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Application to current-driven domain wall motions

Jingrun Chen1, Carlos J. Garcı́a-Cervera1,2, and Xu Yang1

1Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
2Visiting Professor at BCAM – Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Basque Country – Spain

In this paper, we present a mean-field model of the spin-magnetization coupling in ferromagnetic materials. The model includes
non-isotropic diffusion for spin dynamics, which is crucial in capturing strong spin-magnetization coupling. The derivation is based
on a moment closure of the quantum spinor dynamics, coupled to magnetization dynamics via the Landau-Lifchitz-Gilbert equation
and the spin transfer torque. The method is general and systematic, and can be used to study spin-orbit coupling as well. The form
of the non-isotropic diffusion is generic, i.e., independent of the closure assumptions. Fully three-dimensional numerical simulation
is implemented and applied to predict current-driven domain wall motions . It shows a nonlinear dependence of the wall speed on
the current density which agrees with the experiments in [1].

Index Terms—Spin dynamics, magnetization dynamics, spin-magnetization coupling, domain wall motion.

I. INTRODUCTION

UNDERSTANDING the spin-magnetization coupling in
ferromagnetic materials is crucial for the active con-

trol of domain-wall motions [2], [3], [4] and magnetization
reversals in magnetic multilayers [5], which are the core
techniques for magnetoresistance random access memories,
and race-track memories [6]. Spin dynamics include spin
polarization, spin transport and diffusion within ferromagnets,
and spin-magnetization interactions [7], [8], [6]. In the spin-
magnetization coupling, the spin angular momentum is trans-
ferred to magnetization dynamics by a mechanism known as
spin-transfer torque (STT). This has been observed in exper-
iments on a variety of magnetic materials, including metals
(e.g., Fe, Co, Ni, and their alloys [7], [6]) and semiconductors
(e.g., diamond and organic semiconductors [9], [10], [11]).

The studies on STT were initiated by the seminal works
of Slonczewski [12] and Berger [13], and recent progress
can be classified into two categories based on the forms of
STT in model equations: In the first kind, STT is written
explicitly in terms of the magnetization and its derivatives
[14], [15], [16], [17]; in the second kind, STT is treated
as a variable that couples spin and magnetization dynamics
[18], [19], [20]. The spin-magnetization coupled system can
be reduced to magnetization dynamics only but with an extra
magnetization-dependent torque, under the assumption of the
spatial homogeneity of the spin current [14].

For models of spin dynamics, there have been a few attempts
to derive macroscopic models from a microscopic level [20],
[16], [17]. For models of magnetization dynamics, only [17]
contains additional torques derived from a microscopic level.
A kinetic model for spin dynamics was derived in [20], but did
not explain the linear response theory [18] in a straightforward

way. This motivates us to study the connection of physical
models of spin dynamics at different scales by deriving mean-
field models for spin dynamics starting from a microscopic
description. We also couple the mean-field models to magne-
tization dynamics given by the Landau-Lifshitz-Gilbert (LLG)
equation [21], [22] to further study the interaction of spin and
magnetization. The method introduced here is systematic, and
can be generalized for deriving mean-field models of the spin-
orbit coupling in magnetic bilayers (e.g., Co/Pt, [23], [24],
[25]) by including the Rashba spin-orbit coupling term [26].

In Section II, we describe the spin dynamics by connecting
a Schrödinger equation of the spinor form to kinetic equations
by the Wigner transform. A mean-field model is further
derived by carrying out a moment closure approximation
on the kinetic equations with Bloch collision terms. Under
the quasi-static approximation on charge and spin currents,
the mean-field model leads to the Zhang-Levy-Fert’s model
proposed in [18] but with an extra non-isotropic diffusion
term, which vanishes and recovers the Zhang-Levy-Fert’s
model in the weak spin-magnetization coupling regime. The
importance of this diffusion term is discussed in Section
III in the context of current-driven domain wall motions
with fully three-dimensional numerical simulations. We make
conclusive remarks and discuss the generalization to the spin-
orbit coupling in Section IV.

