x)

)
.

By the compactness of µk, one has that∫ t

0

∫
Π4d

Kh(x− y)Hk(x, y)(χ′ δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w)

≤ ‖Kh‖L1 ε0(h) ‖uk‖L2
t H

1
x
‖ρk‖L2

t,x
≤ C ε0(h) ‖Kh‖L1 .

This implies that

I ≤ −1

2

∫ t

0

∫
Π4d

Kh(x− y) (µk(t, x)divuk(x) + µk(t, y)divuk(y))

ILk
µk,η(t, x)

(χ′(δρk) δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w)

+ C ‖Kh‖L1(L−θ + ε0(h)).
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Using (5.2) or namely that µkdivuk = Dρuk +Fk +Pk(ρk), the quantity A0 + I+J
may be written

A0 + I + J ≤ C ‖Kh‖L1(L−θ + ε0(h)) + I1 + I2, (8.9)

with

I1 = A0 −
1

2

∫ t

0

∫
Π4d

Kh(x− y) (Pk(ρk(x)) + Pk(ρk(y)))
ILk

µk,η(t, x)

(χ′(δρk) δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w),

and

I2 = −1

2

∫ t

0

∫
Π4d

Kh(x− y) (Dρuk(x) + Fk(x) +Dρuk(y) + Fk(y))
ILk

µk,η(t, x)

(χ′(δρk) δρk − 2χ(δρk)) W0Kh(x− z)Kh(y − w)

− λ

2

∫ t

0

∫
Π3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|(z)w0(z).

In this case with diffusion, because Pk is essentially monotone, the term A0 is mostly
dissipative and helps control the rest. More precisely

I1 = −1

2

∫ t

0

∫
Π2d

[
Kh(x− y)

[
(Pk(ρk(x))− Pk(ρk(y)))χ′(δρk)ρk

+ (Pk(ρk(x)) + Pk(ρk(y)))(χ′(δρk)δρk − 2χ(δρk))
]

ILk
µk,η(t, x)

∫
Π2d

W0Kh(x− z)Kh(y − w)dzdw
]
dxdy.

As Pk ≥ 0 and by (8.1), χ′(δρk)δρk − 2χ(δρk) ≥ −χ′(δρk)δρk, thus

(Pk(ρk(x))− Pk(ρk(y)))χ′ρ̄k + (Pk(ρk(x)) + Pk(ρk(y)))(χ′δρk − 2χ(δρk))

≥ χ′(δρk) [(Pk(ρk(x))− Pk(ρk(y))) ρ̄k − (Pk(ρk(x)) + Pk(ρk(y))) δρk] .

Without loss of generality, we may assume that ρk(x) ≥ ρk(y) and hence χ′(δρk) ≥ 0.
Developing

(Pk(ρk(x))− Pk(ρk(y))) ρ̄k − (Pk(ρk(x)) + Pk(ρk(y))) δρk

= 2Pk(ρk(x)) ρk(y)− 2Pk(ρk(y)) ρk(x).

As a consequence, by the quasi-monotonicity (5.8) of Pk(s)/s, for some ρ̄ large
enough with respect to ρ0, if ρk(x) ≥ ρ̄, then Pk(ρk(x)) ρk(y)− Pk(ρk(y)) ρk(x) ≥ 0
(recall that we assumed ρk(x) ≥ ρk(y)).

The only case where one does not have the right sign is hence where both ρk(x)
and ρk(y) are bounded. Therefore using the regularity of Pk

(Pk(ρk(x))− Pk(ρk(y))) ρ̄k − (Pk(ρk(x)) + Pk(ρk(y))) δρk ≥ −C |δρk|.
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Introducing this estimate in I1 yields

I1 ≤ C
∫ t

0

∫
Π2d

Kh(x− y)|δρk| |χ′(δρk)| ILk
µk,η(t, x)

∫
Π2d

W0Kh(x− z)Kh(y − w)

≤ C
∫ t

0

∫
Π4d

Kh(x− y)χ(δρk)W0Kh(x− z)Kh(y − w).

(8.10)

Turning now to I2, we observe that µkM |∇uk| ≥ µk divuk ≥ Dρuk + Fk and that
χ(δk) ≥ (2χ(δk) − χ′(δk) δk)/C. Therefore for λ large enough, using W0(z, w) =
w0(z) + w0(w) and the symmetry

I2 ≤ −
1

2

∫ t

0

∫
Π4d

Kh(x− y) (Dρuk(x)−Dρuk(z) + Fk(x)− Fk(z)

+Dρuk(y)−Dρuk(z) + Fk(y)− Fk(z))
ILk

µk,η(t, x)
(χ′(δρk) δρk − 2χ(δρk))

W0Kh(x− z)Kh(y − w).

The differences in the Fk are controlled by the compactness of Fk and the differences
in the Dρuk by Lemma 8.3 as for the terms Ei. Hence, finally

I2 ≤ C ‖Kh‖L1 (ε0(h) + Lη−1 hθ). (8.11)

Conclusion for Lemma 8.5. We sum up the contributions from B0 in (8.7), E0

in (8.8), A0 + I+J in (8.9) together with the bounds on I1 in (8.10) and I2 in (8.11)
to obtain

− 1

2

∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))G0

− 1

2

∫ t

0

∫
Π4d

Kh(x− y) (divuk(x) + divuk(y)) (χ′(δρk) δρk − 2χ(δρk))

W0(z, w)Kh(x− z)Kh(y − w)

− λ

2

∫ t

0

∫
Π3d

Kh(x− y)χ(δρk)Kh(x− z)M |∇uk|(z)w0(z)

≤ C ‖Kh‖L1

(
L−θ0 + L (ε0(h) + ε0(η)) + Lη−1 hθ

)
+ C

∫ t

0

∫
Π4d

Kh(x− y)χ(δρk)W0(z, w)Kh(x− z)Kh(y − w).

Just optimizing in L and η leads to the desired ε(h) and concludes the proof of
Lemma 8.5.

Proof of Lemma 8.4: The term Ai with i = 1, 2. It now remains to analyze more
precisely the terms (Pk(ρk(x))−Pk(ρk(y)))Gi for i=1,2 concerning the case without
diffusion but with non monotone pressure. We will split the study in three cases.
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Case 1). The case (Pk(ρk(x)) − Pk(ρk(y)))δρk ≥ 0. Since G2 obviously have the
same sign as δρk, one simply has

(Pk(ρk(x))− Pk(ρk(y)))Gi ≥ 0,

for i = 2. In the same case, for G1

(Pk(ρk(x))− Pk(ρk(y)))G1

= (Pk(ρk(x))− Pk(ρk(y)))

(
1

2
χ′(δρk) ρ̄k + χ(δρk)− 1

2
χ′(δρk) δρk

)
w1(x)

≥ |Pk(ρk(x))− Pk(ρk(y))|
(

1

2
|χ′(δρk)| ρ̄k −

∣∣∣∣χ(δρk)− 1

2
χ′(δρk) δρk

∣∣∣∣) w1(x)

≥ 0,

by (8.1) as ρ̄k ≥ |δρk|. Therefore in that case the terms have the right sign and can
be dropped.

Case 2). The case (Pk(ρk(x))− Pk(ρk(y)))δρk < 0 and ρk(y) ≤ ρk(x)/2 or ρk(y) ≥
2 ρk(x) for some constant C.

– For i = 1, first assume that Pk(ρk(x)) ≥ Pk(ρk(x)) while ρk(y) ≥ 2 ρk(x).

(Pk(ρk(x))− Pk(ρk(y)))G1 ≥ −Pk(ρk(x)) (|χ′(δρk)| ρ̄k + χ(δρk))w1(x).

Now observe that since ρk(y) ≥ 2 ρk(x) then

|χ′(δρk)| ρ̄k ≤
3

2
|χ′(δρk)| ρk(y) ≤ 3 |χ′(δρk)| |δ ρk| ≤ C χ(δρk),

by (8.1). Therefore in that case

(Pk(ρk(x))− Pk(ρk(y)))G1 ≥ −C ρk(x)γ̃ χ(δρk)w1(x),

since by (5.9), Pk(ξ) ≤ Pk(0) + C ξγ̃−1 ξ ≤ C ξγ̃ .
Note that the result is not symmetric in x and y and we have to check also

Pk(ρk(x)) ≤ Pk(ρk(y)) and ρk(y) ≤ ρk(x)/2. Then simply bound

(Pk(ρk(x))− Pk(ρk(y)))G1 ≥ −C (ρk(y))γ̃ χ(δρk)w1(x)

≥ −C (ρk(x))γ̃ χ(δρk)w1(x),

since now ρk(y) ≤ ρk(x).

– For i = 2. The calculations are similar (simpler in fact) for G2 and this lets
us deduce that if Pk(ρk(x)) − Pk(ρk(y)) and ρk(x) − ρk(y) have different signs but
ρk(y) ≤ ρk(x)/2 or ρk(y) ≥ 2 ρk(x) then

(Pk(ρk(x))− Pk(ρk(y)))G2 ≥ −C (ρk(x))γ̃ χ(δρk)w1(x)w1(y).
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Case 3). For i = 1, 2, the situation where Pk(ρk(x))− Pk(ρk(y)) and ρk(x)− ρk(y)
have different signs but ρk(x)/2 ≤ ρk(y) ≤ 2 ρk(x). Then one bluntly estimates
using the Lipschitz bound on Pk given by (5.9)

|(Pk(ρk(x))− Pk(ρk(y)))Gi| ≤ C (1 + ργ̃−1
k (x) + ργ̃−1

k (y)) |δρk|Gi.

Bounding now the Gi by (8.1),

(Pk(ρk(x))− Pk(ρk(y)))G2 ≤ C (1 + ργ̃k(x) + ργ̃k(y))χ(δρk)w1(x)w1(y),

and

(Pk(ρk(x))− Pk(ρk(y)))G1 ≤ C (1 + ργ̃k(x) + ργ̃k(y))χ(δρk)w1(x)

≤ C (1 + ργ̃k(x))χ(δρk)w1(x),

as ρk(x) and ρk(y) are of the same order.

From the analysis of these three cases, one has that

A1 ≤ C
∫
Kh(x− y) (1 + ργ̃k(x))χ(δρk)w1(x) dx dy, (8.12)

and

A2 ≤ C
∫
Kh(x− y) (1 + ργ̃k(x) + ργ̃k(y))χ(δρk)w1(x)w1(y) dx dy. (8.13)

Conclusion of the proof of Lemma 8.4. Summing up every term, namely (8.7)-(8.8)
and (8.12)-(8.13), we eventually find that

−
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))G1

≤ C ‖Kh‖L1

(
L−θ + L (ε0(h) + ε0(η)) + Lη−1 hθ

)
+ C

∫ t

0

∫
Π2d

Kh(x− y) (1 + ρk(x)γ̃)χ(δρk)w1(x),

while

−
∫ t

0

∫
Π2d

Kh(x− y) (divuk(x)− divuk(y))G2

≤ C ‖Kh‖L1

(
L−θ + L (ε0(h) + ε0(η)) + Lη−1 hθ

)
+ C

∫ t

0

∫
Π2d

Kh(x− y)
(
1 + ρk(x)γ̃ + ρk(x)γ̃

)
χ(δρk)w1(x)w1(y).

To conclude the proof of Lemma 8.4, one optimizes in η and L. Just remark that
since the inequalities depend polynomially in L and η then the result depends on εθ0
for some θ. �
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8.4 Conclusion of the proofs of Theorems 5.1 and 5.2.

We combine Lemma 8.1 with Lemma 8.5 or 8.4 and we finally use Prop. 7.2. Let us
summarize the required assumptions. In all cases one assumes that ρk solves (5.1)
and that divuk is coupled with ρk through (5.2); bounds are assumed on the viscosity
as per (5.3), on the time derivative of ρk uk per (5.6), on uk per (5.5). Finally the
viscosity µk and the force term Fk are assumed to be compact in L1. Moreover

• In the case with diffusion, αk > 0, one assumes that the pressure term Pk
satisfies (5.8) and the bounds (5.4) on ρk with γ > d/2 and p > 2.

• In the case without diffusion, αk = 0, one needs only (5.9) on the pressure Pk
and the bounds (5.4) on ρk with γ > d/2 and p > 2. Moreover for Prop. 7.2,
it is necessary that p ≥ γ̃ (in general γ̃ = γ < p so this is not a big issue).

Then one obtains by taking λ large enough and using a simple Gronwall lemma∫ 1

h0

∫
Π4d

Kh(x− z)Kh(y − w) (w0(t, z) + w0(t, w))Kh(x− y)χ(δρk) dx dy dz dw
dh

h

=

∫
Π4d

Kh(x− z)Kh(y − w) (w0(t, z) + w0(t, w))Kh0(x− y)χ(δρk) dx dy dz dw

≤ C
(
| log h0|1/2 + εh0(k) +

∫ 1

h0

ε(h)
dh

h

)
,

(8.14)

and ∫ 1

h0

∫
Π2d

(w1(t, x) + w1(t, y))Kh(x− y)χ(δρk) dx dy
dh

h

=

∫
Π2d

(w1(t, x) + w1(t, y))Kh0
(x− y)χ(δρk) dx dy

≤ C
(
| log h0|1/2 +

∫ 1

h0

ε(h)
dh

h

)
,

(8.15)

with finally ∫
Π2d

w1(t, x)w1(t, y)Kh(x− y)χ(δρk) dx dy

≤ C ‖Kh‖L1

(
hθ + ε(h)

)
,

(8.16)

where ε depends only on the smoothness of µk and Fk and of p > 2.

The key point in all three cases is to be able to remove the weights from those
estimates. For that, one uses point ii) of Prop. 7.2.
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The case with w0(x) + w0(y). Denote ωη = {Kh ? w0(t, x) ≤ η} ⊂ [0, T ] × Πd and
remark that∫

Π2d

Kh0
(x− y)χ(δρk) =

∫ 1

h0

∫
Π2d

Kh(x− y)χ(δρk)
dh

h

=

∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χ(δρk)
dh

h

+

∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χ(δρk)
dh

h
.

