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Abstract. Kinetic models of stochastic production flows can be expanded

into deterministic moment equations and thus approximated with appropriate
closures. A second order model for the product density and the product speed

has previously been proposed. A systematic analysis comparing simulations of

the partial differential equations (PDE) with discrete event simulations (DES)
is performed. Specifically, factory production is modeled as an M/M/1 queue

where the arrival process is a non-homogeneous Poisson process. Three fun-

damental scenarios for such a time dependent influx are studied: An instant
step up/step down of the arrival rate, an exponential step up/step down and

periodic variation of the average arrival rate. It is shown that the second order

model in general yields significant improvements over the first order model.
Adding diffusion into the PDE further improves the agreement in particular

for queues with low utilization. The analysis also points to fundamental open

issues regarding kinetic models of time dependent agent based simulations.
Memory effects and the possibility of resonance in deterministic models are

caused by intrinsic timescales of the PDE that are not present in the original
stochastic processes.

1. Introduction.

1.1. First and second order kinetic models for M/M/1 queueing systems.
Aggregating stochastic flows of products through a factory or supply chain involves
converting the stochastic individual arrival and exit processes of parts into arrival
and departure rates characterizing the long time average stochastic process. As a
result, the expected behavior of a queuing network is described by a set of ordinary
differential equation (ODE) models known as fluid models. Fluid equation models
are the deterministic equations replacing the random variables with their means
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where Work in Progress (WIP) at a particular production unit becomes the contin-
uous state variable of the associated ODE. The appeal of fluid models is that they
are deterministic dynamical systems that are well understood even though some
important issues related to the stability of queuing networks and the stability of
the associated fluid models remain unresolved for multi class queuing systems ([4],
[6], [7]).

Fluid models do not really behave like a fluid, because they still treat every
production process separately and hence model the production flow through discrete
steps. For long production lines with many steps, it makes sense to treat the
production steps as a continuum variable and in that way obtain a genuine fluid
dynamical description that treats the factory as a pipe and the parts flowing through
the factory as a fluid. In contrast to a real fluid, the spatial variable does not describe
physical space, rather it denotes the degree of completion of the part, that is, how
far along the part is in the system. Calling x ∈ [0, 1] the degree of completion (where
x = 0 and x = 1 denote recent arrivals and departures, respectively), ρ(x, t) ≥ 0

describes the density of parts at stage x at time t, and W (t) =
∫ 1

0
ρ(x, t)dx is the

total WIP in the factory. If the fluid moves with a velocity v(x, t), then the flux is
described as F (x, t) = ρ(x, t)v(x, t) and the production rate of the factory is given
by F (1, t). Assuming that the defective products are sorted out after the factory
production process, there are no sources or sinks in a factory, thus WIP satisfies
the mass conservation law

dW

dt
= λ− µ, (1)

where µ is the overall mean production rate of the factory. By a standard argument
of transport equations [9] this integral conservation law is equivalent to a differential
conservation law of the form

∂ρ

∂t
+
∂F

∂x
= 0. (2)

Because v(x, t) ≥ 0, the fluid moves from left to right. Hence, the boundary con-
dition is set as the influx F (0, t) = λ(t); i.e. the local flux at stage zero is the
arrival rate of the parts into the factory. Together with an initial WIP profile
ρ(x, 0) = ρ0(x) this sets up a well-defined transport equation (hyperbolic) problem.

The crucial modeling part for these aggregate transport equations is the associ-
ated flux model:

• A constant velocity leads to a linear wave equation corresponding to constant
time between entering the domain and exiting the domain (called the the cycle
time).

• Local congestion effects lead to a local flux at position x and time t that
depends on the density around that position x and are typically used in traffic
flows,

F (x, t) = vρ = v0(1− ρ(x, t)

R
)ρ(x, t). (3)

Equation (3) is known as the Lighthill-Whitham model and reflects the fact
that drivers slow down as the density of cars around them increases. v0 is the
free velocity, i.e. the speed of a single car on the road, while R is the maximal
density that a steady state may assume.