II. SPIN DYNAMICS AT DIFFERENT PHYSICAL SCALES

Our starting point is the dynamics of a spinor in a one-body
approximation given by the Schrödinger equation

i~
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t), (1)
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where ψ = (ψ+, ψ−)T is the spinor, and the effective
Hamiltonian is of the form [16]

H(x, t) =

(
− ~2

2m
∇2

x + V (x)

)
− c

2
σ̂ ·m(x, t), (2)

where c is the spin-magnetization coupling constant, m is
the magnetization, and σ̂ are Pauli matrices. Here we use
c for the spin-magnetization coupling constant to distinguish
it from Jsd typically saved for the s − d exchange coupling
constant. The magnitude of Jsd is around 0.1 ∼ 1 eV in the
literature; see [14] for example, while the magnitude of c is
very difficult to be measured in experiments 1. In Section III,
we shall discuss how the spin-magnetization coupling constant
c can be extracted from one set of experimental measurements,
and produce consistent results with another set of experimental
measurements.

The kinetic description of spinor dynamics is provided by
the following Wigner function W (x,v, t):

W = (
m

2π~
)3

∫
R3

ψ(x− y
2
, t)⊗ψ∗(x+

y

2
, t)ei m~ v·y dy,

whose dynamics follow the Boltzmann equation

∂tW + v · ∇xW −
e

m
E · ∇vW −

ic
[
σ̂ ·m,W

]
2~

= −
(
∂W

∂t

)
colli
, (3)

where the electric field E = ∇V/e, and the collision term(
∂W
∂t

)
colli = W−W

τ + 2
τsf

(W − I
2 TrW ) is in s-wave form [20].

Here τ and τsf are the characteristic time scales of momentum
relaxation and spin flipping, W = 1

4π

∫
dΩvW (x,v, t) is the

angular average over the v space, and Tr represents the trace
operator over the spin space. Note that τ is much smaller than
τsf [27], [28], which implies electron collision happens much
faster than spin flipping. Typically, τ is of 1fs and τsf is of
1ps.
W (x,v, t) is connected to the macroscopic quantities vi-

a its moments: Charge density n(x, t) =
∫
R3 Tr(W ) dv,

charge current jn(x, t) =
∫
R3 vTr(W ) dv, spin density

s(x, t) =
∫
R3 Tr(σ̂W ) dv, and spin current Js(x, t) =

∫
R3 v⊗

Tr(σ̂W ) dv.
Decompose W = wI + σ̂ · η, where w is spin-

independent and η is spin-dependent. We propose the fol-
lowing closure conditions originally used in a similar for-
m in [29] for the study of chemotaxis which approxi-
mate w and η by linearly combined macroscopic quantities
{n(x, t), n1(x, t),m,m1(x, t)} with spanning coefficients
{γj , γ′j}3j=0

w(x,v, t) = f(v){γ0n(x, t) + γ1m · s(x, t)
+ γ2 · vn1(x, t) + γ3v ·m1(x, t)},

η(x,v, t) = g(v){γ′0mn(x, t) + γ′1s(x, t)

+ γ′2vn1(x, t) + γ′3v(m ·m1(x, t))},

where f and g are normalized Gaussian functions to make w
and η decay at infinity of momentum space. Here n1(x, t)

1Eiji Saitoh (private communication).

and m1(x, t) are next-order corrections to charge and spin
densities, respectively. They can be specified only when the
detailed information of Wigner function is available. With
these closure assumptions and some calculus, we obtain a
closed mean-field description for the charge and spin dynamics

∂tn+∇xjn = 0, (4)

∂tjn + γ0v2∇xn+ γ1v2∇xsm+
e

m
En = −jn

τ
, (5)

∂ts+∇xJs +
c

~
m× s = − s

τsf
, (6)

∂tJs + γ′0v
2∇xn⊗m+ γ′1v

2∇xs+
e

m
E ⊗ s

+
c

~
εjklmk(Js)il = −Js

τ
. (7)

Note that, under the proposed closure approximations,
{n(x, t), jn(x, t)} and {s(x, t), Js(x, t)} are coupled, i.e.,
the dynamics of charge density and charge current is affected
by the dynamics of spin density and spin current, and vice
versa. This is, however, different from the decoupled system
obtained in [20], where the authors assumed the dependence
of w(x,v, t) only on n(x, t) and n1(x, t) and η(x,v, t) only
on m and s(x, t), respectively. In the presence of the spin-
magnetization interaction, our model seems more physical.