Now ∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χ(δρk)
dh

h

≤ 1

η

∫ 1

h0

∫
Π2d

Kh(x− y)(Kh ? w0(x) +Kh ? w0(y))χ(δρk)
dh

h
,

while by point iii) in Prop. 7.2, using that ρ ∈ Lp((0, T ) × Πd) with p > 2 and
recalling that χ(ξ) ≤ C |ξ|∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χ(δρk)
dh

h
≤ 2

∫ 1

h0

∫
Π2d

Kh(x− y) ρk IKh?w0≤η
dh

h

≤ C | log h0|
| log η|1/2

.

Therefore combining this with (8.14), one obtains∫
Π2d

Kh0(x− y)χ(δρk) dx dy ≤ C

(
εh0

(k) + | log h0|1/2 +
∫ 1

h0
ε(h)dhh

η
+
‖Kh0

‖L1

| log η|1/2

)

recalling that

εh0
(k) = αk

∫ 1

h0

dh

h
h−2

0 ,

and denoting

ε̄(h0) =
1

| log h0|

∫ 1

h0

ε(h)
dh

h

Remark that ε̄(h0) → 0 since ε(h) → 0: For instance if ε(h) = hθ then ε̄(h0) ∼
| log h0|−1. The estimate then reads∫

Π2d

Kh0
(x− y)χ(δρk) dx dy ≤ C

(
| log h0|

αkh
−2
0 + | log h0|−1/2 + ε̄(h0)

η

+
‖Kh0

‖L1

| log η|1/2

)
.
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As ‖Kh0
‖L1 ∼ | log h0|, by optimizing in η, the following estimate is obtained∫

Π2d

Kh0(x− y)χ(δρk) dx dy ≤ C‖Kh0
‖L1

| log(αkh
−2
0 + | log h0|−1/2 + ε̄(h0))|1/2

.

Per Prop. 4.1, this gives the compactness of δρk as the r.h.s. is negligible against
‖Kh0

‖L1 as h0 → 0. And it proves the case i) of Theorem 5.1.

The case with w1(x) + w1(y). Similarly, from (8.15), one then proves that in the
corresponding case∫

Π2d

Kh0(x− y)χ(δρk) dx dy ≤ C | log h0|
(
| log h0|−1/2 + ε̄(h0)

η
+

1

| log η|θ

)
≤ C ‖Kh0

‖L1

| log(| log h0|−1/2 + ε̄(h0))|θ
,

again using part ii) of Prop. 7.2.
In both cases, using Prop. 4.1 together with Lemma 6.6 in the second case, one

concludes that ρk is locally compact in x and then in t, x. Thus we’ve shown the
case ii) and concluded the proof of Theorem 5.1.

The case with w1(y)w1(x). The situation is more complicated for (8.16) and the
product w1(y)w1(x). Indeed w0(x) + w0(y) or w1(x) + w1(y) are small only if both
w0(x) and w0(y) are small (or the corresponding terms for w1). But w1(x)w1(y) can
be small if either w1(x) or w1(y) is small. This was previously an advantage with
then simpler computations but not here and (8.16) does not provide compactness.

This is due to the fact that one does not control the size of {ww ≤ η} but only
the mass of ρk over that set. The difference between the two is the famous vacuum
problem for compressible fluid dynamics which is still unsolved.

The best that can be done by part ii) of Prop. 7.2 is for any η, η′∫
Π2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) ≤ 1

η′2

∫
w1(x)w1(y)Kh(x− y)χ(δρk)

+ C
‖Kh‖L1

η1/2 | log η′|θ/2
,

using that ρk ∈ L2 uniformly. Using (8.16) and optimizing in η′, one finds for some
θ > 0 ∫

Π2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) ≤ C ‖Kh‖L1

η1/2 | log(ε(h) + hθ)|θ/2
.

If µk and Fk are uniformly in W s,1 for s > 0, then∫
Π2d

Iρk(x)≥η Iρk(y)≥ηKh(x− y)χ(δρk) ≤ C ‖Kh‖L1

η1/2 | log h|θ/2
,

which concludes the proof of Th. 5.2. Note however that in many senses (8.16) is
more precise than the final result.
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8.5 The coupling with the pressure in the anisotropic case

In that case we need the weight wa and its regularization wa,h, defined by (7.2) with
(7.5) in order to compensate some terms coming from the anisotropic non-local part
of the stress tensor.

Lemma 8.6 There exists C∗ > 0 s.t. assuming that ρk solves (5.1) with αk = 0,
that (5.6), (5.5), (5.4) with γ > d/2 and p > γ + 1 + ` = γ2/(γ − 1) hold where
` = 1/(γ − 1); assuming moreover that Pk satisfying (5.8), that u solves (5.10) with

aµ ≤ C∗. (8.17)

Then there exists 0 < θ < 1 s.t. for χa verifying (8.2) for this choice of `∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)(t)

≤
∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)|t=0 + C (1 + `) | log h0|θ.

Proof To simplify the estimate, we assume in this proof that Pk(ρk) = ργk , the
extension when Pk satisfies instead 5.8 being straightforward. We also recall that χa
satisfies (8.2), meaning that for all practical purposes χa(ξ) ∼ |ξ|1+`.

We use the point iii) in Lemma 8.2∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)(t)

−
∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)|t=0

≤ C| log h0|θ + I + II −Πa

where 0 < θ < 1 and with the dissipation term by symmetry

Πa = λ

∫ t

0

∫ 1

h0

∫
Π2d

wa,h(x)χa(δρk)Kh ? (|divuk|+ |AµPk(ρk)|)(x) K̄h
dh

h

while still by symmetry

I = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(divuk(x)− divuk(y))χ′a(δρk) ρ̄k wa,h(x),

and

II = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(divuk(x) + divuk(y))

(χ′a(δρk)δρk − 2χa(δρk))wa,h(x).

73



I) The quantity I. We recall that in this case one has the formula (5.10) on divuk

divuk =νkPk(ρk) + νk aµAµPk(ρk)

+ νk(∆µ − aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)),
(8.18)

leading to the notation

D̃ρ uk = νk(∆µ − aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

Therefore, one may decompose

I = I0 + ID + IR,

with

I0 = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(D̃ρ uk(x)− D̃ρ uk(y))

χ′a(δρk) ρ̄k (wa,h(x) + wa,h(y)),

while

ID = −νk
2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Pk(ρk(x))− Pk(ρk(y))

χ′a(δρk) ρ̄k wa,h(x),

and

IR = −aµ νk
2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(AµPk(ρk(x))−AµPk(ρk(y)))

χ′a(δρk) ρ̄k wa,h(x).

I-1) The term I0. This term is handled just as in the proof of Lemmas 8.4-8.5 by
using Lemma 8.3 and for this reason we do not fully detail all the steps here. First
note that Lemma 8.3 applies to D̃ρk uk as well as for Dρk uk as

D̃ρk uk = (νk(∆µ − aµEk)−1 ∆)Dρk uk.

Then as before, we first truncate by using some smooth function ILk (t, x, y) =
φ(ρk(t, x)/L)φ(ρk(t, y)/L) with some smooth and compactly supported function φ
leading to I0 = IL0 + IRL0 with

IL0 = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(D̃ρ uk(x)− D̃ρ uk(y))

χ′a(δρk) ILk ρ̄k (wa,h(x) + wa,h(y)),
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and

IRL0 = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(D̃ρ uk(x)− D̃ρ uk(y))

χ′a(δρk) (1− ILk ) ρ̄k (wa,h(x) + wa,h(y)).

Remark that divuk ∈ L2
t,x, Pk(ρk) ∈ Lp/γt,x and since Aµ is an operator of 0 order,

AµPk(ρk) ∈ Lp/γt,x . Therefore by Eq. (8.18)

sup
k
‖D̃ ρk uk‖Lmin(2,p/γ)

t,x
<∞.

On the other hand |χ′a(δρk)| ≤ C (1 + `) (|ρk(x)|` + |ρk(y)|`) and this lets us bound
very simply IRL0 by Hölder estimates

IRL0 ≤ C (1 + `) | log h0| ‖D̃ ρk uk‖Lmin(2,p/γ)
t,x

‖(1− ILk ) ρ1+`
k ‖

L
max(2,q)
t,x

≤ C (1 + `) | log h0| ‖(1− ILk ) ρ1+`
k ‖

L
max(2,q)
t,x

,

with 1/q+ γ/p = 1. But q (1 + `) < p by the assumption p > γ + 1 + ` and similarly
2 (1 + `) < p. As a consequence for some exponent θ1 > 0

IRL0 ≤ C (1 + `) | log h0|L−θ1 . (8.19)

We now use Lemma 8.3 for D̃ρk uk and Φ = χ′a(δρk) ILk ρ̄k wa,h(x). We note that
‖Φ‖L∞ ≤ C (1 + `)L1+`. Moreover just as in the proof of Lemmas 8.4-8.5, we can
show that Φ satisfy a transport equation giving that

CΦ =

∥∥∥∥∫
Πd
Kh(x− y)Φ(t, x, y) dy

∥∥∥∥
W 1,1
t W−1,1

x

+

∥∥∥∥∫
Πd
Kh(x− y)Φ(t, x, y) dx

∥∥∥∥
W 1,1
t W−1,1

x

≤ C (1 + `)L1+`.

By Lemma 8.3, we obtain that for some θ2 > 0

IL0 ≤ C (1 + `)L1+`

∫ 1

h0

hθ2
dh

h
≤ C (1 + `)L1+`. (8.20)

By optimizing in L, this lets us conclude that again for some 0 < θ < 1 and provided
that p > γ + 1 + `

I0 ≤ C (1 + `) | log h0|θ. (8.21)

1-2) The term ID. This term has the right sign as∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(ργk(x)− ργk(y))χ′a(δρk) ρ̄k (wa,h(x) + wa,h(y))

≥ C
∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
χ′a(δρk) δρk ρ̄

γ
k (wa,h(x) + wa,h(y)).
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We will actually give a more precise control on ID + IID later on when the corre-
sponding decomposition of II = II0 + IID + IIR will be introduced.

I-3) The term IR. The difficulty is thus in this quantity. From its definition, Aµ
is a convolution operator. With a slight abuse of notation, we denote by Aµ as well
its kernel or

Aµf =

∫
Πd
Aµ(x− y) f(y) dy,

and note that Aµ corresponds to an operator of 0 order, i.e. it for instance satisfies
the property

∫
A
Aµ = 0 for any annulus A centered at the origin, |Aµ(x)| ≤ C |x|−d.

Decompose
Aµ = Lh +Rh, suppLh ⊂ {|x| ≤ δh},

such that both Lh and Rh remain bounded on any Lp space, 1 < p < ∞, and
moreover Rh is a regularization of Aµ that is Rh = Aµ ?Nδh for some smooth kernel
Nδh . The scale δh has to satisfy that

δh << h, log
h

δh
<< | log h|.

For simplicity we choose here δh = h/| log h|.
Contribution of the Rh part.

The first step is to decompose Rh into dyadic blocks in Fourier. Introduce a
decomposition of identity Ψl as in sections 6 and 13 s.t. 1 =

∑
l Ψ̂l and write

Rh =

| log2 δh|∑
l=| log2 h|

Ψl ? Rh + R̃h, R̃h =
∑

l<| log2 h|

Ψl ? Rh = Ñh ? Nδh ? Aµ. (8.22)

Note that we of course require of the Ψl to satisfy all the assumptions specified in
section 13 for the definition of Besov spaces. Define now Nh = Ñh ?Nδh , this kernel
Nh therefore satisfies that for any s > 0

‖Nh‖W s,1 ≤ C h−s, (8.23)

and moreover by the localization property of the Ψk, one has that for s > 0 and any
|ω| ≤ 1 ∫

Πd
|z|s |Nh(z) +Nh(z + ω r)| dr ≤ C hs. (8.24)

Fix t for the moment and decompose accordingly∫ 1

h0

∫
Πd

Kh(z)

h
‖Rh ? ργk(t, .)−Rh ? ργk(t, .+ z)‖Lqx

≤
∫ 1

h0

∫
Πd

Kh(z)

h
‖R̃h ? ργk(t, .)− R̃h ? ργk(t, .+ z)‖Lqx

+

∫ 1

h0

| log2 δh|∑
l=| log2 h|

∫
Πd

Kh(z)

h
‖Ψl ? Rh ? ρ

γ
k(t, .)−Ψl ? Rh ? ρ

γ
k(t, .+ z)‖Lqx .
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By (8.23) and (8.24), the kernel Nh satisfies the assumptions of Lemma 6.4 and thus
with Uk = Aµ ? ρ

γ
k , applying Lemma 6.4, for any q > 1∫ 1

h0

∫
Πd

Kh(z)

h
‖R̃h ? ργk(t, .)− R̃h ? ργk(t, .+ z)‖Lqx

=

∫ 1

h0

∫
Πd

Kh(z)

h
‖Nh ? Uk(t, .)−Nh ? Uk(.+ z)‖Lqx

≤ C | log h0|1/2 ‖Uk(t, .)‖Lqx .

Recalling that Aµ is continuous on every Lp space, one has that ‖Uk‖Lpx ≤ C ‖ρ
γ
k‖Lqx

hence∫ 1

h0

∫
Πd

Kh(z)

h
‖R̃h ? ργk(t, .)− R̃h ? ργk(t, .+ z)‖Lqx ≤ C | log h0|1/2 ‖ρk(t, .)‖γ

Lq γx
.

On the other hand simply by bounding

|Ψl ? Rh ? ρ
γ
k(x)−Ψl ? Rh ? ρ

γ
k(y)|q ≤ C |Ψl ? Rh ? ρ

γ
k(x)|q + |Ψl ? Rh ? ρ

γ
k(y)|q

we write∫ 1

h0

| log2 δh|∑
l=| log2 h|

∫
Πd

Kh(z)

h
‖Ψl ? Rh ? ρ

γ
k(t, .)−Ψl ? Rh ? ρ

γ
k(t, .+ z)‖Lqx

≤ C
∑

l≤| log2 h0|+log2 | log2 h0|

‖Ψl ? Rh ? ρ
γ
k(t, .)‖Lqx

∫ l 2−l

2−l

dh

h
.

recalling that δh = h/| log2 h|. This leads to∫ 1

h0

| log2 δh|∑
l=| log2 h|

∫
Πd

Kh(z)

h
‖Ψl ? Rh ? ρ

γ
k(t, .)−Ψl ? Rh ? ρ

γ
k(t, .+ z)‖Lqx

≤ C
∑

l≤2 | log2 h0|

log l ‖Ψl ? Rh ? ρ
γ
k(t, .)‖Lqx ,

and can in turn be directly bounded by

≤ C log | log h0|
∑

l≤2 | log2 h0|

‖Ψl ? Rh ? ρ
γ
k(t, .)‖Lqx

≤ C log | log h0| | log h0|1/2‖Rh ? ργk(t, .)‖Lqx ≤ C | log h0|θ ‖ρk(t, .)‖γ
Lqγtx

,

with 0 < θ < 1 by Lemma 13.3. Combining with the previous estimate, we deduce
that ∫ 1

h0

∫
Πd

Kh(z)

h
‖Rh ? ργk(t, .)−Rh ? ργk(t, .+ z)‖Lqx

≤ C | log h0|θ ‖ρk(t, .)‖γ
Lqγx

.

