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Abstract

This paper introduces a fast algorithm for the energy space boson Boltzmann collision

operator. Compared to the direct O(N3) calculation and the previous O(N2 logN) method

[8], the new algorithm runs in complexity O(N log2 N), which is optimal up to a logarithmic

factor (N is the number of gird points in energy space). The basic idea is to partition the

3-D summation domain recursively into elementary shapes so that the summation within

each shape becomes a special double convolution that can be computed efficiently by the

fast Fourier transform. Numerical examples are presented to illustrate the efficiency and

accuracy of the proposed algorithm.
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1 Introduction

The quantum Boltzmann equation or Nordheim-Uehling-Uhlenbeck equation [9, 14], describes

the non-equilibrium dynamics of quantum gases. These are the low density gases consisting of

bosons or fermions which, when cooled to certain temperatures, evolve and interact in ways that

reveal the quantum mechanical nature of the particles. Although most of the discussion also

applies to the Fermi gas, in this paper we will only focus on the Bose gas since it covers the

interesting phenomenon of the Bose-Einstein condensation (BEC).

Under the spatially homogeneous and velocity isotropic assumption, one can derive the follow-

ing energy space boson Boltzmann equation [11, 12, 5, 2, 8, 13] from its phase space counterpart:

ρ(ε)
∂f

∂t
= Q(f)(ε), ε ≥ 0, (1.1)

where f(t, ε) is the distribution function that depends on time t and particle energy ε. The

function ρ(ε) is the density of states:

ρ(ε) :=

∫
R3

δ

(
ε− v2

2

)
dv = 4π

√
2ε. (1.2)
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The quantum collision operator Q(f) models the interaction of bosons:

Q(f)(ε) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

w(ε, ε∗, ε
′, ε′∗)δ(ε+ ε∗ − ε′ − ε′∗)

· [f ′f ′∗(1 + f)(1 + f∗)− ff∗(1 + f ′)(1 + f ′∗)] dε∗dε
′dε′∗, (1.3)

where (ε, ε∗) and (ε′, ε′∗) are the particle energies before and after collision. f , f∗, f
′, and

f ′∗ are shorthand notations for f(t, ε), f(t, ε∗), f(t, ε′), and f(t, ε′∗) respectively. The collision

kernel w is a nonnegative function determined by the underlying interaction law. For the simple

Maxwellian molecules, w is given by

w(ε, ε∗, ε
′, ε′∗) = ρ(min(ε, ε∗, ε

′, ε′∗)). (1.4)

A brief derivation of (1.1) – (1.4) and a summary of basic properties of the equation can be

found in Appendix A.

Compared to the phase space description, the energy space equation is greatly simplified. A

lot of theoretical work has been conducted in the past few years for (1.1) and related models,

see, for instance, [3, 13, 4, 7, 1] and references therein. For numerical approximations of (1.1),

we refer to [11, 12, 5, 2, 8].

The goal of this paper is to design an efficient algorithm for the boson Boltzmann collision

operator (1.3). Our starting point is the following truncated version of Q(f) used in [8]:

QR(f)(ε) =

∫ R

0

∫ R

0

∫ R

0

ρ(min(ε, ε∗, ε
′, ε′∗))δ(ε+ ε∗ − ε′ − ε′∗)

· [f ′f ′∗(1 + f)(1 + f∗)− ff∗(1 + f ′)(1 + f ′∗)] dε∗dε
′dε′∗, ε ∈ [0, R]. (1.5)

How to choose the upper bound R will be made more precise in the numerical results. Here we

only mention that in order to capture the physics R is usually not small. We then introduce

N uniform discrete points ε0 < ε1 < . . . < εN−1 on [0, R] with mesh size ∆ε = R/N . Thus a

consistent discretization of (1.5) is written as

QRi = ∆ε2
N−1∑

m,n,j=0
m+n=i+j

ρ(εmin)[fmfn(1 + fi)(1 + fj)− fifj(1 + fm)(1 + fn)]

= ∆ε2(1 + fi)

N−1∑
m,n,j=0
m+n=i+j

ρ(εmin)fmfn(1 + fj)−∆ε2fi

N−1∑
m,n,j=0
m+n=i+j

ρ(εmin)fj(1 + fm)(1 + fn),

(1.6)

for i = 0, . . . , N − 1, and

εmin := min(εi, εj , εm, εn) = εmin(m,n,i,j). (1.7)

This is just a simple numerical quadrature rule that takes into account the approximation of the

delta function. Depending on the application, one can either choose integer grid points (first

order method), or half-integer grid points (second order method). It is not difficult to verify that

the scheme (1.6) preserves the main physical features of the continuous problem: conservation

of mass and energy, the entropy inequality, and the Bose-Einstein distribution as steady state.

