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Abstract

We consider a kinetic-fluid model with random initial inputs which describes disperse

two-phase flows. In the light particle regime, using energy estimates, we prove the uni-

form regularity in the random space of the model for random initial data near the global

equilibrium in some suitable Sobolev spaces, with the randomness in the initial particle dis-

tribution and fluid velocity. By hypocoercivity arguments, we prove that the energy decays

exponentially in time, which means that the long time behavior of the solution is insensi-

tive to such randomness in the initial data. Then we consider the generalized polynomial

chaos stochastic Galerkin method (gPC-sG) for the same model. For initial data near the

global equilibrium and smooth enough in the physical and random spaces, we prove that

the gPC-sG method has spectral accuracy, uniformly in time and the Knudsen number, and

the error decays exponentially in time.

1 Introduction

In this paper we consider a kinetic-fluid model for disperse two-phase flows, known as the

Navier-Stokes-Vlasov-Fokker-Planck system, first proposed in [10, 11]. Similar two-phase flow

models appear in combustion theory [8, 5, 29], the dynamic of sprays [27, 15, 14] and granular

flow [1, 7], to name a few. The model we consider describes a mixture of two types of material,

called the primary phase and the secondary phase. They are assumed to satisfy the following

physical assumptions:

1. The primary phase is liquid or dilute gas, and therefore modeled by the incompressible

Navier-Stokes equations.
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2. The secondary phase is small particles (or droplets, bubbles), scattered in the fluid, and it

is modeled by a kinetic equation.

3. The interaction between the two phases is assumed to be the Stokes drag force, i.e., a

particle is subject to a force proportional to the relative velocity between it and the fluid.

4. The particles are assumed to be subject to the Brownian motions.

There are two scalings that are physically important: one is the light particle regime [10], which

assumes:

1. The velocity of the fluid is small compared to the typical molecular velocity of the particles.

2. The particles are light, and thus its effect on the fluid is small.

3. The relaxation time is much smaller than the typical time scale.

Another one is the fine particle regime [11], which assumes:

1. The particle size is small compared to the typical length scale.

2. The density of the fluid and particles are of the same order.

3. The relaxation time is much smaller than the typical time scale.

In this paper we focus on the light particle regime. For simplicity the space is taken as T3 =

[−π, π]3 with periodic boundary condition. The equations for the model are given by
ut + u · ∇xu+∇xp−∆xu =

1

ε

∫
(v − εu)F dv,

∇x · u = 0,

Ft +
1

ε
v · ∇xF =

1

ε2
∇v · (∇vF + (v − εu)F ),

(1.1)

with initial data

u|t=0 = u0, ∇x · u0 = 0, F |t=0 = F0, (1.2)

where t ∈ R+ is the time variable, x ∈ T3 is the space variable, and v ∈ R3 is the velocity variable.

u = u(t, x) is the velocity field of the fluid, and F = F (t, x, v) is the distribution function of

the particles. ε is the Knudsen number, which satisfies 0 < ε ≤ 1. ε = O(1) corresponds to the

kinetic regime, while ε→ 0 corresponds to the fluid regime.

This system satisfies the following conservation properties:

Mass conservation:
d

dt

∫ ∫
F dv dx = 0,

Momentum conservation:
d

dt

(∫
udx+ ε

∫ ∫
vF dv dx

)
= 0,

Energy/Entropy dissipation:
d

dt

(∫
|u|2

2
dx+

∫ ∫
(F lnF +

|v|2

2
F ) dv dx

)
+

1

ε2

∫ ∫
|(εu− v)F −∇vF |2

F
dv dx+

∫
|∇xu|2 dx = 0.

(1.3)
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As ε→ 0, it is shown in [10] that (1.1) has a hydrodynamic limit
ut + u · ∇xu+∇xp−∆xu = 0,

∇x · u = 0,

∂tρ+∇x · (uρ−∇xρ) = 0,

(1.4)

with ρ(x) =
∫
F (x, v) dv being the particle density, which is self-consistent Navier-Stokes equa-

tions for u, and a convection-diffusion equation for ρ with drift velocity u.

Goudon et al. [9] proved the first existence result of (1.1), in the case of kinetic regime

(ε = O(1)) and initial data near the global equilibrium, which means that F is close enough to

the global Maxwellian

µ(v) =
1

(2π)3/2|T3|
e−|v|

2/2. (1.5)

and u is close to 0, in some suitable Sobolev spaces. In fact their method also works for small ε.

They first write

F = µ+
√
µf. (1.6)

Then (1.1) becomes the following system for (u, f):
ut + u · ∇xu+∇xp−∆xu+ u+

∫
√
µuf dv − 1

ε

∫
v
√
µf dv = 0,

∇x · u = 0,

ft +
1

ε
v · ∇xf +

1

ε
(∇v −

v

2
)(uf)− 1

ε
u · v√µ =

1

ε2
(
−|v|2

4
+

3

2
+ ∆v)f,

(1.7)

with initial data

u|t=0 = u0, f |t=0 = f0. (1.8)

They assume that (u0, f0), the perturbation of initial data, satisfies the conditions∫
u0 dx+

∫ ∫
v
√
µf0 dv dx = 0, ∇x · u0 = 0, (1.9)

∫ ∫
√
µf0 dv dx = 0, (1.10)

which mean that the perturbation does not affect the total momentum and mass, and the

perturbation of the fluid velocity is divergence-free. Then, combining with a relation for the

mean fluid velocity

ū(t) =
1

|T3|

∫
u(t, x) dx, (1.11)

ūt + 2ū+
1

|T3|

∫ ∫
√
µ(uf) dv dx = 0, (1.12)

which is a consequence of (1.9), using energy estimates, they proved the decay of an energy

functional, defined as the summation of some suitable Sobolev norms, under the assumption

that it is small enough initially. Then, by using hypocoercivity arguments, they proved that the

L2 norms of u and f decay exponentially in time, under some smoothness assumptions.

On the numerical aspect, an Asymptotic-Preserving (AP) scheme was developed by Goudon

et al. [12] for the model with the fine particle regime. The AP property, first introduced by Jin [16]
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for time-dependent kinetic problems, means that a numerical scheme for a kinetic model, as the

Knudsen number ε goes to zero, automatically becomes a numerical scheme for the hydrodynamic

limit of the kinetic model, with a numerical stability independent of ε. The AP property enables

one to capture the hydrodynamic limit without resolving the small Knudsen number. Simply

speaking, the AP scheme for this model uses a combination of the projection method for the

Navier-Stokes equations and an implicit treatment of the stiff Fokker-Planck operator.

Most of the works on kinetic-fluid two-phase flow models are deterministic. However, there

are many sources of uncertainties in these models. For example, the initial data and boundary

data usually come from experiments, and thus have measurement error. Uncertainty could also

arise from the modeling of drag forces, particle diffusions, etc. It is important to quantify these

uncertainties, because such quantification can help us understand how the uncertainties affect

the solution, and therefore make reliable predictions.

For simplicity, for the model (1.1) we only consider the uncertainty from initial data. To

model the uncertainty, we use the same equations, but let the functions u = u(t, x, z) and

F = F (t, x, v, z) depend on a random variable z, which lives in the random space Iz with

probability distribution π(z) dz. Then the uncertainty from initial data is described by letting

the initial data u0 and F0 depend on z.

We summarize some popular numerical methods for uncertainty quantification (UQ) [6, 13,

24, 30, 31]: the first one is Monte-Carlo (MC) methods [25], which take random samples in Iz,

solve the deterministic problem on these samples, and then get the statistical moments by taking

the average on these samples. MC methods are half-order accurate for any dimensional random

spaces, and thus they are not accurate enough for low dimensional random spaces, but very

efficient for high-dimensional random spaces. The second method is stochastic collocation (sC)

methods [2, 4, 26, 32], which take sample points on a well-designed grid (quadrature points, sparse

grids, or by some optimization procedure), compute the deterministic solutions on the samples,

and then reconstruct the solution in the whole random domain by some interpolation rules. SC

methods can achieve good accuracy in low dimensional random spaces, but the efficiency drops

as the dimension becomes high. The third method is stochastic Galerkin (sG) methods [4, 3,

33], which takes an orthonormal basis in the random domain, approximate the functions by a

truncated Fourier series, and then obtain a deterministic system of equations on the Fourier

coefficients via the Galerkin projection. SG methods are as accurate as sC methods for low

dimensional random spaces, and behave better than sC for moderately high dimensional random

spaces if one wants to achieve high accuracy [4].