• A global flux is used for a model that treats the whole factory as a single
queue. As a result, the velocity at position x at time t depends on the global
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quantity of total WIP. Assuming an M/M/1 queue with arrival rate λ and
service rate µ the steady-state of the queue is characterized by by relationships
between mean cycle time τ = 1

v , expected queue length W and arrival and
production rate using Little’s law [12]:

τ = 1
µ−λ ,

λ = W
τ = µW

1+W ,

W = λ
µ−λ ,

v = µ
1+W .

(4)

Equation (4) gives us a useful model for the flux of the transport equation,

F (ρ(x, t)) =
µρ(x, t)

1 +W (t)
. (5)

A continuum model for factory production was developed heuristically along
these lines in [3]. In [2] the same model was developed from first principles devel-
oping a kinetic theory of the stochastic transport processes in a factory model. The
approach follows turbulence or gas-dynamical modeling of transport processes ([5]).
Fundamentally, such an approach is based on a probability density distribution
f(x, ν, t), where

f(x, ν, t) = Pr{ξ ∈ [x, x+ dx], η ∈ [ν, ν + dν], τ ∈ [t, t+ dt]} (6)

describes the probability to find a particle in an x-interval with a speed in a partic-
ular ν-interval in a certain time interval. To analyze the resulting kinetic equation,
a moment expansion relative to the velocity is used which, together with closure
assumptions, reduces the infinite set of moment equations down to a finite set [2].
The evolution equation for the first moment reflects mass conservation and thus is
exactly given by Equation (2). The appropriate closure then is to set the flux F (ρ)
to the steady state value of the production rate of the M/M/1 queue (Eq. (5)). In
[3] it was subsequently shown that simulations of this PDE with an adiabatic influx
λ(t), i.e. changing slowly in time, leads to an outflux F (1, t) that agrees well with
the expected outflux generated from Discrete Event Simulations (DES).

Closing the moment expansion at second order [2] leads to

∂ρ(x, t)

∂t
+
∂[v(x, t)ρ(x, t)]

∂x
= 0, (7)

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
= 0. (8)

Together with the steady-state initial values for ρ(x, 0) and v(x, 0) and boundary
conditions imposed on the left boundary, x = 0, equations (7), and (8) are a set
of well-posed hyperbolic partial differential equations commonly referred to as the
pressureless gas dynamics equations.

Eq. (8) is the well known Burgers’ equation. It models the advection of the
variable v(x, t) that is transported along the characteristics. As a result, once the
initial material has left the domain, the solution is completely determined by the
values taken on at the left boundary. This turns out to resolve the issue of nonlocal
velocities associated with the one-dimensional model: The time it takes a part ρdx
to move through the factory is determined at the time that the part joins the end of
the queue. If the queue is long, i.e. there is a lot of WIP in front of the new arrival, it
will take longer to clear the factory. This corresponds to the behavior of an M/M/1
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queue in steady-state: the PASTA (Poisson Arrivals See Time Averages) property
suggests that an arriving part of a Poisson arrival (even if the Poisson process is not
homogeneous) will find an average queue length W and average velocity v given in
Eq. (4).

Hence the second order model is completed with the boundary conditions

ρ(0, t)v(0, t) = λ(t), (9)

v(0, t) =
µ

1 +W (t)
. (10)

These assumptions generate a dramatically improved model for a production
process: The model captures the nonlinear dependence of the cycle times on WIP,
and it correctly relates the steady-state WIP, cycle time, and outflux.

While the second order model has been published for some time, no systematic
analysis comparing DES and the PDE simulations for time dependent influxes has
been done. This paper fills this gap by studying how much the second order model
improves the outflow predictions for non-steady-state (i.e. transient) situations
compared to a first order model. Not surprisingly variations in the outflow will be
correctly resolved, if they result from variations in the local product density that
have little effect on the total WIP and hence on the transport velocity. However,
when we study the impact of a single large jump in the influx and the cumulative
impact of periodic influx we find, on the one hand, significant improvements over the
first order model and, on the other hand, systematic deficiencies. We discuss that
those deficiencies relate to the interaction between the timescales of the stochastic
process and the timescales inherent in the deterministic dynamical model and are
a fundamental feature of the standard kinetic modeling for agent based
simulations.

