MCKEAN-VLASOV DIFFUSION AND THE WELL-POSEDNESS OF THE
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SMALL-MASS LIMIT AND EQUILIBRATION IN MOMENTUM SPACE
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ABSTRACT. We reformulate a general class of classical bead-spring-chain models for dilute polymeric fluids,
with Hookean spring potentials, as McKean—Vlasov diffusion. This results in a coupled system of partial
differential equations involving the unsteady incompressible linearized Navier—Stokes equations, referred to
as the Oseen system, for the velocity and the pressure of the fluid, with a source term which is a nonlinear
function of the probability density function, and a second-order degenerate parabolic Fokker—Planck equation,
whose transport terms depend on the velocity field, for the probability density function. We show that this
coupled Oseen—Fokker—Planck system has a large-data global weak solution. We then perform a rigorous
passage to the limit as the masses of the beads in the bead-spring-chain converge to zero, which is shown
in particular to result in equilibration in momentum space. The limiting problem is then used to perform
a rigorous derivation of the Hookean bead-spring-chain model for dilute polymeric fluids, which has the
interesting feature that, if the flow domain is bounded, then so is the associated configuration space domain
and the associated Kramers stress tensor is defined by integration over this bounded configuration domain.
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1. INTRODUCTION

This paper is concerned with the mathematical analysis of a set of partial differential equations arising
in a class of bead-spring-chain models for dilute polymeric fluids, where long polymer molecules immersed
in a viscous incompressible Newtonian fluid are idealized as linear chains of J + 1 beads B1,...,B 41,
each with small mass €, which are considered to be points positioned at r1,...,r 11, respectively, in the
flow domain Q < R?, d e {2,3}; B;+1 and B, are assumed to be connected with an elastic spring with
spring force F' = F'(q;), where ¢; = rj41 —7j, j = 1,...,J. Models of this type involve the coupling of the
incompressible Navier—Stokes equations with a Fokker—Planck equation. For the derivation of polymeric
flow models of this kind we refer to the monographs [14] and [34]. The mathematical analysis of coupled
Navier—Stokes—Fokker—Planck systems that model dilute polymeric fluids has been a subject of active
research in recent years; for a survey of recent developments in this field the reader may wish to consult,
for example, [37, 21, 40, 41, 19], or the papers [4, 5, 6, 7, 8, 9, 10, 11, 12, 17], and the references therein.

Here we pursue an alternative line of investigation, which has to the best of our knowledge not, so
far, been considered in connection with models of dilute polymeric fluids: we shall recast the model in
terms of McKean—Vlasov diffusion, in the sense that the stochastic differential equation appearing in the
model will have coeflicients that depend on the distribution of the solution itself. As our objective here
is to understand the impact of the McKean—Vlasov diffusion on the model rather than dealing with the
usual technical difficulties associated with the presence of the nonlinear convection term in the Navier—
Stokes equation, we shall consider instead a linearization of the Navier—Stokes equation about a bounded
divergence-free velocity field b, resulting in a linearized Navier—Stokes equation, usually referred to as
the Oseen equation, whose right-hand side contains the divergence of an elastic extra stress tensor K,
representing the contribution of the polymeric stress to the Cauchy stress.

More precisely, we shall consider the following unsteady Oseen system on the space-time domain  x
0,T], where Q is a bounded open convex domain in R?, d € {2, 3}, with a C? boundary, and T > 0:

1.1a) oru+ (b-Viu—plu+Vr=V-K for (x,t) € Q x (0,77,
1.1b) Vou=0 for (x,t) € Q x (0,77,
1.1c) u(x,t) =0 for (x,t) € 0Q x (0,77,
1.1d) u(x,0) = ug(z) for x € Q,
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with

J

(1.2) K(z,t) := E* (Z F(q)) ®qj> for (z,t) e Q2 x (0,7], J =1,
j=1

where F' is a spring force vector and E* denotes conditional expectation in a sense to be made precise

below. We shall assume without loss of generality that 0 € R? is the centroid, ‘%' SQ xdzx, of Q.

In the equations (1.1), u : Q x [0,T] — R? denotes the velocity field, and 7 : Q x (0,7] — R is the
pressure; b is a divergence-free (in the sense of distributions on Q) vector field, b € L*(0,T; L®(2)9) (see,

however, Remark 4.1 concerning the weakening of this assumption); ug € VVO1 -2/ 224, with 2z = d + 9
for some ¥ € (0,1), is a divergence-free (in the sense of distributions on ) initial velocity field; p > 0 is
the viscosity coefficient; K : Q x (0,7] — R‘Siyxn‘fm is the elastic extra stress tensor, involving the conditional
expectation E*, which we now define. To this end we introduce the following notations:

r:z(rlT,...,r;H)T, where rj e Qfor j=1,...,J +1,
v (vlT,...,v;H)T, where v; e R? for j =1,...,J + 1,
g=q(r):=(ai,...,q;)",  where ¢; = q;(r) == rjp1 —rj for j=1,....J.

We note here that
GED:=0-Q={w —w : wi,ws €N}, forj=1,...,J;

by definition, D is a bounded, balanced, convex neighbourhood of 0 € R?, and D < [—L, L]¢ for some

L > 0. Furthermore, we let
J+1

J+1Z 7

Thanks to the assumed convexity of 2, x € Q for any r1,...,7r;11 € Q.
Let

0 (rv,t) e Q7 x RUADD 5 [0, T] > o(r,v,t) € Rsg

be the probability density function associated with the law of a diffusion process for (r,v), which we shall
define below; the law depends on g itself through the function u and is therefore a McKean—Vlasov diffusion
process.

Now, given F € L*(D;R), we define E(Y}7_; F(q;) ® ;) : (0,7] — REA by

symm

(5(Srwren))o=[ ilﬂqj(r)) ©4) ol t)drdv, e (0.7]

Jj=1 Jj=

and we perform a change of variables in this integral, replacing integration over r € Q/*! by integration
over (q,z) € D’ x Q. To this end, we note that the mapping r € Q/+! — (¢, ) € D’ x Q is one-to-one and
onto. Denoting by B the linear transformation from (q,z) € D’ x Q to r € Q/*1, so that » = B(q, ), and
letting DB denote the Jacobian matrix of the transformation, we have that

<E<ZJ1F(qj)®qj>>(t)=fDJXQXR(JH <Zqu @qj> o(B(g,),v,t) |det DB|dgdzdv,  te (0,T).

j=1
Henceforth | - | will signify the absolute value of a real number, the Euclidean norm of a vector, or the
Frobenius norm of a square matrix, depending on the context.

We note that the Cartesian product of K > 1 bounded open convex sets in R? is a bounded open
convex set in RX? (cf. [31], p.23), and that by Corollary 1.2.2.3 in [29], a bounded open convex set in a
Euclidean space has Lipschitz boundary, so Q/*! and D” are (convex) Lipschitz domains in R(/*D? and
R4 respectively.

The class of spring forces under consideration here are of the form

F(qj) = HU'(|g;1) g5, forgjeD, j=1,...,J,
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where H > 0 is a spring constant, characteristic of the stiffness of the spring, and U is a given spring
potential, U € C%([0,b];R), with b := sup,cp |p|. For example, U(s) = s corresponds to a model with
Hookean springs, which we shall hereafter focus on in the rest of the paper. Clearly, since €2 is bounded,
the same is true of D and therefore 0 < b < 0.

The conditional expectation E*, which is the expectation under E conditional on

1 J+1
J+1]Z_:1rj:x’

is then defined as follows: for (z,t) € Q x (0,77,

J J
B (3 Flap @ay ) | (@) o= S2mer (5o F07) ©45) o(B(@, ), v.1) et DB| dg v,
SDJXR(J‘H)d) 0 (B(q, x),v, t) |det DB| dq dv

j=1

Since DB is independent of ¢ and v, the factor |det DB| cancels in the numerator, which is a d x d symmetric
positive semidefinite matrix function, and in the denominator, and the expression for the above conditional
expectation is thereby simplified to

x z SDJXR<J+1)d (Z(jjzl F(Qj) ®Qj) Q(B(Q7 .%'),’U,t) dgdv
(E (Z F(Qj) ®QJ>> (l‘,t) = SDJXR(JJrI)d 0 (B(q,a:),v,t) dgq dv ) (:C,t) €0 x (O7T]'

j=1

We note that if the denominator vanishes at a point (xg,tg) € Q x (0,7T], then, since g is a nonnegative
function, necessarily o (B(q, x0), U, to) = 0 for a.e. (¢,v) € D’ x RU+D4 and therefore the numerator also
vanishes at (xg,%). We shall adopt the convention that the ratio 0/0 is, by definition, equal to 0.

Hence, now with | - | signifying the Frobenius matrix norm on R%*¢,

J J
‘(Ez (Z F(gj) ®qj>> (z,t)| < ess.sup,eps Z |F'(q5) ® g5 V(z,t) € Q x (0,71,
=1 =1
whereby, recalling (1.2),
(1.3) 1K oo (0,11 () < Z 1F'(g5) ® 4| Lo (pry < 0.

—_

Jj=

We note that, given o, we may write u(x,t) = (Ap)(z,t), where the nonlinear operator A involves composi-
tion of the ratio of two integral operators (as in the definition of the conditional expectation E* above), the
divergence operator V-, and the solution operator for the time-dependent Oseen problem. As the velocity
field u = Ap appears as a coefficient in the Fokker—Planck equation for the probability density function p,
it follows that it is, in fact, in the present context, a nonlinear partial differential equation for p.

The aim of the paper is two-fold: we will show that this coupled Oseen—Fokker—Planck system has a
large-data global weak solution; having done so, we shall perform a rigorous analysis of the small-mass
limit, ¢ — 0., corresponding to passage to the limit as the masses of the beads ®B1,...,%8 7,1 in the bead-
spring-chain converge to zero, leading to a rigorous derivation of the Hookean bead-spring-chain model.

We proceed to define the McKean—Vlasov diffusion. Let

UGr,t:0) = (ura, 0"+ ulrain ")

T
— (A1, 07+ (A9} (11,0
with A as indicated above, and consider the SDE
i = Lr + C(U(r t;0) —7) + \2BW.

Here €2 > 0 signifies the mass of an individual bead in the chain, 8 = kT¢ > 0, where k is the Boltzmann
constant, T is the absolute temperature and ( is the drag coefficient. Furthermore, £ is the following
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(J+1) x (J+1) block-matrix (analogous to a discrete Laplacian, corresponding to a homogeneous Neumann
boundary condition) with d x d matrices as its entries, associated with a Hookean bead-spring-chain:

-I I o ... 0
I -2 1 .0
A\ O I -2 T O ’
o ... r -2 1
o ... 0 I -I

where A > 0 is a constant factor characteristic of the stiffness of the springs, the block I € R4*? is the d x d
identity matrix, and the block O € R**? is the d x d zero matrix. Thus, £ is a (J + 1)d x (J + 1)d matrix,
in fact.

As the parameter A plays no role in the discussion that will follow, we set A = 1; similarly, we set { = 1.
The SDE may then be rewritten as the first-order system

€ = v,
€0 = Lr +U(r,t;0) —e tv+ 2BW.

Then, o(r,v,t) solves the Fokker—Planck equation, stated in the next section, associated with this system.
For (1.4) to be meaningful, it is clearly necessary that the function (r,t) € Q x [0, T] = u(r,t) € R? satisfies
the Carathéodory condition: i.e., it is continuous with respect to r for a.e. t € [0, T] and measurable with
respect to ¢ for every r € ). This requirement is consistent with the underlying modelling assumption
that the background fluid (i.e. the solvent), in which the polymer molecules are immersed, represents a
‘continuum’ relative to the scale of the polymer molecules.

The paper is structured as follows: In Section 2 we formulate the Fokker—Planck equation. In Section
3 we show, for a fixed velocity field u, the existence of a global weak solution to the Fokker—Planck
equation, subject to a specular boundary condition. The argument is based on a parabolic regularization
of the (hypoelliptic) Fokker—Planck equation, and passage to the limit with the parabolic regularization
parameter. In Section 4 we then return to the original coupled Oseen—Fokker—Planck system and use
an iterative process between the Oseen equation and the Fokker—Planck equation to show the existence
of large-data global weak solutions to the coupled problem for any nonnegative L! initial datum with
finite initial relative entropy for the Fokker—Planck equation, and any (distributionally) divergence-free
initial datum ug € W()l_2/z’z(ﬂ)d, with z = d + 9 for some ¢ € (0,1), for the Oseen equation. The latter
regularity hypothesis on ug will then ensure the continuity of the velocity field w with respect to its spatial
variable, alluded to in the last sentence of the previous paragraph, via maximal regularity theory for the
unsteady Stokes system. Indeed, the fact that in the case of the Oseen system we are able to guarantee,
through the above regularity hypothesis on ug, that the velocity field u belongs to the function space
we L2(0,T; L® ()% plays a crucial role in our proofs; it is unclear to us, in particular, how replacement
of the Oseen system by the full Navier—Stokes system would impact on the arguments presented herein.

The proofs use a variety of compactness arguments for infinite sequences of approximate solutions.
Passage to the limit in the extra stress tensor K, whose divergence appears on the right-hand side of
the Oseen equation, is nontrivial as K depends nonlinearly on the probability density function; to this
end, we shall show the strong convergence of the sequence of approximating probability density functions
using techniques developed by DiPerna & Lions for the Fokker—Planck—Boltzmann system and related
hypoelliptic PDEs (see, in particular, the Appendix in [25]). In Section 5 we show, by using the existence
of a trace on the boundary of our domain, that the solution to the Fokker—Planck equation attains the
weakly imposed specular boundary condition in a strong sense. In Section 6 we then focus on the second
objective of the paper: we rigorously identify the small-mass limit of the system, as ¢ — 0. Once again,
passage to the limit in the extra stress tensor K, whose divergence appears on the right-hand side of
the Oseen equation, is the main source of technical difficulties, as we require strong convergence of the
approximating sequence of probability density functions, as ¢ — 0. Motivated by an argument in the
work of Carrillo & Goudon [18], which first appeared in the context of diffusion asymptotics for hyperbolic
problems in the work of Marcati and Milani [39], and was then applied in the framework of kinetic equations

(1.4)



BEAD-SPRING-CHAIN MODELS FOR DILUTE POLYMERIC FLUIDS 5

by Lions & Toscani [38] and Goudon & Poupaud [28], we shall use a compensated compactness argument
based on the Div-Curl lemma to prove weak convergence, which we then strengthen to the desired strong
convergence result, enabling us to identify the small-mass limit, as ¢ — 0. We prove in particular that
passage to the small-mass limit results in equilibration in momentum space, in a sense to be made precise
in Remark 6.3. This enables us to make mathematically rigorous various formal asymptotic calculations
from the polymer physics literature asserting that passage to the small-mass limit implies equilibration
in momentum space. In the final section we relate the resulting small-mass-limit model to the classical
Hookean bead-spring-chain model for dilute solutions of polymeric fluids.

2. STATEMENT OF THE FOKKER—PLANCK EQUATION

To define the Fokker—Planck equation we mimic the procedure in [46] and introduce the following dif-
ferential operators, noting that those with suffix 0 are independent of u (which is considered to be fixed
for the moment), whilst those with suffix 1 are not:

Lojpi=—vj-0up+ B0 e, G=1,..,J+1,
Lyj(u)p :=vj- 00+ ((Lr); +u(rj,t)) - 0y, 0, j=1,...,J+1,
ES,]SD = a’l)](ngo)—i_/ﬁa?)](p? ]:177J+17

T,j(U)SO =y 'aTjSO_ ((ET)] +u(rj7t)) ‘avj% J=1...,J+1,
J+1
Lop =) Lo,
j=1

Li(w)p:= ). L1;(u)(p).
j=1

In these expressions 0,, denotes the (d-component) gradient operator with respect to v; € R?, Op; - denotes
the divergence operator with respect to v;, and 6% = Oy, Oy, is the Laplace operator with respect to v;. We
further note that Ly ; has a one-dimensional null-space spanned by the real-valued constant function that
is identically equal to 1 with respect to v;, denoted by I(v;), and its adjoint £(’§J has null-space spanned
by the function

g(v;) := (278) 2 exp(—|v;[2/28).

Observe also that, for g(s) = (2%5)7% exp(—s2/283), s € R, and with ’ denoting differentiation with respect
to the variable s, we have that

(sg(s)) + Bg"(s) = 0,
implying that
(2.1) (sg'(s)) + B(g'(5))" = —4'(s).
Finally, we note that £y has a one-dimensional null-space spanned by the constant function with respect
tov = (vf,... ,U}H)T, denoted by I(v) = H‘IH I(v;), and its adjoint L£§ has null-space spanned by the

j=1
function
J+1
0w (v) = [ | 9(v)).
j=1

3. EXISTENCE OF SOLUTIONS TO THE FOKKER—PLANCK EQUATION

The probability density function associated with (1.4) is denoted by o = o(r, v, t); formally it solves the
nonlinear partial differential equation

1
(3.1) 00 = gﬁa‘g + gﬁl(u)*g.

In case it is not apparent, we emphasize that the nonlinearity enters into the equation through the de-
pendence of the velocity field u on the probability density function p, since u is the solution of the Oseen
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equation whose right-hand side depends on ¢ through the presence of the conditional expectation there.
Substituting the defining expressions for £ and £ (u)* into (3.1) yields

,3 J+1 1 J+1
(3.2) 0ro — ) (2 Ov; - (vj 0) + Baﬁjg) + - (Z vj - 0,0+ ((Lr)j +u(r;,t)) - ang) =0,

j=1 j=1
for all (r,v,t) € Q71 x RV » (0,77,
(3.3) o(r,v,0) = go(r,v) for all (r,v) € Q/*1 x RU+D,

The equation (3.2) should be supplemented with a boundary condition; here, for the sake of simplicity
of the exposition, we shall consider a specular boundary condition with respect to the independent variable
r, which we shall state below. More complicated boundary conditions can of course be used to model
the interaction between the wall 02 and the beads in the bead-spring-chain; for example, a Maxwell-type
boundary condition (proposed by Maxwell [42] in 1879 as a phenomenological law by splitting the reflection
operator into a local reflection operator and a diffuse reflection operator) may be considered, as in [44]:
it involves a boundary trace operator that is a convex linear combination of a specular boundary trace
operator, describing local reflection by the wall, and a diffuse reflection operator.

Before formulating the specular boundary condition considered here, we require some additional notation.
We let

000 = QX x QXXX - xQ,  j=1,...,J+1,

with 0§ appearing at the j-th position in this (J+ 1)-fold Cartesian product. Clearly, Ujill 000 = o0+,
Let, further,
v (r) = (07,..., 07, (v(r;)T, 0%, ..., 0T)T e RUFDI,

where, for r = (r1,...,741) € dQU), the nonzero entry v(r;) € R? appearing at the j-th position is the
unit outward normal (column-)vector to 092 at r; € 092, for j = 1,...,J + 1, and 0 is a d-component zero
(column-)vector. With this notation, we then impose the following specular boundary condition for g on
QW j=1,...,J+1:

(3.4) o(r,v,t) = o(r, vij),t) for all (r,v,t) € 0QU) x R+ » (0, T, with v - 19 (r) < 0,

where , ,
W= ol ro) =20 000, =1 T

is the specular velocity; clearly, oY) v (r) = —v - v (7). This boundary condition on g means that if
the j-th bead in the chain (ry,...,7;41) hits the boundary with velocity vector v; € R? it is reflected with
velocity vector v; — 2(vj - v(r;)) v(rj) € R% With respect to the independent variable v = (vf,... 0T, )T
the domain of definition of ¢ is R(/*D9. The behaviour of ¢ as a function of v in the limit of |v| — oo is
dictated by the requirement that of-, -, t) € L*(Q/*! x RU+D4: R_), for each fixed t € (0,T].