For sG methods for kinetic equations with a hydrodynamic limit, it is important to have a

property called ’stochastic asymptotic-preserving’ (s-AP), first proposed by Jin et al. [21]. The

s-AP property means that as the small parameter ε goes to zero, the sG method for the kinetic

equation automatically becomes an sG method for the limiting hydrodynamic system. Similar

to the AP property, the s-AP property enables one to choose all numerical parameters, including

the number of basis functions K in polynomial chaos approximations, independent of ε. In [19]

the authors proposed an s-AP method for the model with the fine particle regime. We followed

the idea of the AP scheme in [12], and overcame the difficulty of the implicit treatment of the

vectorized Fokker-Planck operator by proving a structure theorem of this operator.

In order to analyze the accuracy of the sC and sG methods, it is very important to analyze

the regularity of the exact solution in the random space. In fact, in order to achieve a high
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accuracy order for the interpolations in sC, and the truncated series approximations in sG, one

usually needs such regularity. For the sG methods, it is not straightforward to prove accuracy

from the z-regularity, due to the Galerkin projection error. Instead, one has to derive the

evolution equations for the error, and then conduct estimates based on the z-regularity of the

exact solution. Recently there have been several attempts to prove the uniform-in-ε random

space regularity for kinetic equations, including Jin et al. [17] for linear transport equations,

Jin-Zhu [20] for the Vlasov-Poisson-Fokker-Planck equation, Jin-Liu [18] and Liu [23] for the

linear semiconductor Boltzmann equation, and Li-Wang [22] for general linear kinetic equations

that conserve mass. [17, 18, 23] also proves the spectral accuracy for the sG method.

In this paper, we first analyze the z-regularity of (1.7) for random initial data near the global

equilibrium in some suitable Sobolev spaces (with derivatives with respect to x and z). We use

energy estimates and hypocoercivity arguments similar to [9] on the z-derivatives of u and f .

Our result implies that for near equilibrium initial data with regular dependence on x and z, the

solution depends regularly on z for all time, and is insensitive to random perturbations on the

initial data for large time. Then for the sG method, we consider the most popular choice of basis

functions, the generalized polynomial chaos (gPC) [33], i.e., the orthonormal polynomials with

respect to π(z) dz. We write the equations for the gPC coefficients and do energy estimates, in

which we manage to make this estimate independent of K, the number of basis functions. This

difficulty will be explained in detail in the next paragraph. Finally we write the equations for

the error of the gPC-sG method and do energy and hypocoercivity estimates. Our result implies

that if the random initial data (u0, f0) is small enough in some suitable Sobolev spaces, then the

gPC-sG method has spectral accuracy, uniformly in time and ε, and captures the exponential

decay in time of the exact solution. An important feature of our results is that all the constants

involved are independent of ε.

As mentioned in the previous paragraph, the biggest difficulty is that a naive energy estimates

for the gPC coefficients require a small initial data condition depending on K, the number of

basis functions, since the nonlinear terms in (1.7) produce a large number (K3) of terms in

the equations of the gPC coefficients. But it is desirable to have a small initial data condition

independent of the numerical parameter K, which means that the accuracy results are true for

this set of initial data, for all K. To overcome this difficulty, we introduce a weighted sum of

the Sobolev norm of the gPC coefficients (Lemma 5.1), which enables us to combine some of the

terms together as part of a convergent series, and control the nonlinear terms with an estimate

independent of K.

This paper is organized as follows: in Section 2, we introduce some notations and state the

main results; in Section 3 we prove the energy estimates for the z-derivatives of u and f ; in

Section 4 we use hypocoercivity arguments to prove the exponential decay of these derivatives;

in Section 5 we prove the spectral accuracy of the sG method; in Section 6 we conclude the

paper.

2 Notations and statements of main results

We follow the notation in [9].
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Let α = (α1, α2, α3) be a multi-index. Then define

∂α = ∂α1
x1
∂α2
x2
∂α3
x3
. (2.1)

We first introduce the norms in the (x, v) space. Denote the L2 inner products on R3 and

T3 × R3 as

〈f, g〉 =

∫
fg dx, or 〈f, g〉 =

∫ ∫
fg dv dx, (2.2)

and ‖ · ‖L2 the corresponding L2 norms, and ‖ · ‖Hs the corresponding Sobolev norms (with

respect to all possible x, v derivatives). Also define the partial Sobolev norm in the x direction

|f |2s =

∫ ∑
|α|≤s

|∂αf |2 dx dv. (2.3)

For simplicity we assume that the random variable z lives in a one-dimensional random space

Iz. For functions u = u(x, z), f = f(x, v, z), denote the z-derivative of a function f of order γ

by

fγ = ∂γz f. (2.4)

Define the sum of Sobolev norms of the z derivatives by

‖u‖2Hs,r =
∑
|γ|≤r

‖uγ‖2Hs ,

‖ū‖2r =
∑
|γ|≤r

|ūγ |2,

|f |2s,r =
∑
|γ|≤r

|fγ |2s.

(2.5)

Note that these norm sums are functions in z.

Then we introduce the inner products related to the hypocoercivity arguments. Define

K = ∇v +
v

2
, P = v · ∇x, Si = [Ki,P] = KiP − PKi = ∂xi , K∗ = −∇v +

v

2
, (2.6)

where K∗ is the adjoint operator of K.

Define

((f, g))s,r =
∑
|γ|≤r

∑
|α|≤s

((∂αfγ , ∂αgγ)), (2.7)

where

((f, g)) = 2〈Kf,Kg〉+ ε〈Kf,Sg〉+ ε〈Sf,Kg〉+ ε2〈Sf,Sg〉. (2.8)

We also define

[[f, g]] = 〈Kf,Kg〉+ ε2〈Sf,Sg〉+ 〈K2f,K2g〉+ ε2〈KSf,KSg〉, (2.9)

and similarly define [[f, g]]s,r.

Finally we introduce the inner product in the (x, v, z) space:

〈f, g〉z =

∫
〈f, g〉π(z) dz, (2.10)
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and similarly define ((f, g))z, ((f, g))s,r,z, [[f, g]]z, [[f, g]]s,r,z as the corresponding inner products

integrated in z. We also define the norms in the (x, v, z) space:

‖u‖2Hs,r
z

=

∫
‖u‖2Hs,rπ(z) dz,

‖ū‖2r,z =

∫
‖ū‖2rπ(z) dz,

|f |2s,r,z =

∫
|f |2s,rπ(z) dz,

‖u‖W s,∞
z

= max
|α|≤s

‖∂αu‖L∞
x,z
,

|f |W s,∞
z

= max
|α|≤s

‖∂αf‖L∞
x,z(L

2
v)
.

(2.11)

Now we focus on the system (1.7) with the random variable z. In all of our results, the

constants involved are independent of ε.

Our first main result is the following energy estimate assuming near equilibrium initial data:

Theorem 2.1. Assume (u, f) solves (1.7) with initial data verifying (1.9). Fix a point z. Define

the energy

E(t) = Es,r(t) = ‖u‖2Hs,r + |f |2s,r + ‖ū‖2r, (2.12)

with integers s ≥ 2 and r ≥ 0. Then there exists a constant c1 = c1(s, r) > 0, such that E(0) ≤ c1
implies that E(t) is non-increasing in t.

This theorem is proved by an energy estimate on ∂αfγ . This theorem means that for initial

data near the global equilibrium, in the sense that E(0) is small, the solution depends regularly

in z for all time and all ε, and the z-derivatives are bounded uniformly in t and ε.