(8.25)
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with 0 < θ < 1. And therefore since χ′a(ξ) ≤ (1 + `) |ξ|`, by Hölder’s inequality with
the relation 1/q + (1 + `)/(1 + γ + `) = 1, that is q = (1 + `+ γ)/γ∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Rh ? ρ

γ
k(x)−Rh ? ργk(y))χ′a(δρk) ρ̄k (wa,h(x) + wa,h(y))

≥ −C (1+`)

∫ t

0

‖ρk(t, .)‖1+`

L1+`+γ
x

∫ 1

h0

∫
Πd

Kh(z)

h
‖Rh ? ργk(t, .)−Rh ? ργk(t, .+ z)‖Lqx .

Finally by (8.25) there exists 0 < θ < 1 s.t.∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Rh ? ρ

γ
k(x)−Rh ? ργk(y))

χ′a(δρk) ρ̄k (wa,h(x) + wa,h(y))

≥ −C (1 + `) | log h0|θ ‖ρk‖γ+`+1
Lγ+`+1 .

(8.26)

Contribution of the Lh part. It remains the term with Lh where we symmetrize the
position of the weight with respect to the convolution with Lh by∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Lh ? ρ

γ
k(x)− Lh ? ργk(y))χ′a(δρk) ρ̄k wa,h(x)

= ILh −Diff,

with

ILh =

∫ 1

h0

∫ t

0

∫
Π3d

Kh(x− y)

h
Lh(z)(ργk(x− z)− ργk(y − z))

χ′0(δρk) ρ̄k w
1−n
h (x)wnh(x− z),

for n = 1− 1/γ. Recall that since wa,h = Kh ? wa, |wa,h(x)−wa,h(x− z)| ≤ h−1 |z|
while |z| ∼ δh on the support of Lh. Thus using that |χ′a(ξ)| ≤ C |ξ|` from (8.2) and
that |Lh(z)| ≤ C |z|−d, one has

Diff =

∫ 1

h0

∫ t

0

∫
Π3d

Kh(x− y)

h
Lh(z)(ργk(x− z)− ργk(y − z))

χ′a(δρk) ρ̄k w
1−n
a,h (x) (wna,h(x)− wna,h(x− z))

≤ C (1 + `)

∫ 1

h0

∫ t

0

∫
Π3d

I|z|≤δh
Kh(w)

h |z|d
|ργk(x− z) + ργk(x− z + w)| ρ̄`+1 h−n |z|n

≤ C (1 + `)

∫ 1

h0

∫ t

0

∫
Π3d

I|z|≤δh
Kh(w)

h1+n |z|d−n
(
ργ+`+1
k (x− z) + ργ+`+1

k (x− z + w)

+ ργ+`+1
k (x) + ργ+`+1

k (x− w)
)
.

Using |z| ≤ δh = h
| log2 h|

, we obtain on the other hand that∫ 1

h0

dh

h1+n

∫
|z|≤δh

dz

|z|d−n
≤ C

∫ 1

h0

δnhdh

h1+n
= C

∫ 1

h0

dh

h | log h|n

≤ C | log h0|1−n.
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As n = 1− 1/γ, this leads to

Diff ≤ C (1 + `) ‖ρk‖γ+`+1
Lγ+`+1 | log h0|1/γ . (8.27)

As for the first term by Hölder inequality, using again that |χ′a(ξ)| ≤ C ` |ξ|`

ILh ≤ C (1 + `)

∫ 1

h0

∫ t

0

∫
Πd

(∫
Πd
|δρk|`+1 ρ̄

(`+1)/`
k w

(1−θ) (`+1)/`
a,h (x) dx

)`/(`+1)

(∫
Πd

(
Lh ?

(
(ργk(.)− ργk(.+ w))wθa,h(.)

))(γ+`+1)/γ

|x dx

)γ/(γ+`+1)
Kh(w)

h
dw,

provided that l is chosen s.t.

γ

γ + `+ 1
+

`

`+ 1
= 1, or `+ 1 =

γ

γ − 1
,

implying for instance that

`+ 1

`
= γ,

γ + `+ 1

γ
= `+ 1 . . .

Given those algebraic relations and recalling that Lh? is continuous on every Lp for
any 1 < p <∞

ILh ≤ C (1 + `)

∫ 1

h0

∫ t

0

∫
Πd

Kh(w)

h

(∫
Πd
|ργk(x)− ργk(x+ w)|

γ+`+1
γ wa,h dx

) γ
γ+`+1

(∫
Πd
|χ′0(δk)|γ ρ̄γk wa,h dx

)`/(`+1)

dw.

Since, using the definition of `,

|ργk(x)− ργk(x+ w)|(γ+`+1)/γ ≤ γ ρ̄γ |δρk|(γ+`+1)/γ = γ ρ̄γ |δρk|`+1,

one has

ILh ≤ C (1 + `) γ

∫ 1

h0

∫
Π2d

Kh(w)

h
|δρk|`+1 ρ̄γk wa,h(x) dx dw, (8.28)

which multiplied by −aµ νk/2 will be bounded by ID + IID provided |aµ| is small
enough.

II) The quantity II. Let us turn to II and decompose it as for I

II = II0 + IID + IIR,

where

II0 = −1

2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(D̃ρ uk(x) + D̃ρ uk(y))

(χ′a(δρk)δρk − 2χa(δρk)) (wa,h(x) + wa,h(y)),
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while

IID = −νk
2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Pk(ρk(x)) + Pk(ρk(y)))

(χ′a(δρk)δρk − 2χa(δρk)) (wa,h(x) + wa,h(y)),

and

IIR = −aµ νk
2

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(AµPk(ρk(x)) +AµPk(ρk(y)))

(χ′a(δρk)δρk − 2χa(δρk)) (wa,h(x) + wa,h(y)).

II-1) Term II0. For the term II0, using Lemma 8.3 in a manner identical to I0

II0 ≤ −
∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
Kh ? D̃ρ uk(x)(χ′a(δρk)δρk − 2χa(δρk))wa,h(x)

+ C (1 + `) ‖ρk‖1+`
Lγ+`+1 | log h0|θ,

for some 0 < θ < 1. Using formula (5.10) or (8.18), one has that

divuk − aµAµPk(ρk) ≥ D̃ρ uk,

and hence since −χ′a ξ + 2χa ≥ −C (1 + `)χa

II0 ≤ C ` ‖ρk‖1+`
Lγ+`+1 | log h0|θ

+ C (1+`)

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Kh ? (|divuk|+ aµ|AµPk(ρk)|)χa(δρk)wa,h(x),

(8.29)

and the first integral will be bounded by Πa/2 for λ large enough.

II-2) Term IID. The term IID is controlled by ID: For a ≥ b, by (8.2)

(aγ + bγ) (−χ′a(a− b)(a− b) + 2χa(a− b)) ≥ −(aγ − bγ)
`− 1

`
χ′a(a− b)(a+ b).

Therefore

ID + IID ≤ −C γ νk
2

∫ t

0

∫
Π2d

Kh(x− y)

h
|δρk|`+1 ρ̄γk (wh(x) + wh(y)), (8.30)

for some C independent of ` and γ.

II-3) Term IIR. The control on the last term, IIR, requires the use of the penal-
ization Πa

IIR +
1

2
Πa ≤− aµ νk

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Aµρ

γ
k(x)−AµKh ? ρ

γ
k(x))

(χ′a(δρk)δρk − 2χa(δρk))wa,h(x).
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We use the same decomposition of Aµ = Lh +Rh as for IR.

Contribution of the Rh part.

Note that, as χa(ξ) ≤ C |ξ|1+` and |χ′a| ≤ C (1 + `) |ξ|`, for q = (1 + `+ γ)/γ or
1/q + (1 + `)/(1 + `+ γ) = 1

− aµ νk
∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Rh ? ρ

γ
k(x)−Kh ? Rh ? ρ

γ
k(x))

(χ′a(δρk)δρk − 2χa(δρk))wa,h(x)

≤ C (1 + `)

∫ t

0

‖ρk(t, .)‖1+`

L1+`+γ
x

∫ 1

h0

∫
Πd

Kh(z)

h
‖Rh ? ργk(t, .)−Rh ? ργk(t, .+ z)‖Lqx .

Now by estimate (8.25), we have that

− aµ νk
∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Rh ? ρ

γ
k(x)−Kh ? Rh ? ρ

γ
k(x))

(χ′a(δρk)δρk − 2χa(δρk))wa,h(x)

≤ C (1 + `) | log h0|3/4
∫ t

0

‖ρk(t, .)‖1+`

L1+`+γ
x

‖ρk(t, .)‖γ
Lγ qx

≤ C (1 + `) | log h0|3/4 ‖ρk‖1+`+γ

L1+`+γ
t,x

.

(8.31)

Contribution of the Lh part. Similarly as for IR, we symmetrize the weights leading
to the following decomposition

− aµ νk
∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
(Lh ? ρ

γ
k(x)−Kh ? Lh ? ρ

γ
k(x))

(χ′a(δρk)δρk − 2χa(δρk))wa,h(x)

= IILh + Diff2,

where

IILh = aµ νk

∫ 1

h0

∫ t

0

∫
Π2d

Kh(x− y)

h
Lh ?

(
wna,h(x) (ργk(x)−Kh ? ρ

γ
k(x))

)
(−χ′a(δρk)δρk + 2χa(δρk))w1−n

a,h (x),

with still n = 1− 1/γ. The term Diff2 is controlled as the term Diff in IR using the
regularity of wa,h and yielding

Diff2 ≤ C (1 + `) | log h0|γ ‖ρk‖γ+1+`
Lγ+1+` . (8.32)

We handle IILh with Hölder estimates quite similar to the ones used for the
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term ILh , recalling that Lh? is bounded on any Lq space for 1 < q <∞

IILh ≤ C aµ νk (1 + `)

∫ 1

h0

∫ t

0

∫
Πd

Kh(w)

h
‖wθa,h (ργk(.)−Kh ? ρ

γ
k(.)))‖L`+1

‖|δρk|`+1 w1−θ
a,h (x)‖L(`+1)/` dw

≤ C aµ νk (1 + `)

∫ 1

h0

∫ t

0

∫
Πd

Kh(w)

h

∫
Πd
wa,h(x) |ργk(x)−Kh ? ρ

γ
k(x)|`+1 dx dw

+ C aµ νk (1 + `)

∫ 1

h0

∫ t

0

∫
Πd

Kh(w)

h

∫
Πd
wa,h(x) |δρk|(`+1)2/` dx dw.

One has immediately that∫ 1

h0

∫ t

0

∫
Π2d

Kh(w)

h
wa,h(x) |δρk|(`+1)2/` dx dw

≤
∫ 1

h0

∫ t

0

∫
Π2d

Kh(w)

h
wa,h(x) |δρk|`+1 ρ̄γk dx dw

as |δρk| ≤ ρ̄k and again (`+ 1)/` = γ.

Finally as (`+ 1) (γ − 1) = γ∫ 1

h0

∫ t

0

∫
Π2d

Kh(w)

h
wa,h(x) |ργk(x)−Kh ? ρ

γ
k(x)|`+1 dx dw

≤ γ
∫ 1

h0

∫ t

0

∫
Π3d

Kh(w)

h
Kh(z)wa,h(x) |ρk(x)− ρk(x+ z)|`+1 (ρk(x) + ρk(x+ z))γ

≤ γ
∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)

h
wa,h(x) |ρk(x)− ρk(x+ z)|1+` (ρk(x) + ρk(x+ z))γ ,

as Kh(w) is the only term depending on w and is of integral 1. Therefore

IILh ≤ C aµ νk γ (1 + `)

∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)

h
wa,h(x) |δρk|1+` ρ̄γk . (8.33)

To conclude, we sum all the contributions, more precisely (8.21), (8.26), (8.27),
(8.28), (8.29), (8.30), (8.31), (8.32), and (8.33), to find for some 0 < θ < 1 and
provided p > γ + 1 + `∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)(t)

≤
∫ 1

h0

∫
Π2d

Kh(x− y)

h
(wa,h(x) + wa,h(y))χa(δρk)|t=0 + C (1 + `) | log h0|θ

+ C
(
aµ νk (1 + `)− C νk

2

)
γ

∫ 1

h0

∫ t

0

∫
Π2d

Kh(z)

h
wa,h(x) |δρk|1+` ρ̄γk .
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This finishes the proof of the lemma: As 1 + ` = γ/(γ − 1) is bounded (we recall
that γ > d/2), if aµ ≤ C∗ for C∗ > 0 well chosen, the last term in the r.h.s. is non
positive. �

8.6 Conclusion of the proof of Theorem 5.4

We combine Lemmas 8.2 and 8.6 to get the following estimate∫ 1

h0

∫
Π2d

Kh(x− y)(wa,h(x) + wa,h(y))χa(δρk)(t)dxdy
dh

h

≤ C | log h0|θ + initial value,

with 0 < θ < 1. We now follow the same steps as in the proof of Theorem 5.1 with
the weight w0(t, x) + w0(t, y). We define ωη = {wa,h(t, x) ≤ η} and note that∫

Π2d

Kh0
(x− y)χa(δρk) =

∫ 1

h0

∫
Π2d

Kh(x− y)χa(δρk)
dh

h

=

∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χa(δρk)
dh

h

+

∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χa(δρk)
dh

h
.