In order to further get drift-diffusion equations for spin
dynamics, we shall study the long-time behavior of the above
coupled system (4)-(7). In the diffusive regime, charge current
and spin current shall saturate to equilibrium charge current
and equilibrium spin current, respectively. We thus drop their
temporal derivatives. Furthermore, the spatial variation of
charge density is assumed to be very small and can be ignored
[18]. The diffusion equation for spin dynamics reads as 2

∂ts = −∇x · Js −
s

τsf
− s×m

τc
, (8)

JsA =
βµB

e
jn ⊗m−D[∇s− ββ′(∇s ·m)⊗m], (9)

A =

 1 τ
τc
m3 − τ

τc
m2

− τ
τc
m3 1 τ

τc
m1

τ
τc
m2 − τ

τc
m1 1

 , (10)

where τc = ~/c is the characteristic time scale of the spin-
magnetization coupling, D is the diffusivity, β is the spin
polarization parameter for conductivity, and β′ is the other
spin polarization parameter for diffusivity.

In general, A has eigenvalues 1, 1 ± τ
τc
i and detA =

1+( ττc )2. τc depends on the strength of the spin-magnetization
coupling. There are two main consequences of this: (1) Purely
imaginary contributions in the eigenvalues of A, which con-
tribute to energy dispersion in the coupled system; (2) detA
is always ≥ 1, which contributes to energy dissipation. From
a mathematical viewpoint, it is also worth mentioning that the
appearance of A is independent of the closure technique.

In [18], the spin-magnetization coupling only appears in the
LLG equation (11) in the framework of linear response theory.

2The factor 2 was explicitly used in [18], while here is included in the
definition of macroscopic quantities. Terms with γ0 and γ′0 vanish in (5) and
(7). E can be solved in (5) and then substituted into (7), which results (9)
and (10) with D = γ′1v

2τ , β = es/(µBnm), and β′ = µBγ1/(eγ
′
1).
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In our model, it appears in both LLG equation (11) and spin
diffusion (8)-(10), which seems more natural. In the regime
τc � τ , A approaches the identity matrix, the moment system
in the diffusive regime recovers the diffusion model derived
from the linear response theory [18], which corresponds to the
limit of weak spin-magnetization coupling. However, beyond
that, these two models are different. When the coupling is
not weak, these effects can be significant, as illustrated in the
current-driven magnetization reversal simulations presented in
[30].

The dynamics of the magnetization, in the presence of a
spin-transfer torque, are described by the LLG equation [21],
[22],

∂m

∂t
= −γm× (He + cs) + αm× ∂m

∂t
(11)

with the normalized magnetization m(x, t) =
(m1(x, t),m2(x, t),m3(x, t))T defined over the uniaxial
ferromagnetic material

In a uniaxial material, the effective field He reads as

He = −2Ku

Ms
(m2e2 +m3e3) +

2Cex

Ms
∆m+µ0 (H s +H0) .

(12)
e2 = (0, 1, 0), e3 = (0, 0, 1), and µ0 = 4π × 10−7 N/A2

is the permeability of vacuum. Ku and Cex are materials
constants, and Ms is the saturation magnetization which is also
material-dependent. For physical constants characteristic of the
permalloy, Ku = 5.0×102 J/m3, Cex = 1.3×10−11 J/m, and
Ms = 8.0× 105 A/m. H0 is the externally applied magnetic
field and H s is the stray field, given by H s = −∇u, where

u(x) =

∫
Ω

∇N(x− y) ·m(y) dy, (13)

where N(x) = −1/(4π|x|) is the Newtonian potential.

