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Abstract. We analyze the global convergence properties of the filtered spherical harmonic
(FPN ) equations for radiation transport. The well-known spherical harmonic (PN ) equations are
a spectral method (in angle) for the radiation transport equation and are known to suffer from
Gibbs phenomena around discontinuities. The filtered equations include additional terms to address
this issue that are derived via a spectral filtering procedure. We show explicitly how the global L2

convergence rate (in space and angle) of the spectral method to the solution of the transport equation
depends on the smoothness of the solution (in angle only) and on the order of the filter. The results
are confirmed by numerical experiments. Numerical tests have been implemented in MATLAB and
are available online.

1. Introduction. The purpose of this paper is to analyze the global convergence
properties of the filtered spherical harmonic (FPN ) equations [27, 34], a system of
hyperbolic balance laws that are used to model radiation transport. These equations
are a modification of the well-known spherical harmonic (PN ) system [10,24,33], which
is derived via a global spectral approximation in angle of the solution to the radiation
transport equation. Like any spectral approximation, the PN system may suffer from
Gibbs phenomena around discontinuities that can lead to highly oscillatory behavior
and even negative particle concentrations [7]. This fact is considered one of the major
drawbacks of the PN method. The natural way to address deficiencies in the PN
equations is to modify the spectral approximation; indeed, the PN approximation is
just a linear combination of spherical harmonics and is not guaranteed to be positive.

There are a variety of nonlinear approximations that ensure positivity. For ex-
ample, entropy-based methods [13,30] yield, among other things, positive approxima-
tions for low-order expansions and have produced promising results in several appli-
cations [4,14,16,25,32,39]. However, the implementation of high-order expansions is
computationally expensive because of the complicated relationship between the co-
efficients and the moments of the expansion [1, 2].1 Positivity can also be enforced
directly through inequality constraints [19] or by penalty methods [15]. However,
these approaches are also computationally expensive when compared to the PN equa-
tions. In addition, all of these methods still suffer from Gibbs-like phenomena around
discontinuities.

Another method that uses a positive approximation of the transport solution is the
quadrature method of moments (QMOM) [29]. Although the theoretical properties of
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this method are not well-understood, the solution algorithm is simple and relatively
fast. There are several variations of QMOM. (See, for example, [26] and references
therein.) One such variation, known as extended QMOM (EQMOM) has been used to
simulate thermal radiative transfer in one-dimensional slab geometries [41]. However,
its fidelity for multi-dimensional radiative transport problems has yet to be evaluated.

A very simple modification of the PN method, which does not significantly in-
crease the computational cost, is to dampen, or filter, the coefficients in the expansion.
Filtering has been widely used in conjunction with spectral methods to handle instabil-
ities and oscillations that often arise when simulating linear and nonlinear advection.
There are many papers on filtering in the literature. We refer the interested reader
to [5, 17,22] for analysis, further background, and a host of additional references.

Filters were first applied to the PN equations in [27, 28]. There it was observed
that the filtering process suppresses Gibbs phenomena in the spectral approximation
of the angular variable, leading to significantly improved results for several challenging,
multi-dimensional problems in radiative transfer. In its original form, the filter was
applied after each stage of a time integration scheme; unfortunately, this approach
is not consistent with any continuum equation in the limit of a vanishing time step.
However in [34], the strength of the filter was made to depend on the time step in
such a way as to give a modified system of equations in the continuum limit. This
new system contains an additional artificial scattering operator that is analogous
to the artificial viscosity induced by filtering methods for spatial discretizations of
hyperbolic equations [5]. As with the original discrete approach, the filter strength is
still an adjustable parameter. However, because of the consistent implementation, the
parameter can be tuned once on a relatively coarse mesh and then held fixed under
mesh refinement. In addition, the modified equations are more amenable to numerical
analysis than the original filtering procedure is.

The filtering approach does have some drawbacks. Unlike the other methods
discussed above, the filtered spectral approximation is not a projection, i.e., it is
lossy. In addition, the approximation is not strictly positive. Finally, there is no
optimal value for the filter strength; rather it may require adjustments for different
problems. What’s more, the “best value” of the filter strength depends on the local
solution: suppressing oscillations in some regions causes a loss of accuracy in others.
In spite of these drawbacks, the FPN equations are a promising tool for simulating
radiation transport due to their efficiency, overall accuracy, and simplicity.

In this paper, we analyze the global convergence properties of the FPN equations
derived in [34]. In particular, we show explicitly how the global L2 convergence rate
depends on the smoothness of the solution and the order of the filter. The analysis
results are confirmed by numerical experiments. Such results are a helpful guide for
practitioners who will use the equations for scientific simulation.

The remainder of the paper is organized as follows. In section 2, we introduce
the filtered spherical harmonic equations. In section 3, we state and prove our main
theorem, which gives the convergence rate of the filtered PN method. Finally, several
numerical tests are presented in section 4, to confirm the dependence of the conver-
gence rate on the regularity of the solution and the order of the filter.

2. Background. In this section we introduce the transport equation, the spher-
ical harmonics (PN ) equations, and the filtered spherical harmonic (FPN ) equations.
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2.1. Radiative Transport. We consider the Cauchy problem

∂tψ(t, x,Ω) + Ω · ∇xψ(t, x,Ω) + σa(x)ψ(t, x,Ω)− (Qψ)(t, x,Ω) = S(t, x,Ω) , (2.1a)

ψ(0, x,Ω) = ψ0(x,Ω) , (2.1b)

where the unknown ψ(t, x,Ω) gives the density of particles, with respect to the mea-
sure dΩdx, that at time t ∈ R are located at position x ∈ R3 and moving in the
direction Ω ∈ S2. The scattering operator Q describes the change in particle direction
due to collisions with a fixed background medium:

(Qψ)(t, x,Ω) = σs(x)

∫
S2
g(x,Ω · Ω′)ψ(t, x,Ω′)dΩ′ − ψ(t, x,Ω) , (2.2)

where for each x, g(x, ·) is a non-negative probability density on the interval [−1, 1].
Thus Q is an integral operator in Ω, but local in x and t.

For each fixed x and t, Q is a self-adjoint, bounded linear operator from L2(S2)
to itself. It has a nontrivial null space comprised of functions that are constant with
respect to Ω. Orthogonal to the null space, −Q is coercive—that is, there exits a
constant c > 0 such that∫

S2
h(−Qh)dΩ ≥ c‖h‖2L2(S2) for all h ∈ [Null(Q)]⊥ . (2.3)

These properties are standard results in kinetic transport theory; their proofs can be
found e.g. in [12, Chapter XXI] or in [11].