In order to state the weak formulation of this problem we consider the Maxwellian M (v) := o (v) and

define

and 9g := Ul

0:= i

Further, we define F € C(R>o; R>q), by
F(s):=s(logs—1)+1, seR.g, with F(0):=1.
The function F is nonnegative, strictly convex, and has superlinear growth as s — +00, i.e.
lim F(s)

S$—+00 S

LA
M

=+

We shall assume that the initial datum g (cf. (3.3)) satisfies

00 € LY Q7T x R(J+1)d;R>0), J oo(r,v)drdv =1,
QJ+1 xR(I+1)d

(3.5)
M}—(/Q\O) c Ll(QJ-i-l « R(J-&-l)d);
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in other words, the initial probability density function gg is assumed to have finite relative entropy with
respect to the Maxwellian M.

We shall also assume throughout this section that u € L2(0,T; WS’J(Q)d) for some 0 > d, and V-u =0
a.e. in  x (0,7), and that u is given and held fized. We shall show later on that, under the assumptions
on ug (cf. the paragraph following eq. (1.2)), the function u does indeed possess this regularity; in fact, we
will see that o = min(d, z), where 6 := 2 + % > d for d = 2,3, and z = d + ¢ for some ¢ € (0, 1), whereby
o > d for d = 2,3, as is being assumed here. As a consequence of the assumed regularity of u, by Sobolev
embedding, u € L2(0,T; L®(Q)%).

We (formally) multiply the equation (3.2) by a function ¢ € Wh1(0,T;C®(Q" " ; CP(RYF1D9))) and,
assuming for the moment that o is sufficiently smooth and satisfies the specular boundary condition (3.4),
we integrate the resulting equality over Q7+ x RU+D [0,7], and then integrate by parts with respect
to each of the independent variables. Hence,

J J M(w) o(r,v,T) @(r,v, T)dvdr
QJ+1 JR(J+1)d
f f J o(r,v,7) 0rp(r,v,7)dvdrdr
0J+1 Jr(J+1)d

J+1
( f J f ) Ov,; 0 &’chpdvdrd7'>
QJ+1 R(J+1)d

J+1

J+1 T

1
e Or,pdvdrd
€ (ZJO fQJ+1 J]R(J+l)d v) 0 - Orypdudr T>
e (ZJ J J M(v) (vj - v(rj)) 0 dvds(r) dT)
€ o JoQU) Jr(J+1)d
1 J+1 T
e <Zf j J ((£r); +u(rj77))§‘(9uj<,0dvdrd7->
€ 0 Jou+ R(JH)d
o —J
(3.6) = LHI fRumd M (v) oo(r,v) o(r,v,0)dvdr Ve Wh(0, T;C (@ H;CSO(R(J“M)))_

We focus our attention on the fifth integral on the left-hand side:

JQ(J) fR(ul)d M(U) (UJ V(T])) Q@dv ds JR(J+1 000) M( ) (v] V(Tj)) QSDdS( >d
RU+Dd JoQ) v v(r;)>

j f M) (v - v(r})) 2 0 ds(r) dv.
RU+Dd JoQWU) :vjv(r;)<0

Now, since ]v ]2 = \v[z and v\ . vW(r) = —v- v (r) = —v; - v(rj), and using the specular boundary

condition satisfied by 9, we have for the second integral on the right-hand side of the last equality that

[ M () (07 v(r7)) (7, 0,) (1, 0,£) ds(r) dv
RU+Dd JoQ() :v;-v(r;)<0
= f j _ M (v) (v; - v(rj)) o(r, vij),t) o(r,v,t)ds(r) dv
RU+D JoQ() 1 v;-v(r;)<0
| M(v) (=5 - v(r;)) 8,0, ) p(r, v, ) ds(r) dw
RUHDd JoQWU) : —v;-v(r;)>0

- j f M) 09 D)) a0, 1) (v, 1) ds(r) du.
RU+DA Jo00G) . ). ()
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Assuming that the test function ¢ satisfies the specular boundary condition:

Y (r,v,t) € 0QU) x RU+D 5 (0,77,

_ ()
(3.7) plrvt) = prod ) V() <0, j=1,...,J+1,

we then have, for all j =1,...,J + 1, that
f f M) (v - (1)) 8 0,8) o, 0, £) ds(r) do
RUJ+1)d JoQ ) viv(r;
‘f f o M(vfﬁ"> W9 D)) 5(r, 09, 1) o(r, 0 £) ds(r) dv

RUJ+Dd JoQG) - v* y(])
f Mo <”>< D)9 (1)), 3,09 ) (09 ) ds(r) do
R+ JoQ(5)
f f M@P) 09 D () 3(r, o9, 8) o, 0, 1) do ds(r).
o0 JR(I+1)d

Since, for r € 0QU) fixed, the absolute value of the Jacobian D® of the (bijective) mapping
® : peRUIDL vfkj)(r, v) € R(+1)d
is equal to 1, whereby, for r € 9QU) fixed, dv*J ) ID®|dv = dv, by treating vfk ) as a dummy variable in

the last integral and renaming it into v, and noting again that v-vV)(r) = v; - v(r;), it follows that, for all
g=1,...,J+1,

j f M) (05 - v(r;)) 30, £) 9(r, v, £) ds(r) dv
RJ+1)d 0G) v;j 1/(7‘]

= LQ(;‘) JR(J+1>d M(v) (vj - v(rj))+ o(r,v,t) o(r,v,t) dvds(r)

f M) (0 - ()4 2, 0,) (r,v,£) ds(r) dv
RJ+1)d JoQ )

- f j M) (v - v(r3)) 80, 0,8) o, v,2) ds(r) do.
RU+DA JoQ() tv;-v(r;

Il

Hence, provided that the test function ¢ € lel((),T;COO(QJH;CSO(R(‘]H)C[))) appearing in (3.6) satisfies
the specular boundary condition (3.7), the fifth integral in (3.6) will vanish. We shall therefore assume
that this is indeed the case and will work with such test functions ¢, whereby the absence of the fifth
integral from (3.6) can be seen as a weak imposition of the specular boundary condition (3.4) for p (and,
equivalently, for p). The imposition of the specular boundary condition on all functions that belong to a
certain function space will be indicated by the subscript . in our notation for the particular function space.
For example,

cr @ e R+ {90 e C* (@ eP RYN) ¢ p(rv) = p(rv)
for all (r,v) € 0QU) x RUAV with v - 0@ (r) <0, j=1,...,J + 1}.

Thus, by eliminating the fifth integral from (3.6), we are led to the following problem: for a fixed divergence-
free function u € L2(0,T; W&’U(Q)d) with o > d, we seek a function g > 0 such that

Mp e Cy([0,T]; LY (Q7H x RUFDY),

MF(p) € L0, T; LY Q7T x RUFVD)) -\ /Ge L2(0,T; L2(Q7H w2 (RUFDY))),
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with Cy, ([0, T]; L' (Q7+! x R(Z*+D4)) being the linear space of weakly continuous mappings from [0, 7] into
LY Q7+ x RUADD) and Wj\lf(R(JH)d) signifying the Maxwellian-weighted Sobolev space on R(/+1)d

J+1
WARRS D) = {o € LB ¢ ollarnnn = [ M) (o0 + Y 12,90 ) dv < 0}
J

(with analogous notation for all other Maxwellian-weighted Lebesgue and Sobolev spaces), such that
f f o(r,v, T) o(r,v,T) dvdrff J J o(r,v, 1) 0rp(r,v,7)dvdrdr
QJ+1 R(J+1)d QJ+1 ]R(J+1)d

62 J+1
0y, 0 Oy, pdvdrd
<Zf JQJ‘FI jR(J‘Fl)d JQ JQO var T)
1 J+1
- O, pdvdrd
€ (ZJ JQ]+1 JR(IJrl)d UJQ P EVar T)

J+1
- ZJ f J M(v) ((Lr); +u(ry, 7)) 0 0y, pdvdrdr
€\ Jo Jas+r Jreena

(3.8) B JQJH J (J+1)d M(U) 00(r,v) @(r,v,0)dvdr Ve W171(0> T; W:72(QJ+1 X R(J+1)d))7

where s > (J + 1)d + 1. We note that for s > (J + 1)d + 1, by Sobolev embedding,
W:,Q(QJJrl % R(J+1)d) AN Wj’OO(QJ+1 % R(JJrl)d)‘

We emphasize here again that the specular boundary condition is imposed weakly, through the omission
of the fifth integral from (3.6) (and, thereby, through the absence of the corresponding term from (3.8))
and the choice of the test functions ¢ in WL1(0,7; W2 (Q7+1 x RUZ+D4)) " This helps us to circumvent
at this point the question whether g is regular enough to satisfy (3.4) in the (stronger) sense of a trace
theorem on 0€). The existence of a trace in a stronger sense will be shown later, in Section 5.

3.1. Existence of solutions to a parabolic regularization of (3.8). We begin by considering a para-
bolic regularization of the weak formulation (3.8): for a fixed divergence-free function u € L?(0, T} WO1 7(Q)%)

with ¢ > d, and with « € (0, 1] a regularization parameter that will be eventually sent to 0, we shall seek
a function

0o € C([0, T); L3, (7 x RUFD)  L2(0, T WEE (@74 x RUFD))
such that

J J M (v) pa(r,v,T) p(r,v,T dvdr—f J J V) 0o (1, v, T) Or(r,v,7) dvdrdr
QJ+1 JR(J+1)d QJ+1 R(J+1)d

62 J+1
< f J J Ov; 0o * Op;p dvdr dT)
QJ+1 R(J+1)d
J+1
—<ZJ J J U]Qoe'arj@dUdeT>
QJ+1 R(J+1)d
J+1
M ’\7',- Aa-ﬁ,., dvdrd
aj;fo L)J“ JR(HM (U)OJQ ,pdvdrdr

1 J+1 T
e (Z J J J M(v) ((£r); +u(rj,7)) o - 3vj<pdvdrd7->
€ \ =1 Jo Jaser Jrusna

(3.9) - LM JR(MM M(0) 2o(r,v) 90,0 dvdr ¥ e WH2(0, T5 Wh2, (@741 x RUFD4)).

where, in addition to our earlier assumption (3.5) on the initial datum, we shall temporarily assume that

@\0 c L?\/[(QJJrl > R(J+1)d).
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This additional assumption will be required in order to enable passage to the limit &« — 0. In the final step
of the existence proof, discussed in Section 4, this additional assumption on gy will be removed, and the
final global existence result for the coupled Oseen—Fokker—Planck system will be shown to hold assuming
(3.5) only.

To show the existence of a solution to (3.9), note that W1’2 (7 X R(‘]H)d) the normed linear space
of all functions contained in the Maxwellian-weighted Sobolev space W (QJ +1 o RU+1 ) satisfying the
specular boundary condition on 052 in the sense of the trace theorem, is a separable Hilbert space, as it is
a closed linear subspace of Wif (Q7+1 x RUHD)  which is a separable Hilbert space (cf. Theorem 8.10.2

on p.418 in the monograph of Kufner, John & Fucik [33]). Furthermore, since W (Q7+1 x RU+D4) g
compactly embedded into the space L3,(27+! x R/+1Dd) (c¢f. Appendix D in [8]), W:”?M(QJH x R(U+1)d)
is also compactly embedded into L2 (QJ +1 5 RU+D4) Thus, by a variant of the Hilbert-Schmidt theorem
(cf. Lemma 5.1 in [26]), there exists a complete orthogonal basis (¢ )k>1 in VV1 2 3 (7 x RUFDD) - which

is complete and orthonormal in L2,(Q7*! x RU+14); the function vy, € Wﬂ}JQM(QJJrl x R+ solves the
following eigenvalue problem:

(wk’n)Wif(QJ“XR”“)d) = Me(Vrs M) 2, (71 xR +1)a) Vne W,:ﬂ(QJH x RUFDY - g =12,
“@Z)k‘Hwa(QHl xR(J+1)d) = 1.

Let Xy := span{t1,...,¢n} and denote by Py the orthogonal projector in L2,(Q7*! x RU+1d) onto
Xn. Suppose further that w € Wj’?\/[(QJH x RV ith

e}
w = Z Ctklbk.
k=1
As (w — Pyw, wj)LiI(QJ+1XR(J+1)d) =0 forall j =1,..., N, thanks to the orthonormality of the functions
Ur, k=1, in L2,(Q7F1 x RUFD) it follows that
N
PNw = Z Ozkwk.
k=1

Thus, by the orthogonality of the v in W: ]2\4 (Q7+1 x RUHD) Parseval’s identity implies that

N 0

HPNwH L2(Qr+1 g R(+1d) T Z akHd}kHQ L2(QJ+1xR(J+1)d < Z O‘kHwkH L2(QJ+1 xR(I+1)d)
k=1 k=1

(3.10) = w2, Vwe Wy Q7! < RUTDY),

1, 2(QJ+1 xR(J+1)d)

We shall seek a function

(3.11) a,N(1,0,t) Z Ak, N (8) Yr(r,v)
k=1

such that
(J f M(0) G (1, v, T) e, v) dr) (T
Q7+1 JR(I+1)d

T
_J J. J. M(v) Qa,n (1,0, 7) e (r,v) 07 (1) dvdrdr
Q7+1 Jr+1)a

J+1
( f JQ f( ) ) Ov; 0a,N * Ov; Pe(r,v) §(T) dvdrd7->
J+1 JR(J+1)d
J+1
< J JQJ-H J]R(J-H)d Uan N a we(T ’U) (ZS(T) dvdr d’]‘)
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J+1
+a Z J ‘[ ‘[ Or;0a,N * Or;Ye(r,v) ¢(7) dv drdr
OJ+1 R(J+1)d

J+1
€ (]Zl J;) JQJ+1 JJR(JH)d M(v) (£r); + u(rj, 7)) Gy - Ou Ye(r,v) ¢(7) dvdr dT)

(3.12) = (J J M(v) ﬁo(r,v)qlzg(r,v)dvdr) #(0) Vele{l,...,N}and Vo e WH2(0,T).
QJI+1 JR(I+1)d
Substitution of (3.11) into (3.12) yields
T
Aen(T) o(T) — J AN (T) 0-0(T)dT
0
T N 2 J+1
+ L ];1 A n(T) ( JQJH JR(HW V) Op; Y (1, 0) + Oy, 2be(r, v) dv dr) o(r)dr

T N J+1
+ J Z Ap N (T ( J J v) v (r,v) - Op e (r, v) dv dr) o(1)dr
0 QJ+1 ]R(J+1)d

k=1
T N Jt1
+Jo ,;1 Apn( ( ; _[QHI fR(HW ) O Y1 (1, 0) - O e (1, 0) d dr) o()dr
T N
+ fo ’;1 Ap.n( ( 1 Lm J}me Lr)j +u(ry, 7)) Yr(r,v) - Oy, tbe(r,v) dv dr) o(7)dr

= <J f M(v) §O(T,v)1/1g(r,v)dvdr) ¢(0) Vle{l,...,N}and V¢ e WH2(0,T).
QI+1 JR(I+1)d

Denoting the sum of the terms in the brackets in the second, third and fourth line by Gy, and the term
in the outer pair of brackets in the fifth line by Hy ;(7), we have that

Ao (T) 6(T) - f Ao(7) 0,0(7) dr + f ZGWHM( ) A (7) 6(r) dr

(313 - fR(M)d ) 0(r,0) v, 0) dudr 6(0).

As it will transpire from the discussion that follows, |G| < o0 and |Hy(7)| < oo for a.e. 7€ (0,7, and
forall/,k=1,...,N.
The above is the weak form of the following initial-value problem for a system of linear ODEs:

d N
Z (Gew + Hep(t) Ak (t) =0, te (0,77,

(3.14) =
AN (0 J j v) 0o(r,v) Ye(r,v)dvdr, €=1,...,N.
QJ+1 R(J+1)d

As (Gog) é\,[kzl is a constant matrix, the existence of a solution to this system of linear ODEs will follow from
Carathéodory’s theorem once we have shown that ¢ € (0,7') — Hy(t) € R is measurable and a (matrix)
norm of the matrix (Hyy(t))),_, is dominated by h(t), where h € L'(0,T). As a matter of fact, once
this has been shown, the uniq{leness of the solution to this system of ODEs will also follow, by Gronwall’s
lemma, thanks to the linearity of the system.

To this end, it suffices to note that, since by hypothesis u € L?(0,T; WOI’U(Q)d) for some o > d, Fu-
bini’s theorem implies that all entries of the matrix (Hg’k(t))é\szl are measurable functions of ¢ € (0,7];
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furthermore, there exists a positive constant Cy = Cy(J, N) such that

JT

J+1 l

2 J (J f v) [u(r;, 7) i (r,v)|* do dr) (f J ) | Oy, e, v)|2dvdr) dr
QJ+1 R(J+1)d QJ+1 R(J+1)d

J+1
< .
< ||U||L1(0,T,Loo(g 1I<n£8£§v (LJH JR(JHM ) | Oy, (T, v)| dov dr>

= COHUHLI(O,T;LOC(Q))-

dr

J+1
f J TJ’ ) wk(ra U) ’ avjwf(rv U) dvdr
QJ+1 R(J+1>d

This then implies the existence of a measurable function h € L'(0,T) such that the (matrix) norm of the
matrix (H&k(t))é\szl is dominated by h(t), where h € L' (0, T); take, for example, h(t) := %(1+Hu(t)HLOO(Q)),
where C' is a sufficiently large constant. Hence, Carathéodory’s theorem implies the existence of a solution
Agn € WH(0,T) (and, consequently, absolutely continuous on [0,71]), £ = 1,..., N, to (3.13), and by
Gronwall’s lemma the solution to (3.13) is unique. In fact, since Hyy € L*(0,T), £,k = 1,...,N, it
follows that Ay y € Wh*(0,T), £ = 1,...,N; cf. (3.14). Thus, by noting (3.11), we deduce that the
finite-dimensional problem (3.12) has a unique solution

Z)\a,N e WLOO(O,T; W::]ZW(QJ-Fl % R(J-‘rl)d))

Next, for any ¢t € (0,7) fixed, and h € (0,7 — t), consider the function

Xen(7) = min {1, <}1L(t 4+ 1>+} . relo,T].