Now ∫ 1

h0

∫
x∈ωcη or y∈ωcη

Kh(x− y)χa(δρk)
dh

h

≤ 1

η

∫ 1

h0

∫
Π2d

Kh(x− y)(wa,h(x) + wa,h(y))χa(δρk)
dh

h
≤ C | log h0|θ,

while by point iii) in Prop. 7.2 and using the Lp bound on ρ, for some θ > 0∫ 1

h0

∫
x∈ωη and y∈ωη

Kh(x− y)χa(δρk)
dh

h
≤ 2

∫ 1

h0

∫
Π2d

Kh(x− y) ρ1+`
k IKh?wa≤η

dh

h

≤ C | log h0|
| log η|θ

.

Hence we have∫
Π2d

Kh0(x− y)χa(δρk)(t) ≤ C | log h0|
(
| log h0|θ−1

η
+

1

| log η|θ

)
≤ C ‖Kh0

‖L1

| log | log h0||θ
,

by optimizing in η and recalling that ‖Kh0‖L1 = | log h0|.
Using Prop. 4.1 together with Lemma 6.6, one concludes that ρk is locally

compact in t, x. Thus we conclude the proof of Theorem 5.4.
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9 Proof of Theorems 3.1 and 3.2: Approximate se-
quences

In this section, we construct approximate systems that allow to use Theorems 5.1
and 5.4 to prove Theorems 3.1 and 3.2.

9.1 From regularized systems with added viscosity to no vis-
cosity

Our starting point for global existence is the following regularized system ∂tρk + div(ρkuk) = αk∆ρk,
∂t(ρkuk) + div(ρkuk ⊗ uk)− µ∆uk − (λ+ µ)∇divuk −Aε ? uk

+∇Pε(ρk) + αk∇ρk · ∇uk = ρkf,
(9.1)

with the fixed initial data

ρk|t=0 = ρ0, ρk uk|t=0 = ρ0 u0. (9.2)

The pressure Pε satisfies the bound (3.2) with γ > 3d/(d+ 2) uniformly in ε, that is

C−1 ργ − C ≤ Pε(ρ) ≤ C ργ + C,

implying that e(ρ) ≥ C−1 ργ−1 − C. In addition we ask that Pε satisfies the quasi-
monotone property (5.8) but possibly depending on ε, i.e. there exists ρ0,ε s.t.

(Pε(s)/s)
′ ≥ 0 for all s ≥ ρ0,ε.

Similarly Aε is assumed to be a given smooth function, possibly depending on ε but
such that the operator defined by

Dε f = −µ∆f − (λ+ µ)∇divf −Aε ? f

satisfies (2.2) and (2.3) uniformly in ε.
As usual the equation of continuity is regularized by means of an artificial viscos-

ity term and the momentum balance is replaced by a Faedo-Galerkin approximation
to eventually reduce the problem on Xn, a finite-dimensional vector space of func-
tions.

This approximate system can then be solved by a standard procedure: The ve-
locity u of the approximate momentum equation is looked as a fixed point of a
suitable integral operator. Then given u, the approximate continuity equation is
solved directly by means of the standard theory of linear parabolic equations. This
methodology concerning the compressible Navier–Stokes equations is well explained
and described in the reference books [34], [35], [53]. We omit the rest of this clas-
sical (but tedious) procedure and we assume that we have well posed and smooth
solutions to (9.1).

84



We now use the classical energy estimates detailed in subsection 2.1. Note that
they remain the same in spite of the added viscosity in the continuity equation
because in particular of the added term αk∇ρk · ∇uk in the momentum equation.
Let us summarize the a priori estimates that are obtained

sup
k,ε

sup
t

∫
Πd

(ρk |uk|2 + ργk) dx <∞, sup
k,ε

∫ T

0

∫
Πd
|∇uk|2 dx dt <∞,

from (2.6); while (2.9) provides

sup
k,ε

∫ T

0

∫
Πd
ρpk(t, x) dx dt <∞,

with p = γ + 2 γ/d− 1 which means p > 2 as γ > 3 d/(d+ 2). Therefore we obtain
(5.4) and (5.5) uniformly in ε.

From those bounds it is straightforward to deduce that ρk uk and ρk |uk|2 belong
to Lqt,x for some q > 1, uniformly in k and ε. Therefore using the continuity equation
in (9.1), we deduce (5.7). Using the momentum equation, we obtain (5.6) but this
bound (and only this bound) is not independent of ε because of Aε.

Finally taking the divergence of the momentum equation and inverting ∆

(λ+ 2µ) divuk =Pε(ρk) + ∆−1div (∂t(ρk uk) + div (ρk uk ⊗ uk))

−∆−1 div (ρk f +Aε ? uk) + αk∆−1 div (∇ρk · ∇uk),

which is exactly (5.2) with µk = λ+ 2µ satisfying (5.3) and compact, while

Fk = −∆−1 div (ρk f +Aε ? uk) + αk∆−1 div (∇ρk · ∇uk).

The first term in Fk is also compact in L1 since Aε is smooth for a fixed ε. On the
other hand

αk∆−1 div (∇ρk · ∇uk)

converges to 0 in L1 since
√
αk∇ρk is uniformly bounded in L2 and ∇uk is as well

in L2. Therefore Fk is compact in L1. We may hence apply point i) of Theorem 5.1
to obtain the compactness of ρk in L1. Then extracting converging subsequences,
we can pass to the limit in every term (see subsection 2.2 for instance) and obtain
the existence of weak solutions to{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu−Aε ? u+∇Pε(ρ) = ρf.

(9.3)

9.2 General pressure laws: End of proof (Theorem 3.1)

Consider now a nonmonotone pressure P satisfying (3.2) and (3.3). Let us fix c0,ε =
1/ε and define

Pε(ρ) = P (ρ) if ρ ≤ c0,ε, Pε(ρ) = P (c0,ε) + C(ρ− c0,ε)γ , if ρ ≥ c0,ε.
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Note that Pε is Lipschitz, converges uniformly to P on any compact interval. Due
to (3.2) there exists ρ0,ε with ρ0,ε → +∞ as ε→ +∞ such that for ρ ≥ ρ0,ε,

(Pε(s)/s)
′ = (P ′ε(s)s− P (s))/s2 ≥

(
C(γ − 1)(ρ− c0,ε)γ − P (c0,ε)

)
/s2 ≥ 0.

The approximate pressure Pε still satisfies (3.2) with γ and due to the previous
inequality it satisfies (5.8) for ρ ≥ ρ0,ε and (5.9) in the following sense: For all s ≥ 0

|P ′ε(s)| ≤ Psγ̃−1Is≤c0,ε + C(γ − 1)sγ−1Is≥c0,ε .

As a consequence, we have existence of weak solutions (ρ, u) to (9.1) for this Pε
(assuming Aε = 0) for any ε > 0. Consider a sequence εk → 0 and the corresponding
sequence (ρk, uk) of weak solutions to (9.1).

Because the previous a priori estimates were uniform in ε, (including (5.6) since
Aε = 0), then the sequence (ρk, uk) satisfies all the bounds (5.4), (5.5), (5.6), (5.7)
and (5.9).

Moreover the representation (5.2) still holds with µk = 2µ+λ, compact in L1 and
satisfying (5.3). Finally the exponent p in (5.4) can be chosen up to γ + 2 γ/d − 1.
Since γ > 3 d/(d+ 2) then p > 2 and since γ > (γ̃ + 1) d/(d+ 2) then one has p > γ̃
as well.

Therefore all the assumptions of point ii) of Theorem 5.1 are satisfied and one
has the compactness of ρk. Extracting converging subsequences of ρk and uk, one
passes to the limit in every term. Note in particular that Pεk(ρk) converges in L1

to P (ρ) by the compactness of ρk, the uniform convergence of Pεk to P on compact
intervals and by truncating Pεk(ρk) for large values of ρk since the exponent p in
(5.4) is strictly larger than γ.

This proves the global existence in Theorem 3.1. The regularity of ρ follows from
Theorem 5.2, which concludes the proof of Theorem 3.1.

9.3 Anisotropic viscosities: End of proof (Theorem 3.2)

For simplicity, we take f = 0. Consider now a “quasi-monotone” pressure P satis-
fying (3.7). Observe that P then automatically satisfies (3.2) since P (0) = 0. To
satisfy (5.8), we have to modify P on an interval (c0,ε,+∞) with c0,ε → +∞ when
ε→ +∞. More precisely we consider Pε as defined in the previous subsection

Pε(ρ) = P (ρ) if ρ ≤ c0,ε, Pε(ρ) = P (c0,ε) + C(ρ− c0,ε)γ , if ρ ≥ c0,ε.

Now given any smooth kernel, for instance K, we define

Aε ? u = div (δA(t)∇Kε ? u).

Because of the smallness assumption on δA(t), the operator Dε satisfies (2.2) and
(2.3) uniformly in ε. Therefore we have existence of global weak solutions to (9.3)
with this choice of Pε and Aε. We again consider a sequence of such solutions
(ρk, uk) corresponding to some sequence εk → 0. Because the estimates are uniform
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in ε for (9.3), we have again that this sequence satisfies the bounds (5.4), (5.5), (5.7).
We now assume that

γ >
d

2

[(
1 +

1

d

)
+

√
1 +

1

d2

]
,

implying that p in (5.4) is strictly larger than γ2/(γ − 1). Moreover observe that

‖Aεkuk‖L2
t H
−1
x
≤ C ‖∇uk‖L2

t,x
,

such that (5.6) is also satisfied.
For simplicity, we assume that δA has a vanishing trace (otherwise just add the

corresponding trace to µ). Denote aµ = 2 ‖δA‖L∞/(2µ+ λ) and the operator Ek

Ek u = −div

(
δA(t)

2 ‖δA‖L∞
∇Kε ? u

)
= −

∑
ij

δAij(t)

2 ‖δA‖L∞
∂ijKεk ? u.

For aµ small enough, ∆−aµEk is a uniform elliptic operator so that (∆−aµEk)−1 ∆
is bounded on every Lp space, uniformly in k. For the same reason, Aµ = (∆ −
aµEk)−1Ek is bounded on every Lp space with norm less than 1 and can be repre-
sented by a convolution with a singular integral.

Taking the divergence of the momentum equation in (9.1), one has

(2µ+ λ)
(
∆ divuk − aµEk divu

)
= ∆P (ρk) + div (∂t(ρk uk) + div (ρk uk ⊗ uk)).

Just write ∆Pε(ρk) = (∆− aµEk)Pε(ρk) + aµEk Pε, take the inverse of ∆− aµEk
to obtain

(2µ+ λ) divu =P (ρk) + aµ (∆− aµEk)−1Ek P (ρk)

+ (∆− aµEk)−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk)),

which is exactly (5.10) with νk = (2µ+ λ)−1. As a consequence, if aµ ≤ C∗, which
is implied by ‖δA‖L∞ small enough, then Theorem 5.4 applies and ρk is compact.
Passing to the limit again in every term proves Theorem 3.2. Note that Pεk(ρk)
converges in L1 to P (ρ) for the same reason than in the previous subsection.

The case with D(u) instead of ∇u. Let us finish this proof by remarking on the
different structure in the case with symmetric stress tensor div (ADu). In that
case, one cannot find divuk by taking the divergence of the momentum equation but
instead we have to consider the whole momentum equation. Let us write it as

E uk = ∇P (ρk) + ∂t(ρk uk) + div (ρk uk ⊗ uk),

with E the elliptic vector-valued operator

E u = µ∆u+ (µ+ λ)∇divu+ div ( δAD u).

The operator E is invertible for δA small enough as one can readily check in Fourier
for instance where −Ê becomes a perturbation of µ |ξ|2 I+(µ+λ) ξ⊗ξ. Its inverse has
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most of the usual properties of inverses of scalar elliptic operator (with the exception
of the maximum principle for instance). Therefore, one may still write

divuk = div E−1∇P (ρk) + div E−1 (∂t(ρk uk) + div (ρk uk ⊗ uk)),

leading to the variant (5.11) of the simpler formula (5.10).

10 Extension to the Navier–Stokes-Fourier system

We present here a direct application of our compactness results to compressible
Navier-Stokes systems with temperature. Those systems are considered to be more
physically realistic. They also offer many examples of non monotone pressure laws
thus being especially relevant to our approach without any thermodynamic stability
assumption.

Our goal is not to give the most optimal result as it is likely that this would
require estimates specifically tailored to the case under consideration, and for the
same reason would require to specifically tailor the compactness Theorem 5.1. But
we believe that the result shown here can provide a good general basis for future
works.

10.1 Model and estimates

The heat-conducting compressible Navier–Stokes equations read ∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− divS +∇P (ρ, ϑ) = 0,
∂t(ρE) + div(ρuE) + div(P (ρ, ϑ)u) = div(Su) + div(κ(ϑ)∇ϑ),

(10.1)

where E = |u|2/2+e is the total energy with P = P (ρ, ϑ) and e = e(ρ, ϑ) respectively
stand for the pressure and the (specific) internal energy. As usual the system is
supplemented with initial conditions.

We denote the stress tensor D = divS and as in the barotropic case, we always
assume that for some function µ̄∫

∇u : S dx ∼
∫
µ̄ |∇u|2 dx.

Instead of the temperature ϑ, one could also choose as a third unknown the internal
energy (or the entropy as defined below). Some formulas are easier when using the
set of variables (ρ, ϑ) and some with the set (ρ, e). For this reason and simplicity
we here follow the classical notations of Thermodynamics for partial derivatives,
denoting for instance ∂ϑf |ρ if f is the function f(ρ, ϑ) and ∂ef |ρ if instead one
considers the composition f(ρ, ϑ(ρ, e)).

The total mass as well as the total energy of the system are constants of motion
namely ∫

ρ(t, ·) dx =

∫
ρ0 dx
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and ∫
(
1

2
ρ|u|2 + ρe(ρ, ϑ))(t, ·) dx =

∫
(
1

2
ρ0|u0|2 + ρ0e(ρ0, ϑ0)) dx.

From the mathematical viewpoint, the heat-conducting compressible Navier–Stokes
system suffers the deficiency of strong a priori bounds. For instance in comparison
with the previous barotropic Navier–Stokes, the energy bound does not yield any
L2
tH

1
x bound on the velocity.

In order to be consistent with the second principle of Thermodynamics which
implies the existence of the entropy as a closed differential form in the energy balance,
the following compatibility condition, called ”Maxwell equation” between P and e
has to be satisfied

P = ρ2 ∂e

∂ρ

∣∣∣
ϑ
+ϑ

∂P

∂ϑ

∣∣∣
ρ
.