In what follows we use the abstract notation T ψ = S for (2.1a), where T de-
notes the linear integro-differential operator on the left-hand side. We also use angle
brackets as a short-hand for angular integration over S2:

〈·〉 =

∫
S2

(·) dΩ . (2.4)

2.2. Spherical Harmonic (PN) Equations. The spherical harmonic (PN )
equations are derived from a spectral Galerkin discretization of the transport equation,
using spherical harmonic functions as a basis. These functions and their properties
are classical (see, for example, [3, 31]), but for completeness we briefly describe them
here. We write

Ω = (Ω1,Ω2,Ω3)T = (
√

1− µ2 cos(ϕ),
√

1− µ2 sin(ϕ), µ)T , (2.5)

where µ := Ω3 ∈ [−1, 1] and ϕ ∈ [0, 2π) is the angle between the x1-axis and the
projection of Ω onto the x1-x2 plane. Given integers ` ≥ 0 and k ∈ [−`, `], the
normalized, complex-valued spherical harmonic of degree ` and order k is expressed
in terms of µ and ϕ as

Y k` (Ω) =

√
2`+ 1

4π

(`− k)!

(`+ k)!
eikϕP k` (µ) , (2.6)

where P k` is an associated Legendre function. The primary motivation for using the
spherical harmonics is that they form a complete set of eigenfunctions for Q:

QY k` = σs(g` − 1)Y k` , ` = 0, 1, 2, . . . and k = −`, . . . , 0, . . . , ` , (2.7)
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where g` = 2π
∫ 1

−1
P`g(µ, ·)dµ and P` is the degree ` Legendre polynomial with nor-

malization
∫ 1

−1
P 2
` dµ = 2

2`+1 . The eigenvalue relation (2.7) is derived by expanding
the kernel g in Legendre polynomials and then applying the addition formula for
spherical harmonics (see, for example, [23, Appendix A] or [24]), and it reduces the
approximation of Q in the Galerkin method from an O(N2) to an O(N) operation.

For convenience, we use the real-valued spherical harmonics which, up to a nor-
malization factor, are the real and imaginary parts of each Y k` :

mk
` =


(−1)k√

2
(Y k` + (−1)kY −k` ) , k > 0 ,

Y 0
` , k = 0 ,

− (−1)ki√
2

(Y −k` − (−1)kY k` ) , k < 0 .

(2.8)

We collect the n` := 2`+ 1 real-valued harmonics of degree ` together into a vector-
valued function m` and then for given N , set m = (m0,m1, . . . ,mN ). In all, m has

n :=
∑N
l=0 nl = (N + 1)2 components which form an orthonormal basis for the space

PN =

{
N∑
`=0

∑̀
k=−`

ck`m
k
` : ck` ∈ R for 0 ≤ ` ≤ N, |k| ≤ `

}
. (2.9)

Finally, the spherical harmonics fulfill a recursion relation of the form

Ωim` = a
(i)
`+1m`+1 +

(
a

(i)
`−1

)T
m`−1 , where a

(i)
` ∈ R(2`−1)×(2`+1). (2.10)

More details, including exact expressions for the matrices a
(i)
` , can be found in the

appendix.
The PN equations are derived by approximating ψ by a function ψPN

∈ PN :

ψ ≈ ψPN
≡mTuPN

, (2.11)

where uPN
: R× R3 3 (t, x) 7→ uPN

(t, x) ∈ Rn solves

〈mT (mTuPN
(t, x)〉 = s(t, x) , (t, x) ∈ (0,∞)× R3 , (2.12a)

uPN
(0, x) = 〈mψ0(x, ·)〉 , x ∈ R3 , (2.12b)

and s := 〈mS〉. Using (2.1a), the system (2.12a) can be written more explicitly as

∂tuPN
+ A · ∇xuPN

+ σauPN
− σsGuPN

= s, (2.13)

where A := 〈mmTΩ〉, G is diagonal with components G(`,k),(`,k) = g` − 1, and we
have used the fact that 〈mmT 〉 = I. The inner product between A and the gradient
is understood as

A · ∇x ≡
3∑
i=1

Ai∂xi
. (2.14)

where Ai = 〈mmTΩi〉. Moreover, due to the recursion relation (2.10), the structure
of the matrices Ai is very specific:

Ai =


0 a

(i)
1(

a
(i)
1

)T
0 a

(i)
2

. . .
. . .

. . .(
a

(i)
N+1

)T
0

 . (2.15)
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2.3. Filtered Spherical Harmonic (FPN) Equations. The filtered spheri-
cal harmonics (FPN ) method was originally introduced as a modification in a time
integration scheme [27,28]. After each time step, the spherical harmonic expansion is
filtered, using for example a spectral spline filter. It was later shown [34] that if the
filtering function is raised to some strength parameter depending on the time step
∆t, then the filtering procedure is consistent with a set of modified equations. Before
presenting these equations, we first introduce the definition of a filter:

Definition 1. A filter of order α is a real-valued function f ∈ Cα(R+) that
satisfies

(i) f(0) = 1 , (ii) f (a)(0) = 0, for a = 1, . . . , α− 1 , (iii) f (α)(0) 6= 0. (2.16)

Remark 1. There are several slightly different definitions of a filter in the lit-
erature [5, 9, 21, 22, 34, 40]. In [22] a filter of order α is a real-valued, even function
f ∈ Cα−1(R) that, in addition to conditions (i) and (ii) above, satisfies

(iv) f(η) = 0 for |η| ≥ 1 and (v) f (a)(1) = 0 for a = 0, 1, . . . , α− 1. (2.17)

Conditions (i) and (ii) are essential to every filter, but the other requirements may
vary slightly. Commonly used filters are additionally strictly monotone decreasing on
the interval [0, 1] and smoother than required. At the same time, some filters do not
satisfy conditions (iv) or (v). For example, neither the fourth order spherical spline
filter, f(η) = 1

η4+1 , nor the exponential filter of order α:

f(η) = exp(cηα) with c = log(εM ), (2.18)

where εM is the machine accuracy, satisfy these conditions. Since filtering functions
like the exponential filter are suitable for our purposes, we neglect conditions (iv) and
(v) in the above definition. Condition (iii) has been added so that the filter order
becomes a unique property.

Assumption 1. In what follows, we make the additional technical assumption
that the filter f satisfies

(vi) f(η) ≥ C(1− η)k , η ∈ [η0, 1] (2.19)

for some k ≥ 0, some constant C, and some η0 ∈ (0, 1). This condition will be used
in the proof of Theorem 3.3.

Remark 2. Filters in the sense of Definition 1 that satisfy Assumption 1 include
the exponential filter (which we use in computations) or any Cα-function that satisfies
conditions (i)-(v) above.

In [34], the truncated filtered spherical harmonic expansion of a function Φ with
expansion coefficients Φk` is given by

N∑
`=0

∑̀
k=−`

(
f
(

`
N+1

))σf∆t

Φk`m
k
` , (2.20)

where f is the filter and σf∆t is a filter strength that is tuned by the selection of the
filtering cross-section σf or, equivalently, the filter effective opacity

feff = σf log
(
f
(

N
N+1

))
. (2.21)
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The dependence of the filter strength on ∆t allows one to express, in the formal limit
∆t→ 0, the filtered spherical harmonic (FPN ) equations in the following continuum
form [34]:

∂tuFPN
+ A · ∇xuFPN

+ σauFPN
− σsGuFPN

− σfGfuFPN
= s, (2.22)

where Gf is a diagonal matrix with components (Gf)(`,k),(`,k) = log
(
f
(

`
N+1

))
. Back

in the abstract notation, (2.22) can be written as

〈mT (ψFPN
)〉 − 〈mQf(ψFPN

)〉 = s, (2.23)

where the operator Qf depends on Gf :

Qf(Φ) = σfm
TGf〈mΦ〉. (2.24)

In a way, the FPN equations can be viewed as a Galerkin method for the transport
equation (2.1a), but with an additional scattering operator that depends on N .