Clearly, 7 — x¢4(7) is a continuous piecewise linear function defined on [0,7"], which is identically 1 on
[0,t], identically O on [t + h,T], and has slope —1/h on [t,t + h]. Taking ¢ = xn Aoy € WH®(0,T) in
(3.12) with t € (0,T") fixed and passing to the limit ~ — 0, we have that

J J V) Oa, N (1,0, t) Yu(r,v) Ag N (E) dvdr
QJ+1 (J+1)d

ff J J M () a,n(r,v, 7) e(r,v) 07 Ap N (T) dodrdr
QJ+1 JR(I+1)d

52 J+1
( f J J UJQaN 81)1¢€(r U)A[N( )d?)d’/’dT)
QJ+1 ]R(J+1)d
J+1
_<ZJ J J V) Vj0a,N - Op;Pe(r,v) Ag N (T )dvdrdr)
QJ+1 R(J+1)d

J+1
e ZJ f f ) Or; 0o, N+ Or; e (1, v) Ag v (7) dvdrdr
QJ+1 R(J+1)d

J+1
- (2 L [ fR(M)d M(0) ((£0); + u(rj, 7)) By - 2oy e(r, ) Ay (7) dodry dT>

(3.15) - (Lﬂ JR(MMM(U) Bo(r, v) Ye(r,v) dvdr) Aen(0) Vee{l,... N}
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Summing (3.15) through ¢ = 1,..., N and recalling (3.11) then yields
EJ J M(v) 82 n(ryv,t) dvdr
2 QJ+1 JR(J+1)d ’

BQ J+1 st
+ — M a1)</\a 2d drd
€ (; L JQJ+1 JR(JJrl)d (v) | e 7N‘ o T)

J

1 J+1 st
e Z J J J M(U) Uj@a,N : ami)\a,N dvdrdr
€ \j=1 Jo Jas+t JR+DA
J+1 At
+QZJ J J M(U)|am§a,N|2 dvdrdr
j=1J0 JQJ+1 JRU+Dd

1 [7*L
- = (Z J J J M (v) ((Lr); +u(rj,T)) Oa,N - Ov; 0a,N dv deT)
€ =1 0 JQJ+1 JR(J+1)d
1
(3.16) == q f M (v) |@o(r, v)|2dvdr> Vte (0,7).
2 QJ+1 R(]+1)d

Let us denote by T; and Ty the terms in the third and fifth line of (3.16), respectively; our objective is
to bound these by quantities that can be absorbed into the remaining terms on the left-hand side. That
will then result in uniform-in-N bounds on various norms of g, n, which will allow us to pass to the limit
N — o0 in the Galerkin approximation.

We shall show below that M (v) v;fa,n - Or;0a,n € L* (27T x R+Dd  (0,T)). Taking this for granted
for the moment, we have that

1J+1 t
Toim = 3 [ M) 0 a8, B dudrdr
Ej:1 0 JOJ+1 JR(J+1)d
1 J+1 ¢
N M) v - 0. (|8an|?) dvdrd
D) [ o, M0 2 (0P dvdrar

1 J+1 At
T2 2 J j | J M (v) (vj - v(r})) |a,n|? dvds(r) dT = 0,
€j=1 0 JoU) JrR(J+1)d

because 0o,y € WH*(0, T} W::JQW(QJ“ x R(/+1d)) Tt therefore remains to show that M (v) V;j0a,N * Or; Oar, N
belongs to L'(Q7/+1 x R+Dd 5 (0, T')). Since the function /M (v) Or;0a,n € LA(Q7F1 x RU+D  (0,T)),

it suffices to show that /M (v) vj 8, n belongs to L2(Q7+1 x RUFDL x (0,T)).
To this end, we first recall the logarithmic Young’s inequality

ab < e* + b(logh — 1) Va,be Rxo.
This follows from the following Fenchel-Young inequality:
abgg(a)+g*(b) VCL,bER;(),

involving the convex function g : a € R — g(a) € (—o0, +00] and its convex conjugate g*, defined by
g% (b) := supyeg (ab — g(a)), with g(a) = e and

+ if b < 0;
g*(b) = 0 if b =0;
b(logb—1) ifb>0,

with the resulting inequality then restricted to Rsg. Consequently, recalling that F(s) = s(logs — 1) + 1
for s > 0 and F(0) := 0, we have that

(3.17) ab<e®— 1+ F(b)  Va,be Rsy.
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Hence, with a = ﬁ lvj|? and b = H@a,NH%Q(QJHX(O’T)), we have that

1 ~ ~
@ |vj|2 |‘QQ7N||12(QJ+1X(O,T)) < F (HAQO&,NH%2(QJ+1X(O,T))) + e48

and therefore, upon multiplication by M (v) and omitting the final, negative term from the right-hand side,

1 ~ ~ (J+1d _ 2
EM(U) |Uj|2 HQ%NH%Q(QJHX(O,T)) < M(v) F (‘|QC¥,NH%2(QJ+1X(OT ) (2mB)” 2 e a5 vl H e 35 vkl

k#]

~ ~ J+1)d v P
= M(’U) [HQQ,NH%Q(QJ‘*'lx(QT)) (lOg HQOQNH%Q(QJ‘HX(O,T)) — 1) + 1] (27Tﬁ) 2 e 4ﬁ‘ J| H e | k|
k#]

~ ~ (J+1)d o 1 2
< M (©) 1805 72 (02741 ¢ (0,79) 108 18N 20241 x (0,79 + {M( )+ (2mB)” it He o ]
o

Integrating this over R(Z+14 and applying Gross’ logarithmic Sobolev inequality to the first term on the
right-hand side yields (c.f. [30], particularly (1.2) there multiplied by 2, and (1.1) with n = (J + 1)d):

1

1205 2
4B Jrw+na M) o1 100N L2 (@71 0.1y) ¥

S fRuﬂ)d M (v) ”Qa,NHL?(QJ*lx(QT)) log ’|QQ7NHL2(QJ+1X(O’T)) dv

*J [M<v)+<2wﬂ>—“*2”d “asll He it }d“
R(J+1)d

k#]

J+1
22 f 0) 120, 18 ¥l 20005+ (0.1 2 0

(J+1)d
~ 2
+ H Oa,N ”L?u (RU+D;L2(QI+1 % (0,T))) log [|0a,~ HL?\/I (RU+DE; L2(QI+1 % (0,T)))

J+1
R(J+1)d el
k

#j

J+1
<2 O Dan|?drdr | d
Z J(Prl (JQJJrIX(O,T) | ¢ VN’ ' T) °

~ 2
+ “Qa7N|‘L2(07T;LiI(QJ+1XR(J+1)d)) log [ 0a, NHL2 0,T3L2,(Q7+1 xR(J+1)d))

(3.18) + JR(MM [M(v) + ()-SR sl He 35l ]dv

oy

The term in the square brackets on the right-hand side is trivially in L'(R(/*Y4). Furthermore, both
/M (v) Da,n and /M (v) 0y, 0a,n belong to L*(Q7F1 x R+Dd 5 (0,7)) for all j = 1,...,J + 1. Thus
we have shown that M (v) |v;]? |an|? € LY (Q7F! x RUFDE x (0,T)); hence, A/M(v) v; 0oy belongs to
L2(Q7+1 x RUADE 5 (0,T)), as required. This completes the proof of the assertion that T; = 0.

Let us now turn our attention to the term

J+1
e <Z j f J ((Lr); +u(rj,7))§a,N~é’vj§a,NdvdrdT> :
QJ+1 J+1)d
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We have, by the Cauchy—-Schwarz inequality, the triangle inequality, and noting that |(£r);| < 4+/d L, that

J+1
Ty < - ( J H\ﬁ (1(Lr);] + u(rj, )I) an | L2(@7+1 xr+0a) [V M Oy;0a,N | L2 (07 +1 xR +Da) dT)

N
| =
N|=

J+1
B < J H V (‘C'T) |+ |u(r]7 )|) Oa NHL2 QI+LXR(J+1)d) dT)

Nl

J+1
(Z f ” \% avj O« NHL2(QJ+1 XR(J+1)d) dT)

1
2

A
I

J+1 3 J+1
( J H\/7| ﬁr) |Qa NHLz QI+ xR(I+1)d) dT) + ( J H Vv |U i, T )| [ NHLz QI+ xR(T+1)d) dT)

2

J+1
( f ” \ av, Oa NHLZ(Q T xR(J+1)d) dT)

Nl

N

1 3 J+1
€ A (J+1)dL (J- IVM ga NHL2 QI+ xR(T+1)d) dT) (2 J H\ﬁ|u (15, 7)| 0a NHL2 (QI+1 xR(J+1)d) dr

1
2

J+1
( f ” v avj O« NHL2(QJ+1 XR(J+1)d) dT)
We shall focus our attention on the second term in the square brackets on the right-hand side:

fiv (ry, )| B g1 s df—j | M) [u(r, 7)|? 82 (ry v, 7) dr dv dr

QI+ xR(J+1)d

J f u(ry, T 2<J M(v )QQN(TUT)dU> drdr
QJ+1 RJ+1)d
J (-, HLoo () <J f QaN("" v, T) dv> drdr.
QJ+1 JR(J+1)d

Thus, we have the following bound:

2

J+1 ¢
(Z J H VM |U(ij7_)| Z)\OHN”%/Q(QJJA xR(J+1)d) dT)
j=1"0

1
2

4
(3'19) S \/m (fo Hu(7 T)H%OO(Q) ” VM @a,N(': ) T)||%2(QJ+1XR(J+1)d) d7'>

Consequently,

1
2

1 t R
Ty < 2C(L,J) ( [, G T 7)) VAT B g df)

™

1
2

J+1
( f H \ av] Oa NHLQ QI+ xR(J+1)d) dT)
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Returning with this bound to (3.16), we have that

1 ~
) H\/M 0a,N (" 51) Hi2(QJ+1 KR(T+1)d)

/32 J+1 J+1 At
+ 2762 L ||\/M8v] 5&,]\7“%2(9&%—1 XR(J+1)d) dr + « Z J;) ” \Y4 Marj @\a,NH%Q(QJ+1XR(,]+1)d) dr
J=1 j=1
1 ~
< §Hm QO”%2(QJ+1XR(J+1)d)
1 t R
(3.20) + 5 O ) ( fo (U [l )3 ) IV BByt s df) Vie (0,T].

Hence, by Gronwall’s lemma,

H VM @\Oc,N('a ) t)Hiz(QJﬂxR(JH)d)

52 J+1 ¢ J+1 nt
+ 672 Z JO ‘|\/Mav] @a,NH%Q(QJ%»l XR(J+1)d) dT + 20é Z J;) H V M arj §a7NH%2(QJ+1XR(J+1)d) dT
j=1 Jj=1

~ 1
(3.21) < VM @ol72(gus1 mrsnay exp (52 C(L, J)* (T + HUHQLz(O,T;LOC(Q))>> Vte (0,7].

Thus, for a € (0,1] fixed, we deduce the following uniform bounds with respect to N:
100N | Lo (0,7:22, (@7 +1 xR+ 1)y < C(Ly I, T € |l 20,750 (0))) 0] 22, (@ +1 xro 49y
(3.22) 10000, | L2 (0,722, (@7 +1 xrOI+0ay) < C(L, I, T €, [ull 120,700 (02))) [100] 22, (@741 T+,
V| 0r,0a,n ) 20,02, (@741 xr+Day) < C(L, T € |ull 120,700 0)) 120]l 12, (71 xrEr+114)
for all j € {1,...,J + 1}. Furthermore, by (3.18),
(3.23) Ivjl 0a,Nllz2(0,1;2, (@7 +1 xr+vay) < C(L, I, T €, [l 200,700 (0)): [100] 22, (741 xmEs+114y),

for all j € {1,...,J + 1}; as 8 > 0 is considered to be fixed throughout, the dependence of the constants
on /8 has not been (and will not be) indicated.

Next, we shall exploit the bounds stated in (3.22) and (3.23) to derive a uniform-in-N bound on 0,04,
in the function space L%(0, T} (V[{:’?M(QJJr1 x RUFDA))) | Let us first note that

Hat@\a,N(t)H(W;‘?V[(QJJrlXR(J+1)d))’ = sup (Maté\a,N(t)aw)
. weWi:?V[(QJ“ xR(J+1)d) ||w|\W11d2(QJ+1 «r(7+1)dy ST
= sup (Mat@\a,N(t), PNU})a

1,2 1y R(J+1)d
“’EVV>;<,1\/[(QJ+ xR(J+Dd), ||w”W]1V}2<QJ+1XR(J+1)d)<1

where (-,-) denotes the inner product of L?(Q/+! x RU+1D4) By reversing the partial integration with
respect to 7 in (3.13), we deduce, for all t € (0,77, that

t 2 J+1 st
f (M aT@I,N('v '57)7w€(" )) ¢(T) dr + 9 Z L(M avj@\a,N('a '7T)aavj¢€(" )) ¢(7—) dr
i=1

0 €
J+1

f (M 030,50+, 7), e, ) $(7) A7+ Y j (M 2y, By (1o 7), O, (1)) () dr
0 oo

J+1

1

1 J+1 At
- Z J (M (([’T)J + u(rjﬂ—)) @\a,N('7 '77—)7 avjd’ﬂ('? )) ¢(7—) dr =0

(3.24) Vile{l,...,N}and V¢ e WH2(0,T).
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Hence, thanks to the density of W%2(0,T) in LP(0,T) for all p € [1,), and recalling the fundamental
lemma of the calculus of variations (du Bois-Reymond’s lemma), we have that

BQ J+1
(M até\a,N('v '7t)7¢€('7 )) (M a’U]QOt N( Ty )7 avﬂ/fe(v ))
7=1
171 J+1
- E (M Uj@)z,N('? 'at)7 6Tj¢f('> )) +a Z (M aTj/Q\a,N('a '7t>7 a?’j¢£('7 ))
j=1 j=1
1)+
- Z i+ u(ri ) Ban (v t), 000, ) =0 Vee{l,...,N}and ae. te (0,7].
This then 1mphes that
2 J+1
(M 0t0a,n (), Pnw) = @ D (M 0y, 00,n5/(t), 0, Pyw)
7j=1
1 I+ J+1
+ = Z (M v;Pa,n(t), &r, Pyw) — o Y (M 8y, 0a,n(t), O, Pyw)
€= J=1
1 I+
= DM ((Lr); + ulry, 1) Ban (1), &, Paw)

j=1
=: Sl(t) + SQ(t) + S3(t) + S4(t) Vie {1, R ,N} and a.e. t € (O,T].

The terms S1(¢) and S3(t) are easy to bound: for a.e. t € (0,71,

ﬁz J+1 2 /J+1 3
S1()| < v 51)] Oa,N (1 )Hiz QI+ xR(J+1)d v MaijNwHiz QI+ xR(J+1)d
( ) ( )

Jj=1 Jj=1

and

N[

J+1 2 [J+1
1S3(t) (Z IV M 0r;00,n (1 )”L2(QJ+1><R(J+1)d ) (Z v MarjPNw|%2(QJ+1XR(J+1)L1)>

j=1
Thus, by (3.22), we have that,

1
J+1 2
f |Sl( )Pdt <C (Z H Vv avJPNw”p QJ+1XR(J+1)d)>

7=1
and, by (3.22),,

1
T J+1 2
JO |S3(t)’2dt <Cva (2 v MaTjPNw|%2(QJ+1XR(J+1)d)> )
j=1

where C' is a positive constant, independent of N and .
For the term Sy(t), we have, for a.e. t € (0,77, that

J+1 2 [J+1
Sa(1) (Z IV 03] B0 () 2 g s ) <Z IV %PNwIIiWHxR<J+m>>

J Jj=1

D=

Now, (3.23) implies that

1 (7 ~
(3.25) — J J M (v) [v;]? |Gan|? drdvdr < C,
48 Jo Jai+1xr(I+1)d '
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where the constant C' is independent of N and «, and therefore

T J+1 %
fo ‘SQ(t)‘th < Ca (Z [ VMa'rjPNwH%Q(QJ+1XR(J+1)d)> )

j=1

where C' is independent of N and «.
Finally, thanks to (3.19) and (3.22), we have that

T J+1 3
fo |S4(t)‘2dt <C (Z |\/MaijNw||%2(QJ+lXR(J+1)d)> )
j=1

where, again, C' is independent of N and «.
By collecting the bounds on Sy, ..., S4, noting (3.10), and recalling that « € (0, 1], we deduce that

T
J;) ”at@\a,N( )H QJ+1><R(J+1)d)) dt < C(La J,T,e, HUHLQ(O,T;LOO(Q)))'

Hence,
(3.26) Hat@a,NHL‘A’(O,T;(Wifw(Qﬂl xR(J+1)d))7) <C(L,J,Te, HUHLQ(QT;L@(Q)))’

as required.
The bounds (3.22), (3.23), (3.26) in conjunction with the compact embedding of W1 -2 3 (Q7FL x RO+

into the function space L3,(Q7*! x R(Z/F14) and the Aubin-Lions lemma (cf. [48]) 1mply the existence of
a subsequence (not indicated) of (0q,n)N>1 and of an element

Boc € L7(0,T; L3, (71 x RUFDE) 4 L2(0, T; Wy (74 x RVFVD) o WH2(0, T3 (W, 3, (274 x RVFDDy)

such that, as N — o0,

Oa,N — Oa weakly* in L*(0,T; L3,(Q7+1 x RU+Dd)),
Oa,N = Oa strongly in L2(0, T; L3,(Q7+1 x RU+D)),
(3.27) 0a,N — 0a weakly in L?(0,T; I/V1 2 (QJH x RU+1) d))7
|Vj] Oa,N — |Vj] Oa weakly in L?(0,T; L?M,(QJJrl « R(J+1)d ),
0t0a,N — 0Ot0a weakly in L2(0, T (W, 73, (@71 x RUFD))).

Thanks to the density of Wol’]%/l(QJ+1 x RU+Dd) in 12 (Q7+1 x RU+D) (¢f. Appendix A in [8]) and noting
that W1’2 2 Q7 x RUFDA) I/Vl’2 1 (71 x RUFD) it follows that I/Vl’2 37+ x RUFDA) s dense in
the space L3, (Q7+! x RU+1d), Thus the Hilbert space V := VV1 2 (QJJrl x RUFD) is continuously and

densely embedded into the Hilbert space H := L2 (QJ o ]R(J “)d). Hence, according to the function
space interpolation result (2.41) in Lions & Magenes 35], [V, V']12 = H, and therefore Theorem 3.1 in
[35] yields the continuous embedding

LZ(O,T; W:’,]Q\/I(QJJA % R(JJrl)d)) N WLQ(O,T; (Wi:]QW(QJJrl % R(J+1)d)/)) SN C([O,T], L%J(QJJA % R(J+1)d))
which then implies that

0o € C([0, T]; L3, (27! x RVFDY),
3.28 ~ ~
( ) lim (o, n (-, -, 1) — 0l ',t),'r])L%/I(QJ+1XR(J+1)d) —0 Vne L?\/[(Q‘H_l X R(‘]+1)d) Vtel0,T].