1.2. Time dependent arrival rates. We study three time dependent production
flows of the M/M/1 queue. The flows are characterized by a time dependent
expectation value for the arrival rate λ(t) at the queue. We develop Discrete Event
Simulations in χ [8] with an inhomogeneous Poisson process generating the inflow
into the queue. Each of the simulated M/M/1 queuing systems will be compared
to the continuum models.

The specific simulation details are as follows: The creation of one event list is
called a run and the total number of runs for a given input pattern is called a
simulation. In order to derive useable statistics, a histogram is built with the runs
in the simulation. The simulated-time interval [0, T ] for the DES is partitioned into
equispaced intervals of width ∆t = 0.1. Over each interval [ti, ti+1) the number of
machine exit events that occurred in this interval is counted and then divided by
the total run count of that particular simulation. This histogram is then used as
the representative profile for the flow though the queueing system. In each of the
following scenarios, the statistics are gathered over a sample size of 40,000 runs per
simulation. While in general we list the raw production rate as µ in every formula,
in the simulations we always set µ = 1.

1.2.1. Scenario 1: Exponential Relaxation. We consider a production scenario, whereby
the expectation value of the start rate changes from one constant, λ1, for t < T0

to another constant, λ2, for t > T0. One way to generate a sequence of arrival
events that reflect this scenario is to sample the next inter-arrival time from the
appropriate distribution when a new particle arrives at the end of the queue. It
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Figure 1. DES and exact input patterns Eq. (11) for the expo-
nential relaxation scenario.

is important to note that T0 is not an event in the DES and hence the start rate
will only change at the first event following T0. Specifically, if the last arrival event
before time T0 happens at ti, then the next arrival at ti+1 occurs after T0. The
inter-arrival time between event i and i + 1 is thus sampled from the distribution
corresponding to rate λ1. All arrival events after ti+1 have an inter-arrival time
sampled from the distribution characterized by λ2. This setup gives an expected
arrival pattern of the form:

λ(t) =

{
λ1 if t ≤ T0

(λ1 − λ2)e−λ1(t−T0) + λ2 if T0 < t,
(11)

i.e. the expected arrival rate decays exponentially to the new arrival rate with
limt→∞ λ(t) = λ2. Figure (1) provides an illustration of a DES simulation process
of the arrival rate λ(t) and the theoretical curves given in Eq. (11) for a typical
increasing and decreasing transition. For a factory the exponential relaxation input
pattern represents a decision by management to reduce the influx to the new level
λ2 at time T0. However the immediate execution of the decision is restricted in
practice. This delay could be due to supply contracts that must be fulfilled at the
original level or that arrivals are the output of other production facilities which are,
for some reason, unable to alter their production schedule until their current WIP
is completed. This manifests itself in a slow decay/growth to the new rate level λ2

as individual production resource streams switch over to this new level in time.

1.2.2. Scenario 2: The Step. The step scenario is conceptually identical in setup
to the exponential relaxation case with a significant exception: At T0 the rate λ(t)
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Figure 2. DES and exact input patterns for a) a stepwise transi-
tion scenario and b) a cyclic input scenario.

changes from λ1 to λ2 without the wait for an arrival event, i.e.

λ(t) =

{
λ1 if t ≤ T0

λ2 if T0 < t.
(12)

This yields a true step-like behavior in λ(t) as seen in Figure 2(a) for a representa-
tive decreasing transition.

In order to produce a valid DES for this scenario we use simulation approaches
that are tailored to nonhomogenous Poisson processes such as thinning [10, 13].

In a factory, a step type input pattern is generated e.g. when the input stream is
a merger of two stochastic production streams and one of them is cut at T0. Hence
the arrival rate instantaneous changes to the arrival rate of the continuing arrival
stream.