The specific entropy s = s(ρ, ϑ) is defined up to an additive constant by

∂s

∂ϑ

∣∣∣
ρ

=
1

ϑ

∂e

∂ϑ

∣∣∣
ρ

and
∂s

∂ρ

∣∣∣
ϑ

= − 1

ρ2

∂P

∂ϑ

∣∣∣
ρ
.

An other important assumption on the entropy function is made,

the entropy s is a concave function of (ρ−1, e).

This property ensures in particular the non negativity of the so-called Cv coefficient
given by

Cv =
∂e

∂ϑ

∣∣∣
ρ

= − 1

ϑ2

∂2s

∂e2

∣∣∣−1

ρ
.

If (ρ, ϑ) are smooth and bounded from below away from zero and if the velocity
field is smooth, then the total energy balance can be replaced by the thermal energy
balance

Cvρ(∂tϑ+ u · ∇ϑ)− div(κ(ϑ)∇ϑ) = S : ∇u− ϑ∂P (ρ, ϑ)

∂ϑ
divu.

Furthermore, dividing by ϑ, we arrive at the entropy equation

∂t(ρs) + div(ρsu)− div
(κ(ϑ)∇ϑ

ϑ

)
=

1

ϑ

(
S : ∇u+

κ|∇ϑ|2

ϑ

)
. (10.2)

10.2 The entropy estimate through thermodynamical stabil-
ity

The first difficulty in the Navier–Stokes–Fourier system is to obtain a L2 estimate
on ∇u, since, contrary to the barotropic case, it does not follow from the dissipation
of energy.
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Instead a first approach is to use the entropy. Coupling the equation on the total
energy and the equation on s, we get∫

(
1

2
ρ|u|2 + ρ[e(ρ, ϑ)− ϑ?s])(t, ·) dx+

∫ t

0

∫
ϑ?
ϑ

(
S : ∇u+

κ|∇ϑ|2

ϑ

)
=

∫
(
1

2
ρ0|u0|2 + ρ0[e(ρ0, ϑ0)− ϑ?s0]) dx,

(10.3)

for any constant temperature ϑ?. This is exactly the type of modified energy estimate
that we are looking for as it provides a control on κ(ϑ) |∇ϑ|2/ϑ2 and with any
reasonable choice of stress tensor, a control on |∇u|2/ϑ.

However it is useless unless one can bound

Hϑ?(ρ, ϑ) = ρ[e(ρ, ϑ)− ϑ?s].

Observe that (using the mass conservation)

d

dt

∫
Hϑ?(ρ, ϑ) =

d

dt

∫ [
Hϑ?(ρ, ϑ)− ∂Hϑ?(ρ?, ϑ?)

∂ρ
(ρ− ρ?)−Hϑ?(ρ?, ϑ?)

]
.

Remark that, using the Maxwell equation and the definition of the entropy, we have

∂Hϑ?(ρ, ϑ)

∂ϑ
=
ρ

ϑ
(ϑ− ϑ?)

∂e(ρ, ϑ)

∂ϑ
,

∂2Hϑ?(ρ, ϑ?)

∂ρ2
=

1

ρ

∂P (ρ, ϑ?)

∂ρ
.

Those estimates were developed in the works by E. Feireisl and collaborators,
under the assumption of thermodynamic stability

∂e(ρ, ϑ)

∂ϑ
> 0,

∂P (ρ, ϑ)

∂ρ
> 0. (10.4)

The meaning of such condition is that both the specific heat at constant volume Cv
and the compressibility of the fluid are positive. However as we have already seen,
the latter condition is violated by several physical state law, such as the standard
Van der Waals equation of state.

Under (10.4), one obtains that Hϑ? is increasing in ϑ for ϑ > ϑ? and decreasing
for ϑ < ϑ?, that is that Hϑ? has a minimum at ϑ = ϑ?. The second part of (10.4)
implies that Hϑ? is convex in ρ.

One chooses accordingly ρ? as the minimum of Hϑ?(ρ, ϑ?) and decompose the
quantity linked to Hϑ(ρ, ϑ) into two parts

Hϑ?(ρ, ϑ)− ∂Hϑ?(ρ?, ϑ?)

∂ρ
(ρ− ρ?)−Hϑ?(ρ?, ϑ?)

=
[
Hϑ?(ρ, ϑ)−Hϑ?(ρ, ϑ?)

]
+
[
Hϑ?(ρ, ϑ?)−

∂Hϑ?(ρ?, ϑ?)

∂ρ
(ρ− ρ?)−Hϑ?(ρ?, ϑ?)

]
≥ 0

(10.5)

by the thermodynamic stability assumptions on ∂e(ρ, ϑ)/∂ϑ and ∂P (ρ, ϑ)/∂ρ. As a
consequence under (10.4), one deduces that∫ t

0

∫ (
µ̄
|∇u|2

ϑ
+ κ(ϑ)

µ |∇ϑ|2

ϑ2

)
dx dt ≤ constant. (10.6)
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10.3 The pressure laws covered by previous works.

In every previous work, the viscous stress tensor is assumed to be isotropic

S = µ (∇u+∇uT ) + λ divu Id,

with coefficients µ, λ either constants or depending only on ϑ.

1) The pressure law as a perturbation of the barotropic case. It is due to E. Feireisl
who considered pressure laws under the form

P (ρ, ϑ) = Pc(ρ) + ϑPϑ(ρ),

where

Pc(0) = 0, P ′c(ρ) ≥ a1ρ
γ−1 − b for ρ > 0,

Pc(ρ) ≤ a2ρ
γ + b for all ρ ≥ 0,

Pϑ(0) = 0, P ′ϑ(ρ) ≥ 0 for all ρ ≥ 0,

Pϑ(ρ) ≤ c(1 + ρβ),

(10.7)

and
γ > d/2, β <

γ

2
for d = 2, β =

γ

3
for d = 3

with constants a1 > 0, a2, b and Pc, Pϑ in C[0,+∞)∩C1(0,+∞). In agreement with
Maxwell law and the entropy definition, it implies the following form on the internal
energy

e(ρ, ϑ) =

∫ ρ

ρ?

Pc(s)

s2
ds+Q(ϑ),

where Q′(ϑ) = Cv(ϑ) (specific heat at constant volume). The entropy is given by

s(ρ, ϑ) =

∫ ϑ

ρ?

Cv(s)

s
ds− Sϑ(ρ),

where Sϑ is the thermal pressure potential given through Sϑ(ρ) =

∫ ρ

ρ?

Pϑ(s)/s2ds.

The heat conductivity coefficient κ is assumed to satisfy

κ1(ϑα + 1) ≤ κ(ϑ) ≤ κ2(ϑα + 1) for all ϑ ≥ 0,

with constants κ1 > 0 and α ≥ 2. The thermal energy Q = Q(ϑ) =
∫ ϑ

0
Cv(z)dz

has not yet been determined and is assumed to satisfy
∫
z∈[0,+∞)

Cv(z) > 0 and

Cv(ϑ) ≤ c(1 +ϑα/2−1). Because the energy and pressure satisfy (10.4), the estimate
on Hϑ gives a control on ργ in L∞(0, T ;L1(Ω)) and through (10.6) a control on ϑ in
L2(0, T ;L6(Ω)) in dimension 3 and in L2(0, T ;Lp(Ω)) for all p < +∞ in dimension
2.

Because (10.6) does not provide an H1
x bound on u, E. Feireisl combines it with

a direct energy estimate (see below). Therefore one obtains the exact equivalent of
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estimates (2.6) in this case. Using similar techniques, one then proves (2.9) for
0 < a < min(1/d, 2d/γ − 1). The proof of compactness and existence follows the
main steps shown in subsection 2.2.

2) Pressure laws with large radiative contribution. It is due to E. Feireisl and
A. Novotny who consider pressure laws exhibiting both coercivity of type ργ and
ϑ4 for large densities and temperatures namely

P (ρ, ϑ) = ϑγ/(γ−1)Q(
ρ

ϑ1/(γ−1)
) +

a

3
ϑ4 with a > 0, γ > 3/2,

with
Q ∈ C1([0,+∞)), Q(0) = 0, Q′(Z) > 0 for all Z ≥ 0,

and

lim
Z→+∞

Q(Z)

Zγ
= Q∞ > 0.

In agreement to Maxwell law and the definition of entropy, it implies the following
form on the internal energy and the entropy

e(ρ, ϑ) =
1

(γ − 1)

ϑγ/(γ−1)

ρ
Q(

ρ

ϑ1/(γ−1)
) + a

ϑ4

ρ
,

and

s(ρ, ϑ) = S
( ρ

ϑ1/(γ−1)

)
+

4a

3

ϑ3

ρ
.

They impose

0 < −S′(Z) =
1

γ − 1

γQ(Z)−Q′(Z)Z

Z
< c < +∞ for all Z > 0,

with limZ→+∞ S(Z) = 0 so that thermodynamical stability (10.4) holds. Therefore
the energy provides uniform bounds in L∞t L

1
x for ϑ4 and ργ . One assumes in this

case that the viscosities and heat conductivity satisfy

µ, λ ∈ C1([0,+∞)) are Lipschitz and µ (1 + ϑ) ≤ µ(ϑ), 0 ≤ λ(ϑ), µ0 > 0,

and

κ ∈ C1([0,+∞), κ0(1 + ϑ3) ≤ κ(ϑ) ≤ κ1(1 + ϑ3), 0 < κ0 ≤ κ1.

Almost everywhere convergence of the temperature is obtained using the radiation
term. Extra integrability on P (ρ, ϑ) can be derived just as in the barotropic case.
Finally the same procedure as in the barotropic case is followed to have compactness
on the density, relying heavily on the monotonicity of the pressure ∂P (ρ, ϑ)/∂ρ > 0.
This gives global existence of weak solutions (in a sense that we precise later).

With respect to these previous works, we focus here, as in the barotropic case,
in removing the assumption of monotonicity on the pressure law, which is consistent
with the discussion of such laws in subsection 2.4.
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10.4 The direct entropy estimate

We explain here the general framework for our result on the Navier–Stokes–Fourier
system. The estimates here closely follow the ones pioneered by P.–L. Lions, and
E. Feireisl and A. Novotny; just as in the barotropic case, our contribution is the
new compactness argument not the energy estimates. With respect to the previous
discussion, we only present them here in a more general context as in particular we
will not need the monotonicity of P .

If one removes the monotonicity assumption on P then thermodynamic stability
(10.4) does not hold anymore. Following P.–L. Lions, it is however possible to
obtain the estimate (10.6) directly by integrating the entropy equation (10.2)∫ t

0

∫ (
µ
|∇u|2

ϑ
+ κ(ϑ)

|∇ϑ|2

ϑ2

)
dx dt ≤ C

∫
ρ s(t, x) dx.

Therefore the bound (10.6) holds under the general assumption that there exists C
s.t.

s(ρ, ϑ) ≤ C e(ρ, ϑ). (10.8)

Recall that

e = m(ϑ) +

∫ ρ

ρ?

(P (ρ′, ϑ)− ϑ∂ϑP (ρ′, ϑ))

ρ′2
(ρ′, ϑ) dρ′,

and

∂ρs = −∂ϑP
ρ2

.

We also have that ∂ϑs = ∂ϑe/ϑ, therefore as long as m(ϑ) ≥ 0 with∫ ϑ

ϑ∗

m′(s)

s
ds ≤ C(1 +m(ϑ)),

and
−∂ϑP ≤ C(P − ϑ∂ϑP ),

for some C > 0 then (10.8) is automatically satisfied and one obtains the bound
(10.6). Moreover if e(ϑ, ρ) ≥ ργ−1/C then one also has that ρ ∈ L∞t Lγx. Assuming
now that

κ1 (ϑα + 1) ≤ κ(ϑ) ≤ κ2 (ϑα + 1),

with α ≥ 2, one deduces from (10.6) that log ϑ ∈ L2
tH

1
x and ϑα/2 ∈ L2

t H
1
x or by

Sobolev embedding ϑ ∈ Lαt L
α/(1−2/d)
x . By a Hölder estimate, it is also possible to

obtain a Sobolev-like, Lp1

t W
1,p2
x , bound on u

∫ T

0

(∫
|∇u|p2 dx

)p1/p2

dt ≤

(∫ T

0

∫
|∇u|2

ϑ
dx dt

)p1/2

(∫ T

0

(∫
ϑp2/(2−p2) dx

)p1(2−p2)/(p2(2−p1))

dt

)(2−p1)/2

<∞,
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provided that p2/(2− p2) = α/(1− 2/d) and p1/(2− p1) = α or

p1 =
2α

1 + α
, p2 =

2αd

d (α+ 1)− 2
. (10.9)

Unfortunately this Sobolev estimate does not allow to derive an equivalent of (2.9).
Instead one requires a L2

tH
1
x estimate on u (the critical point is in fact the L2

t with
value in some Sobolev in x). Instead one can easily extend the argument by E.
Feireisl and A. Novotny: For any φ(ρ), one can write

1

2

d

dt

∫
ρ|u|2 +

d

dt

∫
φ(ρ) +

∫
S : ∇u =

∫
(P (ϑ, ρ)− φ′(ρ) ρ+ φ(ρ)) divu.

This leads to the assumption that there exists some φ s.t.

C−1ργ − C ≤ φ(ρ) ≤ Cργ + C,

|P (ϑ, ρ)− φ′(ρ) ρ+ φ(ρ)| ≤ C
(
ρβ1 + ϑβ2 +

√
ρe(ϑ, ρ)

)
,

(10.10)

with

β1 ≤
γ

2
, β2 ≤

α

2
. (10.11)

Indeed, with (10.10), one has∫ T

0

∫
S : ∇u dx dt ≤ E(ρ0, u0, ϑ0) + C

∫ T

0

∫ (
ρβ1 + ϑβ2 +

√
ρe(ϑ, ρ)

)
|divu| dx dt.

By (2.2), this leads to∫ T

0

∫
|∇u|2 dx dt ≤ C E(ρ0, u0, ϑ0) + C ‖∇u‖L2

t,x
‖ρβ1 + ϑβ2‖L2

t,x
, (10.12)

and the desired H1 bound follows from (10.11). It is now possible to follow the same
steps to obtain an equivalent of (2.9) if γ > d/2∫ T

0

∫
Ω

ργ+a dx dt ≤ C(T,E(ρ0, u0, ϑ0)), for all a < max

(
1

2
,

2

d
γ − 1

)
. (10.13)

Note here that the assumptions (10.10)-(10.11) are likely not optimal and will be im-
proved in future works. They nevertheless already cover the two examples presented
above.