See [8] for more details.
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Despite its simple form the efficient evaluation of (1.6) still presents a challenge. Clearly a

direct calculation of Qi (for all i) requires cubic complexity O(N3), which can be quite expensive

for large N . Furthermore, it is well known that a singularity occurs at the origin when the BEC

happens, thus a finer grid is necessary to maintain the resolution.

In [8] by exploiting the special form of (1.7), Markowich and Pareschi were able to reduce the

above cost to O(N2 logN) (all the log in this paper refers to logarithm to base 2). Their approach

is based on a 2-D domain decomposition that allows one to use the fast Fourier transform (FFT)

to speed up the inner summation – a convolution.

In this work, we propose a faster algorithm for (1.6) that runs in only O(N log2N) steps,

which is optimal up to a logarithmic factor. The main idea is to partition the 3-D summation

domain recursively into elementary shapes such that the FFT can be applied to both inner and

outer summations – a special double convolution.

The rest of the paper is organized as follows: in the next section we describe the fast algorithm

in detail and analyze its complexity. Numerical results for computation of the collision operator

and the time-evolution equation are shown in Section 3. Finally the concluding remarks are

given in Section 4.

2 Fast algorithms for the boson Boltzmann collision oper-

ator

We first briefly review the previous O(N2 logN) method in [8], since it provides a basis for

constructing the new algorithm.

2.1 The previous O(N2 logN) algorithm – 2-D domain decomposition

The key observation behind the method [8] is: if one divides the grid {0, . . . , N − 1}2 in the

index mn – domain into four parts according to a fixed j ∈ {0, . . . , N − 1}:

• region (i): {(m,n) : 0 ≤ m ≤ j, 0 ≤ n ≤ j};

• region (ii): {(m,n) : j < m ≤ N − 1, j < n ≤ N − 1};

• region (iii): {(m,n) : 0 ≤ m ≤ j, j < n ≤ N − 1};

• region (iv): {(m,n) : j < m ≤ N − 1, 0 ≤ n ≤ j},

(see Figure 1 for an illustration), then εmin (1.7) takes a unique value in each region, i.e.,

min(m,n, i, j) =


i in region (i);

j in region (ii);

m in region (iii);

n in region (iv).

Now the computation of (1.6) can be performed in each region separately. We write

QRi = Q
(i)
i +Q

(ii)
i +Q

(iii)
i +Q

(iv)
i ,

3



o

�min = �m
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Figure 1: 2-D summation domain decomposition.

where Q
(i)
i denotes the summation of m,n in region (i) for each j, and so on so forth. Let us

take region (iii) for example, where

Q
(iii)
i = ∆ε2(1 + fi)

N−1∑
j=0

 ∑
0≤m≤j,j<n≤N−1

m+n=i+j

ρ(εm)fmfn

 (1 + fj)

−∆ε2fi

N−1∑
j=0

 ∑
0≤m≤j,j<n≤N−1

m+n=i+j

ρ(εm)(1 + fm)(1 + fn)

 fj , for i = 0, . . . , N − 1.

For the gain term, if we treat ρ(εm)fm as a single function, then for each fixed j the inner

summation is a convolution of functions ρ f and f defined on truncated portions according to

j. Similarly, the inner sum of the loss term is a convolution of truncated functions ρ(1 + f)

and (1 + f). Either of them can be computed effectively by the FFT in O(N logN) operations,

resulting a function g with index i+ j. Since g itself depends on j, the outer summation has to

be carried out directly. Therefore, the total cost is O(N2 logN +N2) = O(N2 logN).