N—o

By passing to the limit N — oo in (3.21), using the weak convergence results (3.27) in conjunction
with the weak lower-semicontinuity of the norm function, we deduce that 9, satisfies the following energy
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inequality:
H\/M/Q\a('a ) t)H%z (QJ+1xR(J+1)d)
,82 J+1 J+1
f v 5% QaHL2 QI+1xR(J+1)d) dr + 2« Z J v arj QaHLz (QI+1 xR(J+1D)d) dr
(3-29) H \ QOHLz Q7 +1xR(J+1)d) XD (52 (L7 J>2 (T + ’u’%ﬁ((),T;Loo(Q)))) Vte (0, T]-

Furthermore, by replacing ¢(r,v,7) with ¢(r,v,7) x¢4(7) in (3.9), for t € (0,7 fixed, and passing to the
limit A — 04, we deduce that

f f V) 0a (1,0, ) (1, v, 1) dvdr—f J J V) 0a(r,0,7) Orp(r, v, 7) dodrdr
QJ+1 ]R(J+1)d QJ+1 ]R(J+1)d

62 J+1
U a'a'u,- dvdrd
( JJQ]+1 J]R(JJrl)d 14 ;pdauvar 7')
J+1
e (ZJ f f vaa arJSDd’UdeT>
QJ+1 ]R(I+1)CL

J+1
+QZJ J J r]Qa ar]QOd'UdT'dT
j=1 0 J+1 R(J+1)d
1 J+1 st
e Z J J J M(v) ((ET)J + U(Tj,’r)) Oa - ay,»QDdU drdr
€ j=1J0 JQJ+1 JR(+ D4 ;

(3.30) = LM J}R(M)d M (@) Bo(r,v) (r,v,0)dvdr Ve Wh2(0,T; W7+ x RUFTD),

By letting ¢ — 0. in the weak formulation (3.30), recalling that 9, € C([0,T]; L3,(Q/*! x RU*+1D4)) and
noting that W12(0,T; VVI’2 3 (7 RUFDY) < ([0, T7; Wj’?W(QJ“ x RUFDLY) it follows that

lim J f M(v) 0a(r,v,t) p(r,v,t)dvdr = J M(v) 0a(r,v,0) @(r,v,0)dvdr
QJ+1 JR(I+1)d 0J+1 JR(I+1)d

t4>0+

:f f M (v) 6o(r,v) @(r,v,0)dodr ¥ e W20, T, Whs (@7 x RUTDY),
QJ+1 JR(J+1)d ,

As was noted in the paragraph preceding (3.28), Wi ]2\/[ (Q7/+1 x RU+14) ig continuously and densely embed-

ded into L2,(Q7+ x RUF1D4) 50 we deduce from the above, with ¢(-, -, t) = n(-,-) € L3, (Q/+1 x RU+1Dd),
that

(3.31) lim (9a(t) — 20,M) 12, (@r+1xre+nay =0 Ve L3, x RUFD),

t—>0+

This weak attainment of the initial datum gy by the solution g, can be strengthened, in fact. By letting
t — 04 in (3.29), it follows that

. ~ 2 ~ 112
t1—1>%1+ HQa(t)HL?M(QJH xR(J+1)d) S HQOHL%(W“ xR(J+1)d)
Hence, and noting (3.31),

lim ||§a(t) o §O‘|if\4(QJ+1 xR(J+1)d) = tl_if&r(@a(t) - §0a @\a(t) - §O)L?M(QJ+1XR(J+1)d)
hm (Qa(t)y /Q\oz(t) - @\O)L%J(QJ+1XR(J+1)d)
2 ~
= t1—1>%1+ ”Qa(t) ’|L?\4(QJ+1XR(J+1) ) - hm (Qa(t)7 QO)L?\/I(QJ+1XR(J+1M)

. ~ 2
= tli%i ||Qa(t)||L%/I(QJ+1XR(J+1) dy (QOaQO)L2 [(QIFIXR(I+1)d) <0,
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which, by the nonnegativity of the norm, then implies the following strong attainment of the initial datum:
NN ~ 12
(3.32) tgr& 10a(t) — QOHL%(QJ-H xRU+D) = 0.

Having thus shown that o, satisfies the given initial condition, we shall now pass to the limit N —
o0 in the Galerkin approximation, in order to show that g, is in fact a weak solution to the parabolic
regularization (3.9) of (3.8).

Given any (fixed) ¢ € W12(0,T; Wifw(QJH x R(Z+D4)) "we consider the function ¢ € W12(0,T; Xy),
defined by

N(rv,t) Eﬁkzv ) i (r,v),

where Sy € WH2(0,T) is defined by
,BkyN(t) ( ( ) wk( )) 2 (QIH1 xR+, k=1,...,N; N >=1.

Hence,
(3.33) ]\}1_1)1100 H‘P - SDNHWLQ(O,T;W}M’Q(QJ“XR(J“M)) =0.

Next, for ¢ € W12(0,T; Wi’?\/l(QJH x RUHD4)) fixed and ¢ € W2(0,T; Xy) as defined above, we
rewrite (3.12) in the following equivalent form:

[ M6 unt ey etr 0 Ty avar
QJ+1 JRr(J+1)d

T
_j J f M (v) oa,n(r,v,T) Or(r,v,7)dvdrdr
QJ+1 Jr(J+1)d

52 J+1
( J J J v]@\a,N-ﬁngodvdrdT>
QJ+1 R(J-H)d
J+1
_<2J f f V) Vj0a,N 6Tjg0dvdrd7>
QJ+1 R(J+1)d

J+1
+ Or,pdvdrd
[0} Z f JQJ+1 jR(J‘Fl)d r] Qa N - Op;pdvardr

J+1
e ( f f J ((Lr); +u(ry, 7)) Oa,N - 5vj<pdvdrd7->
QJ+1 R(J-H)d

f j v) 0o(r,v) p(r,v,0)dvdr
QJ+1 R(J+1)d

- f J M(v) 8o(r,v) (¢ — @n)(r,v,0) dvdr
QJ+1 JrI+1)d

+ j j M(U) @\a,N(T‘,’U,T) ((70_ SON)(T‘,’U,T) dvdr
QJ+1 JRr(J+1)d

T
_f f J M (v) oa,n(r,v,7) 07(¢ — @n)(r,v,7)dvdrdr
QJ+1 JR(J+1)d
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52 J+1
( J JQJ+IJ I+1)d UJQO‘N avj((P_(PN) d’UdeT)
J+1
e (Z f JQJJrl JR(JH)UZ UJQO‘ ’ arj (p —pn)dvdr d7'>

J+1
f f f M (v) 0y 0a.N - Or.(p — on) dvdrdr
QJ+1 JR(I+1)d Te 7

J+1
(3.34) - - (Z f J f ((Lr); —l—u(rj,T))@mN-&Uj(go—cpN)dvdrdT> :
QJ+1 R(J+1)d

Now, using the convergence results (3.27), (3.28), the uniform bounds (3.19), (3.22), (3.25), together with
the strong convergence (3.33), passage to the limit N — oo in (3.34) yields that the function

@\a c C([O,T];L?\/[(Q‘“—l x R(J-H)d)) A LZ(O,T; Wi:i/[(QJ+l % R(J+1)d)) A Wl’Q(O,T; (Wi:i{(QJ-&-l x R(J+1)d))/)

satisfies (3.9). Indeed, as N — oo, all terms on the right-hand side of (3.34), except the first, converge
to zero, while each of the terms on the left-hand side converges to its counterpart with gx o replaced by
Oa- Thus we have shown that, for any o € (0,1], g, is a solution of (3.9), and the energy inequality (3.29)
holds. It is important to note for the purpose of the discussion in the next section that the right-hand side
of the inequality (3.29) is independent of «; therefore, (3.29) implies that

(3.35) 0o is bounded in L*(0,T; L3,(Q/F! x RU+1)dY)
(3.36) Ov, 0o is bounded in L?(0,T; L3,(Q7+! x RUFD4))  forall j=1,...,J +1,
(3.37) Vad, 0o is bounded in L2(0,T; L%, (/1 x RUFDA)) - forall j =1,...,J +1,

provided that gy € L3,(Q7+1 x RU+Dd) and u € L2(0, T; L®(R)%). Furthermore, weak lower semicontinuity
of the norm function, (3.23) and (3.27)4 imply that

(3.38) lvj| 8o is bounded in L2(0,T; L2,(Q/F! x RUHDA))  forall j =1,...,J + 1.
Similarly, (3.26) implies that
(3.39) 010o  is bounded in L2(0, T (W, 7, (Q7F1 x RUFDA)y),

We are now ready to pass to the limit o« — 0.

3.2. Passage to the limit with the parabolic regularization parameter. The next step in our
argument is passage to the limit @ — 04 in (3.9). We begin by noting that (3.35)—(3.38) imply that

(3.40a) 0o — 0 weak* in L®(0,T; L2,(Q7+1 x RU+1Dd))

(3.40D) O, 00 — 0o, 0 weakly in L2(0,T; L3,(Q/F1 x RU+14)) forall j=1,...,J+1,
(3.40c) 0,00 — 0 strongly in L2(0,T; L3,(Q7+! x RUFDA))  forall j =1,...,J + 1,
(3.40d) vj| 0 — |v;] @ weakly in L2(0,T; L3,(Q7+! x RUF14)) forall j=1,...,J+1,

provided that go € L3,(Q7*1 x RU+D) and u e L?(0,T; L®(Q)9).

)9)
Next, we shall prove that g, = 0 a.e. on Q71! x ]R(JH) x [0,T] for all a € (0, 1], and that

(3.41) M(v) 0 (r,v,t)drdv =1 Vtel0,T].

J;NH xR(J+1)d

The proof of the latter assertion is straightforward: for ¢t = 0 it follows from (3.5); for ¢ € (0, 7] (fixed), we
take ¢(r,v,7) = 1 in (3.9) and note (3.5) to deduce that

f J V) 0a(r,v,t)dvdr = J v) oo(r,v)dvdr =1 Vte (0,71].
QJ+1 I+1)d QJ+1 R(IJrl)d
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Before embarking on the proof of the nonnegativity of g, we shall first extend the set of test functions
W1,2(0’ T7 Wi7]2\4(QJ+1 % R(JJrl)d))
appearing in (3.30) to
L2(O, T; Wi7]2\/I(QJ+1 % ]R(JJrl)d))
by using a density argument. We begin by rewriting (3.30) as follows:

+ 2 [J+1 st
M 0:0u0(-, 1), 0(-, -, d L M (V) Oy. 0 - Op.0dvdrd
JO< 0aly1, ), p( T)> T €2 <§1J0 JQJH JR(J+1)d () i@ ;P avar T)

J

1 J+1 ~t
- - ZJ j J M (v)vj0q - Or,pdvdrdr
¢ \ /21 Jo Jar+r Jro+na ’

J+1 At
M a,,,_/\a . (97‘_ d d d
o .]Zl J;) JQJ+1 fR(J-%—l)d (U) JQ ]SO vdarar

1 J+1 ¢
T (Z f f f M () ((Lr)j + ul(rj; 7)) 8o - 8Uj<pdvdrd7> =0
€ o1 Jo Jarn R(J+1)d
(3.42) Vo e W0, T Wi, (@7 x RUFDY)) v e (0,17,

where (-, -) denotes the duality pairing between (W:’?W(QJ“ x RUH+DA)Y and Wi’?\/l(QJH x RUFTD) with
respect to L2,(Q7F1 x RUF1)) as pivot space, into which VV;:’JZVI(QJJrl x RU+14) is continuously and
densely embedded; hence (1, ¢) and (n,¢)L?VI(QJ+1XR(J+1)d) are identified when 7 € L3 (Q/+1 x RU+1Dd))
and ¢ € I/K:’]QM(QJJrl x RUZ+D4)  We note that for

Z)\a c C([O,T],L?M(Q]+l x R(.]+1)d>) A L2(07T7 W;,i/[(97+1 % R(]+1)d)) A Wl’z(O,T; (Wi:?w(QI+1 x R(.]+1)d))/)

fixed, each of the terms in (3.42) is a bounded linear functional of ¢ € L?(0, T} VV;’]ZV[(QJJrl x RUFTDA)) - Ag
the Hilbert space W12(0,T; I/V;’]QM(QJJrl x RUFD4)) is continuously and densely embedded into the Hilbert
space L2(0,T; W12, (/1 x RUFD)) we deduce that

z)\a c C([O,T];L?W(QJ-H x R(J-H)d)) A L2(O,T; Wi:?vI(QJ+1 % R(J+1)d)) A Wl’Q(O,T; (Wi:JQV[(QJ-&-l x R(J+1)d))/)

satisfies the following weak formulation:

t 2 [J+1 st
M2 3ules ), 0y )y dr + 2 M (v) 0y, 80 - 00, dvdrd
JO< @ ( T) 80( T)> T €2 <§1J;) JQJH JR(J+1)d (U) ]Q J(P var T)

J

1[I
- - ZJ J J M(v)vj0q - Or,pdvdrdr
¢ \ /21 Jo Jar+r Jrona ’

JH1 n
M 7"/\01‘ i d d d
JFOéjZJleJQv“rl fR<J+1)d (v) Or; 00 - Or;pdvdrdr

1 J+1 st
T (Z f J f M (v) ((Lr); + u(rj, 7)) Oa - &J].LpdvdrdT) =0
€ \jo1 Jo Jas+t Jr+nd

(3.43) Ve L2(0,T; W, 3, (7T x RVTDY) yie (0,7].

We prove the nonnegativity of 9, by using Stampacchia’s truncation method. Let [x]+ denote the
nonnegative and nonpositive parts of z, i.e., [z]4 := $(z£|z|). Thus, x = [z]1 +[z]- and z[z]_ = ([z]-)%
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By taking ¢ = [0a]_ in (3.43) (which belongs to the function space L?(0,T; Wi’?\/l(QJH x RU+DY),
because 9, belongs to this space), we have that

tl d R ) /82 J+1 st R ) J+1 R )
VM ] Par g 3| WA 2 [ad) P o Y | VT 5] dr
j=1 j=1

1J+1 t
- g Z J (M’Uj[i/g\a]—v 5r]-[§a]_)d7'
j=1+0

J+1

12
+7
€ 4

t
fo (M ((Lr); + u(rj, 7)) [Ba] -, 0, [Ba] ) dr Vie (0.T],

subject to the initial condition [0,(0)]= = [00]— = 0. Therefore, for all t € (0,77,

/82 J+1 J+1

1II\/M[Zm(t)]—H2 + = f |VM 0y, [0a] - P dr +a ) f VM 6., [2a]-|* dr
2 € o Jo =1 do

1J+1 t
SN RS ARES
7=1"0

(3.44) + % > f (M ((Lr); + u(rj, 7)) [2a]- , Ov;[0a]-) dT.
j=1"0

Next we apply the Cauchy—Schwarz inequality to each of the two terms on the right-hand side of (3.44).
We then repeat the calculations that resulted in the bounds (3.18) and (3.19), but now with g, n replaced
by [0a]- in those bounds, insert the resulting bounds into the right-hand side of (3.44), absorb the terms
containing norms of derivatives of [p,]— into the left-hand side, and apply Gronwall’s lemma to deduce
that |v/M [0a(t)]_|?> = 0 for all t € [0,T]. Consequently g, = 0 a.e. on Q/+1 x RU+TDL x [0,T], as has
been asserted. Finally we note that an identical procedure can be used to deduce that g, is the unique
weak solution of (3.43) satisfying the initial condition g,(0) = 0.

The expression appearing on the right-hand side of (3.29) involves the L2,(Q7+1 x R+D4) norm of
00, whereas, ultimately, we would like to make use of the weaker hypotheses, stated in (3.5), only. As a
matter of fact, in the next section we will require an analogous inequality whose right-hand side involves the
LY, Q7 xRUHD) norm of F(gy) rather than the L3, (Q7+! x R/FD9) norm of gp. Thus, before passing to
the limit & — 04 by using the weak convergence results stated in (3.40a)—(3.40d), we shall derive additional
bounds on g, which involve the L}, (/%1 x RU+D4) norm of F(go) rather than the L2,(Q7*! x RU+1)4)
norm of gg. The resulting bounds will also play an important role in the next section, where we focus on
the coupled Oseen—Fokker—Planck system. The argument is based on the relative entropy method. Briefly,
the procedure involves choosing F'(9, + 7) as test function in (3.43), with v > 0, and passing to the
limit v — 0 ; ideally, we would like to choose F'(9,) as test function in (3.43), however since g, > 0 a.e.
on Q71 x RUAD 5 [0, T, and 3, is potentially equal to 0 on a subset of positive measure, there is no
guarantee that F'(9,) = log 0, is a.e. finite. Thus we shall, instead, test with F' (9, + 7v) = log(0a + 7),
and once we have obtained the necessary bounds we shall pass to the limit v — 04, which will then be
followed by passage to the limit with o — 0.

We begin by noting that since 9, € L%(0,T; W:”]2\4(QJ+1 x RU*TD4)) and 5, = 0, also

F'(0a +7) = 10g(8a +7) € L*(0, T; W, 3, (Q7F! x RUFDD)),
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Hence, for all t € (0,71, (3.43) yields

fO <M 67'/9\04(" '77_)7]:/(@\04(3 '77_) + ’)/)>d7'

52 J+1
( J j J ) Ov; 00 * Oy ]:(Qa(’r‘ v, T) +’7)dvdrd7)
QJ+1 R(JJrl)d

J+1
_<ZJ f J ) V0a - Or; F (Da(r, v, T)+’y)dvdrd7>
QJ+1 R(J-H)d

J+1
"'O‘ZJ J f Or. 00 * Op, F' (0a(r,v,7) +v)dvdrdr
QJ+1 R(I+1)d J 3
J+1
T (Z J f J ((Lr)j +u(rj, 7)) Oa - Ou; F (Oa(r,v,7) + ) dv drd7’> =0
—1 QJ+1 JR(J+1)d

Thus, we have that

2 J+1 ‘av_@\aP
f J f M) ———~——— dvdrdr
QI+1 JR(I+1)d Oa(ryv,7) +

J+1 |6T 50{‘2
e ZJ J J ) ————— dvdrdr
QJ+1 R(J+1)d (T v 7_) + 5
1iff J M(v) 0o Or. 0o dvdrd
€ V)Vj <~ ° ) vdrdr
€3 QJ+1 JrI+1)d T oalr,v, 7))+ r; O
J+1 @\

(L - _Ca 5 bulriv,T) dudrdr.
T ZJ JQJH fR(J+1)d (£r)j +ulrg, ) Oa(r,v,7) + 7 UJQa(rU 7) dvdrdr

Similarly to the term T; encountered earlier in the argument following (3.16), the first term on the right-
hand side is equal to zero. This can be seen by interchanging the order of the integrals over Q’/*! and

RU+D4 observing that
0 ~ ~ ~ ~ ~ 200 7. L2 (OJ+] o (J+1)d
m Or;0a = Op;[0a —7108(0a +7)] and 0o —vlog(0a +7) € L7(0, T5 W, 7, (22 o RUHDAY)

and performing integration by parts with respect to r;. The resulting equality can be rewritten as follows:

- B2 w ) 1200
<M‘F(ga('7 ) )+7 1>+7 J‘ J f 2 dvdrdr
QJ+1 R(J+1)d Oa +
J+1 a ] 2
—i—osz f J | r;0al dvdrdr
QJ+1 ]+1)d Oa + 7y
= (M F(2o(-,") +7),1)
J+1 @\
+ = ((Lr); +u(rj, 7)) =——— - 0y, 0o dvdrdr =: Ry + Ra.
ZJJ‘QJ‘HJR(J‘HM )i (r,7)) oo+ v; Qa T 1 2
We begin by considering Ro. As
@\a ~ é\a |avj§(l‘ < (3 1 |avj§a|
= vjOa| & 1 T SWa)? 1,
Qo T (0o +7)2 (20 +7)? (0 +7)2
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it follows by the Cauchy—Schwarz inequality that

J+1
1
Ro< | = Z f J J M(v) |[(Lr); + u(r, 7)|* 0o dvdrdr
62 o 0 JOJ+1 JrR(J+1)d

1
9 J+1 At 0.0 2 2
X —62 E JJ f M (v) ‘,\nga| dvdrdr
€ o Jo Jasrt Jrtand Oa +7

g2 L [t |0y, 0a|?
M.FAQ',',t+ 71 4+ — M AU]Oé ddd
< (0l )+7) > 262 ]Z—:]_JO JQJ-{.l fR(J+1)d @) Oa +7 v