3. Error Estimate. In this section we analyze the L2 convergence of the FPN
method. This will require assumptions on the regularity of the transport solution.

3.1. Preliminaries. We begin by defining the spaces and operators that will
be used in the analysis, using Φ and u to denote generic scalar and vector-valued
functions.

• For any nonnegative integer q, Hq(S2) denotes the Sobolev space on the unit
sphere with norm

‖Φ‖Hq(S2) :=

∑
|α|≤q

∫
S2
|DαΦ(Ω)|2dΩ

1/2

. (3.1)

where the sum is over integer multi-indices α and the case q = 0 recovers
the regular L2 norm on S2. An equivalent weighted L2 norm can be derived
using the Beltrami (surface Laplacian) operator

L =
∂

∂µ

(
(1− µ2)

∂

∂µ

)
+

1

1− µ2

∂2

∂ϕ2
, (3.2)

for which the spherical harmonics are also eigenfunctions:

Lmk
` = −λ`mk

` , λ` = `(`+ 1). (3.3)

Therefore, the expansion coefficients Φk` := 〈mk
`Φ〉 of any function Φ ∈

H2q(S2) satisfy

Φk` = 〈mk
`Φ〉 =

1

(−λ`)q
〈(Lqmk

` )Φ〉 =
1

(−λ`)q
〈mk

`LqΦ〉 , (3.4)

where the last equality in (3.4) follows from the differentiability of Φ and the
fact that the Beltrami operator is self-adjoint. Therefore

Φ 7→

( ∞∑
`=0

∑̀
k=−`

`q(`+ 1)q|Φkl |2
)1/2

=

( ∞∑
`=0

`q(`+ 1)q
∑̀
k=−`

|Φkl |2
)1/2

(3.5)

defines an equivalent norm on Hq(S2) that can then be extended to non-
integer values of q [17, p. 317]. This norm will be used in the proofs of
Theorems 3.3 and 3.4.
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• For vectors u ∈ Rn we define the Euclidean norm in the usual way: ‖u‖Rn =√
uTu. Since 〈mmT 〉 = I, it follows that ‖mTu‖L2(S2) = ‖u‖Rn .

• For functions of space and angle, we define the space L2(R3;Hq(S2)) by the
norm

‖Φ‖L2(R3;Hq(S2)) :=

∑
|α|≤q

∫
R3

∫
S2
|DαΦ(Ω)|2dΩdx

1/2

. (3.6)

For vector-valued functions of space, we define L2(R3;Rn) by

‖u‖L2(R3;Rn) :=

(∫
R3

u(x)Tu(x)dx

)1/2

. (3.7)

• Finally, we add time dependence. We define the space C0([0, T ];L2(R3;Hq(S2)))
by

‖Φ‖C0([0,T ];L2(R3;Hq(S2))) := sup
t∈[0,T ]

∑
|α|≤q

∫
R3

∫
S2
|DαΦ(t, x,Ω)|2dΩdx

1/2

(3.8)
and C0([0, T ];L2(R3;Rn)) by

‖u‖C0([0,T ];L2(R3;Rn)) := sup
t∈[0,T ]

(∫
R3

u(t, x)Tu(t, x)dx

)1/2

. (3.9)

• The mapping

PNΦ = mT 〈mmT 〉−1〈mΦ〉 = mT 〈mΦ〉 (3.10)

is the L2-orthogonal projection of a generic function Φ ∈ L2(S2) onto PN .
For any non-negative integer `,

(P` − P`−1)Φ = mT
` 〈m`m

T
` 〉−1〈m`Φ〉 = mT

` 〈m`Φ〉 (3.11)

is the L2-orthogonal projection of Φ onto the space of homogeneous polyno-
mials in Ω of degree `. It is easy to show that

‖〈m`Φ〉‖Rn` ≡ ‖(P` − P`−1)Φ‖L2(S2) ≤ ‖(I − P`)Φ‖L2(S2) (3.12)

and the equivalent Hq norm in (3.5) is equal to
∑∞
`=0 `

q(`+ 1)q‖〈m`Φ〉‖2Rn` .

A standard existence and uniqueness result for the transport equation is
Theorem 3.1 ( [12, Theorem XXI.2.3]). Let

σs, σa ∈ L∞(R3) with σs, σa ≥ 0. (3.13)

Let the initial condition ψ0 be such that

ψ0 ∈ L2(R3;L2(S2)) and Ω · ∇xψ0 ∈ L2(R3;L2(S2)). (3.14)

Furthermore, let the source S satisfy

S ∈ C1([0, T ];L2(R3;L2(S2)). (3.15)
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Then there exists a unique solution that satisfies

u ∈ C1([0, T ];L2(R3;L2(S2))) and Ω · ∇xψ ∈ C0([0, T ];L2(R3;L2(S2))). (3.16)

Remark 3. The assumptions of the Theorem can be weakened to allow for initial
conditions that are not in the domain of the advection operator Ω · ∇x. Then there
exists a C0 solution. However, the convergence results below require estimates on
the spatial gradient of ψ and additional regularity in angle. As Theorem 3.1 is a
semigroup result, this could be achieved by additional regularity in the initial condition,
see e.g. [6, Theorem 7.5]. In all our numerical examples, the initial condition is either
zero or smooth.

The FPN equations are a symmetric hyperbolic system. Thus if the initial value
uFPN

(0, ·) ∈ L2(R3;Rn), then a straight-forward Fourier analysis (see [38, Chapter
3]) shows that there is a unique solution uPN

∈ C0([0, T ];L2(R3;Rn)) and that, in
the absence of a source, ‖uFPN

‖L2(R3;Rn) is bounded uniformly in time by the initial
data. However, with the assumptions of Theorem 3.1, more can be said.

Theorem 3.2. Let uFPN
(0, x) = 〈mψ0〉 and s = 〈mS〉, where ψ0 and S satisfy

(3.14) and (3.15), respectively. Then there exists a unique solution that satisfies

uFPN
∈ C1([0, T ];L2(R3;Rn)) and A · ∇xuFPN

∈ C0([0, T ];L2(R3;Rn)). (3.17)

This result follows from standard semigroup theory (see, e.g., [6, Theorem 7.4]). The
regularity provided by (3.17) is sufficient for the analysis that follows.