2.2 The new O(N log2N) algorithm – 3-D domain decomposition

We observe from (1.6) that the main computation task is of the following general form

ui =
∑

m+n=i+j

ρ(εmin)emgnhj , for 0 ≤ i, j,m, n ≤ N − 1,

where {em}, {gn}, and {hj} are sequences indexed by {0, . . . , N − 1}. It turns out that in

order to speed up the calculation, it is more convenient to consider all possible i that satisfy

m+ n = i+ j for some 0 ≤ m,n, j ≤ N − 1 and then truncate the result to 0 ≤ i ≤ N − 1. This

allows us to consider the 3-D summation domain

D := {(m,n, j) : 0 ≤ m,n, j ≤ N − 1}.
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As pointed out earlier, the approach of [8] partitions the 2-D summation domain {(m,n) : 0 ≤
m,n ≤ N − 1} into four regions for each fixed j. We instead partition the whole summation

domain D into four regions – two pyramids and two simplexes (the 3-D counterparts of 2-D

regions (i) – (iv), see Figure 2):

• region (I): {(m,n, j) : m ≤ j, n ≤ j, 0 ≤ m,n, j ≤ N − 1};

• region (II): {(m,n, j) : j < m, j < n, 0 ≤ m,n, j ≤ N − 1};

• region (III): {(m,n, j) : m ≤ j, j < n, 0 ≤ m,n, j ≤ N − 1};

• region (IV ): {(m,n, j) : j < m, n ≤ j, 0 ≤ m,n, j ≤ N − 1},

and compute the contribution from each region one by one.

o

�min = �i �min = �j

�min = �m �min = �n

(II)(I)

(III) (IV )

m
n

j

Figure 2: 3-D summation domain decomposition.

Within each 3-D region, min(m,n, i, j) takes a fixed value

min(m,n, i, j) =


i in region (I);

j in region (II);

m in region (III);

n in region (IV ),
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and it is possible to combine the troublesome term ρ(εmin) with one of the sequences {em}, {gn},
{hj} or treat it as an extra multiplication. Hence, we only need to consider the following simple

problem of the form

ui =
∑

m+n=i+j

emgnhj

with the summation taken over a single region and {em}, {gn}, and {hj} are again defined on

{0, . . . , N − 1} (but with slightly different content).

Before discussing the algorithm in detail, we note that the next three summations will be

encountered often later on. Given three sequences {em}, {gn}, and {hj} defined on three inde-

pendent consecutive integer intervals M, N , and J respectively, let

pi =
∑

m∈M,n∈N
i=m+n

emgn, i ∈M+N , (2.1)

qi =
∑

m∈M,n∈N
i=m−n

emgn, i ∈M−N , (2.2)

ri =
∑

m∈M,n∈N ,j∈J
i=m+n−j

emgnhj , i ∈M+N − J , (2.3)

where M + N = {m + n : m ∈ M, n ∈ N}, M− N = {m − n : m ∈ M, n ∈ N}, and

M+N − J = {m+ n− j : m ∈ M, n ∈ N , j ∈ J }. We claim that the sequences {pi}, {qi},
and {ri} can all be evaluated by fast algorithms. In fact,

• (2.1) is nothing but a simple convolution of {em} and {gn}, which can be calculated by

the FFT.

• To compute (2.2), we first reverse the ordering of {gn}, i.e., introduce a new sequence

{g̃n = g−n} with n ∈ −N , and rewrite qi as

qi =
∑

m∈M,n∈−N
i=m+n

emg−n =
∑

m∈M,n∈−N
i=m+n

emg̃n, i ∈M−N .

This again falls into the form (2.1).

• For (2.3), we introduce the sequence {h̃j = h−j} with j ∈ −J , then

ri =
∑

m∈M,n∈N ,j∈−J
i=m+n+j

emgnh̃j , i ∈M+N − J .

This is a double convolution and can also be sped up by the FFT.

Clearly for any of the above problems the computational cost is bounded by

max(|M|, |N |, |J |) log(max(|M|, |N |, |J |)),

where | · | denotes the cardinality of a set. We are ready to describe the final algorithm.
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Computation of region (I) For region (I), the relevant sum is of form

uIi =
∑

m≤j,n≤j,0≤m,n,j≤N−1
m+n=i+j

emgnhj .

In order to compute it efficiently, we partition this pyramid into five parts as shown in Figure 3.

1
2

3

4

5

2
3

4

5

1

o
m

n

j

Figure 3: Decomposition of pyramid (I).

• Part 1 is a cube: {
(m,n, j) : 0 ≤ m,n ≤ N

2
− 1,

N

2
≤ j ≤ N − 1

}
.

• Part 2 is a wedge:{
(m,n, j) : 0 ≤ n ≤ N

2
− 1,

N

2
≤ m ≤ j ≤ N − 1

}
.