1.2.3. Scenario 3: The Cycle. The third scenario we consider is a cyclic input.
Starting from an initial constant rate λ1 after t > T0 the input pattern λ(t) steadily
oscillates with a constant amplitude and frequency between the initial rate λ1 and
a minimum rate λ2. Precisely, the arrival rate is given by

λ(t) =

{
λ1 if t ≤ T0,
λ1−λ2

2 cos(ω(t− T0)) + λ2+λ1

2 if T0 < t.
(13)

The cyclic frequency ω is varied to generate DES inputs for various periods T = 2π
ω ,

yet with the same amplitude.
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Cyclic behavior is widespread in industry. In many industries, the supply of pro-
duction resources varies periodically over time. For simplicity, elementary Fourier
modes were chosen for the cyclic behavior assuming a spectral decomposition of
the input pattern. Figure 2(b) shows the averaged DES and the corresponding λ(t)
according to Eq. (13).

2. Results.

2.1. The first order PDE model does not create the correct outflux pat-
tern for stepwise changes of the influx. As a baseline we study the two step
scenarios for the first order model based on mass conservation

∂ρ
∂t + ∂F

∂x = 0,

F (x, t)) = ρ(x, t)v(t) = µρ(x,t)
1+W (t) ,

v(t) = µ
1+W (t) ,

W (t) =
∫ 1

0
ρ(x, t)dx,

F (0, t) = λ(t).

(14)

Figures 3 compares the DES simulations and the simulations of the partial differ-
ential equation (Eq. (14) ) for the stepwise transition scenario and the exponential
relaxation scenario for up and down transitions between λ = 0.3 and λ = 0.7. The
most glaring feature of the first order model is that it generates an inverse response:
large outflux spikes in the opposite direction of the transition. This is a result of
the non-local velocity. As mass enters/leaves the system the velocity changes, but
it does so at every point x identically and instantaneously. Therefore, the outflux
being the product of the density ρ and the velocity v at x = 1 will see an instan-
taneous increase/decrease based on the increase/decrease of v since the ρ advects
with finite speed.
We also notice that the transition downwards is modeled far worse than the tran-
sition upwards.

2.2. Second order models are better but not good. For convenience we sum-
marize the full second order model:

∂ρ(x,t)
∂t + ∂[v(x,t)ρ(x,t)]

∂x = 0,
∂v(x,t)
∂t + v(x, t)∂v(x,t)

∂x = 0,

ρ(x, 0) = λ1

µ−λ1
,

v(x, 0) = λ1

ρ(x,0) ,

ρ(0, t)v(0, t) = λ(t),
v(0, t) = µ

1+W (t) .

(15)

Comparing the DES in Figure 4 with PDE simulations in Figure 3 shows that the
second order model performs much better than the first order model. In particular,
the inverse response is gone since the velocity is now also advected and hence strictly
local. However there remain several troubling aspects:

• In all cases, the outflux of the PDE solution has a delay where it stays on the
old outflux λ1 much longer than the DES. Hence the outflux for the decreasing
production rate is too high initially, while in the increasing case it is too low
initially.

• In the cases of decreasing production, Fig. 4(a) and 4(b), the outflux of the
PDE model reaches the new steady states quicker than the DES. However, the
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Figure 3. DES simulations and solutions of the 1st order PDE
(Eq. (14)) for the exponential relaxation scenario and the stepwise
transition scenario for up and down transitions between λ = 0.3
and λ = 0.7.

resulting underproduction balances the overproduction in the previous item
and thus the total outflux of the two simulations is identical.

• The stepwise transition scenarios, Figure 4(b) and Figure 4(d) show an out-
flux pattern that on average looks like the outflux pattern of the exponential
relaxation scenario but instead of a continuous curve, we find a piecewise
constant outflux, adjusting to the new steady state outflux in steps.

The delayed change of the output for t > T0 and the piecewise constant output
pattern of the stepwise transition scenarios have the same cause: The velocity
equation (Burgers’ equation) describes advection of the velocity v with the speed
determined at the boundary x = 0. Hence all the wip that is in the factory at t = T0

will travel with the speed v = 1
µ−λ1

and hence the outflux at x = 1 is constant and

equal to λ1 until the charcteristic, emanating from x = 0, t = T0 reaches the end
of the domain at x = 1. For transitions starting at high influxes the travel time
through the domain is high and hence the delay is long, for transitions with low
influxes, the travel time is short and hence the delay is short.