Next, by a standard hypocoercivity argument, we strengthen the above theorem into the

following one:

Theorem 2.2. Assume (u, f) solves (1.7) with initial data verifying (1.9) and (1.10). There

exists a constant c′1(s, r) such that, if we assume s ≥ 0, Es+3,r(0) ≤ c′1(s, r), and that Chs,r =

((f, f))s,r|t=0 (defined by (2.7)) is finite, then there exists a constant λ > 0 such that

Es,r(t) ≤ C(Es,r(0) + Chs,r)e
−λt, (2.13)

where C = C(s, r).

This theorem implies that as long as the random perturbation (u0, f0) on the initial data

is small in suitable Sobolev spaces and has vanishing total mass and momentum, the long-time

behavior of the solution is not sensitive to the random initial data. The smallness condition is

independent of ε.

We then introduce the gPC-sG method for the two-phase flow model (1.7). We start by

taking the basis functions {φk(z)}∞k=1 as the gPC basis, i.e., the set of polynomials defined on Iz,

orthonormal with respect to the given probability measure π(z) dz, with φk being a polynomial

of degree k − 1.

We expand the functions u, f into

u(t, x, z) =

∞∑
k=1

uk(t, x)φk(z), f(t, x, v, z) =

∞∑
k=1

fk(t, x, v)φk(z), (2.14)
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and approximate them by truncated series up to order K:

u ≈ uK =

K∑
k=1

ukφk(z), f ≈ fK =

K∑
k=1

fkφk(z). (2.15)

Then substitute into (1.7) and conduct the Galerkin projection, one gets the following determin-

istic system for (uk, fk)Kk=1:
∂tuk + (u · ∇xu)k +∇xp−∆xuk + uk +

∫
√
µ(uf)k dv −

∫
v
√
µfk dv = 0,

∇x · uk = 0,

∂tfk + v · ∇xfk + (∇v −
v

2
)(uf)k − uk · v

√
µ = (

−|v|2

4
+

3

2
+ ∆v)fk,

(2.16)

with initial data

uk|t=0 = (u0)k =

∫
u0φk(z)π(z) dz, fk|t=0 = (f0)k. (2.17)

Here the gPC coefficient of a product is given by

(uw)k =

K∑
i,j=1

Sijkuiwj , (2.18)

where

Sijk =

∫
φiφjφkπ(z) dz, (2.19)

is the triple product coefficient.

We prove a similar energy estimate for (2.16):

Theorem 2.3. Assume the technical condition

‖φk‖L∞ ≤ Ckp, ∀k, (2.20)

with a parameter p > 0. Let q > p + 2 and s ≥ 2. Let (uk, fk), k = 1, . . . ,K, solve (2.16) with

initial data verifying (1.9), and define the energy EK by

EK(t) = EKs,q(t) =

K∑
k=1

(‖kquk‖2Hs + |kqfk|2s + |kqūk|2). (2.21)

Then there exists a constant c2 = c2(s, q) > 0, independent of K, such that EK(0) ≤ c2 implies

that EK(t) is decreasing in t.

This theorem is proved by the same type of energy estimate as Theorem 2.1, with the aid of

a nonlinear estimate for gPC spectral convolution terms (Lemma 5.1). Next we give a sufficient

condition on the initial data, under which the assumption EK(0) ≤ c2 in Theorem 2.3 holds:

Proposition 2.4. With the same assumptions as Theorem 2.3, the condition EKs,q(0) ≤ c2(s, q)

holds if ‖Es,r(0)‖L1
z
≤ Cc2(s, q) with r > q + 1

2 , and C = C(s, q, r).

Notice that c2 being independent of K is important, because it implies that the condition

EK(0) ≤ c2 is in fact, in view of Proposition 2.4, a consequence of a smoothness condition on

(u0, f0), for all K. This means for such initial data, the gPC-sG method is stable for all K.

Finally, by a combination of the above results, we obtain the spectral accuracy of the gPC-sG

method, uniformly in t and ε, with a small initial data assumption on (u0, f0), independent of

K and ε:
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Theorem 2.5. Let (uk, fk), k = 1, . . . ,K, solve (2.16) with initial data verifying (1.9)(1.10).

There exists a constant c′′1(s, r) such that the following holds: Assume s ≥ 2, r > p + 5
2 ,

‖Es+4,r(0)‖L∞
z
≤ c′′1(s, r), and Chs+1,r is finite. Then Ee, the energy of the gPC approxima-

tion error, defined by

Ee = ‖ue‖2Hs
z

+ |fe|2s,z + |ūe|2L2
z
, ue = u− uK , fe = f − fK , (2.22)

satisfies

Ee ≤ C

K2r
, (2.23)

for all time, i.e., the gPC-sG method has r-th order accuracy uniformly in time.

This theorem is proved by an energy estimate in the (x, v, z) space on (ue, fe) with the aid

of the previous theorems.

Finally we prove that the error also decays exponentially in time, by a hypocoercivity argu-

ment:

Theorem 2.6. Let (uk, fk), k = 1, . . . ,K, solves (2.16) with initial data verifying (1.9)(1.10).

There exists a constant c′′2(s, r) such that the following holds: Assume s ≥ 0, r > p + 5
2 ,

‖Es+7,r(0)‖L∞
z
≤ c′′2(s, r), and Chs+4,r is finite. Then there exists a constant λe > 0 such that

Ee ≤ Ce−λ
et. (2.24)

These theorems imply that for random initial data near the global equilibrium, in the sense

that (u0, f0) is small in some suitable Sobolev spaces, the gPC-sG method has spectral accuracy,

uniformly in time and ε, and it captures the long-time behavior of (1.7) with random initial data.

3 Basic energy estimate: proof of Theorem 2.1

We first state some lemmas on nonlinear estimates. Denote the space of functions with finite

‖ · ‖Hs , | · |s norms as

Hs = {u(x) : ‖u‖Hs <∞}, H̃s = {f(x, v) : |f |s <∞}. (3.1)

The following lemma is from [9]:

Lemma 3.1. Let u = u(x) ∈ Hs, w = w(x) ∈ Hs, f = f(x, v) ∈ H̃s. Then for s > 3/2,

‖uw‖Hs ≤ C‖u‖Hs‖w‖Hs , (3.2)

|uf |s ≤ C‖u‖Hs |f |s, (3.3)

where C = C(s).

It follows that

Lemma 3.2. Let u = u(x, z) ∈ L∞z (Hs), w = w(x, z) ∈ L∞z (Hs), f = f(x, v, z) ∈ L∞z (H̃s). Let

|γ| ≤ r. Then for s > 3/2 and all z,

‖(uw)γ‖Hs ≤ C‖u‖Hs,r‖w‖Hs,r , (3.4)

|(uf)γ |s ≤ C‖u‖Hs,r |f |s,r, (3.5)

where C = C(s, r).
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Proof. By the Leibniz rule,

(uw)γ =

γ∑
β=0

(
γ

β

)
uβwγ−β . (3.6)

Then

‖(uw)γ‖Hs ≤
γ∑
β=0

(
γ

β

)
‖uβwγ−β‖Hs ≤ C(s)

γ∑
β=0

(
γ

β

)
‖uβ‖Hs‖wγ−β‖Hs ≤ C(s, r)‖u‖Hs,r‖w‖Hs,r ,

(3.7)

where the second inequality uses (3.2). This finishes the proof of (3.4). The proof of (3.5) is

similar, in view of (3.3).

And then a bilinear version follows:

Lemma 3.3. Let u = u(x, z) ∈ L∞z (Hs), w = w(x, z) ∈ L∞z (Hs), y = y(x, z) ∈ L∞z (Hs), f =

f(x, v, z) ∈ L∞z (H̃s), g = g(x, v, z) ∈ L∞z (H̃s). Let |γ| ≤ r, |α| ≤ s. Then for s > 3/2 and all z,

|〈∂α(uw)γ , yγ〉| ≤ C(δ, s, r)‖u‖2Hs,r‖w‖2Hs,r + δ‖y‖2H0,r , (3.8)

|〈∂α(uf)γ , gγ〉| ≤ C(δ, s, r)‖u‖2Hs,r |f |2s,r + δ|g|20,r, (3.9)

where δ is any positive number.