• Part 3 is another wedge:{
(m,n, j) : 0 ≤ m ≤ N

2
− 1,

N

2
≤ n ≤ j ≤ N − 1

}
.

• Part 4 is a pyramid:{
(m,n, j) : m ≤ j, n ≤ j, 0 ≤ m,n, j ≤ N

2
− 1

}
.

• Part 5 is another pyramid:{
(m,n, j) : m ≤ j, n ≤ j, N

2
≤ m,n, j ≤ N − 1

}
.
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We can now write uIi = uI,1i +uI,2i +uI,3i +uI,4i +uI,5i , where each uI,ki stands for the summation

related to the kth part.

• For part 1 (cube), the relevant sum is

uI,1i =
∑

0≤m,n≤N
2 −1,

N
2 ≤j≤N−1

m+n=i+j

emgnhj .

This double convolution can be computed as for (2.3) and the cost is O
(
N
2 log N

2

)
.

• For part 2 (wedge), the relevant sum is

uI,2i =

N
2 −1∑
n=0

 ∑
N
2 ≤m≤j≤N−1
m−j=i−n

emhj


︸ ︷︷ ︸

ti−n

gn.

The inner summation corresponds to the triangular side of the wedge. At first sight, this

summation is difficult to compute due to the existence of the constraint m ≤ j. However,

notice that m ≤ j is equivalent to i− n ≤ 0 since m− j = i− n. Therefore, all one needs

is to compute the inner sum as for (2.2) and set the resulting vector ti−n to zero at indices

greater than 0. The outer summation is computed as for (2.1). Thus the total cost for this

part is also O
(
N
2 log N

2

)
.

• For part 3 (wedge), the relevant sum is

uI,3i =

N
2 −1∑
m=0

 ∑
N
2 ≤n≤j≤N−1
n−j=i−m

gnhj

 em.

This is computed exactly the same as above for part 2.

• Parts 4 and 5 (pyramids) have the same shape as region (I), but only half its size. It is

thus natural to perform the computation of these two parts using recursion.

Let us denote the computational cost for region (I) by T (N), where N stands for the size of

the summation domain in each dimension. We have

T (N) = O

(
N

2
log

N

2

)
︸ ︷︷ ︸

one cube

+ 2O

(
N

2
log

N

2

)
︸ ︷︷ ︸

two wedges

+ 2T

(
N

2

)
︸ ︷︷ ︸
two pyramids

= O (N logN) + 2T

(
N

2

)

= . . . = O

(
N logN +N log

N

2
+N log

N

4
+ . . .

)
︸ ︷︷ ︸

logN terms

+NT (1)

= O(N log2N) +O(N) = O(N log2N).

In the actual implementation, we terminate the recursion whenever the size of the pyramid is

smaller than a certain threshold (e.g. 64 or 128), since then the quadratic-complexity algorithm

[8] becomes competitive.
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Computation of region (II) As the shape of region (II) is similar to the one of region (I),

it can be decomposed as a disjoint union of five parts: one cube, two wedges, and two self-similar

pyramids of half the original size (see Figure 4). Therefore, the approach discussed for region

(I) works with minor modifications. As a result, the computational cost of region (II) is also

O(N log2N).

n

o
m

j

1

1

2

2

3

3

4

4

5

5

Figure 4: Decomposition of pyramid (II).

Computation of region (III) For region (III), the relevant sum is of form

uIIIi =
∑

m≤j,j<n,0≤m,n,j≤N−1
m+n=i+j

emgnhj .

We partition this simplex into four parts as shown in Figure 5.

• Part 1 is a wedge:{
(m,n, j) :

N

2
≤ n ≤ N − 1, 0 ≤ m ≤ j ≤ N

2
− 1

}
.

• Part 2 is another wedge:{
(m,n, j) : 0 ≤ m ≤ N

2
− 1,

N

2
≤ j < n ≤ N − 1

}
.

• Part 3 is a simplex:{
(m,n, j) : m ≤ j, j < n, 0 ≤ m,n, j ≤ N

2
− 1

}
.
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1

1

2

2

3

3

4

4

j

m
n

o

Figure 5: Decomposition of simplex (III).

• Part 4 is another simplex:{
(m,n, j) : m ≤ j, j < n,

N

2
≤ m,n, j ≤ N − 1

}
.