3.2. Main Result. We now state and prove the main convergence result.
Theorem 3.3. Assume the transport solution ψ satisfies the additional regularity

conditions

ψ ∈ C0([0, T ];L2(R3;Hq(S2))) and ∂xi
ψ ∈ C0([0, T ];L2(R3;Hr(S2))) , (3.18)

for each i ∈ {1, 2, 3}, where r and q are positive constants. Let ψFPN
= mTuFPN

be
the reconstructed solution to (2.23). Then for any t ∈ [0, T ],

‖ψ(t, ·, ·)− ψFPN
(t, ·, ·)‖L2(R3;L2(S2)) ≤ ‖ψ(t, ·, ·)− PNψ(t, ·, ·)‖L2(R3;L2(S2))

+ t
{
‖aN+1 · ∇x〈mN+1ψ〉‖C0([0,T ];L2(R3;R2N+1)) + σf‖Gf〈mψ〉‖C0([0,T ];L2(R3;Rn))

}
,

(3.19)

and as N →∞, we have the following rates:2

‖ψ(t, ·, ·)− PNψ(t, ·, ·)‖L2(R3;L2(S2)) ≤ CN−q , (3.20a)

‖aN+1 · ∇x〈mN+1ψ〉‖C0([0,T ];L2(R3;R2N+1)) ≤ CN−r , (3.20b)

‖Gf〈mψ〉‖C0([0,T ];L2(R3;Rn)) ≤

{
CN−q+1/2, α > q − 1

2

CN−α+ε ∀ε > 0, α ≤ q − 1
2

.

(3.20c)

Theorem 3.3 allows one to predict the order of convergence of the FPN solution as
N → ∞, depending on the order of the filter α and the smoothness of ψ. The term

2Throughout the paper, we use C as a generic positive constant.
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in (3.20a) is the projection error. We refer to the term in (3.20b) as the closure error,
and the term in (3.20c) as the filter error.

The remainder of this section is dedicated to proving Theorem 3.3. The strategy
is a Galerkin-type estimate similar to [35]. As is standard, we split the total error
into the projection error and a remainder that is an element of PN :

ψ − ψFPN
= (ψ − PNψ) + mT r, (3.21)

where r = 〈m(PNψ−ψFPN
)〉 = 〈mTψ〉 −uFPN

inherits the regularity in (3.17). The
first step is to control r.

Lemma 1. Let ψ be the exact solution to (2.1a) and ψFPN
= mTuFPN

be the
solution to (2.23). Then for any t ∈ [0, T ], the residual vector r in (3.21) satisfies the
estimate

‖r(t, ·)‖L2(R3;Rn) ≤ t
{
‖aN+1 · ∇x〈mN+1ψ(t, ·, ·)〉‖C0([0,T ];L2(R3;R2N+1))

+σf‖Gf〈mψ(t, ·, ·)〉‖C0([0,T ];L2(R3;Rn))

}
. (3.22)

Proof. The proof is essentially a calculation. We apply T to (3.21), then multiply
by mT r and integrate in angle. Since ψ is the exact transport solution, 〈mT (ψ)〉 = s.
Combined with (2.23), this gives for the left-hand side of (3.21)

〈mT r T (ψ − ψFPN
)〉 = −〈mT rQf(ψFPN

)〉 (3.23a)

= −〈mT rQf(PNψ)〉 − 〈mT rQf(m
T r)〉 (3.23b)

Equating this to the result for the right-hand side, we find

〈mT rT (mT r)〉 − 〈mT rQf(m
T r)〉 = −〈mT rT (ψ −PNψ)〉 − 〈mT rQf(PNψ)〉. (3.24)

The individual terms in (3.24) can be explicitly computed:

〈mT rT (mT r)〉 = 1
2∂t|r|

2 + 1
2∇x · 〈Ω|m

T r|2〉+ σa|r|2 − σsr
TGr (3.25a)

〈mT rQf(m
T r)〉 = σfr

TGfr (3.25b)

〈mT rT (ψ − PNψ)〉 = 〈mT rΩ · ∇x(ψ − PNψ)〉 = rTNaN+1 · ∇x〈mN+1ψ〉 (3.25c)

〈mT rQf(PNψ)〉 = σfr
TGf〈mψ〉 (3.25d)

In (3.25c), we have used the notation defined in (2.14) and the recursion relation of
the spherical harmonics in (2.10). After integration with respect to x we obtain

1
2∂t

∫
R3

|r|2dx = −
∫
R3

rTNaN+1 ·∇x〈mN+1ψ〉dx−σf

∫
R3

rTGf 〈mψ〉dx−
∫
R3

rTMrdx.

(3.26)
where M := σaI− σsG− σfGf is positive definite. This implies that

∂t‖r‖L2(R3;Rn) ≤ ‖aN+1 · ∇x〈mN+1ψ〉‖L2(R3;R2N+1) + σf‖Gf〈mψ〉‖L2(R3;Rn) , (3.27)

and the result in (3.22) follows immediately.
The next step is to prove the convergence rates in (3.20). The projection error rate

in (3.20a) is well known (see, for example, [17,18]) and the result in (3.20b) follows a
similar argument. We rederive these rates for completeness. Our convergence proof
for the filter error follows the approach used in [20]. For all three cases, we utilize the
equivalent Hq norm in (3.5) to simplify the presentation.
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Projection error. Using equation (3.4) and Parseval’s identity, the projection error
satisfies

‖ψ(t, ·, ·)− PNψ(t, ·, ·)‖2L2(R3;L2(S2)) =

∫
R3

∞∑
`=N+1

∑̀
k=−`

|ψk` (t, x)|2dx

≤ 1

(N + 1)2q

∫
R3

∞∑
`=N+1

∑̀
k=−`

`2q|ψk` (t, x)|2dx

≤ C

N2q
‖ψ(t, ·, ·)‖2L2(R3;Hq(S2)).

(3.28)

Closure error. We note first that for each i ∈ {1, 2, 3}, the scalar elements a
(i)
N+1

are all bounded independently of N . Moreover, the number of nonzero components
in any row or column is also bounded independently of N (see the appendix for more

details). Thus ‖a(i)
N+1‖2 ≤ ‖a

(i)
N+1‖1‖a

(i)
N+1‖∞ is uniformly bounded in N , and under

the conditions of Theorem 3.3,

‖aN+1 · ∇x〈mN+1ψ(t, ·, ·)〉‖2L2(R3;R2N+1) ≤ C
3∑
i=1

‖〈mN+1∂xiψ(t, ·, ·)〉‖2L2(R3;R2N+3)

= C

3∑
i=1

‖(PN+1 − PN )(∂xi
ψ(t, ·, ·))‖2L2(R3;L2(S2))

≤ C
3∑
i=1

‖(I − PN )(∂xi
ψ(t, ·, ·))‖2L2(R3;L2(S2))

≤ C

N2r

3∑
i=1

‖∂xi
ψ(t, ·, ·)‖2L2(R3;Hr(S2)) ,

(3.29)
where we have used (3.12) and the estimate of the projection error in (3.28), replacing
q by r and ψ by ∂xi

ψ. Taking the supremum over all t ∈ [0, T ] on both sides yields
the desired rate.