III. DOMAIN WALL DYNAMICS

Experimental studies on domain wall dynamics have been
carried out on many materials and devices [2], [31], [1], [3],
[4], in which the spin-magnetization interaction [14], [15],
the Rashba spin-orbit coupling [32], and the Dzyaloshinskii-
Moriya interaction [33], [34] play important roles. Since only
the spin-magnetization interaction is considered in our work,
to make an unambiguous comparison between theory and
experiment, we consider the ferromagnetic device used in [31],
[1] where Permalloy (Ni81Fe19) is considered under applied
currents. A vortex domain wall structure is initialized in the
sample with dimensions 2.5 µm× 240 nm× 10 nm. Fig. 1(a)
shows the initial domain wall structure, which is consistent
with the image observed by magnetic force microscopy [31].
Fig. 1(b) and 1(c) are detailed configurations of the vortex
wall and the centered vortex after zooming in, respectively.

To simulate the domain wall dynamics, we discretize the
sample with grid sizes ∆x = ∆y = ∆z = 2.5 nm, and
solve the spin dynamics (8) using a time-splitting scheme
[35], [30] and the magnetization dynamics (11) using the
Gauss-Seidel Projection Method [36]. It is observed that the
domain wall dynamics cannot be resolved if 5 nm grid size is
used. Temporal stepsizes for spin dynamics and magnetization
dynamics are 1 fs and 0.1 ps, respectively. Qualitatively, the

(a)

(b) (c)

Fig. 1. Simulated domain wall structures with dimensions of illustrations
(unit: nm) : (a) [0, 2500]× [0, 240]×{z = 5}; (b) [700, 1800]× [0, 240]×
{z = 5}; (c) [1200, 1300] × [28, 68] × [0, 10]. 2500 nm is used for later
simulations since it is large enough to avoid the interaction between the vortex
wall and boundaries in the x direction. (a) Initialized vortex wall colored by
the angle between m1(x, t) and m2(x, t), consistent with the image obtained
by the magnetic force microscopy [31]. (b) Zooming in the vortex wall with
arrows specified by m1(x, t) and m2(x, t). (c) Cone plot of the centered
vortex in 3D with directions specified by m(x, t). Thin film structure of the
device results in uniform magnetization in the z direction.

(a)

(b)

(c)

Fig. 2. Simulated spin diffusion and spin relaxation with dimensions
of illustrations (unit: nm) [700, 1800] × [0, 240] × {z = 5}, which is
the same as that in Fig. 1(b). (a) |∇ · (D(∇s)A−1)| (ps−1). The cen-
tered peak corresponds to the core of the vortex in Fig. 2(c). (b) |s/τsf|
(ps−1). Inhomogeneity happens around the core of the vortex (Fig. 2(c)
and 2(b)). (c) |∇ · (D(∇s)A−1)|/(|s/τsf|) (dimensionless). Averaging of
|∇·(D(∇s)A−1)|/(|s/τsf|) over space produces a ratio around 0.25, which
implies spin diffusion cannot be ignored. Peaks in the core of the vortex
wall further implies the importance of the geometric information of the wall
structure.
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wall moves in the opposite direction of the applied current,
consistent with the experimental result.

For Permalloy, the damping parameter α is around 0.01,
as determined by first-principle calculations [37]. However,
the coupling constant c is unfortunately not available from
the literature. For the same material, it has been measured in
[1] that the wall velocity is 3 m/s when the applied current
jn = 7.1 × 1011 A/m2. A generic way of estimating c is to
use experimental results to study the relationship between the
coupling constant c and the domain wall velocity. A linear
dependence is observed in Fig. 3(a). Fig. 3(b) shows how the
wall velocity changes as time evolves. The wall structure is
initially self-adjusted, then moves in the opposite direction of
the applied current. Its velocity saturates after 17 ns, which
is close to the raise time of the current pulse 15 ns [31].
Limited by the spatial resolution, the instantaneous velocity
is not smooth, but it is adequate to resolve the domain wall
dynamics. Wall displacements and velocities in experiments
are measured over micro seconds, which suggests saturated
velocities in simulations should be used for comparison. A
careful study illustrates that the coupling constant c necessary
to generate the wall velocity 3.2 m/s as in the experiment is
around 2× 10−4 eV. Other walls, such as the transverse wall
and the head-to-head wall, have also been examined, and the
wall velocities were found to be around 3 m/s.