Proof. To prove (3.8),

|〈∂α(uw)γ , yγ〉| ≤ 1

4δ
‖∂α(uw)γ‖2L2 + δ‖yγ‖2L2 ≤

1

4δ
‖(uw)γ‖2Hs + δ‖y‖2H0,r

≤ C(δ, s, r)‖u‖2Hs,r‖w‖2Hs,r + δ‖y‖2H0,r ,
(3.10)

where the first inequality uses Young’s inequality, and the last inequality uses (3.4). The proof

of (3.9) is similar.

Proof of Theorem 2.1. Taking z-derivative of order γ and x-derivative of order α of (1.7), and

taking z-derivative of order γ of (1.12) gives

∂t∂
αuγ + ∂α(u · ∇xu)γ +∇x∂αpγ−∆x∂

αuγ +∂αuγ︸ ︷︷ ︸+

∫
√
µ∂α(uf)γ dv−1

ε

∫
v
√
µ∂αfγ dv︸ ︷︷ ︸ = 0,

∇x · ∂αuγ = 0,

∂t∂
αfγ +

1

ε
v · ∇x∂αfγ +

1

ε
(∇v −

v

2
)∂α(uf)γ −1

ε
∂αuγ · v√µ︸ ︷︷ ︸ =

1

ε2
(
−|v|2

4
+

3

2
+ ∆v)∂

αfγ︸ ︷︷ ︸,
∂tū

γ+2ūγ +
1

|T3|

∫ ∫
√
µ(uf)γ dv dx = 0.

(3.11)

Now do L2 estimate on each equation above (except the second one), i.e., multiply the first

equation by ∂αuγ and integrate in x; multiply the third equation by ∂αfγ and integrate in

(v, x); multiply the fourth equation by ūγ . And then add the results together and sum over

|γ| ≤ r, |α| ≤ s. Then one gets the following equation:

1

2
∂tE +G+B = 0, (3.12)
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where the energy E is given by (2.12). The good terms G are given by

G = G1 + G2︸︷︷︸ =
∑
|γ|≤s

G1,γ +
∑
|γ|≤s

G2,γ , (3.13)

with

G1,γ = ‖∇xuγ‖2Hs + 2|ūγ |2 ≥ C‖uγ‖2Hs+1 ,

G2,γ =

∣∣∣∣uγ√µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
∣∣∣∣2
s

,
(3.14)

where the above inequality is by the Poincare-Wirtinger inequality. G1 and G2 come from the

underlined terms and the underbraced terms in (3.11), respectively. To verify the G2 term, we

provide the following calculation:

〈∂αuγ , ∂αuγ〉 − 1

ε
〈v√µ∂αuγ , ∂αfγ〉 − 1

ε
〈∂αuγ · v√µ, ∂αfγ〉 − 1

ε2
〈(−|v|

2

4
+

3

2
+ ∆v)∂

αfγ , ∂αfγ〉

=〈∂αuγ√µ, ∂αuγ√µ〉 − 2
1

ε
〈∂αuγ√µ, v

2
∂αfγ〉 − 2

1

ε
〈∂αuγ√µ,∇v∂αfγ〉

+
1

ε2
〈∇v∂αfγ +

v

2
∂αfγ ,∇v∂αfγ +

v

2
∂αfγ〉

=〈A1, A1〉 − 2〈A1, A3〉 − 2〈A1, A2〉+ 〈A2 +A3, A2 +A3〉

=‖A1 −A2 −A3‖2L2 =

∥∥∥∥∂α(uγ√µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
)∥∥∥∥2

L2

,

(3.15)

where we used integration by parts in v, ∇v
√
µ = − v2

√
µ, and the notations

A1 = ∂αuγ
√
µ, A2 =

1

ε
∇v∂αfγ , A3 =

1

ε

v

2
∂αfγ . (3.16)

The bad terms B are given by

B = B1 +B2 +B3 =
∑

|γ|≤r,|α|≤s

B1,α,γ +
∑

|γ|≤r,|α|≤s

B2,α,γ +
∑
|γ|≤r

B3,γ , (3.17)

with

B1,α,γ = 〈∂α(u · ∇xu)γ , ∂αuγ〉,

B2,α,γ =

〈
∂α(uf)γ , ∂α

[
uγ
√
µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
]〉

,

B3,γ = 〈(uf)γ , ūγ
√
µ〉,

(3.18)

coming from the nonlinear terms.

By using Lemma 3.3, the bad terms are controlled by

|B1,α,γ | ≤ C(δ)‖u‖2Hs+1,r‖u‖2Hs,r + δ‖u‖2Hs,r ≤ C(δ)EG1 + δG1,

|B2,α,γ | ≤ C(δ)‖u‖2Hs,r |f |2s,r + δ

∣∣∣∣uγ√µ− 1

ε
∇vfγ −

1

ε

v

2
fγ
∣∣∣∣
s

≤ C(δ)EG1 + δG2,

|B3,γ | ≤ C(δ)‖u‖2Hs,r |f |2s,r + δ|ūγ |2 ≤ C(δ)EG1 + δG1.

(3.19)

In conclusion, we have the energy estimate

1

2
∂tE ≤ −(1− C(δ)E − Cδ)G. (3.20)
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Take δ = 1
4C where C is the constant in (3.20), and c1(s, r) = 1

4C(δ) . Then we will show that

E(t) ≤ c1 for all t. In fact, let

T ∗ = sup{T̃ ≥ 0 : sup
0≤t<T̃

E(t) ≤ c1}. (3.21)

Then it follows that E(t) ≤ c1 for 0 ≤ t ≤ T ∗. Then by our choice of δ and c1,

1− C(δ)E − Cδ ≥ 1− 1

4
− 1

4
=

1

2
, (3.22)

and therefore (3.20) implies

∂tE +G ≤ 0, (3.23)

for 0 ≤ t ≤ T ∗. This prevents T ∗ from being finite. Thus we proved E(t) ≤ c1 for all t, and as

a result, (3.23) holds for all t. Thus E(t) is decreasing in t.

4 Hypocoercivity estimates: proof of Theorem 2.2

We will use the following lemma, which is Proposition 4.2 in [9]:

Lemma 4.1. There exisits a constant C > 0 such that for f ∈ L2 orthogonal to
√
µ, one has

‖f‖2L2 ≤ C(‖Kf‖2L2 + ‖Sf‖2L2). (4.1)

We begin by proving the following lemma, which is indeed a modification of part of the proof

of Proposition 4.1 in [9]:

Lemma 4.2. For f and g orthogonal to
√
µ,

|((u · K∗f, g))| ≤ C 1

ε
‖u‖H3([[f, f ]] + [[g, g]]). (4.2)

Proof. Using the commutator relation

K(u · K∗f) = K∗(u · Kf) + uf, (4.3)

one gets

((u · K∗f, g)) =2〈u · Kf,K2g〉+ 2〈uf,Kg〉+ ε〈u · Kf,KSg〉+ ε〈uf,Sg〉

+ ε〈S(u · f),K2g〉+ ε2〈S(u · f),KSg〉

=2〈u · Kf,K2g〉+ 2〈uf,Kg〉+ ε〈u · Kf,KSg〉+ ε〈uf,Sg〉

+ ε〈Su · f,K2g〉+ ε〈u · Sf,K2g〉+ ε2〈Su · f,KSg〉+ ε2〈u · Sf,KSg〉.

(4.4)

Now using the Cauchy-Schwarz inequality, Lemma 4.1, and the Sobolev inequality

‖u‖L∞ + ‖∇xu‖L∞ ≤ C‖u‖H3 , (4.5)

on each term. we provide the details for two of them and omit the others:

〈uf,Kg〉 ≤‖u‖L∞‖f‖L2‖Kg‖L2 ≤ C‖u‖L∞(‖Kf‖L2 + ‖Sf‖L2)‖Kg‖L2

≤C‖u‖L∞(‖Kf‖2L2 + ‖Kg‖2L2 + ε‖Sf‖2L2 +
1

ε
‖Kg‖2L2),

ε〈uf,Sg〉 ≤ε‖u‖L∞‖f‖L2‖Sg‖L2 ≤ Cε‖u‖L∞(‖Kf‖L2 + ‖Sf‖L2)‖Sg‖L2

≤Cε‖u‖L∞(‖Kf‖2L2 + ‖Sg‖2L2 + ‖Sf‖2L2 + ‖Sg‖2L2).