10.5 Main result in the heat-conducting case

For convenience, we repeat here all the assumptions presented above and the con-
cluding mathematical result which may be obtained. More precisely, we assume that
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for some C > 0

P (ρ, ϑ) such that − ∂ϑP ≤ C(P − ϑ∂ϑP ) with C > 0,

e(ρ, ϑ) = m(ϑ) +

∫ ρ

ρ?

(P (ρ′, ϑ)− ϑ∂ϑP (ρ′, ϑ))

ρ′2
dρ′ ≥ ργ−1

C
+
ϑγϑ

C ρ
,

with m(ϑ) ≥ 0 and

∫ ϑ

ϑ∗

m′(s)

s
ds ≤ C(1 +m(ϑ)) ≤ C (1 + ϑα (γ+a−1)/2(γ+a)),

κ1 (ϑα + 1) ≤ κ(ϑ) ≤ κ2 (ϑα + 1), µ, λ constants and α ≥ 2,

C−1ργ − C ≤ φ(ρ) ≤ C ργ + C,

|P (ρ, ϑ)− φ′(ρ) ρ+ φ(ρ)| ≤ C ρβ1 + C ϑβ2 + C
√
ρe(ρ, ϑ),

|∂ϑP (ρ, ϑ)| ≤ Cρβ3 + Cϑβ4

(10.14)
for 

β1 ≤
γ

2
, β2 <

α

2
, γ > max

(
3

2
,
d

2
,

3d

d+ 2

)
,

β3 <
γ + a+ 1

2
, β4 < max

(
α

2
, γϑ

(
1

2
+

1

d

))
,

2

d
µ+ λ > 0, γϑ ≥ 0

(10.15)

where we recall that a < max (1/2, 2γ/d− 1). We also assume that either ∂ϑP (0, ϑ)
is strictly convex in ϑ or that the specific heat is positive (as is necessary for the
physics) i.e.

Cv = ∂ϑe(ρ, ϑ) > 0, ∀ρ, ϑ, (10.16)

and ∣∣∂ρP (ρ, ϑ)
∣∣ ≤ C ργ−1. (10.17)

and that the initial data satisfies

ρ0 ∈ Lγ(Πd), ϑ0 ∈ Lγϑ(Πd)

with ρ0 ≥ 0, ϑ0 > 0 in Πd and

∫
Πd
ρ0 = M0 > 0,

(10.18)

and

E0 =

∫
Πd

(1

2

|(ρu)0|2

ρ0
+ ρ0e(ρ0, ϑ0)

)
< +∞. (10.19)

Then we can prove the following result

Theorem 10.1 Assume that (10.14)–(10.17) are satisfied and that the initial data
satisfy (10.18) and (10.19). Then there exists

ρ ∈ L∞([0, T ], Lγ(Πd)) ∩ Lγ+a([0, T ]×Πd), ∀a < max

(
1

2
,

2

d
γ − 1

)
,

u ∈ L2([0, T ], H1(Πd)) ∩ L∞([0, T ], L2
ρ(Π

d)),

ϑ ∈ Lα([0, T ], Lα/(1−2/d)(Πd)), log ϑ ∈ L2([0, T ], H1(Πd)),

(10.20)
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with ϑ > 0 a.a. on (0, T )×Πd that is solution in the sense of distributions to

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇P (ρ, ϑ) = 0,
(10.21)

while the equation on the temperature is satisfied in the following sense: In the sense
of distribution, the entropy solves

∂t(ρ s(ρ, ϑ)) + div (ρ s(ρ, ϑ)u)− div

(
κ(ϑ)∇ϑ

ϑ

)
≥ 1

ϑ

(
S : ∇u+

κ |∇ϑ|2

ϑ

)
, (10.22)

with S = µ (∇u+∇uT ) + λ divu Id and recalling that

s(ρ, ϑ) = −
∫ ρ

ρ?

∂ϑP

ρ′2
(ρ′, ϑ) dρ′ +

∫ ϑ

0

m′(ϑ′)

ϑ′
dϑ′.

This is supplemented by the total energy property∫
(ρ
|u|2

2
+ ρ e(ρ, ϑ)) dx =

∫
(ρ0 |u0|2

2
+ ρ0 e(ρ0, ϑ0)) dx. (10.23)

and the initial data conditions satisfied by (ρ, ρu, ρs) in a weak sense

ρ|t=0 = ρ0, ρu|t=0 = (ρu)0, ρs|t=0+ ≥ ρ0s(ρ0, ϑ0).

Remark 10.2 An example of pressure law included in Theorem 10.1 is a perturba-
tion of the truncated virial expansion as described in subsection 2.4

P (ρ, ϑ) = ργ + ϑ

N∑
n=0

Bn(ϑ) ρn,

with γ > N . In that case we simply take m(ϑ) = 0. The coefficients Bn can have
any sign and we only require that

|ϑ∂ϑBn(ϑ)|+ |Bn(ϑ)|+ |ϑBn(ϑ)− B̄n| ≤ C (ργ/2−n + ϑ
α
2 (1− 2n

γ )).

Then choosing φ(ρ) = ργ +
∑
n≤N B̄n ρ

n, (10.10) together with (10.14) and (10.15)
are satisfied. We will treat more general virial expansions in a future work. Note
for a fixed ϑ then P (ρ, ϑ) is indeed increasing after a critical ρ̄ϑ which depends on
ϑ and can be arbitrarily large where ϑ >> 1. This is the reason why P does not
satisfy any of the classical monotonicity assumption such as (3.7) or (5.8) and why
our new approach is needed.

Remark 10.3 The assumption (10.17) is more demanding in the Navier-Stokes-
Fourier setting (though satisfied by the examples given earlier in this section). It
would be more natural to have instead

|∂ρP (ρ, ϑ) ≤ P̄ (ϑ) ργ−1,
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for some unbounded function P̄ of ϑ. This is possible and require some modifications
in the proof of Theorem 5.1, combined with appropriate estimates on ϑ. In general
obtaining more optimal results for the Navier-Stokes-Fourier system seems to depend
on adapting precisely the estimates and Theorem 5.1 to the specific model under
consideration.

Remark 10.4 With appropriate additional growth assumption, it is possible to show
that the combination of (10.22) and (10.23) implies the usual energy equation (and
not just an inequation as (10.22). The reason for the formulation (10.22)-(10.23) is
that it cannot be proved without those additional assumptions. We refer to [34] and
[35].

Remark 10.5 In Theorem 10.1, the viscosity coefficients µ, λ are independent of
the temperature ϑ. Instead several models use temperature dependent coefficients
µ(ϑ), λ(ϑ). To handle that case, the proof given below would have to be modified;
the compactness of the temperature would have to be established first.

Sketch of the proof. The proof of Theorem 10.1 follows the same steps as the
proof of Theorem 3.1. For this reason we only sketch briefly the points which are
similar and insist more on the differences induced by the presence of the temperature.
The general method is taken from [35] and is adapted to take advantage of our new
compactness estimates.

For simplicity we assume throughout the proof that

γ < 2 + max

(
1

2
,

4

d
− 1

)
. (10.24)

This assumption is not strictly necessary but removing it would add one or more
additional stage of approximation. We explain in the limit from (10.33) to (10.34)
at the end of the proof which additional steps would be required in the absence of
(10.24).

As usual one starts from an approximate model

∂tρk + div(ρkuk) = αk ∆ρk,

∂t(ρkuk) + div(ρkuk ⊗ uk)− µ∆uk − (λ+ µ)∇divuk +∇Pε,δ(ρk, ϑk)

+ αk∇ρk · ∇uk = 0,

∂t(ρk sε(ρk, ϑk)) + div (ρk sε(ρk, ϑk)uk)− div (
κε(ϑk)

ϑk
∇ϑk)

=
1

ϑk

(
Sk : ∇uk +

κε(ϑk)

ϑk
|∇ϑk|2

)
+ αk

∆ρk
ϑk

(
ϑksε(ρk, ϑk)− eε,δ(ρk, ϑk)− Pε,δ(ρk, ϑk)

ρk

)
,

(10.25)

with again Sk = µ (∇uk + ∇uTk ) + λ divuk Id. Note that the last quantity in the
entropy relation comes from the preservation of the total energy and the relation
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between energy and entropy. Remark also that contrary to the barotropic case, we
need here two steps of approximations in the pressure (and hence energy), indexed
by ε and δ.

The first level of approximation is obtained by adding a barotropic correction

Pδ(ρ, ϑ) = P (ρ, ϑ) + δ ρ2, (10.26)

where the exponent 2 is crucial, i.e. it could not be any other for reasons that will be
clear below. From the approximated pressure, one defines as usual the approximate
energy

eδ(ρ, ϑ) = m(ϑ) +

∫ ρ

ρ∗

(Pδ(ρ
′, ϑ)− ϑ∂ϑPδ(ρ′, ϑ)

ρ′2
dρ′ = e(ρ, ϑ) + δ ρ2, (10.27)

and the entropy also has the straightforward expression

sδ(ρ, ϑ) =

∫ ϑ

0

m′(s)

s
ds−

∫ ρ

ρ∗

∂ϑPδ(ρ
′, ϑ)

ρ′2
dρ′ = s(ρ, ϑ). (10.28)

In the second stage of approximation, indexed by ε, we first replace κ(ϑ) by
κε(ϑ). We assume that κε = κ + κ̃ε with κ̃ε a positive function which vanishes for
2 ε < ϑ < 1/2 ε and satisfies

κ̃ε(ϑ) −→ +∞ as ϑ→ ε or ε−1,

∫ ε−1

ε

κ̃ε(ϑ) dϑ <∞. (10.29)

This is slightly different from [35] but gives similar bounds on the temperature while
being simpler to handle in our case. Then we define Pε as an approximate pressure
law of Pδ truncated for large densities, namely for ρ̄ε = ε−1, we define

Pε(ρ, ϑ) = P (ρ, ϑ) if ρ ≤ ρ̄ε, Pε(ρ, ϑ) = P (ρ̄ε, ϑ) if ρ > ρ̄ε. (10.30)

Note that since the temperature will be bounded by (10.29), it is not necessary to
truncate it in (10.30). This leads to

Pε,δ(ρ, ϑ) = Pε(ρ, ϑ) + δ ρ2.

The energy density is still defined from the pressure Pε,δ or Pε,

eε(ρ, ϑ) = m(ϑ) +

∫ ρ

ρ∗

(Pε(ρ
′, ϑ)− ϑ∂ϑPε(ρ′, ϑ)

ρ′2
dρ′,

eε,δ(ρ, ϑ) = m(ϑ) +

∫ ρ

ρ∗

(Pε,δ(ρ
′, ϑ)− ϑ∂ϑPε,δ(ρ′, ϑ)

ρ′2
dρ′ = eε(ρ, ϑ) + δ ρ,

(10.31)

and so is the entropy which is actually independent of δ (just as sδ is independent
of δ in (10.28))

sε,δ(ρ, ϑ) = sε(ρ, ϑ) =

∫ ϑ

0

m′(s)

s
ds−

∫ ρ

ρ∗

∂ϑPε(ρ
′, ϑ)

ρ′2
dρ′. (10.32)
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The first step is to pass to the limit αk → 0 in the system (10.25) to obtain a
global weak solution to

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇Pε,δ(ρ, ϑ) = 0,

∂t(ρ sε(ρ, ϑ)) + div (ρ sε(ρ, ϑ)u)− div

(
κε(ϑ)∇ϑ

ϑ

)
≥ 1

ϑ

(
S : ∇u+

κε |∇ϑ|2

ϑ

)
.

(10.33)

Note that the entropy now satisfies only an inequality, however this is supplemented
by the preservation of total energy∫

ρ

(
|u|2

2
+ eε,δ(ρ, ϑ)

)
dx =

∫
ρ0

(
|u0|2

2
+ eε,δ(ρ

0, ϑ0)

)
dx.

Let us remark that this identity occurs also for αk fixed as mentioned in [35]. Then
one considers a sequence εk → 0 and the corresponding sequences ρk, uk, ϑk of
solution to (10.33). Passing again to the limit, we obtain global weak solutions to

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇Pδ(ρ, ϑ) = 0,

∂t(ρ s(ρ, ϑ)) + div (ρ sε(ρ, ϑ)u)− div

(
κ(ϑ)∇ϑ

ϑ

)
≥ 1

ϑ

(
S : ∇u+

κ |∇ϑ|2

ϑ

)
,

(10.34)

still with the energy equality∫
ρ

(
|u|2

2
+ eδ(ρ, ϑ)

)
dx =

∫
ρ0

(
|u0|2

2
+ eδ(ρ

0, ϑ0)

)
dx.

Finally, we take a sequence δk → 0 and obtain global weak solutions as announced
by Theorem 10.1.

The three limits are somewhat similar with slightly different a priori estimates
and in the case of (10.25) to (10.33) additional difficulties in obtaining those a priori
estimates. This limit uses point i) of Theorem 5.1 and the other two point ii). For
this reason, we sketch the limit (10.25) to (10.33) separately and both limits, (10.33)
to (10.34) and (10.34) to (10.21)-(10.22) at the same time.

The limit from (10.25) to (10.33). We use the a priori estimates described above,
in particular in subsection 10.4. The entropy estimate though requires more care
for System (10.25). We emphasize here that most of the complications in this limit
were already present in [35] and are solved here in a very similar manner. The novel
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features of our work are mostly present in the other two limits, from (10.33) to
(10.34) and from (10.34) to the limit system.

However because we handle pressure terms that are more general, we can unfor-
tunately not simply use the result of [35] to skip this first limit. Instead one has to
check carefully that indeed at this level, estimates work the same.