=

Therefore,

J+1 st |(97‘-§a|2
+QZJJ f M(v) =2 dvdrdr
o1 Jo Jar+ Jre+nd Qo + 7Y
1 [1EL gt
(3.45) <R+ Z f f f M) |(Lr); + u(r;, 7)|? 0o dvdrdr | .
243 2 Jo Jars Jrena
The second term on the right-hand side of (3.45) is, thanks to (3.41), bounded as follows:

1 J+1 ¢t ,
- M . P
257 (;L o e MOV @ 503712 dvdrdf)

J+1

1
<252;1

T
J |:eSS.SupT€QJ+1|(;CT)j +u(r;, )2 J f M (v) 0o dv dr] dr
0 QJ+1 Jr(J+1)d
J+1
=)
257 =
(3.46) < O(L T+ [ul Tz 7.0 0)):

where, again, the dependence of the constant C'(J,7") on 5 has been suppressed. Substituting (3.46) into
(3.45) we deduce that

T
J [ess.sup,cqui1 |[(Lr); + u(rj, 7)°] dr
0

,32 J+1 |avj§a|2

t
M F(pa(- -t )4+ M(v) = dvdrd
O A =D I W ECE = 2R

O + 7Y

J+1 ¢t |ar_§a|2
+QZJJ f M(v) =2 dvdrdr
ia 0 JoJ+1 Jr(J+1)d Oa + 7Y

(3.47) < Ri+ C(LT) (A + ulZ2o1n0())-

Let us now focus on the term R;. As

R1 ZJ J M(v) F(oo + ) dvdr
Q71 Jrr+1)d
= J f M(v) [2o(log(@o +7) — 1) + 1] dvdr
QJ+1 JR(J+1)d

T f f M(v) (log(30 + ) — 1) dvdr,
0J+1 Jr(J+1)d

the dominated convergence theorem implies that the second summand on the right-hand side converges to
0 as v — 04, while the first summand, again by the dominated convergence theorem, converges to

f J M (v) [oo(log oo — 1) + 1] dvdr = J M(v) F(go)dvdr.
QJ+1 Jr(I+1)d R(J+1)d

QJ+1
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Returning with this information to (3.45) we can now pass to the limit v — 0, there using, in the first
term on the left-hand side, Fatou’s lemma, and in the second and third term on the left-hand side the
monotone convergence theorem. Hence,

62 ) |av Qa|2
f J M(v) F(0a(t)) dvdr+22ff f =2 dudrdr
QJ+1 JRI+1)d 2€ QJ+1 R(J+1)d ro

J+1 ¢ | Q ‘2
rs o
+ « Z f J J —— dvdrdr
oo J+1 R(J+1)d Qa

(3.48) < f J M(v) F(do) dvdr + C(8, J, T)(1 + [ulla o 700 ()
OJ+1 Jr(J+1)d

and therefore (3.48) is the desired bound on g, that is uniform in a.
We shall also require a bound on the time derivative of g, that is uniform in «, which we shall now
derive, using (3.48). Thanks to (3.42), we have that

2 J+1
< j JQJH fR(JH)d ) |y, 0al |0v; | dvdrdr

J+1

T ZJ JQJ+1J Jﬂ)d v) |vj] 0o |0r; | dv dr dT
J+1

e Z f Lm fﬂwmd 0) |0, 0al |0r, 0| dvdr dr

J+1
e EJ J J (ET |+‘u TJ’ )|)§o¢|ayj90|d1)d7”d7'
QJ+1 R(J+1)d

= Qi+ Qe+ Qs+ Qi Ve L0, T W, 5, (7 x RUTDY)) vie (0,7).

UOT <M 0r0a(+,+7), (-, 7')>d'r

Next, we shall bound each of the terms Qq, ..., Q4. Thanks to (3.41), (3.48) and Sobolev embedding,

2,32 J+1 7
Q<5 )] f f f M (v) \/Ba 00,7/ 80l |00, 0| dv dr dr
€ =170 QJ+1 JR(J+1)d

Qﬁz J+1
ZJ |QaHL1 (QI+1xR(J+1)d) |avj/\/ QaHL2 (QI+1xR(J+1)d) HavJSOHLOO(Q’HxR J+1)d)dT

1 1
2 2

25? J+1 T Y J+1 T ,
< 2 (;L “avj\/gz||L%l(QJ+lxR(J+l)d) dT) (;fo Havj@||Lao(QJ+1xR<J+1)d) dT)
< CH‘P||L2(0,T;WS»2(QJ+1 xR(J+1)d)) Ve L20,T; WP (Q/H x RUH)d))a s> (J+1)d+1,
where C'is a positive constant, independent of a € (0,1]. By an identical argument,
Q3 < CHSOHLQ(O,T;WS-?(QJ*l xR(JJ+1)d)) Ve L2(07T§ W:’2(QJ+1 X RUH)d))a s> (J+1)d+1,

where C' is a positive constant, independent of a € (0, 1]. Next,

J+1
2 f ol 2al 23, @27+ mer 290y 1, 0] o 091 w100y -
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Now, by Cauchy’s inequality and the inequality (3.17), we have

v @aHL}V[(QJ+1XR(J+1)d) = M (v) |vj] 0o dr dv

JQJ+1 xR(J+1)d

1 1 |2

< J M(v) (1 + |vj]?) o drdo < =LU+D4 1 95 M (v) [vs1 0o dr dv
2 JQi+1xpI+1)d 2 QI+ R(T+1)d 43
1 R

< ZpUHDd 4 2ﬁf M(v) (et — 1) drdv + 28 M (v) F(84) dr dv,
2 QJ+1 xR(J+1)d QI+ R(J+1)d

and hence, by (3.48),

~ 1 ~
[vj] @allpoe 0,721, (741 xR +Day) < 5”(1 +[0j[?) 0ol 0,701 (@741 xrOI+ 2y < C,

where C' is a positive constant, independent of «, which then implies that
Q2 < Clel2omws2(@iixpinay Yo € L0, T;WRA(QM x RVFDY) s> (J+1)d + 1,

where C is a positive constant, independent of « € (0, 1].
It remains to bound Qg; proceeding in the same way as in (3.46), we deduce that

J+1 ~T
1 ~

Q<= jo 1LY+ [y, ™)) Ball oy, @+t xme ) 100, @] o 741 g1y AT
j=1

N|=

J41 a7
< C(e, J,T)(1 + |ul L2052 02))) <Z JO 100,017 00 71 wmea+ 100y dT)
j=1

Thus we have shown that
Qs < Clol 2 rwse@isixrusnay Yo e L0, T; W Q7 x RFD) s> (T +1)d + 1,

where C is a positive constant, independent of a € (0, 1].
By collecting the bounds on Qq, ..., Q4, we have that

T
L <M a‘r@\a('a ) T)v 90('3 ) T)>d7- < CH@HLQ(O,T;W&Q(QJ*lXR(‘]+1)‘1))

Ve L20,T; W2 QI x RUFV)Y s> (J+1)d + 1,

where C' is a positive constant, independent of « € (0, 1], which then implies the following uniform bound
on the time derivative of 0,:

(3'49) HM at@\aHL2(O,T;(W;72(Q‘]+1XR(J+1)d))/) < C, s > (J + 1)d + ].,

where C' is a positive constant, independent of a € (0, 1].

For future reference, we collect here the various uniform bounds we have derived on 9,, « € (0,1]:

(3.50a) F(0o) is bounded in L*(0,T; LY, (Q7+1 x R(+1)d)),
J+1

(3.50b) D7 10u,4/8al*  is bounded in L1(0,T; L}, (Q/+1 x RUFDI)),
j=1
J+1

(3.50c) o Y 10,,4/Bal? s bounded in L'(0,T; L} (7! x RUTD)),
j=1

(3.50d) M 0,0, is bounded in L2(0,T; (WS2(Q7+1 x RUADAN) - s> (J + 1)d + 1,
(3.50¢) 0o =0 and [2a(t)|1 (@r+1xre+nay = |20l L1 (@r+1xresnay, €[0T,
(3.50f) (1 + |v;[*) 8o is bounded in L®(0,T; L, (Q7+E x RUFDA)) 5 =1 . J+1,
(3.50g) |(Lr); +u(rj,7)| o is bounded in L2(0,T; L, (Q/F1 x RUFDA)) - 5 =1 ... J+1.
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By writing ¢ = (1/0 )?, it then also follows from (3.50b), (3.50c) and (3.50e) that

(3.50h) V,0o is bounded in L2(0,T; L}, (Q7F! x RU+D))
(3.501) a2 V,0, is bounded in L2(0, T; L1, (Q/+! x RU+DdY),

where V, := (dp, ... ,6EJ+1)T and V, := (d},..., @T]H)T are (J + 1)d-component column vectors.

We proceed by considering the Maxwellian-weighted Orlicz space L%}(QJ 1 RUADY)  with Young’s
function ®(r) = F(1 + |r|) (cf. Kufner, John & Fucik [33], Sec. 3.18.2). This has a separable predual
EY (71 x RUFDY)  with Young’s function ¥(r) = eIl — || — 1; the (Banach) space EY,(Q7+! x RU+1)4)

is defined as the closure, in the norm of the Orlicz space LY, (Q7+! x RUFTD4) of the set of all real-

valued bounded measurable functions defined on Q771 x R(Z+1d  Ag there exists a constant K such

that F(1 +r) < K(1 + F(r)) for all » > 0, it follows from (3.50a) that the sequence (F(1 + 04))a>0
is bounded in L*(0,T; L}, (Q7*! x RUFTD)). Hence, g, is bounded in L®(0,T; LY (Q/+! x RU+Dd)) =
L®(0,T; (B (74 x RUFDA)Y) = [L10,T; EY, (977! x RUFD))). By the Banach-Alaoglu theorem,
there exists a subsequence (not indicated) of the sequence (04 )a>0 and a
(3.51)  5e L0, T; LY (/1 x RUHDD))  (whereby also F(3) € LP(0,T; LY(Q7+1 x RU+1dY)) )
such that
(3.52) 0o — 0 weakly® in L%(0,T; LY, (Q7F! x RUFTDA)) = 1900, T; (EY(Q7H1 x RUFTDA))),
As, by definition, L*(Q/+! x RU+Dd) < BY (Q7+1 x RU+FD) it follows in particular that
(3.53) Oa — 0 weakly in LP(0,T; L}, (Q7+1 x RUFDD)) vy e [1,0).

The convergence results (3.40a)—(3.40d) and (3.50a)—(3.50i) now imply the existence of

0 L(0,T; L (7 x R+ >0,

with

Vb€ L2(0,T; L2, (74 x RUADDY) and M ap e L2(0,T; (W*2(Q7H x RUFVINY g > (J +1)d+1,

such that
0o — 0 weakly* in L®(0,T; L3,(Q7+1 x RUZ+1Dd)),
V0o = V0 weakly in L2(0,T; L%, (Q7+! x RUFD4)),
aVy0q — 0 strongly in L2(0,T; L3,(Q/F! x RU+D)),
M 0;0o — M ;0 weakly in L2(0,T; (W*2(Q7+! x R(J+1)d))’), s> (J+1)d+1,
V; 0o — v 0 weakly in L2(0,T; L, (Q/FF x RUFDA)Y 5 =1 .. J+1,

((Lr); +u(rj, 7)) 0o — ((Lr); +u(r;,7)) 0 weakly in L2(0,T; Li,(Q7+1 x RUFTDAY) - 5 =1 ... J+1.

Using these convergence results, passage to the limit & — 04 in (3.43) implies the existence of
0 L0, T; L (27! x R+ - 5>,
with

Voo € L2(0,T; L3, Q7 x RUADD)) and M 0,5 e L2(0,T; (WH2(Q7H x RUFVY) - s> (J+1)d + 1,



BEAD-SPRING-CHAIN MODELS FOR DILUTE POLYMERIC FLUIDS 29

satisfying the following weak form of the Fokker—Planck equation: for all ¢ € (0,77,

t J+1
Moro(-,-,7),¢ d Op; 0+ Oy, pdvdrd
J, arecatemetemars (ZJ [
J+1
_<ZJJ J V) V0 6Tcpdvdrd7'>
QJ+1 R(J+1)d

J+1
_<ZJ j f ET) +u(7ﬂj77—))§'avj90dvd7“d7> =0
QJ+1 JRI+1)d

(3.54) Ve L2(0,T; W, (77 x RUFDY) A 2@/ x RUFDY)) 5 > (J 4+ 1)d + 1.

It remains to discuss the attainment of the initial condition by p. To this end, we require the following
lemma.

Lemma 3.1. Let X and Y be Banach spaces.
(a) If the space X is reflexive and is continuously embedded in the space Y, then
L*(0,T; X) n Cyw([0,T];Y) = Cy ([0, TT]; X).
(b) If X has separable predual E and Y has predual F' such that F' is continuously embedded in E, then
L*(0,T; X) N Cows ([0, T];Y) = Cu ([0, T]; X).

Part (a) is due to Strauss [49] (cf. Lions & Magenes [36], Lemma 8.1, Ch. 3, Sec. 8.4); part (b) is proved
analogously, via the sequential Banach—Alaoglu theorem.

We shall prove that g € Cy, ([0, T]; L}, (Q7+1 x RU+D4)) Let us first recall that, thanks to (3.51),
0 L*(0,T; LY (/! x RUFDD))  (whereby also F(g) € L*(0,T; L' (Q/+1 x RU+Dd)) ),
and, also,
0 Wh2(0,T; M~ (W2(Q/ x RUFDH)YY - s> (J+1)d + 1.
We then apply Lemma 3.1(b) by taking:
o X := LY+ x RUFD) the Maxwellian weighted Orlicz space with Young’s function
O(r) = F(1+|r))
(cf. Kufner, John & Fucik [33], Sec. 3.18.2) whose separable predual
E = E%(QJJrl % R(JJrl)d)
has Young’s function
U(r) =l —|r| = 1;
e and Y := MY (W52(Q/*1 x RUFDY)Y whose predual with respect to the duality pairing
<M‘7'>W5’2(QJ+1><R(‘]+1)‘1)’ S > (J+1)d+].,
is
F = Ws2(Q/F x RUFD) s> (J +1)d + 1,

and noting that Cp([0;T]; LY (Q7+1 x RUFTDA)) < €, ([0,T]; L}, (27+ x RUFDE)) This last inclusion
and that F' — E are proved by adapting Def. 3.6.1. and Thm. 3.2.3 in Kufner, John & Fucik [33] to the
measure M (v) dvdr to show that L*(Q/F! x RUFDY) < [T (Q/F1 x RUFD) for any Young’s function
=, and then adapting Theorem 3.17.7 ibid. to deduce that

F <> LOO(QJ+1 > R(J-‘rl)d) s E]‘&(QJ-Fl > R(J-‘rl)d) = F.

The abstract framework in Temam [51], Ch. 3, Sec. 4 then implies that g satisfies g(-,-,0) = 9o(+,) in the
sense of Cy, ([0, T1]; L}W(QJH % R(Jﬂ)d))_
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By taking ¢ =1 in (3.54), we have that

(M3(-,,1), 1y — (M g(-,-,0), 1) = L (M3, 7), 1)dr = 0,

Hence,
(Mo(,t), 1) = (M go(-,-), 1) =0,

and this then gives

M(v) o(r,v,t)drdv = j M(v) go(r,v)drdv =1 Vite (0,71,

jQJ+1XR(J+1)d OJ+1 xRI+1)d

which, together with ¢ > 0, implies that
o=Mpe L*(0,T; L'(Q/* x R+

is a probability density function, as required.

Noting that the function F is nonnegative and convex, for each fixed v € (0,1] the first term on the
left-hand side of (3.47) is weakly lower-semicontinuous in L}, (Q7+1 x RU+1D4) as o — 0, (cf. Theorem
3.20 in [23]). Similarly, since £ € R > [£]?, with y > 0, is a nonnegative convex function, we have weak
lower semicontinuity of the second term on the left-hand side of (3.47) (cf. Corollary 3.24 in [23]) for
each v € (0,1]. By passing to the limit &« — 04 in (3.47), and then passing to the limit v — 0, using
the dominated convergence theorem in the first term on the left-hand side and the monotone convergence
theorem in the second term on the left-hand side, we deduce that g satisfies the following energy inequality:

2 J+1 |av Q|2
M dvd drd
JQJH JR(J+1)d (v) F(e(t)) dvdr + 2¢2 ZJ JQ”I JR(J+1)d 0 dvdrdr

355 < Lm JR(MW M) F(@) dvdr + = O 7rnaT+ 50+ Dlulz,seay:

It is important to note here that, although we had supposed that gy € L2,(Q7F1 x RU+1D4: R ), the upper
bound in (3.55) only depends on the L}, (Q7*! x RUZ+1D4) norm of F(gy), the L(0,T; L®(2)%) norm of u,
and the constants d, 3, J, L, T, all of which are independent of e.

4. EXISTENCE OF SOLUTIONS TO THE COUPLED OSEEN-FOKKER-PLANCK SYSTEM

We now return to the full system stated in the Introduction, our objective being to prove the existence
of large-data global weak solutions to the coupled Oseen—Fokker—Planck system. To this end, we formulate
an iterative process, by defining the sequence of functions (u(k), @\(k)), for k =1,2,..., as follows. We set
uV) = 0. Given a divergence-free u¥) e L2(0,T; Wol’U(Q)d), for some k > 1 and o > d, we define o) as
the weak solution (in a sense to be made precise below) of the Fokker—Planck equation:

4.1
( ) 52 J+1 J+1
Mat@\(k) (Z av] : v] ) (Z MU] Tj ((,CT’) ( )(Tj7t)) : avj (M@(k))> = 07

for all (r,v,t) € Q71 x RV » (0, 77,
(4.2) o®) (r,0,0) = o) (r,v) for all (r,v) € Q7+ x R4,

subject to a (weakly imposed) specular boundary condition with respect to the independent variable r.

(k)

The precise specification of the initial datum gy’ in terms of gy will be detailed in the next subsection.
Having determined §®) from this problem, we shall find the next velocity field iterate ©**1) by solving,
with %) fixed, the Oseen system (cf. (4.9) below). We shall prove that one can extract a subsequence
from the sequence of iterates ((u(k)7 §(k)))k>1, which converges to a solution (u, 9) of the coupled Oseen—

Fokker—Planck system in the limit of k£ — oo.
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4.1. Definition of the initial data. First, we define the sequence of initial data (@ék))k>1 appearing in
(4.2). Given gp as in (3.5), and letting
s

Gr(s) : 1+k:_%\/§7 s € [0, 00),
we define ®
0y = Gr(00), k=1,2,....
The purpose of this construction, which can be seen as a renormalization of the initial datum gy, is to
ensure that, under the original hypotheses, (3.5), on 9o, the functions ﬁ[()k) thus defined possess the following
properties:

4.3a ﬁ(k) e L} (/1 x RUTDE R ), for each fixed k > 1

( 0 €Ly >

4.3b MFEW) e L1 x RUFDL R_ ), for each fixed k > 1,

0 >

(4.3c) f M (v) ﬁ[()k) drdv <1, for each fixed k > 1
QJ+1xR(JI+1)d

(4.3d) Q[()k) e L2, (7 x RUFDA R_ ) for each fixed k > 1

and, possibly for a subsequence only (not indicated),

(4.3e) ﬁ((]k) — 00 strongly in L}, (Q7F! x RUTD) as k — oo,

4.3f F™Y - F(go)  strongly in L1 (Q7+1 x RUFDY as k — op.