Filter error. The filtering error satisfies

‖Gf〈mψ(t, ·, ·)〉‖2L2(R3;Rn) =

N∑
`=0

log2
(
f
(

`
N+1

))
‖〈m`ψ(t, ·, ·)〉‖2L2(R3;Rn` )

=

N∑
`=1

log2
(
f
(

`
N+1

))
‖(P` − P`−1)ψ(t, ·, ·)‖2L2(R3;L2(S2))

= C

N∑
`=1

log2
(
f
(

`
N+1

))
‖(I − P`−1)ψ(t, ·, ·)‖2L2(R3;L2(S2))

≤ C
N∑
`=1

log2
(
f
(

`
N+1

)) 1

`2q
‖ψ(t, ·, ·)‖2L2(R3;Hq(S2)) .

(3.30)
where we have again used (3.12) and the estimate of the projection error in (3.28). It
remains to find an estimate for the sum in the last term of (3.30). We follow the strat-
egy in [21], approximating this sum with a Riemann integral and then determining

10



conditions under which the integral is bounded. For any θ ≤ 2q,

N∑
`=1

log2
(
f
(

`
N+1

)) 1

`2q
≤ 1

(N + 1)θ−1

1

N + 1

N∑
`=1

log2
(
f
(

`
N+1

)) (
N+1
`

)θ
︸ ︷︷ ︸

=:Σ

. (3.31)

The quantity Σ is a Riemann sum corresponding to the integral∫ 1

0

log2 (f(η)) η−θdη , (3.32)

where the integrand is singular at η = 0 and η = 1. The singularity at η = 1 is
because of the logarithm and is integrable under Assumption 1. The singularity at
η = 0 is polynomial; for it to be integrable, one must impose additional conditions
relating θ and the filter order α. A Taylor expansion of f around η = 0 yields

log f(η) = log

(
f(0) + ηf ′(0) + . . .+ ηα

f (α)(ξ)

α

)
= log

(
1 + ηα

f (α)(ξ)

α!

)
(3.33)

for some ξ ∈ [0, η]. Thus log f(η) ≤ Cηα for η positive, but sufficiently small. As a
consequence, the singularity at η = 0 will be integrable if and only if

θ < 2α+ 1 . (3.34)

There are two cases:
Case 1: α > q − 1

2 . In this case, convergence is limited by the regularity of ψ,
and (3.34) is valid for all θ ≤ 2q. In particular, for θ = 2q, we obtain from
(3.31) the estimate ‖Gf〈mψ〉‖C0([0,T ];L2(R3;Rn)) ≤ CN−q+1/2.

Case 2: α ≤ q − 1
2 . In this case, convergence is limited by the filter order, and

(3.34) is valid only for θ = 2α+1−δ, where δ > 0 is arbitrary. We obtain from
(3.31) the estimate ‖Gf〈mψ〉‖C0([0,T ];L2(R3;Rn)) ≤ CN−α+ε, where ε = δ/2.

This completes the proof of Theorem 3.3.

3.3. A Sharper Estimate. The estimates of the closure filter errors in the
previous section rely on the projection error estimate and the conservative bound of
the projection P`−P`−1 that is expressed in (3.12). However, in the numerical results
below, we observe faster decay rates that lead to sharper overall estimates.

Theorem 3.4. In addition to the assumptions of Theorem 3.3, suppose that for
all ` > 0,

‖〈m`ψ〉‖C0([0,T ];L2(R3;Rn` )) ≤
C

`q+1/2
and ‖m`∂xi

ψ‖C0([0,T ];L2(R3;Rn` )) ≤
C

`r+1/2
, i ∈ {1, 2, 3}.

(3.35)
Then the rates in (3.20b) and (3.20c) of Theorem 3.3 can be sharpened to

‖aN+1 · ∇x〈mN+1ψ〉‖C0([0,T ];L2(R3;R2N+1)) ≤ CN−r−
1
2 (3.36)

‖Gf〈mψ〉‖C0([0,T ];L2(R3;Rn)) ≤

{
CN−q, α > q

CN−α+ε ∀ε > 0, α ≤ q
. (3.37)
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Proof. The proof is a trivial modification of the Theorem 3.3 proof. One simply
needs to insert the bounds assumed in (3.35) into the appropriate place.

Remark 4. The decay rates in (3.35) cannot be deduced from the Sobolev index
alone. However, given sufficient smoothness, a subsequence of the expansion coeffi-
cients will always satisfy (3.35).3 On the other hand, the decay rates in (3.35) imply
that ψ ∈ C0([0, T ];L2(R3;Hq∗(S2))) and ∂xi

ψ ∈ C0([0, T ];L2(R3;Hr∗(S2))), respec-
tively, for any q∗ < q and r∗ < r.

4. Numerical Results. In this section, we compute the numerical rate of con-
vergence for several test cases in two spatial dimensions (five dimensions total, in-
cluding time). Here it is assumed that ψ is constant in x3. Thus we fix x3 and, in an
abuse of notation, set x = (x1, x2) and adapt the relevant definitions in Section 3.1
from R3 to R2. Beyond this, the results of Theorems 3.3 and 3.4 are unchanged.

The numerical calculations are performed using a modification of the code StaRMAP
[37], which was originally designed for solving the PN equations, but is easily modified
for FPN computations. The original code implements a fully-discrete, second-order,
L2-stable method that places even (uk` with k even) and odd components (uk` with
k odd) on staggered grids and then uses central finite differences on one grid to ap-
proximate spatial gradients on the other. This is possible due to the specific coupling
of the unknowns, which also enables a time stepping via a splitting of the sub-steps.
In particular, the even components can be evaluated exactly if the odd components
are assumed to be constant and vice-versa. Each time step ∆t requires four substeps:
updating the odd components by ∆t/2, updating twice the even components (∆t/2
each time), then again updating the odd components by ∆t/2. The size of the time
step is related to the spatial resolution dx through the hyperbolic CFL condition
∆t = 0.99∆x/|λmax|, where |λmax| is the largest eigenvalue among the matrices Ai

defined in (2.15).

To modify the code for the FPN equations, we use (2.20), applying the filter f
in each substep to the components that are updated in that substep. Filtering all
components after a full solution time step with doubled filter strength yields similar
results. The source code for all examples in this paper is available to the reader
online [36].

We consider three test cases, each of which is designed to reveal one of the rates
in Theorem 3.4. The Gaussian test has a smooth solution, so we expect a convergence
rate determined by the filter order α. In the lattice test, we numerically determine the
Sobolev indexes q and r of the true solution and its derivative; the convergence of the
FPN solution is determined by these indices. The hemisphere test has a solution that
is smooth in space but discontinuous in angle; here the convergence order depends on
the Sobolev index q.

For each test case, we compute both the PN and FPN solutions. The latter
are computed using the exponential filter, cf. (2.18), using an effective filter opacity
feff = 10 and several different filter orders: α ∈ {2, 4, 8, 16}. The final time for

3For example, let the sequence {a`}∞`=0 be non-negative. Then the convergence of the series∑∞
`=0 `

2qa2` does not imply |a`| ≤ C`−(q+1/2); consider for instance the counterexample

a` =

{
`−(q+1/4), for ` = 4j , j ∈ {1, 2, . . .} ,
`−q

2`
, otherwise .