(4.6)

Then one gets the conclusion, in view of the definition of [[·, ·]].
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Now we prove the following lemma, which is an analog to Proposition 4.1 of [9]:

Lemma 4.3. Let the assumptions of Theorem 2.2 be fulfilled. Then there exists a constant

c′1(s, r) ≤ c1(s + 3, r) such that, if we assume that Es+3,r(0) ≤ c′1(s, r) is small enough, then

there exists a constant λ1 > 0 such that

∂t((f, f))s,r + λ1
1

ε2
[[f, f ]]s,r ≤ C(λ1)(‖u‖2Hs,r + ‖∇xu‖2Hs,r +

1

ε2
|Kf |2s,r). (4.7)

Proof. One can write the evolution equation of ∂αfγ as

∂t∂
αfγ +

1

ε
P∂αfγ +

1

ε2
K∗K∂αfγ =

1

ε
∂αuγ ·v√µ+

1

ε

∑
0≤η≤α

∑
0≤β≤γ

(
γ

β

)(
α

η

)
∂ηuβ ·K∗∂α−ηfγ−β .

(4.8)

We will take the ((·, ·)) inner product of (4.8) with ∂αfγ . For the linear terms, by the same

argument as the proof of Proposition 4.1 of [9], one gets

1

ε
((P∂αfγ , ∂αfγ)) =2

1

ε
〈S∂αfγ ,K∂αfγ〉+ ‖S∂αfγ‖2L2 ≥

3

4
‖S∂αfγ‖2L2 − 4

1

ε2
‖K∂αfγ‖2L2 ,

1

ε2
((K∗K∂αfγ , ∂αfγ)) =2

1

ε2
‖K∂αfγ‖2L2 + 2

1

ε2
‖K2∂αfγ‖2L2 + ‖SK∂αfγ‖2L2

+
1

ε
〈K∂αfγ ,S∂αfγ〉+ 2

1

ε
〈K2∂αfγ ,SK∂αfγ〉

≥3

2

1

ε2
‖K∂αfγ‖2L2 +

1

2

1

ε2
‖K2∂αfγ‖2L2 +

1

3
‖SK∂αfγ‖2L2 −

1

2
‖S∂αfγ‖2L2 ,

1

ε
|((∂αuγ · v√µ, ∂αfγ))| =|21

ε
〈K(∂αuγ · v√µ),K∂αfγ〉+ 〈K(∂αuγ · v√µ),S∂αfγ〉

+ 〈S(∂αuγ · v√µ),K∂αfγ〉+ ε〈S(∂αuγ · v√µ),S∂αfγ〉|

≤δ( 1

ε2
‖K∂αfγ‖2L2 + ‖S∂αfγ‖2L2) + C(δ)(‖u‖2Hs,r + ‖∇xu‖2Hs,r ).

(4.9)

For the nonlinear term (the summation), we apply Lemma 4.2 and get

1

ε
|((∂ηuβ · K∗∂α−ηfγ−β , ∂αfγ))|

≤C 1

ε2
‖∂ηuβ‖H3([[∂α−ηfγ−β , ∂α−ηfγ−β ]] + [[∂αfγ , ∂αfγ ]])

≤C 1

ε2
‖u‖Hs+3,r [[f, f ]]s,r,

(4.10)

where we used the fact that the x and z derivatives commute with the operators K and S. With

these estimates, we get

1

2
∂t((∂

αfγ , ∂αfγ)) +
1

2

1

ε2
‖K2∂αfγ‖2L2 +

1

3
‖SK∂αfγ‖2L2 +

1

4
‖S∂αfγ‖2L2 −

5

2

1

ε2
‖K∂αfγ‖2L2

≤ δ( 1

ε2
‖K∂αfγ‖2L2 + ‖S∂αfγ‖2L2) + C(δ)(‖u‖2Hs,r + ‖∇xu‖2Hs,r ) + C

1

ε2
‖u‖Hs+3,r [[f, f ]]s,r.

(4.11)

Then we choose δ = 1/8 to absorb the term ‖S∂αfγ‖2L2 on the RHS by the same term on the

LHS. Summing over α, γ, one gets

∂t((f, f))s,r + (
1

8
− C1‖u‖Hs+3,r )

1

ε2
[[f, f ]]s,r ≤ C2(‖u‖2Hs,r + ‖∇xu‖2Hs,r +

1

ε2
|Kf |2s,r), (4.12)
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where C1 = NC, C2 = max{3, NC(δ)}, N being the number of possible pairs (α, γ).

Thus if one chooses c′1 = min{c1(s+3, r), 1
16C1
}, then by Theorem 2.1, Es+3,r(t) is decreasing,

so Es+3,r(t) ≤ c′1 for all t. Thus ‖u‖Hs+3,r ≤ Es+3,r ≤ c′1 for all t, and one gets the conclusion,

with λ1 = 1/16.

Proof of Theorem 2.2. To obtain the energy decay estimate, we write

G = ‖∇xu‖2Hs,r + 2‖ū‖2r + |u√µ− 1

ε
Kf |2s,r

≥ ‖ū‖2r + 2λ2‖u‖2Hs+1,r + |u√µ− 1

ε
Kf |2s,r

≥ ‖ū‖2r + λ2‖u‖2Hs+1,r +
1

2
|u√µ− 1

ε
Kf |2s,r + λ3

1

ε2
|Kf |2s,r,

(4.13)

where λ3 = min{λ2

2 ,
1
4}. The first inequality is by the Poincare-Wirtinger inequality. The second

inequality is because

|1
ε
Kf |2s,r = |(1

ε
Kf − u√µ) + u

√
µ|2s,r ≤ 2(|1

ε
Kf − u√µ|2s,r + |u√µ|2s,r)

= 2(|1
ε
Kf − u√µ|2s,r + ‖u‖2Hs,r ).

(4.14)

Thus, by adding to (3.23) some positive constant λ4 (to be chosen) times (4.7), we have

∂tẼ + G̃ ≤ λ4B̃, (4.15)

where

Ẽ = E + λ4((f, f))s,r, G̃ = G+ λ4λ1
1

ε2
[[f, f ]]s,r, (4.16)

B̃ = C(λ1)(‖u‖2Hs,r + ‖∇xu‖2Hs,r +
1

ε2
|Kf |2s,r). (4.17)

It is clear from (4.13) that B̃ ≤ CG ≤ CG̃. Thus by choosing λ4 = min{ 1
2C , 1}, C being the

previous constant, we get

∂tẼ +
1

2
G̃ ≤ 0. (4.18)

Notice that Lemma 4.1 implies that

|f |2s,r ≤ C(|Kf |2s,r + |Sf |2s,r), (4.19)

and by definition one also has

((f, f))s,r ≤ C(|Kf |2s,r + |Sf |2s,r) ≤ C
1

ε2
((f, f))s,r. (4.20)

Thus

Ẽ ≤ C(G+ |f |2s,r) + λ4((f, f))s,r ≤ C(G+ |Kf |2s,r + |Sf |2s,r) ≤ CG̃. (4.21)

This together with (4.18) implies

Ẽ(t) ≤ Ẽ(0)e−λt, (4.22)

where λ = 1
2C , C being the constant in (4.21).

Finally, the proof of Theorem 2.2 is finished by noticing that

E(t) ≤ Ẽ(t) ≤ Ẽ(0)e−λt ≤ (E(0) + Ch)e−λt. (4.23)

14



5 Proof of spectral accuracy of the gPC-sG approximation

In order to prove the accuracy of the gPC-sG method, we first prove Theorem 2.3, which is

an energy estimate for the gPC coefficients (uk, fk).

5.1 Estimate of the gPC coefficients: proof of Theorem 2.3

In order to prove the estimate for the gPC coefficients, we need an extra assumption on the

basis functions.