( 0 M

We shall now proceed to show that these properties do indeed hold; having done so, we shall explain their
relevance in the proof of our main result.

That g(k) > 0 for all £ > 1 is a direct consequence of its definition and the assumed nonnegativity of
oo (cf. (3.5)). By (3.5), and noting that 0 < Gg(s) < s, (4.3a) and (4.3c) directly follow. The assertion

(4.3b) is also immediate by noting that ]-"(@ék)) = F(Gk(00)) < max{1,F(go)}. We therefore proceed to
prove the inclusion (4.3d).
We have, for each k£ > 1, that

2 ~ N\ (12 ERPN
(4.4) HQO )HL?M(QJJAXR(JJrl)d) = HGk‘(go)HL?M(QJJrlXR(JJrl)d) < k2 HgoHL}VI(QJJrlXR(JJrl)d).
Thus we have verified (4.3d).
Next,

ﬁok‘_i\/To
1+ ki+/30

(45) " - ol 1 (i1 xrnay = [Gr(20) = ol L1 (@741 xrE+Da) <

L1, (Q7+1 xR(U+1)d)
Clearly,
?07 VO L0 ae on QL x RUFDA,
k1 4+ /00
Also, trivially,
D R N
0< QF VO o L Q7+ x RU+DAY,

1+k™ f

Hence, by the dominated convergence theorem,

~ 1 =
oo k1 \/ %0
14+ k™ x/ 00

By passing to the limit & — oo in (4.5) we then deduce that

lim

k—o0

=0.
Ll QJ+1 ><R(J+1)d)

. ~(k ~
Jim 2y - ol 1 (@r+1xr+na) = 0.

Thus we have shown (4.3e).
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To prove (4.3f), thanks to (4.3e), it suffices to show that, as k — o0,

@\0 @0 ~ ~ . 1 J+1 (J+1)d
—————log | ———F————=] — oolog oo strongly in L, (2 x R ).
A (m«—im) M

To this end we write

~

_1 /=
DN G N W N TN L),

1+ k~14/20 1+ k= 14/0 1+ k™ 14/20 1+ k~1/0

We shall show below that the first fraction on the right-hand side of the equality (4.6) converges to gy log 0o

strongly in L1, (Q7F! x RU+1D4) while the second fraction converges to 0 strongly in L}, (Q7*1 x R(/+1d),

and that will complete the proof of (4.3f). Indeed, that the second fraction on the right-hand side of (4.6)

converges to 0 strongly in L}W(QJ +1 x RU +1)d) follows directly from the dominated convergence theorem
by noting that

log (1+k51/20 ) IR (145520

1+ k7920 e R N L)
Focusing now on the first fraction on the right-hand side of (4.6), we consider

1
0o log (0 k™14/00
<t g(o) —QIOng——Qolong — -
1+ k™ \/ 1+ k7 14/00
The term on the right-hand side of this equality converges to 0 strongly in L}VI (Q7+1 x ]R(JH)d) as k — oo,
thanks to the dominated convergence theorem. That completes the proof of (4.3f).
The significance of (4.3a)—(4.3f) is that these are precisely the properties which we used in the previous

section to prove, for a fixed divergence-free velocity field u, contained in L?(0, T} VVO1 7)), 0 > d, the
existence of a solution ¢ to the Fokker—Planck equation, subject to such initial data for g.

(4.6)

=0 a.e. on /Tl x RU+DE

4.2. Existence of a solution to the initial-value problem (4.1), (4.2). Having verified all of (4.3a)-
(4.3f), the arguments developed in Section 3 imply the existence of a weak solution 9*) to the problem
(4.1) for a given divergence-free u*) € L2(0,T; W&’U(Q)d) with ¢ > d. More precisely, there exists a
o™ € Co ([0, T]; Ly (Q7T x RVFDE R ),
with
V,o® e L2(0,T; L1 (7 x RV 11 3,5 e L2(0, T (WH2(Q7H x RUFVY) o> (J+1)d+1,
and satisfying
vj 0 e L2(0,T; Ly, (7 x RUFDAY) 5 — 1 T +1,

((Lr); +u® (r;, 7)) 6% € L2(0, T; L (7T x RVFDD) 5 =1 T +1,

such that, for all ¢ € (0,T]:

t 9 [J+1
f <M87‘;_5(k)(.,.,7), >d7-+ (ZJ f J d, 8y, ok )'8vj<pdvdrdr>
0 QJ+1 R(J-H)d
J+1
—(ZJJ J vjﬁ()- T(pdvdrd7>
QJ+1 ]R(J+1)d
&'

J+1
e (Z J fQJ+1 jR(JJrl)d M(U) ((ﬁr) + u( )(ij )) k) avjépdv dr d7'> =0

(4.7) Ve L2(0,T; W, (77 x RUFDY) A w2/ x RUFD)) s > (] +1)d + 1.
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Furthermore %) (-, -, 0) = @()k)(-, -} in the sense of Cy, ([0, T]; L}, (Q7+! x RU+DE R (), and

M) 3™ (r,v,t)dr dv = f M@)o (rv)drdo <1, te(0,T).

JQJ+1 xR(J+1)d QJ+1 xR(I+1)d

In addition, thanks to (3.55), 8% satisfies the following energy inequality:
(9 A(k)|

[N ELCECECIETES =) N dvdrdr
QJ+1 JR(J+1)d QJ+1 R(JJrl)d Q( )

(k) 2 (k)
(4.8) gLJH JRUM M) FGP) dvdr + 20 : S 1+narT+ B(J+1) 69 20,7102

It is important to note here that the upper bound in (4.8) only involves the L}, (Q7/+! x RU+D4) norm of

f(f)(()k)), which, thanks to (4.3f), converges to F(go) strongly in L}, (Q7/+! x RU+Dd) "as k — o0; and on the
L%(0,T; L*(2)%) norm of u*) | which we shall now bound by a constant, independent of k and of . Once we
have done so, (4.8) will yield a uniform-in-k (and e-uniform) bound on the L*(0,T; L}, (Q7+! x R(U/+1)d))
norm of F(3®) and the L2(0,T; L3,(271 x RUZ+D4)) norm of V,+/0%), which will, together with the
strong convergence of 9®) to g in L'(0,T; L}, (Q7F! x RU+D)) which we shall also prove, yield the
convergence results required to pass to the limit in the weak form of (4.1) as k — co.

4.3. Existence of a solution to the Oseen system. Having shown the existence of a solution 3 to
(4.1), (4.2) for a given divergence-free u*) e L2(0,T; W7 (Q)%) with o > d, we define (u*+1), 7(*+1)  with
w1 e L0, T; L2 ()% n L2(0, T; Wy > (2)4), and 1) € D'(0, T; L2(2)/R) as the weak solution of the
unsteady Oseen system:

o) (b V)uF D) — A 4 vrD) — v LR R for (z,t) € Q x (0,77,
(4.9) V- u*tD) — for (z,t) € Q x (0,77,

w* ) (2,0) = ug(x) for z € Q,

where ug € W0172/Z’Z(Q)d with z = d 4+ 9 for some 9 € (0, 1), is divergence-free, and

§ o xrma 21 (Flg;) ® ) M 2W (B(q, z),v,t) dg du

K®) (2, ¢
(@,2) = $po R+ M o) (B(q, 1:),1),75) dgdv ’

(x,t) € Q x (0,T].

Thanks to (1.3),
(4.10) 1K oo 0,720 02)) < C
where C is a positive constant, independent of k. Thus, there exists a K € L®(0,T; L®(; RZX4 ) (to be

Symm
identified), and a subsequence, not indicated, such that

(4.11) K® - K weak* in L®(0,T; L®(Q; R4 ) as k — o0

symm

As WS_Q/Z’Z(Q)d < L2(Q)9 for z = d -+ for some ¥ € (0, 1), by standard arguments from the analysis of
the incompressible Navier—Stokes equations (cf., for example, [51], Chpt. III) we deduce from (4.10) that
there exists a unique weak solution (u*+1), 7(k+1)) to the Oseen system with u(**1) e L®(0,T; L*(Q)%) n
L2(0,T; Wy ()%, and

||u(k+1)“LOC(O,T;Lz(Q))mL2(O,T;W1’2(Q)) < C(+ [uolr2)),

where C is independent of k. Hence, by interpolation,’

(k+1)) 6 =4 whend=2,
U & < C  where -
v o @n < 6=19 whend=3,
. . . . 1/2 1/2 2/5 3/5
1By the Gagliardo-Nirenberg inequality, [v]pace)y < CHUHL/2(Q) HvHM//LQ(Q> for d = 2, and |v[| 10530y < Clv]}2 / 2(0) HUHM//Lz(m
for n = 3. Hence, by the application of Hélder’s inequality, |v||p4(0,7;r4(0)) < CHUHLOC(U T LQ(Q))HUHIL/QQ(O,T;WLZ)(Q)) for d = 2

2/5
and HvHLlo/-g(O,T;Llo/:i(Q)) < CH’UHL/GC(Q,T;LQ(Q))H’UHL2(0’T;W1,2(Q)) fOI‘ d=3.
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where Q7 := Q x (0,T). Therefore, also,

=4 when d = 2,
1

?0 when d = 3.

o
Hb@“(kH)HL&(QT) < C where { 5

Remark 4.1. We note here in passing that the reqularity hypothesis b € L*(0,T; L*(Q)?) that was used
here to deduce the last inequality can be weakened to assuming instead that b e L*(0,T; L*(Q)?) for some
s> 2d(d+2)/(2(d+2) —d?), d = 2,3. The latter weaker assumption on b results in Hb@u(k“)HLa(QT) <C
for some 6 > d, which then still suffices to draw the same conclusions to the ones below.

Continuing with our stronger but simpler assumption that b e L®(0,T; L*(2)%), we have that

=4 when d = 2,
1

§0 when d = 3.

o
HK(k) _ b®u(k+1)HLff(QT) < C where { 5

Clearly, 6 =2+ 3, d = 2,3,

We shall now show that the divergence-free function u**+1 possesses additional regularity, in the sense
that u*+1) e L2(0,T; W()I’U(Q)d), with o := min(é, z); we note that this fixes the value of o, and it is clear
that ¢ > d, as is required by the arguments contained in Sections 2 and 3. To do so, we shall move the
convective term in the Oseen equation to the right-hand side of the equation, resulting in an unsteady
Stokes system with source term V - (K(k) = b®u(k+1)). This then enables us to apply the regularity result
for the unsteady Stokes system stated in [32] (cf. pp. 3067-3069 therein, in particular), which guarantees
the existence of a positive constant C' = C,, independent of k, such that

1

k+1)”
Ws'2(Q

1—%’“@)) !

)

where 0 = min(6,2) > d, 6 : =2 + %, with z = d 4+ ¢ for some ¥ € (0, 1), and
1
W2 (Qr) := L7(0,T; W (2)%) n WY29(0,T; L7 (2)%).
1
As W2 (Qr) = L2(0,T; W7 ()9), it follows that

(4.12) Hu(kJrl)HLQ(O,T;WU’(Q)) <C(1+ HUOHWlfg,J(Q)),

where o = min(d, 2) >d,0:=2~|—§,d=2,3, and z = d + ¢ for some ¥ € (0, 1).

4.4. Passage to the limit £ — co. We deduce from (4.12) and (4.9) that

B weakly in L2(0,T; Wy 7 (Q)4) as k — oo, o>d,

(4.13) u® -y weakly in W20, T; W=17(Q)?) as k — oo, o >d,

— strongly in L%(0,T;C%7(Q)%) as k — oo, 0<y<l1-— g, o>d,

where the last result follows, via the Aubin—Lions lemma, thanks to the compact embedding of the Sobolev
space W&’U(Q)d into the Holder space C%7(Q)? for 0 < v < 1 — g, o > d. Using (4.11) and (4.13) it is now
straightforward to pass to the limit in (4.9).

All that remains to be done is to identify the weak* limit K of the sequence (K*)),~¢ in terms of the
limit g of the sequence (3));=o. As K*) has the form

=~ k=0,1,...,
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where

J
f R(JH)dZ (7j) ®q;5) @\(k)(B(q,:E),U,t) dq dw,

=1
JD J xR(J+1)d

.

i

o™ (B(g, z),v,t) dgdv,

J
A= M (B #)dgd
JDJXR(J-H) ; (4;) ® ¢;) Q( (q,2),v, ) q dv,
B = M3 (B(q,2),v,t) dg dv.

DI xR(J+1)d

The identification of the limit K proceeds as follows. First we need to prove strong convergence of the
sequence (@\(k)) k>0- As we are now required to work under the original hypotheses on the initial condition,
stated in (3.5), rather than the stronger assumption used for the parabolic regularization of the Fokker—
Planck equation, we can no longer use our earlier argument. In other words, the only piece of information
we are allowed to use at this point is the energy inequality (4.8), in conjunction with the bound on (u*));>
supplied by (4.12).

We therefore argue as follows. Since we have by now already passed to the limit o« — 04, and have
thereby removed the r-diffusion term from the Fokker—Planck equation, we can rewrite (4.1) as

/32 J+1 1 J+1 J+1
Mo g™ — 5 { 3] 2oy (M2, 20 |+ = | D) Muj- 0,00 | =~ Z ( u(r;, 1)) - avj<M§<‘“>)),
j=1

7j=1
(4.14) in D/(Q7+1 x RV » (0, 7))

(i.e., in the sense of distributions on Q7+ x R(/+Dd 5 (0, 7)), and we can exploit the fact that the differential
operator appearing on the left-hand side of (4.14) is hypoelliptic. Thus we can replicate the argument
appearing in the Appendix of the work of DiPerna & Lions [25], concerning strong L! compactness of a
sequence of solutions to a hypoelliptic equation driven by a sequence of source terms that is equibounded in
L' and has uniform decay as |v| — o0 in a sense to be made precise below. Having done so, we will deduce
the strong convergence of the sequence (9%)); in the function space L'(0,T; L}, (Q7+! x RUFTD)): je.

(4.15) o*) -5 strongly in L'(0,T; L1, (Q7F1 x RU+D))  as k — oo,

To this end, we will first show that the expression appearing on the right-hand side of (4.14) is bounded in
the norm of L(0,T; L*(Q7*! x RU+1D4)) uniformly with respect to k. Clearly, for any j € {1,...,J + 1},
and k > 1,

I((£r); + U(k)) < O, (MQ )”Ll 0,T;L (7 +1xR(J+1)d))
T
<C [ (1 1Oy 100, (1B )3 s ooy
g k k
<C [ (14 1Ol IM 03] E9 Dl st sy

T
(4.16) + CJ (1 + |\u<k>(.,t)HLoo(Q)) |6 05,8%) (-, )| 11 (41 o+ vay .

The first term on the right-hand side of (4.16) is bounded, using (3.17), (4.8), (4.3f), and (4.12), as follows:

M [05] 8%+, D)l 1 a1 s f f (eIl — 1) + M(v) F(@M (1)) dvdr
QJ+1 J+1)d

<1 i Lm J oy M@ F@EV @) dv dr>

<C,
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where C' is a positive constant, independent of k; hence, noting (4.12),
(4.17)
g k k 4 k
f (1 + Jul )('at)HLoc(Q)) |M Jv;] %), S i xreanay dt < CJ (1 + [Jul )('vt)HLOO(Q)) dt < C,
0 0
where C' is a positive constant, independent of k.

The second term on the right-hand side of (4.16) is bounded as follows. First, using the Cauchy—Schwarz
inequality with respect to r and v we have that

2
HM a@j@\(k)(.7 -,t)”L1(QJ+1XR(J+1)d) = HM avj< @(k)(.’ .’t)>

LI(QJ+1 ><R(J-H)cl)

<2 HM@(k)(’ "t)HLl(QJ+1><R(J+1>d) Mavj Z)\(k)(v 7t)

L2(QJ+1 XR(]+1)d)
Hence, now using the Cauchy—Schwarz inequality with respect to ¢, we deduce that
T
| (1 1€ 0llm) 130,20 Ol iy
k g k /
<2 HM@\( )HLOO(O’T;Ll(QJﬁ»l xR(J+1)d)) J (]. + Hu( )(7t)HL°O(Q)> ‘Ma’l)j @\(k)(a Jt) dt
0 L2(Q7+1xR(J+1)d)

M, o

Thus, by noting the uniform bounds (4.8), (4.3f), and (4.12), we have that

< 2| M 8™ oo 0 711 (02741 xmer+0ayy 11+ 0B () ooy | 2200,

12 (O’T;LQ(QJJA XR(J+1)d))

T
(4.18) L (14 BB 0 omq ) 1M 0,80, )1 a1 sy At < C

where C is a positive constant, independent of k.

Using (4.17) and (4.18) in (4.16), we then deduce that the expression on the right-hand side of (4.14) is
bounded in L'(0,T; L' (Q7*! x RZ+D4)) uniformly with respect to k.

Next, we show that the sequence of functions appearing on the right-hand side of (4.14) has the following
additional (‘equiboundedness’) property: for each j € {1,...,J + 1},

(4.19) Jim sup [xpoa () (£0); + u®) - 00, (MED)] 1o 1iar @71 00000 = O,

where X|,|>g is the characteristic function of the set of all v € R(+Dd such that |v| > R, with |- | signifying
the Euclidean norm on R(/*14, Similarly as in (4.16), we have that

Ixoi=r() (£r); + u®) - 05, (MM 110,111 (041 x4y

T

< Cfo (1 + Hu(k)('at)”L@(Q)> IX(ojz R () Bo, MW (-, - 1)) 1 (o1 41y At
r k k

< CL <1 + [l )('at)”LOO(Q)) Ix(oi=r () M [v3] @5 (-, -, )] 1 1 ey At

T
(4'20) + CJ;) (1 + ”u(k)(7 t)HL“’(Q)) HX|v|>R(') M a'Uj §(k)(7 ) t)HLl(QJ“x]R(J"'l)d) dt.

The first term on the right-hand side of (4.20) is bounded as follows. We first note that, for [v| > R > 0,
by (3.17),

0 < M)l 2% < o) o]0 < Pr() 78 < 3 (M) - 1)+ 01FEh).
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Therefore, using (4.8), (4.3f), and (4.12), we have that

2
[v]

~ 43 Ll "
D) M 103l 29 Olpaoonermna < 3 | [ (M0 (€5 = 1)+ (o) FE 1) dodr

(J+1)d
¢ (1 +f f M (v) F(e™ (1)) dv dr)
R QJ+1 JrI+1)d
¢
~ R,

where C' is a positive constant, independent of k; hence, noting (4.12) again,

)

= Q

T
(4.21) L (1 + Hu(k)(‘at)HLOC(Q)) IXu=r (") M v;| 8% (-, )L+t xreanay dE <
where C' is a positive constant, independent of k.