In the exponential relaxation scenario the influx changes continuously and thus
the outflux shows only the intial delay step. For the stepwise transition scenario
the influx is a step function and hence the wip changes only when the step has
moved through the factory, leading to a repeat of the same piecewise constant and
stepwise change of the outflux until the new steady state has been reached.

2.3. Adding Diffusion to the Model. The completely hyperbolic second order
model, Eq. (15) with a step function influx advects the flux profile forward (Figure
4(b) and 4(d)) whereas the DES for the same scenario can be approximated by a
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Figure 4. DES simulations and solutions of the 2nd order PDE
(Eq. (15)) for the exponential relaxation scenario and the stepwise
transition scenario for up and down transitions between λ = 0.3
and λ = 0.7

smooth function. This suggests, that diffusion should be added to the model to
smooth out steps and corners.

Diffusion is added for the density variable in the mass conservation PDE leading
to

ρt(x, t) + [v(x, t)ρ(x, t)]x = Dρxx(x, t), (16)

keeping Burgers’ equation, the initial and the boundary conditions unchanged and
adding a non-flux boundary condition at the beginning of the queue that suppresses
any diffusion backwards out of the domain

ρx(0, t) = 0. (17)

By trial and error we determined an optimal diffusion coefficient of D = 0.1
where it seems the benefits of diffusion are maximal. Figure 5 shows what can be
achieved:

• The steps in the outflux as an initial delay or due to the discontinuous influx
are all gone.

• For any ramp up scenario the match between DES and PDE simulations is
very good.

• The ramp down scenarios develop a shock wave in the outflux.

2.4. Periodically driven hyperbolic PDEs have resonances, periodically
changing Poisson processes do not. The PDE and the DES for the exponential
and stepwise input pattern dealt entirely with the transient behavior of the queueing
system. Taking a cue from linear systems theory we are also interested in the sys-
tems response of the M/M/1 queue. Treating the queue as a linear operator (which
it clearly is not) we study the outflux (response of the system), its amplitude and
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Figure 5. DES simulations and solutions of the 2nd order PDE
with diffusion Eq. (16) for the exponential relaxation scenario and
the stepwise transition scenario for up and down transitions be-
tween λ = 0.3 and λ = 0.7. The diffusion coefficient is set at
D = 0.1.
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Figure 6. DES (blue) and PDE (red) outflux for cyclic influx with
range [0.3, 0.7] and period T = 12 with phase adjusted solution
(green).

phase shift, as a function of periodic inputs, represented by pure harmonic functions.

The input pattern has been described already in Eq(13) and is repeated here:

λ(t) =

{
λ1 if t ≤ T0,
λ1−λ2

2 cos(ω(t− T0)) + λ2+λ1

2 if T0 < t.
(18)
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Figure 6 shows a typical comparison between the DES (in blue) with this expected
influx and the corresponding PDE simulation (in red) using Eq. (18) with λ1 = 0.7,
λ2 = 0.3, and period T = 12. As in the previous transient simulations, there is
a delay between the onset of the oscillations in the outflux for the PDE model
compared to the DES. This delay leads to a phase shift between the two model
outfluxes. Correcting the PDE simulation for this constant phase shift leads to the
green curve that is in very good agreement with the periodic outflux generated by
the DES: the period of both solutions agree exactly, the maximum of the outflux
agrees in time and in value, both oscillations have a mean that agrees with the
mean of the influx (0.5). There is a slight difference in the minimum output where
the PDE simulation seems to be systematically lower than the DES by about 10%.
It is remarkable that even the transient decay to the steady oscillation is matched
well.

Following the concepts of systems response, we note that the amplitude of the
outflux oscillations in steady state are significantly smaller than the amplitude of
the influx oscillations, approximately 0.1 for the outflux, vs. 0.2 for the influx, i.e.
the queue, independently of the model, acts as a damper, reducing the variation of
the outflux.