We can write uIIIi = uIII,1i + uIII,2i + uIII,3i + uIII,4i accordingly, so that each uIII,ki stands for

the summation associated with the kth part.

• In part 1 (wedge), the relevant sum is

uIII,1i =

N−1∑
n=N

2

 ∑
0≤m≤j≤N

2 −1
m−j=i−n

emhj

 gn.

Similarly to part 2 in region (I), we compute the inner sum as for (2.2) and set the value

of the result to zero at indices greater than 0. The outer sum is computed as for (2.1).

Thus the total cost for this part is O
(
N
2 log N

2

)
.

• In part 2 (wedge), the relevant sum is

uIII,2i =

N
2 −1∑
m=0

 ∑
N
2 ≤j<n≤N−1
n−j=i−m

gnhj

 em.

This one is computed almost the same as above for part 1, with the only exception that

we set the result of the inner sum to zero at indices less than or equal to 0 (since now

n− j = i−m > 0).
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• Parts 3 and 4 (simplexes) have the same shape as region (III) but only half its size, so

the computation associated with them can be done using recursion again.

Assume the computational cost for region (III) is T (N), where N is the size of the summation

domain in each dimension. Then

T (N) = 2O

(
N

2
log

N

2

)
︸ ︷︷ ︸

two wedges

+ 2T

(
N

2

)
︸ ︷︷ ︸

two simplexes

,

which again yields an algorithm of O(N log2N).

Computation of region (IV ) As the shape of region (IV ) is similar to that of region (III), it

can be decomposed as a disjoint union of four parts: two wedges, and two self-similar simplexes

of half the original size (see Figure 6). Therefore, the approach discussed for region (III) works

with minor modifications. As a result, the cost of region (IV ) is also O(N log2N).

j

m
n

o

1

1

2

23

3

4

4

Figure 6: Decomposition of simplex (IV ).

3 Numerical results

In this section we provide several numerical examples to demonstrate the efficiency and

accuracy of the new algorithm. We first test its performance on the collision operator, and then

use it to solve the time-evolution equation. In all the examples, the grid points are chosen as

ε0 = ∆ε/2, ε1 = 3∆ε/2, . . ., εN−1 = R−∆ε/2 (second-order quadrature rule).
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3.1 Computing the collision operator

We first test the proposed algorithm on a single application of the distribution

f(ε) = 3 exp
(
−(ε− 10)2

)
, ε ∈ [0, R], R = 30.

Here R = 30 is chosen such that R ≥ 2R0, where supp(f) ≈ [0, R0]. This guarantees the

disregarded value is significantly small by conservation of energy (see Figure 7).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
f(ε)

ε
0 5 10 15 20 25 30

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

2000
Q(f)(ε)

ε

Figure 7: Left: the distribution function f(ε). Right: the numerical Q(f)(ε) computed by the

new algorithm. N = 2048.

The results for different N are reported in Table 1. For comparison, the method in [8] is

referred to as quadratic algorithm. Column 5 confirms the linear complexity of the new algorithm.

N quadratic algorithm Tq
Tq(N)
Tq(N/2)

new algorithm Tn
Tn(N)
Tn(N/2)

‖Qn −Qq‖2/‖Qq‖2
128 0.386s – 0.278s – 3.2620e-16

256 1.450s 3.76 0.510s 1.83 8.2386e-16

512 5.579s 3.85 0.926s 1.82 1.2436e-15

1024 22.334s 4.00 1.816s 1.96 1.9140e-15

2048 88.980s 3.98 3.696s 2.04 2.0821e-15

Table 1: The average running time and the relative error of the quadratic algorithm in [8] and

our new algorithm.

The speedup factor over the quadratic algorithm is about 24 for N = 2048.

3.2 Solving the boson Boltzmann equation

We now solve the equation (1.1) explicitly by a second-order Runge-Kutta method. The

new fast algorithm is applied to the collision operator. We will only consider the Bose gas in

non-degenerate regime (z < 1). Modeling the degenerate Bose gas (z > 1) is a very complicated

issue due the singularity of the distribution function (A.8) at the origin and is beyond the scope

of this paper.
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Suppose the initial condition is given by

f0(ε) = e−(ε−10)
2/10, ε ∈ [0, R], R = 120.

The corresponding equilibrium takes the form (A.6) with z ≈ 0.6336, β ≈ 0.1236.