The second term on the right-hand side of (4.20) is bounded as follows. First, using the Cauchy—Schwarz
inequality with respect to r and v we have that

2
HX|v\zR(')M5vj§<k)('a '7t)HL1(QJ+1><]R(J+1)d) = ‘XvIZR(')Ma”j( ‘-a(k)(""t))

1 (QJ+1 XR<‘]+1)d)

L2(QJ+1 ><]R(J+1)d)

Mﬁ’u]‘ §(k)(77t)

< 2| Xjoj=r() M W, S0 @i xrena)

Hence, now using the Cauchy—Schwarz inequality with respect to ¢, we deduce that
T 2 (k)
J (1 + Hu( )('7t)HL°C(Q)> HX\U\ZR(') Ma“jg e "t)|‘L1(QJ+1 xR(J+1)d) dt
0
k T k
< 21012 8() M 2™ | o 0,701 (@741 xm 0410y j (1+ 16 Dlee ) HM o[ ORI (1)
0

M d,,4/2®

dt

L2(QJ+1 ><R(JJrl)d)

k k
< 2xpet=r () M 8™ Lo 0,71 (@041 xrrr0ayy 11+ 165 8) Lol 220, 7)

L2(O,T;L2(QJ+1 XR(J+1)d>)

However, for [v| = R > 0, by (3.17),

0 < M) g% < B argu) U 5o < 45 M(v)(e% — 1) + M(v)F(5")
R 43 R? ’
and therefore, by noting the uniform bounds (4.8), (4.3f), and (4.12), we have that

C
Ix(o12 R () M 8® | oo 0.1, (41 s+ 1y < 2

where C'is a positive constant, independent of k. Thus, by noting the uniform bound (4.12), we have that

C

T
(4.22) L (1 + Hu(k)(nt)HLOC(Q)) IX(oiz R () M 00,80 (-, 1) 11 (1 s nay dE < i

where C is a positive constant, independent of k. Hence, using (4.21) and (4.22) in (4.20), we obtain

c
R’
where C'is a positive constant, independent of k, and therefore (4.19) directly follows.

Furthermore, we note that, similarly to the argument preceding (4.21), for |v| = R > 0, by (3.17), we
have that

IXjw)=r () ((£r); + U(k)) ' avj(Mé\(k))HLl(O,T;Ll(QJ+1 xRU+D)) S

2 o2
0< M)l < %M (v) ‘Zﬁ 8y < %52 (M(u)(e'z&a ~1) + M(v)}'(ﬁ((]k))) ,
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Therefore, using (4.8), (4.3f), and (4.12), we have that

ﬁ B
IXjo|=R (") MQO HLl QI +1xR(J+Dd) S f f (e — 1)+ M(v) ]-"(gék)) dvdr
QJ+1 R(J+1)d
~(k)
M dvd

R2 < JQJH J]R(Prl)d (v) &) dv 7’)

C
(4.23) < ok

where C' is a positive constant, independent of k.

To summarize, we have shown that the sequence on the right-hand side of (4.14) is bounded in the
norm of L*(0,T; LY(Q/*! x RU+D4)) uniformly with respect to k. We have also shown that (4.19) and
(4.23) hold. Having done so, we have verified the conditions stated under (A.4) and (A.5) in the Appendix
of DiPerna & Lions [25]. The properties listed under (A.1)—(A.3) in [25] follow from properties of the
fundamental solution of the hypoelliptic operator on the left-hand side of (4.14), and can be verified by
recalling the explicit expression for the fundamental solution (see, for example, Section II.1 in [15]). Having
checked each of (A.1)-(A.5) in [25], an identical argument to the one in the Appendix of [25] yields the
strong convergence of (Mg*));~o to Mg in the norm of L'(0,T; L'(Q7+! x RU+D)) " as stated in (4.15),
and hence, thanks to the boundedness of this sequence in L*(0,T; L*(Q7*! x RUZ*+Dd)) (which follows
from (4.8), (4.3f) and (4.13)3), strong convergence of (M o))~ to Mg in LP(0,T; L'(Q/+1 x R+Ddy)
also follows, for all p € [1,00); equivalently, (0*))x>o converges to g in LP(0,T; L1 Q7+ x R +Dd)) for
all p e [1,00).

We are now ready for the identification of the weak* limit K of the sequence (K(k));@o in terms of p.
The argument consists of the following six steps.

(i) The strong convergence (4.15) of the sequence (0*));=¢ in L*(0,T; L}, (2741 x RUFD4)) implies
a.e. convergence of (a subsequence, not indicated, of) 2A%*) to 2 on Q x (0,7). Let us show that
this is indeed the case: since the Jacobian |det B| is constant and F € L®(D”;R?), it follows from
(4.15) by performing the change of variables r = B(q,x) that, for any j € {1,...,J}, also

f” F(g;) @ 45110 (B(q,2),v,1) — 8(B(g, z), v, t)] M(v) dgdv dzdt — 0.
DJXR(J+1)d

This then implies that there exists a subsequence, not indicated, such that
J |F(q5) ® 5] 16¥)(B(g, %), v,t) — 8(B(g, %), v,t)| M(v) dgdv — 0
DJ xR(J+1)d

for a.e. (z,t) € Q x (0,T). Indeed, by defining, for each j € {1,...,J},
Okj(z, 1) := f 1F(q5) ® g1 1% (B(g, %), v, 1) — 2(B(g, ), v,1)| M(v) dg do,
DJ xR(J+1)d

Tonelli’s theorem yields that d;; € L'(€2 x (0,T); Rxg) for all k > 1. As,

T
165 1 (2 (0,1)) = Jo L Orj(q,t) dgdt — 0,

there exists a subsequence of (0x;)r>1, not indicated, such that o;(x,t) — 04 for a.e. (x,t) €
Q x (0,T), for each j € {1,...,J},

(ii) Analogously, B*) converges to B a.e. on Q x (0,7).

(iii) Now (i) and (ii) imply that A*) /B*) converges to A/B a.e. on Q x (0,T).

(iv) Since [2A®) /B*)| < C, where C is a positive constant, independent of k, the dominated convergence
theorem yields that S 9k /’B (k) dz: dt converges to SE 2A/B dx dt for every measurable set E
Q x (0,7).

(v) Now (iv), together with the fact that (A*)/B*)), -, is bounded in L®(Q x (0,T)), implies weak*
convergence in L*(Q x (0,T)) of A®) /B*) to 2A/B thanks to Corollary 2.49 in [27].

(vi) However, (4.11) states that 2A*)/B(*) converges weakly* to K, in L*(Q x (0,T)). Therefore, by
uniqueness of the weak* limit, K = /8.
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Thus we have shown that

K _ g _ SDJXR(J+1)d Zj;l(F(qj) ® q]) M Z)\(B(Q7 ‘T’.)7 ’U, t) dq dU.
B SDJX]R(J‘HW M@\(B(Q7m)7vat) dqdv
Finally, we can pass to the limit k& — oo in the sequence of Fokker—Planck equations (4.7). As this part
of the proof is very similar to the passage to the limit o — 0, expounded in the previous section, we
confine ourselves to summarizing the main points.
The strong convergence result (4.15) and the energy inequality (4.8) imply the existence of

o€ L?(0,T; L, (271! x RUFDE R ),

with
Vo0 € L2(0,T; L3,(Q7+1 x RU+D4Y),
Voo e L2(0,T; L, Q7T x RV and M a5 e L2(0,T; (W*2(Q/TL x RUFDIYY g > (J+1)d+1,
such that, as k — o0,
k) A weakly® in L*(0,T; L}, (Q7+! x RU+Dd)),
e e { strongly in LP(0,T; L}, (Q/F x RUFDD))  for all p e [1, ),

V.o —V,5 weakly in L2(0,T; L1, (Q/+1 x R(Z/+1dy),
Mo,g%) — Moo weakly in L2(0,T; (W*2(Q7+1 x RUFDA)) s > (J +1)d+1,
v; %) —v; § weakly in L2(0,T; L}, (71 x RUADA)) 5 =1 J+1,
((Lr); +u® (ry, 7)) 0% — ((Lr); +ulrj, 7)) 6 weakly in L2(0,T; L}, (Q7+1 x RUFDE) 5 =1 . J+1.

Using these convergence results, passage to the limit & — o0 in (4.7) implies the existence of
0 LP(0,T; Ly, (""" x RVFDE R )),
with
Voo e L2(0,T; L3, (7! x RUFDY),
Voo e L2(0,T; L, Q7T x RUHDDY) and M a5 e L2(0,T; (W=2(Q/TL x RUFDIYY g > (J+1)d+1,
satisfying the following weak form of the Fokker—Planck equation:

t 2 J+1
Moro(-,-,7),¢ d 0p 0 Oy, pdudrd
fo< o, > Tt (ZJ fQJH J‘R(J-H)d 10 Ouypdudr T)
1 J+1 st
_Z (ZJ J f V) V0 - O, gpdvdrdr)
€ j=1 0 J+1 R(J+1)d

_<ZJ J J ['T) +u(rj77-))§'avj90dvd7‘d7'> =0
€ j=1 0 J+1 R<J+1)d

(4.24)
Ve L2(0,T; W22 (7 x RUFDD) A s+ o« RUFDD)) - s> (J 4 1)d+1, Vite (0,T].
Furthermore 9(-,-,0) = 9y (,-) in the sense of Cy, ([0, T; L}, (271 x R+ R (), and

M o(r,v,t)drdv = J M 5o(r,v)drdv = 1.

JQ.I+1XR(J+1)d QJ+1xR(J+1)d

In addition, o satisfies the following energy inequality:

2 J+1 o 2
f f M(v) F (())dvdr—i—B—Q ff f 0122 4 ardr
QJ+1 JR(J+1)d 2€ QJ+1 (J+1)d Q

[1 i JQJH JR(JH F(00) dv dr]
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where C' = C(HUOHW1—3,G(Q), 16] o= (0,750 (2)))» @ := min(G, 2) > d, with 6 := 2 + 2 and z = d + ¥ for some

¥ € (0,1). In particular, C' is independent of € > 0.

This then completes the proof of the existence of large-data global weak solutions to the coupled Oseen—
Fokker—Planck system under consideration, for all € > 0.

5. TRACE THEOREMS FOR THE SOLUTION OF THE FOKKER—PLANCK EQUATION

In this section, by using similar arguments as in [43], we prove that the solution to the Fokker—Planck
equation has a unique trace on the boundary of our domain, which is defined thanks to a Green’s formula.
We then use this result to prove that the specular boundary condition is attained in a strong sense by the
solution. To this end, given the vector

1 B
Ej = Ej(r,v,t) = ;(([,T)J + u(rj,t)) — 671)]‘

and a weak solution ¢ = o(r, v,t) of the Fokker—Planck equation

J+1 J+1 g2 I+l EAR!
(5.1) AEj()—ﬁtg—i—ZE (ryv,t) UQ-i—Z v; - Bj(r,v,t)) Z& 0+ - Zvj or;0 =0,

7=1

for all (r,v,t) e Q1 x R(JH) x (0,77,

(5.2) o(r,v,0) = go(r,v) for all (r,v) € Q7+ x RU+Dd,

satisfying the specular boundary condition in a weak sense, we show that ¢ has a trace yp on the boundary
00 x RUADL 5 (0,T), j =1,...,J + 1, and a trace ;0 = o(-,t) on the section Q71 x RO+ » {1} for
all t € [0,T]. These trace functions will be shown to be well-defined thanks to a Green’s formula, which
we shall now discuss.

In the previous section we showed that o € L®(0,T; L*(Q/*! x RU+D4R_ ) is a solution to (5.1) in
the sense of distributions, i.e.,

(5.3) JJ J oAg,(¢)dvdrdr =0,
QJ+1 JR(I+1)d

for all test functions ¢ € D(D) := CP(Q7+1 x RV x [0, T]), where we have set:

J+1 J+1 g2 Tl | I+
(5.4) A*Ej()—8t<,0+ZE (r,v,t) v]go+2 j(r,v,t)) <,0+—Z& 0+ - Zv] i P
7=1

From the previous section we know that u € L2(0, T; W17 (Q)%), with o > d. Since, by Morrey’s inequality,
Who(Q) < L*(Q), we have in particular that u € L'(0,7;L*(Q)9). We thereby deduce that E; €
LN0, T; LE (4 WoP (RN))? and 0y, - B € LP(0,T; LE,(Q x RY)) for all j = 1,...,J + L.

loc loc

We shall suppose henceforth that the initial datum oo for the Fokker—Planck equation has the fol-
lowing factorized form: go(r,v) = M (v) 0o(r), where gy is a nonnegative function of r only, such that

SQJH oo(r)dr =1, and
@\0 c L2(QJ+1 % R(J—"_l)d;RZO)'
Under this hypothesis it directly follows that
0€ LP(0,T; L3, (7! x RVFVE R ),

and
o€ LOO(O T L2 B (QJ+1 % R(J+1)d;R>0)),

and consequently, since M ~1(v) > (273)2 3+ for all v e RU+DE , that

o€ LOO(O,T, LQ(QJJrl % R(J+1)d;R>O)).
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Remark 5.1. To show that gy € L*(Q7+1 x RUFVI: R o) implies g € L*(0,T; L2,(Q71 x RUFDE R (),
one has to follow a similar line of argument as in Section 3, Subsection 3.2. Indeed, it suffices to test
equation (3.43) with the function

Do € L2(0, T W, 3, (7! x RUFDE)),
rather than
f/(@\a + "Y) _ log@a + 7) c L2(0,T; W}::JQM(QJJFI > R(JJrl)d)),

where 0o = 0 and v > 0, and pass to the limit « — 0, in the equation satisfied by 0 using the bounds
resulting from the corresponding energy estimate.

5.1. Statement of the Trace Theorem.

Theorem 5.2. Let o € L®(0,T; L*(Q/*! x RUFDE R 4)) be a solution of equation (5.3). Then, for
every t € [0,T], there exists a 0 € L' (7! x RUTDY) and a yo defined on 6QU) x RV » (0, T) for
j=1,....J +1, such that:

o€ C([0,T]; Lo (Q7T x RUEDD)) and  yp e Lf, (099 x RUEDE 5 [0, T, (v; - n(r;))? dvds(r) dr),
forj=1,...,J+1, and which satisfy the Green’s formula

t1
f J f oA% (o) dvdrdr
to JQI+1 JRUI+1)d J

4 J-‘rl i1
(5.5) f f T)pdv dr + J J f (vj - n(rj))yopdvds(r)dr
QJ+1 R(J+1)d oQ0) JR(I+1)d

for all to, t1 € [0,T] and for all test functions p € Do(D), the space of functions ¢ € D(D) such that o = 0

on Xo x (0,T), where ¥¢ := U‘inll{(r,v) € 0QU) x RUFVE 4. n(r;) = 0} and we have used the notation

D(D) := CP(Q7+1 x RU+D » [0, 7).

Let us first introduce some additional notation. Since 0f2 is C?, Q is locally on one side of dQ and there
exists a function d = dg € W (R%) such that for all z in an interior neighbourhood of 92 one has

d(z) = —dist(z, 09).
We define in Q the gradient field
n(z) = V,d(z),

which coincides with the unit outward normal vector to € at every point of 2. Hence, the unit outward
normal (column-)vector to 0Q2; at r; € 09, for j =1,...,J + 1, is

n(r;) = Vrjd(rj) = 8Tjd(rj).

Here, the set €1; still denotes €2; by assigning it the index j, however, we wish to emphasize by our notation
that in the consideration of the distance to the boundary of €2, the distance of the coordinate r; € €); is
measured to the boundary 0€2; of the set that contains it.

We consider

dp; = |n(rj) - v;] dvds(r) dt, i=1,2,

which are measures defined on 00 x R(Z+1d » (0, T). For a given real R > 0, we define the sets

Br={yeR?: |y <R}, 0:=Q/ 1 xRUDI  p.— It RUTDI « (0, T),

Op:= (2 Bp)’™ x B}, Dp:=0rx (0,T).

We shall also use the abbreviation L(}l%’b for the function space L%(0,T; L*(Og)), and Lf(;z for the function
space L%(0,T; LY (0)).
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Proof of Theorem 5.2. The proof of the theorem will be performed in three steps. First, we obtain two
a priori estimates assuming that the solution of equation (5.1) is smooth. Then, following the method
proposed by DiPerna & Lions in [24], we approach the weak solution g of equation (5.1) by a sequence
of regular functions (gx)x>1, which are solutions of equation (5.1) with an error term rj that vanishes at
infinity; these regular functions satisfy the two a priori estimates from the first step. Finally, we deduce
the existence of a trace by passing to the limit.

STEP 1: A PRIORI ESTIMATES. In this step, we derive two a priori estimates. We first assume that

o€ vv'll I(QJ+1 R(J-i—l)d > (O, T))
so that the following manipulations are admissible. We consider three functions that we shall specify later:
¥ € C}(R) nondecreasing with 1(0) = 0, ® = &(r,v,t) € C (RU+D4 x RU+DL x [0, T7]) and 8 € CL(R),

and we fix tg,t; € [0,T]. Below, we shall write 1 for ¢(v; - n(r;)). We use Green’s formula together with
equation (5.1) to get

[f f 0) Y ®dv dr]
QJ+1 R(JJrl)d
to

- L t LM JRUW A, (B(olr.v.7) B(r,v,7) (v; - n(r;))) dvdr dr

t1

J+1 oty )
" ; LO Lmn fRuH)d(”f -n(rj)) B(e) Y @ dvds(r) dr

:Jlj f {(I)z/;AEj (B(Q(T’,U,T))) —i—B( )@ Ag, (1/1( n(r])))
to Jos+1 JrR(+1)d

+B<9)¢AEj<I’(T,U,T)}dvdrdT
: f IJ J {431/15’(9) A0+ B(e) @9/ (v; - n(ry)) A, (v - n(ry))
to JQJ+1 JR(J+1)d

+ Blo) ¥ A, ®(r, v, T)} dvdrdr

- f: JQJH fR(J+1)d{B(Q) (I)[d} ( i " ) Doy Ji:lE ) (Tj)>

j=1 j=1
J+1

+ Z v 7’ v 7—)>w<’l)j TL(T']))] + B(Q)wAEJ(I)} dvdrdr.

We now fix ty € [0,77], a compact set K of @ := Q71 x RUTDA 4(2) = 1 and 8 = B: where f: is a
sequence of smooth even and nonnegative functions such that 5:(0) = 0 and fBz(y) — |y|, for all y € R. We
can then choose ® € CF(Q7/+! x RU+D4) in such a way that 0 < ® < 1 in Q71 x RUDL » (0, T), & = 1
on K and we denote by R > 0 a real number satisfying supp ® < Opr. The identity (5.6) then implies that,
for all t € [0, T,

J J Be(o(- 1)) @ dvdr = j to)) @ dvdr
QJ+1 JR(J+1)d QJ+1 R(J+1)d
1 B J+1
+ f J J Be(0) (Ov; - Ej(r,v,7))dvdrdr
to JI+1 JRU+1d =

t1 _
+J J f Be(0) Ap;®dvdrdr
to JQI+1 JRU+1D
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T J+1

< Ifelelc+to))luy, + C | 33100 By D lag o)y

T J+1 -
| (1 + ) |Ej<-,~,f>||Lg> 1Be(0) (7)1, dr
j=1

T ~
# e 180 1e | 1e@)o7)lg

Letting € tend to 0, we deduce our first a priori estimate:

T J+1
sup o(, 7))l ry < llo(to)lzy, "‘CRJ Z 10v; - Ej (- m) g o, m)l py, dr

T€(0,T]
(5.7) J+1
+Oness [ <1+Z|E T Loo)w(-mmdr
0

Let us now fix a compact subset K of 0Q0) x R(U+1)d, (z) =z, tg =0, t1 = T, with 3 as before. We
choose ® € CF(Q7+1 x RU+D4) in such a way that 0 < ® < 11in O, ® =1 on K, and we denote by R > 0
a real number satisfying supp ® € Br X Bg.