It is mentioned in [19] that the magnitude of c is around
0.1 ∼ 1 eV. Following Walker’s prescription of the domain
wall used in [14], the estimated velocity of a Néel wall
was around 3 m/s when c = 5 × 10−2 eV. Using the
same procedure for the coupling constant in our model, we
apply the Gauss-Seidel Projection Method for the fully three-
dimensional simulation of Equation (11) in [14] for the vortex
wall; see Fig. 3(d). The simulated wall velocity is around
3 m/s for a slightly different c = 5.5× 10−2 eV. Other walls,
such as the transverse wall and the head-to-head wall, are also
examined with wall velocities around 2.8 m/s. This suggests
that the domain wall velocity is insensitive to the discrepancy
in the domain wall structure. It is worth mentioning that if
additionally the injection geometry and torque origins are
changed, a larger difference has been observed [38].

It is quite surprising that the coupling constant in our model
(8)-(11) is over two orders of magnitude smaller than that in
the Zhang-Li’s model [14] in order to achieve the quantitative
agreement with experiments on the domain wall velocity. We
believe the discrepancy is mainly due to the fact that the spin
diffusion term∇·(D∇s) is neglected in the Zhang-Li’s model.
Our simulations show that, compared with the spin relaxation
term s/τsf, the spin diffusion term is not negligible. Spatially
averaged |∇·(D(∇s)A−1)|/(|s/τsf|) is around 0.25, which is
not small enough to be ignored. Moreover, in the core of the
vortex wall, both spin diffusion and spin relaxation terms have
increments and peaks (Fig. 2). The ratio between these two
terms peaks with magnitudes over 50, showing the importance
of the geometric information of the vortex wall. Studies on
other wall structures also support that the spin diffusion term
is not negligible in the core region of wall structures.

To further examine our model, we shall fix c = 2×10−4 eV
in our model and c = 5.5 × 10−2 eV in Zhang-Li’s model,

(a) (b)

(c) (d)

Fig. 3. Simulated domain wall velocities: (a)-(c): spin dynamics (8) coupled
to the LLG equation; (d) The LLG equation with additional torques [14].
(a) Averaged domain wall velocity over [0, 5] ns as a function of the
coupling constant c. A linear dependence of the velocity on c is observed.
(b) Instantaneous domain wall velocity as a function of time, which saturates
around 3 m/s. The wall velocity saturates around 17 ns, which is close to
the raise time of current pulses 15 ns in experiments [31]. (c) Saturated
domain wall velocities as a function of the applied current density. A
nonlinear dependence is observed in our model, which agrees nicely with
experiments [1], while a linear dependence is obtained in Zhang-Li’s model.
(d) Instantaneous domain wall velocity as a function of time, which stabilizes
around 3 m/s. Compared with Fig. 3(b), magnetization dynamics saturates
quickly due to the lack of spin dynamics.

and simulate the domain wall velocity as a function of the
applied current density. A nonlinear dependence of the wall
velocity on the applied current density is observed in [1]. Fig.
3(c) plots simulated wall velocities in terms of the applied
current density in our model and Zhang-Li’s model. Result
in our model matches the experimental result quite well with
a nonlinear dependence, while only a linear dependence in
Zhang-Li’s model is observed. It is clear that the inclusion
of the spin diffusion in the present work is responsible for
the nonlinear dependence of the wall velocity on the applied
current density. However, the fitting is not perfect, particularly
for higher current densities in Fig. 3(c). A possible reason is
that the presence of applied current introduces the heating
effect [1], which may further produce an inhomogeneous
temperature distribution in the sample. It has been reported
that the thermally-driven domain wall velocity depends on the
temperature gradient both theoretically [39] and experimental-
ly [40]. The heating effect therefore may also contribute to the
domain wall motion.