First of all, given assumption (10.29), standard parabolic estimates imply that
any solution to (10.25) is either constant in x or satisfies

ε ≤ ϑk(t, x) ≤ 1

ε
. (10.35)

Remark that since

∫ ε−1

ε

κ̃ε < ∞, we do not have strict inequalities in (10.35). In

addition, the conservation of energy yields

sup
t,k

∫
Πd
ρ2
k(t, x) dx <∞. (10.36)

Observe that

∆ρk
ϑk

(
ϑk sε − eε,δ −

Pε,δ
ρk

)
= div

[(
ϑk sε,δ − eε,δ −

Pε,δ
ρk

)∇ρk
ϑk

]
+ ∂ρPε,δ

|∇ρk|2

ρk ϑk

−
(
eε,δ + ρ ∂ρeε,δ)

)∇ρk · ∇ϑk
ϑ2
k

(10.37)

where the functions Pε,δ, eε,δ and sε are all taken on the points ρk(t, x), ϑk(t, x).
The identity (10.37) is obtained through the general relations between s, e and P
and in particular

∂

∂ρ
(ϑs− e− P

ρ
) = −1

ρ

∂P

∂ρ

and
∂

∂θ
(s− e

ϑ
− P

ρϑ
) =

1

ϑ2

(
e+ ρ

∂e

∂ρ
).

Integrating in space and time the entropy equation in (10.25), we therefore get∫ t

0

∫
Πd

1

ϑk

(
Sk : ∇uk +

κε(ϑk)

ϑk
|∇ϑk|2

)
+ αk

∫ t

0

∫
Πd
∂ρPε,δ

|∇ρk|2

ρkϑk

≤ αk
∫ t

0

∫
Πd

(
eε,δ + ρk ∂ρeε,δ)

)∇ρk · ∇ϑk
ϑ2
k

+

∫
Πd
ρksε(t)−

∫
Πd

(ρksε)(0).

(10.38)

Therefore for αk fixed we have extra terms in the right-hand side with respect to the
case of System (10.33) or (10.34) as described in subsection 10.4, namely

αk

∫
Πd

(eε,δ + ρk ∂ρeε,δ)
∇ρk · ∇ϑk

ϑ2
k
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and an additional term on the left-hand side

αk

∫
Πd
∂ρPε,δ

|∇ρk|2

ϑk
.

On the other hand by the bounds (10.35) on ϑk and the truncation in Pε imply that
sε is bounded by some constant depending on ε, hence trivially in that case∫

Πd
ρk sε(ρk, ϑk) dx ≤ Cε.

From the definition (10.30) of Pε and the definition of Pε,δ, we obtain that there
exists ρ̄ε s.t.

∂ρPε,δ(ρ, ϑ) > δ ρ, ∀ ρ > ρ̄ε, ∀ε ≤ ϑk(t, x) ≤ 1

ε
. (10.39)

From the bounds (10.35) on ϑk, we obtain that Pε,η satisfies the monotonicity as-
sumption (5.8) and moreover

αk

∫
Πd
∂ρPε,k

|∇ρk|2

ϑk
≥ δ ε

∫
ρk |∇ρk|2 − C αk

∫
ρk≤ρ̄ε

|∇ρk|2.

On the other hand, the energy bound (10.36) implies that
∫
ρk log ρk is uniformly

bounded. The continuity equation then shows that

αk

∫ T

0

∫
Πd

|∇ρk|2

ρk
dx dt ≤ C +

∫ T

0

∫
Πd
ρk |divuk| dx dt

≤ C + Cε

(∫ T

0

∫
Πd

Sk : ∇uk
ϑk

dx dt

)1/2

,

by using that ρk is uniformly in L2 again from (10.36). Therefore we obtain the
straightforward estimate

αk

∫ t

0

∫
Πd
∂ρPε,k

|∇ρk|2

ϑk
≥ αk δ ε

∫ t

0

∫
Πd
ρk |∇ρk|2

− C − Cε
(∫ t

0

∫
Πd

Sk : ∇uk
ϑk

)1/2

.

(10.40)

Turning to the last term in the entropy estimate, we first observe that

eε,δ + ρk ∂ρeε,δ = eε + ρk ∂ρeε

because the barotropic part, δ ρ, in eε,δ (see (10.31)) cancels. This is the reason why
the barotropic part in Pδ has to be exactly ρ2; with any other exponent, we would not
have the above cancellation (see again the book by E. Feireisl and A. Novotny
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[35] where it has first been observed). Remarking that eε and ρ∂ρeε are bounded
still from the truncation of Pε, one obtains that

αk

∫
Πd

(eε,δ + ρk ∂ρeε,δ)
∇ρk · ∇ϑk

ϑ2
k

≤ αk Cε
∫

Πd
∇ρk · ∇ϑk

≤ αk
δ ε

2

∫
Πd
|∇ρk|2 + Cε,δ αk

∫
Πd
|∇ϑk|2.

(10.41)

Combining (10.40)-(10.41) with (10.38) concludes the bound on the entropy for αk
small enough. Let us note for later that this bound also implies that ∂t(ρk sε(ρk, ϑk))
is bounded in L1

tW
−1,1
x uniformly in k.

The rest of the a priori estimates described in subsection 10.4 follow in a straight-
forward manner. We hence summarize the uniforms bound here

sup
t,k

∫
Πd

(
ρ2
k + ρk |uk|2 + ϑγϑk

)
dx <∞, ε ≤ ϑk ≤

1

ε
,

sup
k

∫ T

0

∫
Πd

(
ρ2+aε
k + |∇uk|2

)
dx dt <∞, ∀aδ < max

(
1

2
,

4

d
− 1

)
,

sup
k

∫ T

0

∫
Πd

(
|∇ϑα/2k |

2 + |∇ log ϑk|2
)
dx dt <∞,

sup
k
‖∂t(ρk sε(ρk, ϑk))‖L1

tW
−1,1
x

<∞.

(10.42)

Combining those bounds with the continuity and momentum equations shows that
(5.4), (5.5), (5.6), and (5.7) are satisfied. The pressure law also satisfies (5.8). More-
over taking the divergence of the momentum equation in (10.25) and inverting the
Laplacian, one obtains

(λ+ 2µ) divuk =Pεk(ρk, ϑk) + ∆−1 div (∂t(ρk uk) + div (ρk uk ⊗ uk))

+ αk ∆−1 div (∇ρk · ∇uk).

This is exactly the identity (5.2) with Pk(ρ, t, x) = Pε,δ(ρ, ϑk(t, x)) and µk = λ+ 2µ
which satisfies (5.3). Observe that as a consequence

|Pk(ρ, t, x)− Pk(ρ, t, y)| ≤ max
s∈[ϑk(t,x), ϑk(t,y)]

|∂ϑPε,δ(ρ, s)| |ϑ(t, x)− ϑ(t, y)|.

Since ϑk belongs uniformly to an appropriate Sobolev space, that means that the
estimate (5.3) is also satisfied. We may hence apply the variant of Theorem 5.1–point
i, described in the remark 5.3. This yields the compactness of ρk in L1.

Since uk ∈ L2
tH

1
x, we get the compactness on

√
ρ
k
uk in L2

tL
2
x from the momentum

equation. The passage to the limit in the continuity equation is therefore as usual.
We also have compactness in space for uk and ϑk respectively from the viscosity and
conductivity.
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The next step is to obtain the compactness of the temperature. If there is a
radiative part in P , that is if ∂ϑP (0, ϑ) is non vanishing and convex, then it is possible
to obtain directly the compactness of ϑk through standard diffusion estimates on the
entropy equation. Otherwise it relies in a delicate manner on the entropy inequation
in (10.33) but follows the now classical approach and for this reason we only sketch
the procedure:

• Observe that ρk sε(ρk, ϑk) in some Lpt,x with p > 1 from (10.42) and the fact
that sε is bounded.

• Observe that (∂t(ρk sε(ρk, ϑk)))+ is uniformly in L1
tW
−1,1
x , again from (10.42).

• Obtain the a.e. convergence of ρk sε(ρk, ϑk)(t, x). From the first point and the
compactness in space of ϑk and ρk, we deduce that ρk sε(ρk, ϑk) is compact in
space. From the second point, we deduce that it is compact in time. There-
fore after extraction ρk sε(ρk, ϑk) converges strongly in L1

t,x and after possibly
further extraction, one has that there exists l(t, x) s.t.

ρk(t, x) sε(ρk(t, x), ϑk(t, x)) −→ l(t, x), for a.e. t, x.

• Obtain the ρ a.e. convergence of ϑk(t, x). Extracting again, we have from the
compactness of ρk(t, x), that ρk(t, x) converges a.e. to ρ(t, x). This shows that
l(t, x) = ρ(t, x) l̃(t, x) and moreover that for a.e. t, x s.t. ρ(t, x) 6= 0, one has
that sε(ρ(t, x), ϑk(t, x)) converges to l̃(t, x). By the assumption on the specific
heat (10.16), sε is invertible in ϑk (Pε and so sε is not truncated in ϑ only in
ρ). Therefore this implies that ϑk(t, x) converges also ρ a.e.

• The dominated convergence theorem then implies that any function F (ρk, ϑk),
with F smooth and F (0, ϑ) = 0, converges to F (ρ, ϑ).

This allows us to pass to the limit in every term of the momentum equation, including
the barotropic term δ ρ2

k using the extra-integrability ρk ∈ L2+aδ in (10.42). We can
also simply pass to the limit in the entropy sε(ρk, ϑk).

Define κ̄ε by κ̄′ε = κε. By (10.29), we know that κ̄ε(ϑ) is bounded on [ε, ε−1].
This lets us pass to the limit in κε(ϑk)∇ϑk = ∇κ̄ε(ϑk).

But it is not possible to pass to the limit in the r.h.s. of the entropy equation
(10.25)3. For instance the r.h.s. contains µ |∇uk|2 which does not in general converge
to µ |∇u|2, as this would require the compactness of ∇uk in L2. Instead one uses
convexity to prove that

w − lim
1

ϑk

(
Sk : ∇uk +

κε |∇ϑk|2

ϑk

)
≥ 1

ϑ

(
S : ∇u+

κε |∇ϑ|2

ϑ

)
.

This leads to the inequality in the entropy equation in (10.33)3. Note we can also
write an equality with a positive (and a priori unknown) measure. But it still remains
to pass to the limit in

αk
∆ρk
ϑk

(
ϑk sε − eε,δ −

Pε,δ
ρk

)
.
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By relation (10.37), the bounds on sε, eε,δ, Pε,δ and the a priori estimates in (10.42),
this term will converge to 0 if we can prove that

αk

∫ T

0

∫
Πd

|∇ρk|2

ρk
dx dt −→ 0.

On the other hand from the continuity equation, one has that∫
Πd
ρk log ρk(t, x) dx−

∫
Πd
ρ0
k log ρ0

k(x) dx+

∫ t

0

∫
Πd
ρk divuk dx dt

= −αk
∫ T

0

∫
Πd

|∇ρk|2

ρk
dx dt.

By the compactness of ρk, we can pass to the limit in every term in the l.h.s. so∫
Πd
ρ log ρ(t, x) dx−

∫
Πd
ρ0 log ρ0(x) dx+

∫ t

0

∫
Πd
ρdivu dx dt

= − limαk

∫ T

0

∫
Πd

|∇ρk|2

ρk
dx dt.

On the other hand, ρ solves the continuity equation without any diffusion and since
it belongs to L2 by (10.42), one also has that∫

Πd
ρ log ρ(t, x) dx−

∫
Πd
ρ0 log ρ0(x) dx+

∫ t

0

∫
Πd
ρ divu dx dt = 0,

which has for consequence the required property

limαk

∫ T

0

∫
Πd

|∇ρk|2

ρk
dx dt = 0.

We again refer to [34, 35] for the details of the procedure. Finally we conclude the
proof of this limit by noticing that we may pass to the strong limit in all the terms
of the energy conservation. Therefore we indeed obtain the equality in (10.23).

The limits (10.33) to (10.34) and (10.34) to the final system. First we consider a
sequence εk → 0 and corresponding sequences of solutions ρk, uk, ϑk to (10.33).
Some of the a priori estimates for this sequence of solutions to (10.33) are obtained
by simply keeping only the estimates in (10.42) uniform in ε. The others, such as the
entropy estimate, have to be derived again. But one proceeds exactly as described
in subsection 10.4, leading to

ε→ 0



sup
t,k

∫
Πd

(
ρ2
k + ρk |uk|2 + ϑγϑk

)
dx <∞,

sup
k

∫ T

0

∫
Πd

(
ρ2+aδ
k + |∇uk|2

)
dx dt <∞, ∀aδ < max

(
1

2
,

4

d
− 1

)
,

sup
k

∫ T

0

∫
Πd

(
|∇ϑα/2k |

2 + |∇ log ϑk|2
)
dx dt <∞.

(10.43)
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Similarly for (10.34), we obtain

δ → 0



sup
t,k

∫
Πd

(
ργk + ρk |uk|2 + ϑγϑk

)
dx <∞,

sup
k

∫ T

0

∫
Πd

(
ργ+a
k + |∇uk|2

)
dx dt <∞, ∀a < max

(
1

2
,

2

d
γ − 1

)
,

sup
k

∫ T

0

∫
Πd

(
|∇ϑα/2k |

2 + |∇ log ϑk|2
)
dx dt <∞.

(10.44)
The bounds (10.44) will of course imply (10.20) after passage to the limit.

As before combining those bounds with the continuity and momentum equations
shows that (5.4), (5.5), (5.6), and (5.7) are satisfied with p = 2 + aδ for System
(10.33) and p = γ + a for System (10.34). In particular remark here that from
(10.17) we have the bound P ≤ C ργ and hence the uniform bound Pε ≤ C ργ which
is controlled by the a priori estimates (10.43) provided γ ≤ 2 +aδ; this is exactly the
assumption (10.24).

By (10.17), the pressure law satisfies (5.9) for both limits with γ̃ = max(γ, 2).
We can again apply Theorem 5.1, point ii in this case, through the variant 5.3. We
again need that p > γ̃ that is assumption (10.24).

Therefore we obtain the compactness of ρk and from the momentum equation,
the compactness of

√
ρk uk. As in the limit of (10.25) to (10.33), the next step is

to obtain the compactness of ϑx. We follow the same procedure which however now
requires more work on the first two points:

• Bound ρk sεk(ρk, ϑk) or ρk s(ρk, ϑk) uniformly in some Lpt,x with p > 1. This
is not immediate anymore since s is not bounded and sεk is not uniformly
bounded. One uses the expression of the entropy in (10.32) and the bounds on
|∂ϑP | and m in (10.14) to find

ρk sεk(ρk, ϑk) ≤ C (ρβ3

k + ϑβ4

k + ρk ϑ
α(γ+a−1)/(γ+a)), (10.45)

and similarly for ρk s. Then the a priori estimates on ρk ∈ Lγ+a or ρk ∈ L2+aδ

and ϑk ∈ Lαt,x ∩L∞t Lγϑx are enough provided β3 < γ+ a and β4 < α or β < γϑ;
both are ensured by the stronger condition in (10.15).