Varying the influx amplitudes as well as the frequencies we find that: i) as long
as the queue is never close to being overloaded, i.e. λ(t) < µ, the output signal
always has one dominant frequency for both, the PDE simulations and the DES
and it looks close to a harmonic signal. ii) There is always a constant phase shift
determined by the steady state from which the cyclic experiment starts.

Amplitudes however, vary dramatically and the signal to noise ratio of the DES
is also strongly affected by the frequencies. For instance, Figure 7 shows the DES
outflux for a low frequency (T = 24) and a high frequency forcing (T = 1.2).
Clearly the steady state amplitudes of the outflux are much different from each
other. Additionally, the high frequency forcing leads to a much more noisy output.
Fourier analysis of the outflux confirms that the dominant frequency in this signal
is the frequency associated with the influx. However, the signal to noise ratio for
this frequency is much smaller than for the low frequency forcing.

We use the utilization u(t) = λ(t)
µ as a measure of the overall loading of the

factory. Focussing on the amplitudes of the steady state outflux oscillations, we
can calculate gain-function-like curves for different mean utilization, showing the
amplitude of the outflux scaled by the amplitude of the influx as a function of the
forcing frequencies.

We find that for small forcing frequencies (less than 0.2), DES and PDE simula-
tions have almost identical gain functions as illustrated in Figure 8.

For higher forcing frequencies a fundamental difference between the DES and
the PDE simulations emerges: A resonance appears in the PDE simulation (see
Fig. 8(b) and 8(c)), when the forcing period and the travel time for a wave though
the domain match and generate a resonant amplification of the outflux amplitude.
No such resonance is present for the periodically varying inhomogeneous Poisson
process that represents the influx into the queue.

The three figures (Fig. 8) differ by their mean loading: This has two effects: i)
for low utilization, the queue has lots of spare production capacity and hence will
dampen out any fluctuations in the input to generate an almost constant output
corresponding to the mean influx. Thus, although the relative error between the
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(b) T = 1.2.

Figure 7. DES outflux for cyclic influx with range [0.3, 0.7] and
slow and fast influx variations.
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Figure 8. Normalized output amplitude as a function of the in-
put frequency for DES and PDE simulations. a) mean utilization
ū = 0.6, b) ū = 0.5, c) ū = 0.4. We see resonances for the forcing
frequency to be approximately equal to the mean queuing frequen-
cies ν̄ = 0.5 in b) and ν̄ = 0.6 and a harmonic 2ν̄ = 1.2 for (c)
.

DES and the PDE is large in Fig. 8(c) the actual error is rather small as can be
inferred from the scale in the figure. ii) Since the cycle time in steady state is given
as τ = 1

µ−λ , and since in our simulations µ = 1, the mean frequency associated with

a queue ν̄ = 1
τ̄ is simply given as ν̄ = 1 − ū. Thus the resonance frequency shifts

and depends on the mean utilization.

3. Conclusion and open problems.

3.1. The second order model improves outflow prediction considerably.
We have shown that the second order supply chain model, derived in [2] considerably
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improves the match between the outflux of the PDE simulations and the DES.
Specifically we showed that for several different non-homogeneous Poisson influx
scenarios the mean sample path of the DES is much better represented by the
second order model than by the first order model. Especially when we add diffusion
then the step-up scenarios show an excellent match between PDE outflux and DES
outflux.

For cyclically varying inputs the difference between the outflux generated by the
PDE model and one generated by the DES reduces to a constant phase shift for an
influx that is not near a resonance of the PDE. From a practical point of view in
order to use the PDE model as an aggregate model for factory production, the con-
stant phase shift can easily be determined through short time window observations
and then used to adjust the PDE outflux accordingly.

3.2. Kinetic Theory and timescales. Some of the problems shown for the second
order model of an M/M/1 queueing system are fundamental to the whole concept
of kinetic models. Kinetic models in general assume ergodicity: time averages are
equal to ensemble averages. This is certainly true for gases where the relaxation
time of a specific initial condition is very short and hence all transport equations
for gases, electrons, etc typically are in an adiabatically evolving equilibrium unless
they are very rarified. This is typically not the case for supply chains or other
agent based simulations. Relaxation times in highly loaded queues are very long
and hence the initial conditions matter for a very long time.