In fact, a` does not necessarily need to be bounded by C`−(q+γ) for any γ > 0. However, any
subsequence of a` will always decay faster than `−(q+1/2).
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Filter order
Gaussian Lattice Hemisphere
E65

33 R65
33 E33

17 R33
17 E33

17 R33
17

2 1.92 1.92 1.05 1.04 0.58 0.52
4 3.98 3.98 1.05 1.04 0.61 0.52
8 8.00 8.00 1.07 1.07 0.63 0.56
16 15.99 15.99 1.09 1.20 0.64 0.64
∞ 18.32 17.43 1.02 0.95 0.65 0.96

Table 4.1: Approximate order of convergence for different filter orders and test cases.
Spatial resolution 150× 150 (Gaussian, hemisphere), 250× 250 (lattice). Filter order
of ∞ means that no filter is applied.

each problem is chosen so that the boundary does not affect the solution. Although
Theorem 3.4 actually gives an estimate for the error in the C0([0, T ])-norm in time,
we consider the error at a fixed final time. We however observe the expected rates.

We denote by EN and RN the norm of the total and projected error, respectively:

EN = ‖ψ − ψN‖L2(R2;L2(S2)) =

( ∞∑
`=0

∑̀
k=−`

∫
R2

|ψk` (x, t)− (ψN )k` (x, t)|2dx

) 1
2

, (4.1)

RN = ‖Pψ − ψN‖L2(R2;L2(S2)) =

(
N∑
`=0

∑̀
k=−`

∫
R2

|ψk` (x, t)− (ψN )k` (x, t)|2dx

) 1
2

, (4.2)

where ψN is either ψFPN
or ψPN

.4 To estimate EN and RN we use the trapezoidal
rule for the integrals and we approximate ψ by a PNtrue

solution, with Ntrue � N
sufficiently large. Thus the reference solution has a sharply higher angular resolution
than ψFPN

and ψPN
but the same spatial resolution.

The error terms EN and RN are determined for different values of N , and we
estimate the rate of convergence from two values N1 and N2 by

EN2

N1
= − log(EN1

)− log(EN2
)

log(N1)− log(N2)
and RN2

N1
= − log(RN1

)− log(RN2
)

log(N1)− log(N2)
. (4.3)

The spatial resolution is chosen so that the space-time errors are negligibly small. To
check this, we have performed a grid convergence study. A summary of the results is
given in Table 4.1 and, with doubled spatial resolution, in Table 4.2.

According to Theorem 3.4, the order of EN and RN are given by

With filter: EN ∼ RN = O(N−min{q,r+ 1
2 ,α}).

Without filter: EN = O(N−min{q,r+ 1
2}), RN = O(N−(r+ 1

2 )).
(4.4)

In particular, both depend on the regularity of the solution, which is given by the
values q and r. To obtain an estimate for these values, we estimate the order of
decay for the moments of the solution and their differentials, cf. Lemma 1. Thus, we

4 It can be shown that since ψ is independent of x3, it is also invariant under the mapping
Ω3 7→ −Ω3. As a consequence, moments with respect to mk` vanish whenever `+ k is odd. The total
number of nonzero moments that remain is (N + 1)(N + 2)/2.
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Filter order
Gaussian Lattice Hemisphere
E65

33 R65
33 E33

17 R33
17 E33

17 R33
17

2 1.92 1.92 1.04 1.04 0.59 0.52
4 3.98 3.98 1.05 1.07 0.62 0.52
8 8.00 8.00 1.04 1.13 0.64 0.58
16 15.99 15.99 1.03 1.20 0.65 0.64
∞ 17.87 16.94 0.99 0.96 0.66 0.96

Table 4.2: Approximate order of convergence for different filter orders and test cases.
Spatial resolution 300× 300 (Gaussian, hemisphere), 500× 500 (lattice). Filter order
of ∞ means that no filter is applied.

approximate

B` := ‖〈m`ψ〉‖L2(R2,Rn` ) and D` :=

(
3∑
i=1

‖〈m`∂xiψ〉‖2L2(R2,Rn` )

)1/2

(4.5)

by using again the reference solution PNtrue
to estimate ψ and the trapezoidal rule to

approximate the spatial integrals. As in (4.3), we use specific data points to define
approximate decay rates

BN2

N1
= − log(BN1

)− log(BN2
)

log(N1)− log(N2)
and DN2

N1
= − log(DN1

)− log(DN2
)

log(N1)− log(N2)
. (4.6)

Using (3.35), we approximate

q ≈ BN2

N1
− 0.5 and r ≈ DN2

N1
− 0.5 . (4.7)

4.1. Gaussian test. This first test case has smooth input data to show that the
convergence order of the FPN solution is bounded by the filter order α. All moments
are initially zero, except the first:

uk` =

{
1

4π×10−3 exp
(
− x2+y2

4×10−3

)
, k = ` = 0

0 , otherwise.
(4.8)

The medium is purely scattering, with σt = σs = 1. The computational domain
is [−0.6, 0.6]× [−0.6, 0.6] and the solution is computed on a 300× 300 spatial grid (or
150×150 for Table 4.1) up to time t = 0.4. Errors are computed using a P99 reference
solution. Since the initial condition is smooth, we expect spectral convergence for the
PN solution and a convergence order equal to the filter order for both E and R. This
behavior is clearly confirmed in Table 4.3, where we observe that the convergence order
increases until it reaches filter order or until the error reaches machine precision.

4.2. Lattice test. The lattice test was first proposed in [8]. It contains source
terms and material cross-sections that are discontinuous in space. Due to the coupling
of the spatial and the angular variable, this leads to a loss of regularity in the angular
variable as well. Thus it is expected that the convergence order for E and R is
determined by q and r.

For this problem, the computational domain is a 7× 7 square that is divided into
smaller squares of length one. There is an isotropic source in the middle of the domain
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Filter order E5
3 E9

5 E17
9 E33

17 E65
33 R5

3 R9
5 R17

9 R33
17 R65

33

2 0.47 0.84 1.33 1.73 1.92 0.03 0.52 1.28 1.73 1.92
4 0.76 1.57 2.89 3.79 3.98 0.36 1.05 2.68 3.78 3.98
8 1.01 2.13 4.93 7.61 8.00 1.14 1.68 4.30 7.54 8.00
16 1.06 2.40 6.15 13.61 15.99 1.29 2.63 5.53 12.95 15.99
∞ 1.02 2.41 6.48 18.22 17.87 1.10 2.55 6.71 18.55 16.94

Table 4.3: Gauss test: Filter order of ∞ means that no filter is applied. The term
EN2

N1
is the convergence rate when going from N1 to N2.
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x
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(a) Material coefficients
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x
2
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7

−7

−6

−5

−4

−3

−2

−1

0

(b) φ = 〈ψ〉 computed with P129

Fig. 4.1: Lattice test. (a) Material coefficients: isotropic source (white square) S = 1;
purely scattering σt = σs = 1 (orange and white squares); purely absorbing σt =
σa = 10 (black squares). (b) Scalar flux φ = 〈ψ〉 at t = 2.8 for P129, computed with
500 × 500 grid points. The values are plotted in a logarithmic scale and limited to
seven orders of magnitude.

and a mixture of purely scattering and purely absorbing squares surrounding it (c.f.
Figure 4.1a). The PN and FPN solutions are computed on a 500 × 500 spatial grid
(or 250 × 250 for Table 4.1) up to time t = 2.8. We use Ntrue = 129 (i.e. a system
with more than 2.1 × 1010 degrees of freedom) to compute a reference solution and
estimate convergence rates.