While there is no experimental data for the spin-
magnetization coupling constant of the considered material,
there are measurements on the s-d coupling constant of various
materials. For example, for Supermalloy (Ni75Fe20Mo5), the
measured coupling constant is around 0.1 eV [41], which
actually describes the coupling between s and d electrons in
the ferromagnet and used in [14]. However, to what extent
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the coupling constant of the exchange interaction between
s and d electrons can well represent the spin-magnetization
coupling constant is unclear, especially in the presence of
applied currents. Extrinsic electrons due to applied currents
are farther away from d electrons of the material compared
to the native s electrons of the material, and therefore a
smaller coupling constant is expected. Actually, it is very
difficult to measure the coupling constant for the material
considered here 3. We expect the coupling between the spin of
the itinerant electrons and the magnetization to be weaker. It
is therefore not necessarily clear that this experimental value
is the appropriate one for the system at hand, and due to the
lack of a strong theoretical argument to choose the coupling
constant, we fit the coupling constants in our model and
Zhang-Li’s model.

We would also like to point out that in the weak coupling
regime considered, our model recovers the model developed by
Shpiro, Zhang, and Fert [19], and therefore the wall velocity
we obtain is consistent with the wall velocity obtained with
their model. The model introduced by Zhang and Li [14]
is derived from the model developed by Shpiro, Zhang, and
Fert, and neglects spin diffusion under the assumption that the
variation of s is small. We believe this is the main reason for
the discrepancy in the wall velocity, and the coupling constant
used: s varies considerably in the vicinity of the wall (Fig.
2), and therefore that term cannot be neglected. Moreover, the
inclusion of the spin diffusion is responsible for the nonlinear
dependence of the wall velocity on the applied current density.

IV. CONCLUSION AND DISCUSSION

We present a new mean-field model for the dynamics of
the spin-magnetization coupling in ferromagnetic materials.
The coupling introduces off-diagonal terms of (10) in the spin
dynamics whose formula are independent of closure assump-
tions and explicitly reveal the coupling strength. In the weak
spin-magnetization coupling regime (τ/τc � 1), the model
recovers the Zhang-Levy-Fert’s model [18]. Nontrivial features
of the model were studied for current-driven domain wall
motions via fully three-dimensional numerical simulations.

Recent developments for current-driven magnetization dy-
namics include the generalization of LLG equation [42], the
generalization of the drift-diffusion equation for spin dynamics
[43], and the semiclassical modeling of spin dynamics [44],
[25]. In [42], the LLG equation is generalized by explicitly
including a 3×3 differential damping tensor that represents the
effect of conduction electrons in the magnetization dynamics
introduced using Ohm’s law for electron and spin currents.
In [43], the drift-diffusion equation for spin dynamics is
generalized by using a generalized Ohm’s law for electron
and spin currents. Both approaches rely on the constitutive
relations at the macroscopic scale. In [44], [25], the authors
use a semiclassical spin dynamics approach, and tune the
collision term in the Boltzmann equation in order to match
the results obtained by the LLG equation with an additional,
predetermined spin torque, as opposed to deriving the cor-
responding shape of the spin torque from a predetermined

3Eiji Saitoh (private communication).

microscopic equation. From a modeling viewpoint, we stress
that our approach is systematic, and produces a connection
from quantum mechanics (1), to the Boltzmann equation (3),
and then to the moment system (4)-(7), and finally to the drift-
diffusion equation (8)-(9).

Although only the drift-diffusion equation has been exam-
ined carefully, other models, such as the moment system and
the Boltzmann equation, could be helpful to understand exper-
imental results in other scenarios. For example, femtosecond
spin dynamics in experiments [45] cannot be well described
by the drift-diffusion equation (8)-(9), and the moment system
(4)-(7) shall play an important role in this case.

Moreover, our approach can be generalized to the case
of the spin-orbit coupling. Preliminary results show that the
corresponding Boltzmann equation has a new term, which is
absent in the Boltzmann equation in the current work and
[25], [44]. How this new term affects macroscopic equations
and what is the connection of this new term to the additional
torque due to the spin-orbit coupling in the LLG equation
is currently being considered by the authors and will appear
elsewhere.
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