Kinetic theory for processes with multiple timescales have been discussed before,
e.g. using an additional ODE to describe the time evolution of the environment in
[11]. However, the experiments that are studied still are characterized by the steady
state description of the state variables in a changing environment. Production
system modeling here is interested in the time evolution of the expected path of a
transient phenomenon.

Nevertheless, the promise of kinetic theory to have a deterministic equation whose
solution describes the average behavior of a stochastic system remains desirable.
In this case transient aggregate models require the determination of the expected
sample path for a variable like e.g. the ouflux of a queue as a function of time,
averaged over an ensemble of many experiments of the same type. This goal cannot
be reached via the solution of a PDE on a time scale for a hydrodynamic limit, if
there is no clear scale separation between the stochastic relaxation time and the
time scale on which the non-homogeneous Poisson process evolves.

While there is currently no complete theory to do deal with ensemble averages,
in some cases we have solutions:

• For instance, for the step scenarios in our examples, the PDE simulations
show a delay whereas the DES does not. The difference between the change
in outflux for the DES and for the PDE simulations is due to the fact that
the PDE has an initial condition that corresponds to a fixed queue length.
Thus the time it takes for any changes in the input to manifest themselves in
the output is equal to the mean waiting time in the queue. Figure 9 shows
good agreement between the queueing time for an M/M/1 queue λ

µ(µ−λ) as

a function of the influx λ and the simulated delays, measured in the PDE
simulations. We have shown previously [1] that averaging the PDE solutions
over the correct probability distribution for the initial values, will eliminate
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Figure 9. Delay between the PDE simulation and the DES for
the exponential relaxation scenario and the stepwise transition sce-
nario. The asterisks mark simulation results and the curve shows
the mean waiting time for an M/M/1 queue as a function of the
influx parameter λ.

the delay problem. We can also use this observation to determine the phase
shift of the cyclic input scenario analytically.

Note however, that this is a problem that generalizes to any non-homogeneous
Poisson process. As the PDE changes the influx at a time t = T0 , the PDE
has a unique and deterministic state given by its solution at the time t = T0

whereas the DES at that time has a probability distribution of states from
which it samples and that define the sample paths for t > T0.

• Similarly, if the timescale of the non-homogeneous Poisson process is long
enough to allow transients to settle before the influx changes, the match be-
tween DES and PDE will be very good. This is illustrated by the transient
decay of the oscillating outflux where PDE simulation and DES match very
well, once the phase shift due to the delay has been adjusted (Fig. 6).

• We have shown that diffusion may be a good modeling tool to introduce some
un-modeled stochastic effects. Results are particularly good if the stochastic
system is in a state that will relax quickly from an initial condition. Thus
ramping up from low utilization is characterized by a high velocity (small
cycle time) allowing diffusion to adjust the velocity and thus leading to great
matches between DES and PDE simulations. We have explored many different
steps up and down and found that diffusion is highly effective, even for steps
down, if the utilization is less then 0.5.

However, for steps down from high utilization diffusion leads to shock waves
that are not in the DES. The major constraint here is that for high utilization the
velocity is very small (high cycle time) and hence diffusion has to be restricted to
low values in order to not generate flows that flow back out of the domain. Future
work will determine whether asymmetric diffusion may resolve this problem.

Similar ideas shows up for the cyclic forcing: The second order model character-
izes a deterministic wave equation that includes a feedback from the outflux at x = 1
to the influx at x = 0 due to the boundary condition for the velocity v(0) = µ

1+W (t)

, Eq. (10). Thus it is subject to resonant forcing with all its typical results. At
the same time a stochastic transport process over finite lengths does not show any
resonance, not even anything similar to stochastic resonances, since typically parts
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move out of the domain relatively fast and are not subject to enough repeated col-
lisions that would amplify a response. It is an open issue how to modify a wave
equation such that it has a unique wave speed and at the same time is not subject
to resonant forcing.
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