Remark 3.1 The reason to choose such a large R is because the final equilibriumMz,β(ε) has a

larger compact support. Moreover, the functions ρ(ε)Mz,β(ε) and ρ(ε)εMz,β(ε) (the integrands

of mass and energy (A.3), (A.4)) spread even wider (see Figure 8). So in order to capture the

real physics, R has to be large enough to include all mass and energy.

0 20 40 60 80 100 120
0

100

200

300

400

500

600

ε

 

 
f0(ε)

ρ(ε)f0(ε)

ρ(ε)εf0(ε)

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

ε

 

 
M(ε)

ρ(ε)M(ε)
ρ(ε)εM(ε)

Figure 8: Left: the initial distribution f0(ε), ρ(ε)f0(ε), and ρ(ε)εf0(ε). Right: the exact equi-

librium Mz,β(ε), ρ(ε)Mz,β(ε), and ρ(ε)εMz,β(ε).

Figure 9 shows the distribution function f(t, ε) at different times together with the exact

equilibrium Mz,β(ε). The conservation of mass and energy, and the entropy growth can be

observed from Figure 10. Here the number of grid points is N = 2048. The time step size is

∆t = 0.005.

At certain time, we expect the numerical solution f(t, ε) converges to the exact equilibrium

Mz,β(ε) within an acceptable error. This can be seen from Table 2.

N ‖f −Mz,β‖2/‖Mz,β‖2 extrapolated value of f(0)

128 0.0121 1.6894

256 0.0047 1.7168

512 0.0017 1.7252

1024 0.0006 1.7279

2048 0.0002 1.7289

Table 2: The relative error of f and Mz,β at fixed time t = 0.5 (∆t = 0.005) and the cubic

spline extrapolated value of f(0) (Ref: the exact value Mz,β(0) = 1.7294).
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Figure 9: The numerical solution f at t = 0, 0.025, 0.05, and 0.5, and the exact equilibrium

Mz,β . N = 2048. ∆t = 0.005.
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Figure 10: The time evolution of mass, energy, and entropy. N = 2048. ∆t = 0.005.

4 Conclusions and future work

A fast linear (up to a logarithmic factor) algorithm is constructed for the energy space

boson Boltzmann collision operator. The idea is to decompose the 3-D summation domain to

14



elementary shapes: cubes, wedges, and self-similar pyramids and simplexes such that the collision

kernel is a constant within each region. The summations in the cubes and wedges are double

convolutions that can be evaluated efficiently with FFTs, while the self-similar parts are treated

recursively, yielding an algorithm of O(N log2N). The numerical results further confirm the

linear complexity of the method and demonstrate its robustness in solving the time-evolution

equation.

So far we have not touched the degenerate Bose gas yet. It seems that a logarithmic grid is

more suitable to describe the condensation at the origin. The design of fast algorithms in this

framework will be investigated in the future.
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Appendix A The energy space boson Boltzmann equation

In this Appendix, we shall give a formal derivation of the energy space boson Boltzmann

equation (1.1) from its original form in the phase space, and summarize its basic properties.

Part of the arguments can be found in one place or another such as [12, 3, 8, 13, 6, 10].

We will start from the spatially homogeneous quantum Boltzmann equation in [9, 14] (a

similar derivation carries through for the spatially inhomogeneous case and when there is an

external potential). Let F (t,v) be the phase space distribution function of time t and particle

velocity v, then the equation reads:

∂F

∂t
= Q̃(F )(v), v ∈ R3. (A.1)

The quantum collision operator Q̃(F ) for a Bose gas is given by (assume a unit mass for all

particles)

Q̃(F )(v) =

∫
R3

∫
R3

∫
R3

W (v,v∗,v
′,v′∗)δ (v + v∗ − v′ − v′∗) δ

(
v2

2
+

v2
∗

2
− v′2

2
− v′2∗

2

)
· [F ′F ′∗(1 + F )(1 + F∗)− FF∗(1 + F ′)(1 + F ′∗)] dv∗dv

′dv′∗, (A.2)

where (v,v∗) and (v′,v′∗) are the velocity pairs before and after collision. As usual, F , F∗, F
′,

and F ′∗ stand for F (t,v), F (t,v∗), F (t,v′), and F (t,v′∗). The collision kernel W depends on

the specific interaction law. Here we consider the simple case of W = 1 which corresponds to

Maxwellian molecules.