We estimate the decay rates of {B`}∞`=0 and {D`}∞`=0 which, due to the lack of
regularity in the solution, converge very slowly. As a consequence numerical estimates
of these values are not always reliable. In fact, we observe that they depend on the
parity of both ` and the value of Ntrue. This behavior can be observed in Figure 4.2.
To address it, we approximate B` and D` using both P128 and P129 numerical solutions
and then determine a cutoff `max so that the relative difference in the two resulting
approximations is acceptable for all ` ≤ `max. For a relative difference of three
percent, `max = 62 for B` and `max = 38 for D` are sufficient. In this range, the even
and odd subsequences {B`}∞`=0 and {D`}∞`=0 decay monotonically at a fairly constant
rate. We use the slightly slower rates given by the odd subsequences: B33

17 = 1.5511
and D33

17 = 0.7691 (see Table 4.4). According to (4.4), we expect EN and RN to both
converge at a rate of r+1/2 when the filter is on and to converge at rates q and r+1/2,
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(c) D` computed with P128
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(d) D` computed with P129

Fig. 4.2: Lattice test: Log-log plot of the sequences B` and D` vs. the order `. The
dashed lines indicate until which point the relative difference between the sequences
computed with P128 and P129 differs by no more than 3%.

respectively, when the filter is off. Using (4.7), we approximate q ≈ B33
17−1/2 = 1.0511

and r+1/2 ≈ D33
17 = 0.7691. However from Table 4.5, the convergence rate is roughly

one in all cases, meaning that the observed convergence is actually slightly better
than any of the estimates that depend on r.

4.3. Hemisphere test. In our final test, we consider a problem with input
data that is smooth with respect to the spatial variable but a source term that is
discontinuous in the angle variable. As a consequence, we expect that r = q < α so
that the convergence order does not depend on α.

The domain is a 1.2× 1.2 square centered at the origin with a 300× 300 spatial
grid (or 150 × 150 for Table 4.1). The final time is t = 0.3. There is no material
medium (i.e. σt = 0) and the initial condition is zero everywhere. The source term S
is

S(t, x,Ω) = W (x)χR+(Ω1), (4.9)

where W (x) = 1
4π×10−3 exp

(
− x2

1+x2
2

4×10−3

)
and χR+ is the characteristic function over
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(N1, N2) BN2

N1
DN2

N1

(2,4) 1.3188 0.6213
(4,8) 1.8212 0.8161

(8,16 ) 1.5208 0.8293
(16,32) 1.5782 0.8679

(a) even order moments

(N1, N2) BN2

N1
DN2

N1

(3,5) 1.6167 0.7818
(5,9) 1.8371 0.8204
(9,17) 1.4901 0.7998
(17,33) 1.5511 0.7691

(b) odd order moments

Table 4.4: Lattice test: Approximate decay rates of the sequence of the moments B`
(and the moments of the differentials D`). (a) Even order moments N2 = 2k+1 vs.
N1 = 2k and (b) odd order moments N2 = 2k+1 + 1 vs. N1 = 2k + 1 with k = 1, . . . , 5
(Computed with P129).

Filter order E5
3 E9

5 E17
9 E33

17 R5
3 R9

5 R17
9 R33

17

2 0.89 0.80 0.94 1.05 0.86 0.78 0.93 1.05
4 1.02 1.15 1.13 1.05 0.98 1.21 1.21 1.06
8 1.20 1.22 1.04 1.06 1.32 1.55 1.14 1.16
16 1.61 1.31 1.03 1.04 2.10 2.12 1.23 1.20
∞ 1.10 0.95 0.98 1.00 1.10 0.85 0.95 0.96

Table 4.5: Lattice Test: Filter order of ∞ means that no filter is applied. The term
EN2

N1
is the convergence rate when going from N1 to N2.

R+. Since S only depends on x and Ω1 = Ω · e1 with e1 = (1, 0, 0)T , its expansion in
spherical harmonics is

S(t, x,Ω) = W (x)

∞∑
`=0

∑̀
k=−`

s`m
k
` (e1)mk

` (Ω), with s` = 2π

∫ 1

0

P`(η)dη = 2π
P`−1(0)− P`+1(0)

2`+ 1
.

(4.10)
In particular, all the moments with ` even are zero.

As before, we determine the smoothness of the exact solution numerically. To
this end, we compute PN solutions which are highly resolved in the angular variable.
Again, we observe parity in B` and D` with respect to `. However, unlike the lattice
problem, the values do not depend on the parity of Ntrue. This fact is confirmed
in Figure 4.3, which shows values of B` and D` approximated with Ntrue = 98 and
Ntrue = 99, respectively. For ` = 0, . . . , 75 the values of B` (as well as D`) with
Ntrue = 98 andNtrue = 99 coincide up to machine precision. Figure 4.3 also shows that
the odd subsequences of B` and D` have larger values than the even ones. This can be
explained by the form of the source, whose even order moments are identically zero;
nonzero values are only generated by spatial gradients of the odd moments. Although
the values of the even and odd subsequences differ, the order of the decay rates of the
sub-sequences are almost the same in the range 16 ≤ ` ≤ 90. In particular, (4.7) with
N1 = 17 and N2 = 33 (cf. Table 4.6) yields the estimate q ≈ r ≈ 1/2. According to
(4.4), the order of the error terms are given by min{q, r + 1

2 , α} = q ≈ 1/2, except
the order of the unfiltered PN error term RN , which is approximately one. These
predictions match the observed orders of convergence given in Table 4.7.
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Fig. 4.3: Hemisphere test: Log-log plot of the sequences B` and D` against the order `.
The dashed lines indicate until which point the sequences computed with P98 and P99

coincide up to machine precision.

(N1, N2) BN2

N1
DN2

N1

(2,4) 1.0221 0.7133
(4,8) 1.5839 1.6689

(8, 16) 1.1459 1.3454
(16,32) 1.0085 1.0288
(32,64) 0.9963 1.0008

(a) even order moments

(N1, N2) BN2

N1
DN2

N1

(3,5) 1.1774 1.0546
(5,9) 1.2450 1.5673

(9, 17) 1.0202 1.1413
(17,33) 0.9906 1.0076
(33,65) 0.9921 0.9962

(b) odd order moments

Table 4.6: Hemisphere test: Approximated decay rates of the sequence of the moments
B` (and the moments of the differentials D`). (a) Even order moments N2 = 2k+1 vs.
N1 = 2k and (b) odd order moments N2 = 2k+1 + 1 vs. N1 = 2k + 1 with k = 1, . . . , 5
(Computed with P99).

5. Conclusions. In this paper, we have proven global L2 convergence proper-
ties for filtered spherical harmonic (FPN ) equations. These equations govern the
evolution of the coefficients in a spectral approximation, with respect to the angular
variable, of a radiative transport equation. The estimates derived here are based on
the reformulation of the filter in [34] as an additional anisotropic scattering term in
the transport equation which depends on the order of the spectral approximation.