We assume that

‖φk‖L∞ ≤ Ckp, ∀k, (5.1)

for some positive constant p. Then it follows that

|Sijk| ≤ Cip, (5.2)

since

|Sijk| ≤ ‖φi‖L∞〈|φj |, |φk|〉 ≤ ‖φi‖L∞‖φj‖‖φk‖ ≤ Cip. (5.3)

We mention some special cases where (5.1) is satisfied [28]. For the case Iz = [−1, 1] with uniform

distribution, φk are the normalized Legendre polynomials, and (5.1) holds with p = 1/2. For

the case Iz = [−1, 1] with the distribution π(z) = 2
π
√
1−z2 , φk are the normalized Chebyshev

polynomials, and (5.1) holds with p = 0.

Also, note that φk is a polynomial of degree k− 1, orthogonal to all lower order polynomials.

If (i − 1) + (j − 1) < k − 1, then Sijk = 0. Thus Sijk may be nonzero only when the triangle

inequality

i+ j ≥ k + 1, (5.4)

holds.

Note that due to the symmetry in i, j, k of Sijk, (5.2) and (5.4) also hold if i, j, k are permuted.

Then we have the following lemma, which is the key nonlinear estimate:

Lemma 5.1. Assume condition (5.2). Let q > p+2. Let s > 3
2 , α be a multi-index with |α| ≤ s.

Let uk = uk(x) ∈ Hs, wk = wk(x) ∈ Hs, yk = yk(x) ∈ L2, fk = fk(x, v) ∈ H̃2, gk = gk(x, v) ∈
L2. Then ∣∣∣∣∣

K∑
k=1

k2q〈∂α(uw)k, yk〉

∣∣∣∣∣ ≤ C(δ)

K∑
i=1

‖iqui‖2Hs

K∑
j=1

‖jqwj‖2Hs + δ

K∑
k=1

‖kqyk‖2L2 , (5.5)

∣∣∣∣∣
K∑
k=1

k2q〈∂α(uf)k, gk〉

∣∣∣∣∣ ≤ C(δ)

K∑
i=1

‖iqui‖2Hs

K∑
j=1

|jqfj |2s + δ

K∑
k=1

‖kqgk‖2L2 , (5.6)

where the constants are independent of K, and δ is any positive constant.

Proof. We focus on the proof of the first inequality, and the second one is similar (just use (3.3)

instead of (3.2)). Note (by (3.2))

k2q‖Sijk∂α(uiwj)‖L2 ≤ Ck2q|Sijk|‖ui‖Hs‖wj‖Hs = C
k2q

iqjq
|Sijk| · ‖iqui‖Hs · ‖jqwj‖Hs . (5.7)
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First we consider the case i ≥ j. Then since

iqjq ≥ (
k + 1

2
)q|Sijk|jq−p, (5.8)

by (5.2) and (5.4), we conclude that

k2q

iqjq
|Sijk| ≤ Ckqjp−q. (5.9)

Thus if we write the (uw)k on the LHS of (5.5) as a summation in i, j by (2.18), the i ≥ j

terms of can be estimated by∣∣∣∣∣∣
K∑
k=1

k2q
K∑

i,j=1; i≥j

χijkSijk〈∂α(uiwj), yk〉

∣∣∣∣∣∣
≤

K∑
i,j,k=1; i≥j

k2q‖Sijk∂α(uiwj)‖L2‖yk‖L2χijk

≤C
K∑

i,j,k=1; i≥j

jp−q · ‖iqui‖Hs · ‖jqwj‖Hs · ‖kqyk‖L2χijk

≤C
K∑

i,j,k=1

jp−q · ‖iqui‖Hs · ‖jqwj‖Hs · ‖kqyk‖L2χijk

≤C(δ)

K∑
i,j,k=1

jp−q · ‖iqui‖2Hs · ‖jqwj‖2Hsχijk + δ

K∑
i,j,k=1

jp−q‖kquk‖2L2χijk

=C(δ)I + δII,

(5.10)

where the second inequality uses (5.9), and χijk is the indicator function of the set of indexes

(i, j, k) for which Sijk 6= 0.

Now we claim that

I ≤ 2

K∑
i=1

‖iqui‖2Hs ·
K∑
j=1

‖jqwj‖2Hs . (5.11)

In fact, fix i, then one can write

I =

K∑
i=1

‖iqui‖2HsIi, Ii =

K∑
j,k=1

jp−q · ‖jqwj‖2Hsχijk. (5.12)

Notice that χijk = 1 implies that i− j+ 1 ≤ k ≤ i+ j−1, by (5.4). Thus in the last summation,

there is at most 2j terms corresponding to a fixed j. Thus

Ii ≤ 2

K∑
j=1

jp−q+1‖jqwj‖2Hs ≤ 2

K∑
j=1

‖jqwj‖2Hs , (5.13)

if q > p+ 1. This proves (5.11).

II is controlled by

II ≤ 2

K∑
j=1

jp−q+1
K∑
k=1

‖kqyk‖2L2 , (5.14)
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since for each fixed (j, k) there is at most 2j choices for i. Thus if q > p+ 2, one has

II ≤ C
K∑
k=1

‖kqyk‖2L2 , C = 2

∞∑
j=1

jp−q+1 ≤ 2(1 + (p− q + 2)−1). (5.15)

Thus we conclude that the i ≥ j terms can be controlled by the RHS of (5.5) (with δ replaced

by Cδ).

For the terms of the LHS of (5.5) with i ≤ j, we exchange the indexes i and j, and get the

LHS of (5.10) with u and w exchanged. Thus one proceeds as before and get the same conclusion,

since the RHS of (5.5) is invariant if u and w are exchanged.

Remark 5.2. The weight kq appeared in the above lemma is essential. Suppose one uses a

summation
∑K
k=1〈∂α(uw)k, yk〉, then one ends up with the estimate∣∣∣∣∣

K∑
k=1

〈∂α(uw)k, yk〉

∣∣∣∣∣ =

∣∣∣∣∣∣
K∑

i,j,k=1

Sijk〈∂α(uiwj), yk〉

∣∣∣∣∣∣
≤

K∑
i,j,k=1

min(i, j, k)p[C(δ)‖ui‖2Hs‖wj‖2Hs + δ‖yk‖2L2 ]

≤C(δ)C1(K)

K∑
i=1

‖ui‖2Hs

K∑
j=1

‖wj‖2Hs + δC2(K)

K∑
k=1

‖yk‖2L2 ,

(5.16)

where C1(K) =
∑K
k=1 k

p = O(Kp+1), C2(K) = K
∑K
i=1 i

p = O(Kp+2). Thus in this way

one gets an estimate with the coefficient depending on K. If one uses this estimate to prove an

analog of Theorem 2.3, then one will get a constant c2 depending on K.

In view of Proposition 2.4, c2 being independent of K implies that the conclusion of Theorem

2.3 holds if the initial data satisfies a smoothness condition independent of K. If c2 depends

on K, then the initial data needs to satisfy a K-dependent condition to make the conclusion of

Theorem 2.3 true. This is not good, since it is desirable that the gPC-sG method is stable for a

class of initial data, for all K.

Due to the similarity of Lemma 3.3 and Lemma 5.1, it is straightforward to modify the proof

of Theorem 2.1 into a proof of Theorem 2.3:

Proof of Theorem 2.3. We take ∂α on the first and third equations of (2.16) and do L2 estimates,

and do L2 estimates directly on the fourth equation, and then sum over k and α with the k-th

equation multiplied by k2q. Then one gets

1

2
∂tE

K +GK +BK = 0, (5.17)

where

EK(t) =

K∑
k=1

(‖kquk‖2Hs + |kqfk|2s + |kqūk|2),

GK = GK1 +GK2 =

K∑
k=1

(‖∇xkquk‖2Hs + 2|kqūk|2) +

K∑
k=1

∣∣∣∣kq (uk√µ− 1

ε
∇vfk −

1

ε

v

2
fk

)∣∣∣∣2
s

,

BK = BK1 +BK2 +BK3 =
∑
|α|≤s

BK1,α +
∑
|α|≤s

BK2,α +BK3 ,

(5.18)
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with

BK1,α =

K∑
k=1

k2q〈∂α(u · ∇xu)k, ∂
αuk〉,

BK2,α =

K∑
k=1

k2q
〈
∂α(uf)k, ∂

α

[
uk
√
µ− 1

ε
∇vfk −

1

ε

v

2
fk

]〉
,

BK3 =

K∑
k=1

k2q〈(uf)k, ūk
√
µ〉.