We now make the assumption that F (t,v) is isotropic in v, i.e., one can define an energy

space distribution f(t, ε) such that f(t, ε) = F (t,v) with ε = v2/2. Then by the change of

variables, the total mass of particles (per unit volume) is

M :=

∫
R3

F (t,v) dv =

∫ ∞
0

4π
√

2ε f(t, ε) dε, (A.3)

and the total energy is

E :=

∫
R3

v2

2
F (t,v) dv =

∫ ∞
0

4π
√

2ε εf(t, ε) dε. (A.4)
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Therefore, it is convenient to introduce the function ρ(ε) as in (1.2).

Similarly the collision operator (A.2) can be transformed into

Q̃(F ) =
4π2

ρ(ε)

∫ ∞
0

∫ ∞
0

∫ ∞
0

ρ(min(ε, ε∗, ε
′, ε′∗))δ (ε+ ε∗ − ε′ − ε′∗)

· [f ′f ′∗(1 + f)(1 + f∗)− ff∗(1 + f ′)(1 + f ′∗)] dε∗dε
′dε′∗, (A.5)

where the equality∫
S2

∫
S2

∫
S2
δ (rσ + r∗σ∗ − r′σ′ − r′∗σ′∗) dσ∗dσ′dσ′∗ =

4π2

rr∗r′r′∗
min(r, r∗, r

′, r′∗),

(v = rσ, r = |v| and σ is the surface element) and the definition of ρ(ε) have been used.

Plugging (A.5) back into (A.1), we get the energy space boson Boltzmann equation (1.1) –

(1.4) considered at the beginning of the paper (differ by a constant).

A.1 Properties

The quantum collision operator (1.3) has 1 and ε as collision invariants:∫ ∞
0

Q(f) dε =

∫ ∞
0

εQ(f) dε = 0,

so the total mass and energy are conserved:

M =

∫ ∞
0

ρ(ε) f(t, ε) dε ≡
∫ ∞
0

ρ(ε) f0(ε) dε,

E =

∫ ∞
0

ρ(ε) εf(t, ε) dε ≡
∫ ∞
0

ρ(ε) εf0(ε) dε,

where f0(ε) is the initial condition.

Q(f) also satisfies the Boltzmann’s H-theorem:

d

dt
S(ε) =

∫ ∞
0

Q(f)[ln(1 + f)− ln f ] dε ≥ 0,

where

S(ε) :=

∫ ∞
0

ρ(ε)[(1 + f) ln(1 + f)− f ln f ] dε

is the entropy.

The entropy is always increasing, and reaches its maximum if and only if f attains the

equilibrium (the Bose-Einstein distribution):

M(z,β)(ε) =
1

z−1eβε − 1
, (A.6)

where z is the fugacity, β is the inverse temperature (β = 1/T ; z = eµ/T , µ is the chemical

potential). Given M(z,β), the corresponding mass and energy can be expressed as
M =

(
2π

β

) 3
2

G 3
2
(z), z ≤ 1,

E =
3

2β

(
2π

β

) 3
2

G 5
2
(z), z ≤ 1,

16



where Gν(z) is the Bose-Einstein function of order ν:

Gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex − 1
dx, 0 < z < 1, ν > 0; z = 1, ν > 1. (A.7)

For small z, the integrand in (A.7) can be expanded in powers of z,

Gν(z) =

∞∑
n=1

zn

nν
= z +

z2

2ν
+
z3

3ν
+ . . . .

Thus the Bose gas behaves like a classical gas when z � 1. On the other hand, it becomes

degenerate as z → 1.

The famous BEC happens when z > 1. The equilibrium state M(z,β) is then composed of

two parts (in the sense of maximizing entropy):

M(z,β)(ε) =
1

eβε − 1
+

ln z

ρ(ε)
δ(ε). (A.8)

The physical meaning of z is not fugacity anymore; it is an indicator of the condensate mass.

Correspondingly, M and E are given by
M =

(
2π

β

) 3
2

G 3
2
(1) + ln z, z > 1,

E =
3

2β

(
2π

β

) 3
2

G 5
2
(1), z > 1.

Note that Gν(1) is just the Riemann-Zeta function ζ(ν) convergent for ν > 1. In particular,

G3/2(1) ≈ 2.6124, G5/2(1) ≈ 1.3415.
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