We have shown how the convergence rates depend on both the regularity of the
underlying transport solution and the order of the filter. In particular, we observe
that for problems with smooth solutions, the order of the filter determines the rate of
convergence, while for non-smooth problems, it is the regularity of the transport equa-
tion. In addition, we have shown that sharper estimates are possible if the angular L2

projection of the transport solution onto rotationally invariant subspaces satisfies ad-
ditional mild conditions. Finally, we have presented numerical convergence results for
several test problems which demonstrate various aspects of the theoretical predictions.
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Filter order E5
3 E9

5 E17
9 E33

17 R5
3 R9

5 R17
9 R33

17

2 0.55 0.58 0.57 0.58 0.44 0.61 0.59 0.52
4 0.67 0.60 0.55 0.61 0.71 0.70 0.57 0.52
8 0.75 0.61 0.56 0.63 1.06 0.83 0.61 0.56
16 0.77 0.64 0.57 0.64 1.14 1.03 0.79 0.64
∞ 0.71 0.59 0.56 0.65 1.33 1.26 0.99 0.96

Table 4.7: Hemisphere test: Filter order of ∞ means that no filter is applied. The
term EN2

N1
is the convergence rate when going from N1 to N2.

While most of the results agree with the theoretical predictions, we do observe one
discrepancy for the hemisphere test case. There the convergence of the filtered solution
is actually slightly better that what is predicted by the estimates on the closure error.
Thus, either our estimates are not quite optimal or the numerical simulations used
to approximate the decay in the moments of the true transport solution (upon which
the estimates depend) are not resolved enough. Further investigation of this issue is
ongoing.

Our analysis has been performed using global norms. We can show how a filter has
to be chosen so as to not destroy the accuracy of the method. In many examples [27,34]
however, it has been observed that filtering drastically improves the quality of the
solution near discontinuities. This behavior is not captured by global norms. A local
analysis is therefore the scope of future work.

Appendix A. Real-valued PN equations. We consider the properties of the
matrices Ai, which occur in the real-valued PN equations (2.13)

∂tuPN
+ A · ∇xuPN

+ σauFPN
− σsGuFPN

= s. (A.1)

First, we turn our attention to the complex-valued spherical harmonic basis func-
tions, which are analyzed in [8]. They fulfill the following recursion relation:

ΩY k` = 1
2


−ck−1

`−1Y
k−1
`−1 + dk−1

`+1Y
k−1
`+1 + ek+1

`−1Y
k+1
`−1 − f

k+1
`+1 Y

k+1
`+1

i
(
ck−1
`−1Y

k−1
`−1 − d

k−1
`+1Y

k−1
`+1 + ek+1

`−1Y
k+1
`−1 − f

k+1
`+1 Y

k+1
`+1

)
2(ak`−1Y

k
`−1 + bk`+1Y

k
`+1)

 , (A.2)

where the coefficients are [8]

ak` =
√

(`−k+1)(`+k+1)
(2`+3)(2`+1) , bk` =

√
(`−k)(`+k)

(2`+1)(2`−1) , ck` =
√

(`+k+1)(`+k+2)
(2`+3)(2`+1) ,

dk` =
√

(`−k)(`−k−1)
(2`+1)(2`−1) , ek` =

√
(`−k+1)(`−k+2)

(2`+3)(2`+1) , fk` =
√

(`+k)(`+k−1)
(2`+1)(2`−1) .

(A.3)

Note, that for any ` = 0, 1, 2 . . . and −` ≤ k ≤ ` these coefficients satisfy:

ak` = a−k` , bk` = b−k` , ck` = e−k` , and dk` = f−k` . (A.4)

This leads to a similar recursion relation for the real-valued spherical harmonic basis
functions, defined in (2.8):

Ωmk
` = 1

2

 (1− δk,−1)(c̃
|k|−1
`−1 mk−

`−1 − d̃
|k|−1
`+1 mk−

`+1)− ẽ|k|+1
`−1 mk+

`−1 + f̃
|k|+1
`+1 mk+

`+1

sgn(k)
(

(1− δk,1)(−c̃|k|−1
`−1 m−k

−

`−1 + d̃
|k|−1
`+1 m−k

−

`+1 )− ẽ|k|+1
`−1 m−k

+

`−1 + f̃
|k|+1
`+1 m−k

+

`+1

)
2(ak`−1m

k
`−1 + bk`+1m

k
`+1)

 ,

(A.5)
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where δi,j denotes the Kronecker delta, and sgn(k) denotes the sign function (with
abuse of notation in zero: sgn(0) ≡ 1). The coefficients are given by

k+ = k + sgn(k), k− = k − sgn(k)

c̃k` =


0 , k < 0√

2ck` , k = 0
ck` , k > 0

, d̃k` =


0 , k < 0√

2dk` , k = 0
dk` , k > 0

,

ẽk` =

{ √
2ek` , k = 1

ek` , k > 1
, f̃k` =

{ √
2fk` , k = 1

fk` , k > 1
.

(A.6)

The recursion relation is used in (2.10) to obtain the explicit formulation of the PN
equations

∂tuPN
+ A · ∇xuPN

+ σauFPN
− σsGuFPN

= s, (A.7)

with Ai = 〈mmTΩi〉 and i ∈ {x, y, z}. Moreover, it shows the existence of the

matrices a
(i)
` of size (2`− 1)× (2`+ 1), which satisfy (2.15)

Ai =



0 a
(i)
1(

a
(i)
1

)T
0 a

(i)
2(

a
(i)
2

)T
0 a

(i)
3

. . .
. . .

. . .(
a

(i)
N+1

)T
0


. (A.8)

The first matrices a
(i)
` are given by

a
(x)
1 =

[
0 0 1√

2
f1

1

]
,a

(y)
1 =

[
1√
2
f1

1 0 0
]
,a

(z)
1 =

[
0 b11 0

]
,

a
(x)
2 = 1

2

f2
2 0 0 0 0

0 0 0
√

2f1
2 0

0 0 −
√

2d0
2 0 f2

2

 , a
(y)
2 = 1

2

 0 0 −
√

2d0
2 0 −f2

2

0
√

2f1
2 0 0 0

f2
2 0 0 0 0

 ,

a
(z)
2 =

0 b12 0 0 0
0 0 b02 0 0
0 0 0 b12 0

 , . . .

(A.9)

Since the coefficients ak` , . . . , f
k
` are bounded by 1, the entries of the matrices a

(i)
` are

in the interval [−1, 1]. Together with the recursion relation (A.5), this yields upper
bounds for the ∞-norm and the 1-norm

‖a(i)
` ‖∞ ≤ 1 and ‖a(i)

` ‖1 ≤ 4 (A.10)

and by implication we also get an estimate for the 2-norm ‖a(i)
` ‖2 ≤ ‖a

(i)
` ‖∞‖a

(i)
` ‖1 ≤

4. This is used to estimate the closure error in (3.29).
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