(5.19)

Now apply Lemma 5.1 to get

|BK1,α| ≤ C(δ)

K∑
k=1

‖kquk‖2Hs+1

K∑
k=1

‖kquk‖2Hs + δ

K∑
k=1

‖kquk‖2Hs+1 ≤ C(δ)EKGK1 + δGK1 ,

|BK2,α| ≤ C(δ)

K∑
k=1

‖kquk‖2Hs

K∑
k=1

|kqfk|2s + δGK2 ≤ C(δ)EKGK1 + δGK2 ,

|BK3 | ≤ C(δ)

K∑
k=1

‖kquk‖2Hs

K∑
k=1

|kqfk|2s +

K∑
k=1

δ|kqūk|2 ≤ C(δ)EKGK1 + δGK1 .

(5.20)

And then one concludes
1

2
∂tE

K ≤ −(1− C(δ)EK − Cδ)GK . (5.21)

Assuming δ = 1
4C where C is the constant in (5.21), and c2(s, r) = 1

4C(δ) , then by the same

argument as in the proof of Theorem 2.1, if EK(0) ≤ c2(s, r), then one has

∂tE
K +GK ≤ 0, (5.22)

and EK is non-increasing.

Proof of Lemma 2.4. Note that uk is the k-th gPC coefficient of the initial data u0, and thus

satisfies the spectral accuracy estimate

|(uk)0| ≤ C
‖u0‖Hr

z

kr
, (5.23)

at each fixed x. By integrating (5.23) in x and replacing u by ∂αu and summing over α, one gets

‖kq(uk)0‖Hs ≤ Ckq−r‖u0‖Hs,r
z
. (5.24)

Thus if r > q + 1
2 , one has

K∑
k=1

‖kq(uk)0‖2Hs ≤ C‖u0‖2Hs,r
z
. (5.25)

Similar estimate holds for f and ū. Thus one has

EKs,q(0) ≤ C‖Es,r(0)‖L1
z
, (5.26)

and the proof is finished.
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5.2 Accuracy analysis: proof of Theorem 2.5

Recall the reconstructed gPC solution

uK =

K∑
k=1

ukφk(z). (5.27)

Then at a fixed x point one has

‖uK(x)‖2L2
z

=

K∑
k=1

|uk(x)|2 ≤
K∑
k=1

|kquk(x)|2. (5.28)

Thus

‖uK‖2L2
z
≤ EK . (5.29)

Similar estimates hold for f and ū and their x derivatives.

Furthermore, with the assumption (5.1), one has the estimate

‖uK(x)‖2L∞
z
≤ C

(
K∑
k=1

|uk(x)|kp
)2

≤ C

(
K∑
k=1

|kquk(x)|2
)(

K∑
k=1

k2(p−q)

)
≤ C

(
K∑
k=1

|kquk(x)|2
)
,

(5.30)

since q > p+ 2. Thus

‖uK‖2L∞
z (L2) ≤ ‖u

K‖2L2(L∞
z ) ≤ CE

K . (5.31)

Proof of Theorem 2.5. The gPC coefficients of the mean fluid velocity satisfies

∂tūk + 2ūk + C

∫ ∫
√
µ(uf)k dv dx = 0. (5.32)

Denote the projection operator onto the span of {φk}Kk=1 by PK . Multiplying (2.16) and (5.32)

by φk(z) and summing in k, one gets the equations for (uK , fK)

∂tu
K + PK(uK · ∇xuK) +∇xpK −∆xu

K + uK +

∫
√
µPK(uKfK) dv − 1

ε

∫
v
√
µfK dv = 0,

∇x · uK = 0,

∂tf
K +

1

ε
v · ∇xfK +

1

ε
(∇v −

v

2
)PK(uKfK)− 1

ε
uK · v√µ =

1

ε2
(
−|v|2

4
+

3

2
+ ∆v)f

K ,

∂tū
K + 2ūK +

1

|T3|

∫ ∫
√
µPK(uKfK) dv dx = 0.

(5.33)

Then subtracting from (1.7) and (1.12), one gets

∂tu
e + [(I − PK)(u · ∇xu) + PK(ue · ∇xu+ uK · ∇xue)] +∇xpe −∆xu

e + ue

+

∫
√
µ[(I − PK)(uf) + PK(uef + uKfe)] dv − 1

ε

∫
v
√
µfe dv = 0,

∇x · ue = 0,

∂tf
e +

1

ε
v · ∇xfe +

1

ε
(∇v −

v

2
)[(I − PK)(uf) + PK(uef + uKfe)]

− 1

ε
ue · v√µ =

1

ε2
(
−|v|2

4
+

3

2
+ ∆v)f

e,

∂tū
e + 2ūe +

1

|T3|

∫ ∫
√
µ[(I − PK)(uf) + PK(uef + uKfe)] dv dx = 0,

(5.34)
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where (ue, fe) is the approximation error

ue = u− uK , fe = f − fK . (5.35)

Notice that (5.34) is linear in (ue, fe).

Now take ∂α on (5.34) and do L2 estimates in x, v, z. First notice that PK commutes with

x-derivatives, and has operator norm 1 on L2
z. Thus one has

|〈∂αPK(ue · ∇xu+ uK · ∇xue), ∂αue〉z| ≤ C(‖u‖W s+1,∞
z

+ ‖uK‖W s,∞
z

)‖ue‖2
Hs+1

z
, (5.36)

where the W norms mean the Sobolev norms with power index ∞. By estimating the terms

PK(uef + uKfe) in the same manner, one gets the energy estimate

1

2
∂tE

e ≤ −(
2

3
− CH)Ge + CS, (5.37)

where

Ee =‖ue‖2Hs
z

+ |fe|2s,z + |ūe|2L2
z
,

Ge =‖∇xue‖2Hs
z

+ 2‖ūe‖2Hs
z

+

∣∣∣∣ue√µ− 1

ε
∇vfe −

1

ε

v

2
fe
∣∣∣∣2
s,z

,

S =(‖(I − PK)(u · ∇xu)‖2Hs
z

+ |(I − PK)(uf)|2s,z),

H =‖u‖W s+1,∞
z

+ ‖uK‖W s,∞
z

+ |f |W s,∞
z

.

(5.38)

First notice that by Sobolev embedding,

‖u‖W s+1,∞
z

≤ C‖u‖L∞
z (Hs+3), |f |W s,∞

z
≤ C‖|f |s+2‖L∞

z
, (5.39)

and by (5.31)

‖uK‖2W s,∞
z
≤ CEKs+2,q. (5.40)

Thus H can be controlled by

H ≤ C(‖Es+3,0‖L∞
z

+ EKs+2,q)
1/2. (5.41)

In view of Lemma 2.4, for r > p+ 5
2 one has

H ≤ C‖Es+3,r‖1/2L∞
z
, (5.42)

which implies that

CH ≤ 1

6
, (5.43)

in (5.37) for all time if ‖Es+3,r(0)‖L∞
z
≤ c′′1(s, r) ≤ min{ 1

4C , c1(s, r), c2(s, q)}, in view of Theorem

2.1 and Theorem 2.3.