• Bound (∂t(ρk sεk(ρk, ϑk)))+, (∂t(ρk s(ρk, ϑk)))+ uniformly in L1
tW
−1,1
x . This

now also requires additional work. One uses the entropy inequation in (10.33).
The right–hand side is bounded in L1

t,x (just by the entropy dissipation) and
thus one only has to bound ρksεk uk in L1

t,x. For instance∫ T

0

∫
Πd
ρβ3

k uk ≤
∫ T

0

∫
Πd

(ρk |uk|2 + ρ2β3−1
k ),

which is bounded provided 2β3−1 < γ+a and 2β3−1 < 2 +aδ leading to the
assumption on β3 in (10.15). As for

∫
ϑβ4

k uk, we have by Sobolev embedding

that uk ∈ L2
tL

2d/(d−2) and therefore need that ϑβ4

k ∈ L2
tL

2d/(d+2). Given that
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ϑk ∈ Lαt,x ∩ L∞t Lγϑx , this is ensured by the condition on β4 (note that the

condition could in fact be improved by using that ϑk ∈ Lαt L
α/(1−2/d)
x ). The

last term is treated in a similar manner.

To conclude to pass to the limit in every term of the momentum equation, we use
the integrability properties on ρk, ϑk (10.14)4, (10.14)5 and (10.14)6 to provide an
LptL

p
x integrability with p > 1 of the pressure. Note that from the previous analysis

either P (0, ϑ) = 0 and we may use the last point above to pass to the limit in any
truncation of Pε,δ(ρk, ϑk) or Pδ(ρk, ϑk); or if P (0, ϑ) 6= 0 then we have compactness
on the whole sequence ϑk and not only far from the vacuum. We also point out
that the truncature of the pressure Pε,δ or Pδ again require assumptions (10.24) or
(10.15)

Finally the passage to the limit in the entropy inequation is handled exactly as
for the limit of System (10.25) to (10.33); it is even simpler in fact as the term in αk
is not present.

Let us briefly come back to the assumption (10.24). As seen above, it is used
to control the pressure term in the limit from System (10.33) to (10.34) when the
uniform bound on ρk ∈ L2+aδ is only provided by the added barotropic term δ ρ2.

If (10.24) does not hold, the simplest (if tedious) way to solve the problem is
limit to add intermediary steps with barotropic corrections δn ρ

γn one after the
other. Since there is always a gain of integrability, it is possible to choose the γn
increasing simply ensuring that

γn+1 < γn + max

(
1

2
,

2

d
γn − 1

)
.

Once γn is large enough so that

γ < γn + max

(
1

2
,

2

d
γn − 1

)
,

one can derive the limit system. The passage to the limit in each intermediary step
is handled exactly as above.

11 Models occurring in other contexts

Macroscopic models in various biological settings involve a density ρ that is trans-
ported by a velocity vector field u with source term, such as

∂tρ+ div(ρu) = ρG(P (ρ), c)

for some functions G and P . The function G may include birth and death terms and
it could also depend on other quantities such as nutrients concentration denoted c, for
example Oxygen in cancer modeling. This concentration is typically governed by a
parabolic equation with right–hand side modeling the consumption of the resource(s)

∂tc−∆c = −ρH(P (ρ), c) (11.1)

106



with
∂PH ≤ 0, ∂cH ≥ 0, H(P, 0) = 0.

The velocity field is described through a constitutive law for instance

−ν∆Ψ + αΨ = P (ρ)− S, u = −∇Ψ (11.2)

where S is a given source term.
There have been several studies of such systems with applications to crowd mo-

tion, traffic jams, cancerology using specific reformulations: gradient flow or kinetic
descriptions and appropriate choices for f and G.

For instance the special case c = 0, α = 0, G ≡ 0 has been studied by B. Maury,
A. Roudneff–Chupin and F. Santambrogio (see [52]) through the framework of
optimal transportation reformulating the problem as a gradient flow in the Wasser-
stein space of measures. Other examples concern the reformulation through a ki-
netic formulation. For instance, very recently, B. Perthame and N. Vauchelet
(see [55]) have studied the case c = 0 in the whole space with the pressure law
P (ρ) = (γ + 1)ργ/γ with γ > 1, G satisfying

G ∈ C1(R), G′(·) ≤ −η < 0, G(PM ) = 0 for some PM > 0

and α, ν > 0.
The main result of this last paper is the ”stiff pressure law” limit, namely the limit

γ → +∞, leading to a free boundary model which generalizes the classical Hele-Shaw
equation. Such kind of limit has also been performed for the compressible Navier–
Stokes equations by P.–L. Lions and N. Masmoudi (see [50]) with P (ρ) = aργ

with G ≡ 0.
Recently C. Perrin and E. Zatorska (see [54]) have studied the singular limit

ε→ 0 for a singular pressure law P (ρ) = εργ/(1− ρ)β with γ, β > 3. The advantage
of such pressure law is that 0 ≤ ρ ≤ 1 for a fixed ε which is important for some
applications as mentioned by B. Maury in his review paper [51].

Pressure laws which blows-up for a critical density are of course the exact analo-
gous of the Van der Waals equation of state for compressible fluid dynamics. They
are also encountered in other setting such as crowd motion, granular flow, sedimen-
tation problems.

An other possibility to describe the velocity field is to consider the Brinkman
equation instead of Eq. (11.2), namely

−ν∆u+ αu+∇P (ρ) = S,

or with a Stokes viscosity term

−ν∆u− (λ+ ν)∇divu + αu+∇P (ρ) = S.

This type of correction accounts for flow through medium where the grains of the
media are porous themselves and has been justified in [2]. If the velocity is ir-
rotational then this model is exactly reduced to Eq. (11.2). Note however that
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viscoelastic models for tumor growth may allow for instance to observe a lemon-like
shape tumor, whereas with a Newtonian model an ovoid is obtained. Even limited,
this difference can eventually lead to bigger ones as the outer rim is composed of
proliferating cells with exponential growth. The kind of shape obtained for instance
in [14] is observed in in–vitro experiments.

What our method can bring:
We do not try to state a theorem here given the large variety of possible models.

Instead we give a few elements for which the method introduced here could prove
crucial

• More complex pressure laws, attractive and repulsive, could be considered. This
would be the exact equivalent of Theorem 3.1. Note that biological systems
frequently exhibit preferred ranged of densities for instance with attractive
interactions for low densities and repulsive at higher ones.

• More importantly the transition from attractive to repulsive interactions may
depend on the concentration c of nutrients or other bio-chemicals. This is
similar to the dependence on the temperature in the state laws for the Navier-
Stokes-Fourier system. For example if the pressure blows-up at some thresh-
olds, enforcing a maximal density, then this threshold and the maximal density
will depend in general on c. Because c is not necessarily uniformly bounded,
the range of attractive interactions (where G(P (ρ), c) is decreasing in ρ) is not
compactly supported and classical approaches may fail.

• There can be several nutrients or bio-chemicals. That means that in general
one has several c1, c2, . . . with several equations (11.1) (or a vector-valued one
if the diffusion speeds are the same). If chemotaxis is considered, some of those
bio-chemicals may be attractive while other are repulsive. This may lead to a
complicated pattern of interactions which again cannot be handled by classical
approaches.

• Many of this models are posed in porous media which are inherently anisotropic.
In biology for instance the tissue or the porous matrix is heterogeneous. There-
fore the equation for u should read

−div(A(t, x)D(u)) + α(t, x)u+∇P (ρ) = S

for some A and α and with in general a non-monotone pressure law. Our new
approach could for instance help to enrich the model mathematically studied
recently in [28].

12 Appendix: Notations

For the reader convenience, we repeat and summarize here some of our main nota-
tions.

Physical quantities.
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• ρ(t, x), or ρk(t, x) denotes the density of the fluid.

• u(t, x), or uk(t, x) denotes the velocity field of the fluid.

• P (.), or Pk(.) denotes the pressure law.

• e(ρ) is the internal energy density.
In the barotropic case, e(ρ) =

∫ ρ
ρref

P (s)/s2 ds.

• E(ρ, u) =
∫
ρ (|u|2/2 + e(ρ)) is the total energy of the fluid.

• µ, λ and µk denote various viscosity coefficients or combination thereof.

• S denotes the viscous stress tensor.
In the simplest isotropic case: S = 2µD(u) + λdivuId.

• D is the diffusion term related to the viscous stress tensor by Du = divS.

In the Navier–Stokes–Fourier case:
we have the additional notations, appearing only in section 10.

• ϑ(t, x) is the temperature field of the fluid.

• s(ρ, ϑ) is the entropy of the fluid.

• κ(ϑ) is the heat conductivity coefficient.

• Cv is the specific heat of the fluid.

Technical notations.

• d is the dimension of space.

• k as an index always denotes the index of a sequence.

• h and h0 are scaling parameters used to measure oscillations of certain quan-
tities such as the density.

• Kh is a convolution kernel on Πd,
Kh(x) = (h+ |x|)−a for x small enough and with a > d.

• Kh is equal to Kh/‖Kh‖L1 .

• Kh0
=
∫ 1

h0
Kh(x) dhh is the weighted average of Kh. Note that ‖K‖L1 ∼ | log h0|.

• w0, w1 and wa are the weights and wi,h = Kh ? wi their regularization with
i = 0, 1, a.

• C is a constant whose exact value may change from one line to another but
which is always independent of k, h or other scaling parameters.

• ε(h) is a smooth function with ε(0) = 0.

• θ is an exponent whose exact value may change as for C but in (0, 1).

• The exponent p is most of the time such that ρ ∈ Lpt,x.

• q and r are other exponents for Lp type spaces that are used when needed.
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• I, II, . . . and A, B, D, E . . . are notations for some intermediary quantities
used in the proofs. Their definitions may change from one proof to another.

• x, y, w, z are typically variables of integration over the space domain.

• δρk(x, y) = ρk(x)− ρk(y) the difference of densities.

• ρ̄k(x, y) = ρk(x) + ρk(y) the sum of densities.

• Dρuk = ∆−1div (∂t(ρk uk) + div (ρk uk ⊗ uk)) denotes the effective flux.

• The individual weights w(t, x) = w0, w1, wa satisfy Eq. (7.2) or

∂tw + uk · ∇w = −Dw + αk ∆xw,

where D = D0, D1, Da are the penalizations in (7.3), (7.4), (7.5).

• The weights w0 or wa may be convolved to give wh = Kh ?w0, wa,h = Kh ?wa.

• The weights are then added or multiplied to obtain the composed W (t, x, y) =
W0, W1, W2, Wa with

W0 = w0(x) + w0(y), W1 = w1(x) + w1(y),

W2 = w1(x)w1(y), Wa = wa(x) + wa(y).

The main properties of the weights are given in Prop. 7.2.

13 Appendix: Besov spaces and Littlewood-Paley
decomposition

We only recall some basic definitions and properties of Besov spaces for use in Lemma
6.3. We start with the classical Littlewood-Paley decomposition and refer to the
readers for instance to [6], [1] and [8] for details and applications to fluid mechanic.
Choose any family Ψk ∈ S(Πd) s.t.

• Its Fourier transform Ψ̂k is positive and compactly supported in the annulus
{2k−1 ≤ |ξ| ≤ 2k+1}.

• It leads to a decomposition of the identity in the sense that there exists Φ with
Φ̂ compactly supported in {|ξ| ≤ 2} s.t. for any ξ

1 = Φ̂(ξ) +
∑
k≥1

Ψ̂k(ξ).

• The family is localized in Πd in the sense that for all s > 0

sup
k
‖Ψk‖L1 <∞, sup

k
2ks

∫
Πd
|z|s |Ψk(z)| dz <∞.
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Note that in Rd, one usually takes Ψk(x) = 2kd Ψ(2k x) but in the torus, it can be
advantageous to use a more general family. It is still necessary to take it smooth
enough for the third assumption to be satisfied (it is for instance the difference
between the Dirichlet and Fejer kernels).

For simplicity, we then denote Ψ0 = Φ for k = 0 and for k ≥ 1, Ψk(x) =
2kd Ψ(2−k x). For any f ∈ S ′(Rd), we also write fk = Ψk ? f and then obtain the
decomposition

f =

∞∑
k=0

fk. (13.1)

From this decomposition one may easily define the Besov spaces

Definition 13.1 The Besov space Bsp,q is the space of all f ∈ L1
loc ∩ S ′(Rd) for

which

‖f‖Bsp,q =
∥∥2s k ‖fk‖Lpx

∥∥
lqk

=

( ∞∑
k=0

2s k q ‖fk‖qLpx

)1/q

<∞.

The main properties of the Littlewood-Paley decomposition that we use in this article
can be summarized as

Proposition 13.2 For any 1 < p < ∞ and any s, there exists C > 0 s.t. for any
f ∈ L1

loc ∩ S ′(Rd)

2s k

C
‖fk‖Lp ≤‖∆s/2 fk‖Lp ≤ C 2s k ‖fk‖Lp ,

C−1

∥∥∥∥∥∥
( ∞∑
k=0

22 k s |fk|2
)1/2

∥∥∥∥∥∥
Lp

≤‖f‖W s,p ≤ C

∥∥∥∥∥∥
( ∞∑
k=0

22 k s |fk|2
)1/2

∥∥∥∥∥∥
Lp

.

And as a consequence for 1 < p ≤ 2

C−1 ‖f‖Bsp,2 ≤ ‖f‖W s,p ≤ C ‖f‖Bsp,p .

In particular a consequence of Prop. 13.2 is the following bound on truncated Besov
norm

Lemma 13.3 For any 1 < p ≤ 2, there exists C > 0 s.t. for any f ∈ L1
loc ∩ S ′(Rd)

and any K ∈ N
K∑
k=0

2s k ‖fk‖Lpx ≤ C
√
K ‖f‖W s,p
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Proof By a simple Cauchy-Schwartz estimate

K∑
k=0

2s k ‖fk‖Lpx ≤
√
K

( ∞∑
k=0

22 s k ‖fk‖2Lpx

)1/2

=
√
K ‖f‖Bsp,2 ,

which concludes by Prop. 13.2. �
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