To estimate the source term S, notice that at each fixed x, v,

‖(I − PK)∂α(uf)(x, v)‖L2
z
≤ C
‖∂α(uf)(x, v)‖Hr

z

Kr
. (5.44)

Integrate in x, v,

|(I − PK)(uf)|s,z ≤ C
|uf |s,r,z
Kr

. (5.45)
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By Lemma 3.2,

|uf |s,r ≤ C‖u‖Hs,r |f |s,r ≤ C(‖u‖2Hs,r + |f |2s,r). (5.46)

Thus

‖|uf |s,r‖L2
z
≤ ‖|uf |s,r‖L∞

z
≤ C‖‖u‖2Hs,r + |f |2s,r‖L∞

z
≤ C‖Es,r‖L∞

z
. (5.47)

Then by Theorem 2.2 (suppress the dependence on Ch), taking c′′1 ≤ c′1(s, r),

Es,r(t) ≤ Ce−λt. (5.48)

Thus one finally gets

|(I − PK)(uf)|s,z ≤
Ce−λt

Kr
. (5.49)

The term ‖(I −PK)(u · ∇xu)‖L2 can be estimated similarly, by taking c′′1 ≤ c′1(s+ 1, r), and one

gets

S ≤ Ce−2λt

K2r
. (5.50)

In conclusion, we have the estimate

∂tE
e +Ge ≤ C

Kr
e−λt. (5.51)

Finally, combining (5.37), (5.43) and (5.50), noticing that
∫∞
0
e−2λt dt converges, one con-

cludes that Ee ≤ C
K2r uniformly in time and ε.

5.3 Hypocoercivity estimates for the error: proof of Theorem 2.6

Proof of Theorem 2.6. In order to get a hypocoercivity estimate for (ue, fe), one writes the

equation of ∂αfe as

∂t∂
αfe +

1

ε
P∂αfe +

1

ε2
K∗K∂αfe =

1

ε
∂αue · v√µ

+
1

ε
[(I − PK)∂α(u · K∗f) + PK∂

α(ue · K∗f) + PK∂
α(uK · K∗fe)].

(5.52)

The linear terms can be handled in the same way as Lemma 4.2. The first nonlinear term is

estimated by∣∣∣∣1ε (( (I − PK)∂α(u · K∗f), fe))z

∣∣∣∣ ≤ C

Kr

1

ε2
‖u‖L∞

z (Hs+3,r)([[f, f ]]s,r,z + [[fe, fe]]s,z). (5.53)

In fact, by modifying the proof of Lemma 4.2, one can get an expression like (4.4):

(( (I − PK)∂α(u · K∗f), ∂αfe))z = 2〈(I − PK)∂α(u · Kf),K2∂αfe〉z + similar terms. (5.54)

The first term in (5.54) is estimated by

|〈(I − PK)∂α(u · Kf),K2∂αfe〉z|

≤‖(I − PK)∂α(u · Kf)‖L2
z
‖K2∂αfe‖L2

z
≤ C

Kr
|∂α(u · Kf)|0,r,z‖K2fe‖Hs

z

≤ C

Kr
max

|γ|≤r,|β|≤s
‖∂βuγ‖L∞

z
|Kf |s,r,z‖K2fe‖Hs

z

≤ C

Kr
‖u‖L∞

z (Hs+3,r)|Kf |s,r,z‖K2fe‖Hs
z
,

(5.55)
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and other terms in (5.54) can be estimated similarly

The second nonlinear term in (5.52) is estimated by Lemma 4.2 as follows:∣∣∣∣1ε ((PK∂
α(ue · K∗f), ∂αfe))z

∣∣∣∣ ≤ ∣∣∣∣1ε ((∂α(ue · K∗f), ∂αfe))z

∣∣∣∣
≤ C 1

ε2
‖ue‖L∞

z (Hs+3)(C(δ)[[f, f ]]s,z + δ[[fe, fe]]s,z).

(5.56)

The third nonlinear term is estimated by Lemma 4.2 as follows:∣∣∣∣1ε ((PK∂
α(uK · K∗fe), ∂αfe))z

∣∣∣∣ ≤ ∣∣∣∣1ε ((∂α(uK · K∗fe), ∂αfe))z
∣∣∣∣ ≤ C 1

ε2
‖uK‖L∞

z (Hs+3)[[f
e, fe]]s,z.

(5.57)

Now by the assumption that ‖Es+3,r(t)‖L∞
z

and ‖EKs+3(t)‖L∞
z

small enough at t = 0 (which

implies that they are small enough for all time, by Theorem 2.1 and Theorem 2.3), and as a

result, ‖u‖L∞
z (Hs+3,r) and ‖uK‖L∞

z (Hs+3) are small enough. By Theorem 2.5, ‖ue‖L∞
z (Hs+3) is

bounded by C. Then by choosing δ in (5.56) small enough, all the [[fe, fe]]s,z terms from the

nonlinear terms can be absorbed by the corresponding term from the linear terms, and then one

concludes the estimate

∂t((f
e, fe))s,z +λe1

1

ε2
[[fe, fe]]s,z ≤ C(λe1)(‖ue‖2Hs

z
+‖∇xue‖2Hs

z
+

1

ε2
‖Kfe‖2Hs

z
)+

C

Kr

1

ε2
[[f, f ]]s,r,z.

(5.58)

Finally, similar to the proof of Theorem 2.2, by taking a suitable linear combination of

(5.58)(5.51) and (4.18) integrated in z (where the appearance of (4.18) is to control the term

[[f, f ]]s,r,z in (5.58)), one gets

∂tẼ
e +

1

2
G̃e ≤ λe4

C

Kr

1

ε2
[[f, f ]]s,r,z +

C

Kr
e−λt, (5.59)

where

Ẽe = Ee + λe4((fe, fe))s,z +
1

Kr
λe5‖Ẽ‖L1

z
, (5.60)

and

G̃e = Ge + λe4λ
e
1

1

ε2
[[fe, fe]]s,z +

1

2Kr
λe5‖G̃‖L1

z
. (5.61)

The choice of λe4 is in the same way as the choice of λ4. To choose λe5, one wants the G̃ term to

control the first RHS term in (5.59), and thus choose

λe5 = 4
Cλe4
λ4λ1

, (5.62)

where the C is the first constant in (5.59). Then

∂tẼ
e +

1

4
G̃e ≤ C

Kr
e−λt. (5.63)

Then since Ẽe ≤ CG̃e (which can be proved similarly as the proof of Ẽ ≤ CG̃, see (4.21)), one

concludes that

Ẽe ≤ C

Kr
e−λ

et, (5.64)

where λe = min{λ, 1
4C } − δ for some δ > 0 small enough, in view of the lemma below.
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Lemma 5.3. Let Φ = Φ(t) satisfy

dΦ

dt
+ a1Φ ≤ a2e−a3t. (5.65)

Then

Φ(t) ≤ e−at(Φ(0) + a2C(δ)), (5.66)

with a = min{a1, a3} − δ, δ being any positive constant.

Proof.
d

dt
(ea1tΦ) ≤ a2e(a1−a3)t, (5.67)

ea1tΦ ≤ Φ(0) +

∫ t

0

a2e
(a1−a3)s ds, (5.68)

Φ(t) ≤ e−a1tΦ(0) + a2
e−a3t − e−a1t

a1 − a3
= e−a1tΦ(0) + a2te

−ξt, (5.69)

for some ξ between a1 and a3, by the mean value theorem. Then the conclusion follows since

te−ξt ≤ e−at(te−δt) ≤ C(δ)e−at, (5.70)

where C(δ) = (δe)−1.

6 Conclusion

In this paper we first prove the uniform regularity in the random space for a kinetic-fluid

two-phase flow model with the light particle regime for random initial data near the global

equilibrium, using an energy estimate in suitable Sobolev spaces. By hypocoercivity arguments

we prove the energy E(t) decays exponentially in time. This result implies that for random

initial data near the global equilibrium, the long time behavior of the solution is insensitive

to the random perturbation on initial data. Then we prove a result on the time decay of the

solution of the generalized polynomial chaos stochastic Galerkin (gPC-sG) method, in which

the requirement of the random initial data is independent of K, the number of basis functions.

The key idea in this proof is the usage of EK , a weighted sum of Sobolev norms of the gPC

coefficients. Finally we prove the uniform spectral accuracy of the sG method for random initial

data near the global equilibrium, by doing energy and hypocoercivity estimates on the sG error

(ue, fe). All the constants involved in the results are independent of ε, the Knudsen number.
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