We then deduce from the identity (5.6) a second a priori estimate:

J+1 ~T i
le Jo LQ(:‘) J]R(J+1)d(vj ‘ ”(rj))z Be(0) @ dvds(r)dr
j=

T
- “ f (v - n(r;))Be(0) @ dv dr]
QJ+1 Jr(I+1)d

0
T J+1 J+1
—i—f J J { (0 Zv DQdQU]+ZE (ryv,7) - n(ry)
0 QJ+1 JR(J+1)d ,] 1 j=1

J+1

+ Z vj - n(rj)) U] -Ej(?“,’l),’]’))] + (vj - n(rj))Bg(g) AE].<I>} dvdrdr

R(|Be(e(-,T ))HLl"‘Hﬂé(Q(H 0Dl

T J+1 J+1
+ ¢ vl D?%dgv; + Ej(r,v,7)-n(r;
fo JQJH JR(J+1)d{ [ Zl Qv ]Zl ) ( j)

J+1

+ Z vj - n(r;)) O, 'Ej(T,’U,T))] + (vj - n(rj))Bg(g) AEj(I)} dvdrdr

T J+1

+Cr [ 3 1, By i Bele) () g 0
7j=1

T J+1 B
+ CReps jo <1 + 31 -,T>|Lg> 1Be(0) (-7 1, .
j=1
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Letting € tend to 0, we then have that

ol 2t (o,17x K, dus)
T J+1

(5.8) < R (o, D)l + e, 0)] 1) +CRJ lef?vj- (5 DlzlleC, Ty, dr

T J+1
+ CR,&B,J\L (1 + Z HE](7 o) T)‘Lﬁ) HQ(?T)”L}? dr.
j=1

STEP 2: REGULARIZATION. In this step, we prove the following lemma, which states that ¢ can be
approximated by a sequence gy, of regular functions, defined on O x [0, T], and we solve (5.1) with an error
term 7, which tends to 0 as k — 00. Given the sequence of mollifiers (wg)r>1 defined by

wi(2) = klw(kz), keN, weC®R%Rsg), suppwc B, JRd w(z)dz =1,

where N is the set of all positive integers, we introduce the sequence of regularized functions
Ok = 0 *rk Wk *y Wk,
where *, denotes the usual convolution; thus,

(s Hy)(0) = f w(n) Hiy(v — n) di,

R+1)d
J+1

= U(77) H hk(vj
j=1

R(J+1)d

J+1
=J f u(m, ..., ns+1) Hhk i) dm - dngaa,
R4 R4

for any function u € L'(RU*19) and a function Hy(v) := Hj:ll hi(vj), v = (vf,...,v], )T € R+,
where v; € RY for j = 1,...,J + 1, hy € LY(R?), supphy = B1. We have that the convolution above is
k

well-defined since Hy, € L' (R4, Hence, by Young’s inequality for convolutions, u #, Hj, € L'(R(/+1)4)
and

|lw sy Hi| prmer+nay < Jul prgenay [ Hi| g1 go+nay-

Now, let u € L}OC(QJ“). We extend u by 0 to the complement of Q/*! and we denote by *, 1 the
convolution—translation defined by:

(o B)0)i= [ )t (r= Fntr) ) ay
= JR(JH ﬁ hy (rj —n(rj) — yj> dy

J+1

2
JRd f u(yr, -5 Y1) H hy, <T] 77(r5) _yj> dyi -+ dys+1,

where hy, € LY (R?), supp hy, < B%, ro=0f )T e/t reQ;cRY forall j=1,...,J + 1. The
point of using a convolution—translation is to ensure that the variable y stays in the interior of the domain
07*1 so that we do not create bad discontinuities in the derivatives of u at the boundary of the domain.
Indeed, since the mollifiers hj are compactly supported in B 1, We have that y; € B(rj — kn(r]), k) for all

j=1,...,J + 1 Set 7 :=r; — 2n(r;) and d(y;, 0Q;) := inf{|y; — 2| : z€ 0Q;} forall j =1,...,J + 1.
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Hence |y; — 7;| < + and for z € 0Q;:
ly; — 2l = ly; — 7 + 75 — 2]
> [ly; — 75l = 1= = 751
Since |z — 7| = d(7;,08;) > 2, we obtain that |y; — 7;| — [z — 7| < £ — 2 = —1. Thus we deduce that

ly; — 2| > % > 0. This implies d(y;, §2;) > 0, for all j = 1,...,J + 1. Hence, y; is in the interior of Q; for
all j =1,...,J + 1, which implies that ¥ is in the interior of Q7/*1.

Lemma 5.3. For each k € N there exists a function
or € C(Q7F1 x RUTV [0, T]) 0 W (0, T3 W, (0)),
such that the sequence o) satisfies:

(5.9) ok is bounded in LOOE) T; L% (0)),
or — 0 in L0, T; L2 (0)) Vace[l,o)

and

(5.10) Ag, 05 =i, in D' (Q7F x RUTDE (0, T)),

where ), converges to 0 in Lj, (O x [0,T7).

Proof. The proof of this lemma is inspired by the work [24] of DiPerna & Lions. By considering o as a
function of ¢, y and n, i.e., o = 0(y,n,t), we multiply equation (5.1) by the test function

J+1 5 J+1
[ Twr (Tz = ) = yl) H Wi (Vm — Nm) € CP(Q 1 x RYHDY)
I=1

for fixed r € Q/+! and v e R4 and integrate over y and n. We get

J+1 J+1
Op0k = — <Z Ej(r,v,1) - 5va> *p ke Wh oy Wk — (Z (Ou; - Ej(ﬁv,t))Q) *p ke Wh o Wk
j=1

J=1

BQ J+1 1 J+1 )
< 2 ) *p | W ¥ W — <€ Z vj - ﬁrjg> *p | Wk % Wi € LI(O,T; W/IO’COO(O)),

j=1

(5.11)

and, in particular, g, € WH1(0, T VVllocoo(O))
Let us define g5 to be the continuous representative of g; in the class of functions almost everywhere

equal to gx. Then g solves (5.10) with

re = ri(0) + 17(0) + 1 (0) + (o),

where
J+1 J+1
(o) = > Ej(r,v,t) - 0y 0 — (Z E;(r,v,t) ) *p o Wh oy W
j=1
J+1 J+1
T%(Q) = (a'Uj ’ Ej(r v t))gk - (Z (avj : Ej(T,U,t))Q) *pk WE *y WE,
j=1 J=1

D

9 J+1 2 J+1
3 2
ri(o) = | = 0 O | *rk Wi o W — Z 05, ok
1
€

J+1 J+1
vj + r]Qk Z vy - r 0| *rk Wk *y Wk-
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We have to prove that 71 (o), r2(0), ri(0) and 7 (o) all converge to 0 in L} . Let us remark that if o is

smooth then one has

2
arj (0 *rk wk) = (I - kDQdQ) (8Tj Q) *rk Wk
and therefore
(5.12) T2(0) =k 0 in L (7 x RUFDD 5 (0,77)).

Indeed, we have that

J+1 9
arj (Q *r k Wk) = a’rj <JQJ+1 Q(yv v, t) H Wk (7’[ - En(Tl) - yl> dy)
J+1
2
= o(y,v,t) or, (H W (ﬁ = () = yz)) dy

QJ+1 1
J+1
2
[ e 200 =) 1T an(ri= 200 -
QJ+1 1 e
J+1
2 5 2 9
- <I 5P dQ) LJH o(y, v, 1) Ve <7"j = () = yj> l=11_l[;éj W (7“1 = pnln) = yl) dy
J+1
2 2
= —(I—-+D% £) 0. oz 2 1
< k Q) J;z]+l Q(yavv ) Yj <CL)]<; (T] k )) l 11_‘l[¢] Wk (’)"l ’)’L(’)"l) yl> Y
J+1
2 2
= (I->D% 0y, t — _z —y)d
< k Q) J‘QJ-FI y] Q(y) U, )wk <T] ]’C ) l ]13[7é] (A)k (’rl ’n,(’[“l) yl) y

5 J41 5

_ (722 2 _

= <I k:D dQ> LJH 0y, 0(y, v, 1) | | Wi (7“1 kn(h) yl) dy
2

=|1- %D dQ (aTjQ) *p ke Wk

To deal with a general g € L?S;,l we begin by proving an a priori estimate. One has

J+1 J+1 J+1
V5 , w1 — fn 7 w
Z J(J+1 JQJ+1{ 7 r] y,n 1_[ k( ! l ) 1_[ k ]

J+1 J+1

=15 - Oy;0(y,m,1) H Wi (7‘1 - *n (1) yz) H wi (v }dy dn.

By differentiation with respect to r; in the first integrand and integration by parts in the second integrand

we obtain
J+1 9 9
f J o(y,m,t) (I — =D?*dg | Vw1 — =n(r;) — y;
R(J+1)d JoJ+1 k k

J+1 J+1 9

H Wk (7“1 - —n (1) ) H wi (v ] —nj - Vwg <7“j - %71(7'1') - ?Jj) o(y,n, 1)
I=1,l#j5
J+1 9 J+1

X 1_[ Wi (7“1 — %n(m) — yl> m:1wk(vm - nm)} dydn

1=1,1#j



BEAD-SPRING-CHAIN MODELS FOR DILUTE POLYMERIC FLUIDS 47

J+1 J+1 J+1
€ ’ Wkl W — —n r
Z J (J+1)d JQJ+1 oy .t 1_:[1 k(U z RL] k( ! (1) = yl)

x {(Uj —15) - Vuwy (Tj - %n("”j) - yj) - %Uj - (D*dg) Ve <7"j - %n(rj) - yj) } dy d.

Lemma 5.4. There exists a constant C, which only depends on R and dq, such that the following bound
holds:
Hré(g)HLl(DR) < Clolrrpg,y)-
Proof. The proof proceeds as follows. We note that
(5.13)

1741 J+1 J+1 9
(@)l om = J J(QmBR)ul JBJ+1 € Z J]R(H—l)d JQJH oy 1) 1:[1 wk(tm = 1hm) I:H;&j ok (rl a En(rl) B yl)
X {(’Uj —1;) - Vwy (rj - %n(rj) - yj> - %vj - (D?*dg)Vws, <Tj - %n(rj) - yj) } dydn|dvdrdt
| JHL T J+1 J+1 9
2 L LQQBR)M Léﬂ mem fﬂ o) [ ] nom =) lﬂ# (i~ Znlr) 1)

2 2 2
X {(vj —n;) - Vwg (rj — En(Tj) — yj> — %vj . (DQdQ)Vwk (rj % n(r;) — yj) }‘ dydndvdrdt

1 J4+1 ~T I e ,
- Z J f f J41 f J o(y,m,1) H Wk (Vi — Nim) n Wk (Tl — %n(rl) - yz)
€ =1 0 (2nBgr)/+1 By RUJ+1)d JOQJ+1 o’ e

x{( v — 1) - Vwk<7”] kn(r]) )}‘dydndvdrdt

1741 J+1 J+1 9
+ - o(y,n,t) wi (v wk(ﬁ—*n T _yl>
21\[‘ ‘[(QﬁBR) J+1 JBJ+1 J‘R(l+l)d JQI+1 H l H#] k ( )

x{ - (D%dq)Vwy, <rj z n(r;) — )}‘dydndvdrdt
< L+ Iy,

where we set

1+ J+1 J+1
Z f J(QmBR . JBJH J}R(Hm LJH o(y,n,1) 1_:[1 wr, (v l R[#] W (m - —n(m) yl)
X {(vj ;) - Vwy (r] kn(r]) )}' dydndvdrdt
and
1 JEL T J+1 J+1 9
e ;1 JO JQGBR)‘H—I JBJ+1 JR(J“W LJH ol ) H iy I= !,_l[# - (Tl ok - yl)
X { - (D?*dq)Vwy <7"] kn(r]) > H dy dndvdrdt.
We have the following upper bound on I;:
1 JEL T J+1 J+1 9
h<- ;1 L f( oy JB{%H mem JQM o(y;m,t) m_gn#j Wi (V. = Thm) l_gﬁ W (r, = () = yz)

X |wk(v; = nj)(vj —n;)

2
‘Vwk ('rj - %n(rj) - yj> ’ dy dndv drdt.
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Now, using the Fubini—Tonelli theorem, we obtain:

(5.14)

1J+1 T J+1
VST L s T [ )
6],; 0 QnBg JBg R(J+1)d JOJ+1 ( m—:ll:r[n;éj Br
J+1 92
X Wi (rl — —n(ry) — yl> drl>
< H meBR k (r2)

I=1,1#j

wi(v; —n5)(vj — n;)

2
‘Vwk (Tj - %”(Tj) - yj> ‘ dy dn dv; dr; dt.

First, using the change of variable z = v, — 7, which implies that dz = dwv,,, we obtain the following
upper bound:

m=1,m#j m=1,m#j JR?
J+1
= H J kbw(kz) dz
(515) m=1, m#j Rd
J+1
= H f w(z)dz
m=1,m#j Rd
=1.
Remark 5.5. Let us also remark that since |vy, — | < % forallm=1,....,J+1and k =1, i.e., % <1,
which imply that [Ny, | < |vm| + % < R+1, forallm=1,...,J+ 1, we have that n € B}éill.

Then, we perform the change of variable s; = r;— %n(rl) —vy;, which implies that ds; = (I— %Vnn(m)) dry,
ie, dry = (I — 2Vyn(r)) tds for all { = 1,...,J + 1. For l € {1,...,J + 1} fixed (and therefore not
explicitly indicated), we set A := 2V, n(r;). We have that

2 an||L°0(Rd)
—
Hence |A] <1 for all k& > 2| Vn[ o@asy =: b. In that case,

4] <

0

2,4

n=0
e}

< 24"

n=0

2 anHLOO(]Rd) "
)

n=0

(1= A)7 =

1
2 an”LOO(]Rd)
S —

1
k
k—2 anHLw(Rd).

We have that the function g :  — —%, where z > b, is strictly monotonic decreasing. Indeed, ¢'(z) =
@02 < 0 for all z > b. Hence, taking = > 2b, the maximum of g is achieved at x = 2b, where g(z) = 2.

Therefore, by choosing k > 2b, we get
(1 -A) 7" <2
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thus, the change of variable gives

J+1 9 J+1
J W (Tz ——n(r) — yl) dr; < J wi(s1) ds;
1=1,12; Y2 Br k =1 l;éj R4
J+1
= H 2 k:dw (ksp)ds;
(5.16) I=1,1%j R
J+1
= H ZJ w(z)dz
—1,i#j VR
<2’
Remark 5.6. Let us also remark that since [r; — Zn(r)) —yi| < %, forallm =1,...,J+1, and for k >3

i.e., 2 <1, which imply that |y| < |ri| + 2 < R+ 1, we have that y € (2 A Bry1)’ ™.

Hence, using estimates (5.15) and (5.16) together with Remarks 5.5 and 5.6 in (5.14), we get for all
k = max(2b, 3) that

9J J+1 7
L <= JJ f‘[ f o(y,n,t) jw
€ ]; 0 JanBr JBr JBLtY J(QnBRy )7+

R+1

k(vj —n;)(vj —nj)

X Vwk<7‘j kn( i) — >‘dydndv]drjdt

B Q(\BR+] ‘] BR

R+1
2
Vwy, (rj — En(rj) — yj)

X (JQQBR

Again, by performing the same change of variable as in (5.16), we obtain, for a constant C1 > 0, independent

of k, the following bound:
2
Vwy <T‘j — En(rj) — yj>

meBR

(5.17)
wi(v; — n;)(v; — 1)

dvj>

drj> dy dn dt.

dr; <2 JRd|Vwk(§)’ d¢

(5.18) =2LMW”WVwaﬂd£

=2k:f Vw(z)|dz
Rd
< 2kCh.

Finally, noting that wy € C°(R?), we obtain, for a constant Cy > 0, independent of k, that

)

wi(v; — n5)(vj — 1)

dw<f;ﬂﬂﬂ%

Tw(kE)lE] g

(5.19)
f w(z)|z| dz
R4

A

=|Q w\r—*%%%
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We use (5.18) and (5.19) in (5.17), for a constant C' > 0, independent of k, we get the following bound on

the term Iy:
2] J+1
oo [ ;)
f JBJ+1 JQHBR+1 J+1 BR !

R+1
2
Vwy (rj — %n(rj) — yj> ‘ drj> dy dndt

(5.20) g (meBR

2J+1 Cl J+1
f | j oly, n,t) dydy dt
BIt J(QnBgyq )7+

R+1

wi(vj —n;)(vj — ;)

< CHQ||L1(DR+1)-

Now, using the same technique as for the bound on I, we get the following bound on the term Is:

4|B |J+1 , T4l
D2do|o(y,n, Vdon
Z f JQmBR JR(J+1)11 fQJ+1| Q|Q(y i (H f wk -n ) v )

J+1
2
( H Wk (rl — —n(rl) ) drl> ‘Vwk (rj — En(rj) — yj> ‘ dy dndr; dt

1=1,1#j

< 2B 1Dl JZ
(5.21) S .

R+1
X (J Vwy (rj —n(rj) — >‘d7“]> dydndt
QﬂBR k

2"” C1 |Br| | D*da| o ray *&
6 ZJ | .

R+1

o(y,n,t)

(QnBgr+1) I+1

f o(y,n,t)dydndt
(QnBpr41) !

< C |‘QHL1(DR+1)

In conclusion, using (5.20) and (5.21) in (5.13), we get, with a constant C' that only depends on R and
d(r), the following bound:

I Loy < 1+ I

5.22 s
(5.22) <

CHQ|‘L1(DR+1)‘

That completes the proof of the lemma. O

Next, for o € L®(0,T; L' (Q7+! x RUFD4R_()) we argue by density; in other words, we consider a
sequence (0¢)e=o of smooth functions such that g — ¢ in L},.(D), and we note the following obvious

decomposition of the function r}(o):

(o) = ri(0e) + re(0 — oc),

which obviously converges to 0 in Lloc(ﬁ) as k — o and € — 0, thanks to (5.12) and (5.22).
The convergence of the sequence rk(g) to 0, as k — o0, has been proved, in a simpler case, in the article
of DiPerna & Lions [24], Lemma II.1. By following a snnllar line of argument as in [24], we proceed as
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follows. If p and Ej; are sufficiently smooth, we have that

J+1 J+1
= ZEj(r,v,t) Ov; Ok — (ZE (r,v,t) )*r,kwk*vwk

J+1 J+1 9 J+1
(ryu,t) - Oy, [ ,n,t wi | r — fn T w
ZJRUHMLJH ) - Ov; 0y, )E k<l 1) yz> H k(v
J+1 9 J+1
- Ej(y7 m, t) : a?’]j Q(y7 m, t) H Wi <Tl - *n Tl ) H wk: } dy d?7
=1
By performing integration by parts on the second integrand, we get
J+1 J+1 9
#) - Vg (v; — 1 ( — Inr) — )
Z J]R(J+1)d JQJH{ (r,0,1) - Veor(vj = 1) 11](% " k‘n(”) u
J+1
<o(y,mt) [] wk(om—nm)+ oy, - [Ej(% n,t) wi(v; — nj)]
m=1,m#j
J+1 J+1 9
X Q(ya n, t) 1_[ wk(vm - nm) H Wk (Tl - %H(TZ) - yl) } dy dn
m=1,m#j =1
J+1 J+1 9
— Z J J { (r,v,t) - Vwg(vj —n;) 1_[ Wk (rl - En(rl) - yl)
“ J+1d Joi+1
Jj=1 =1
J+1
<o(ymt) [  wk(vm—mm)+ 0y, - [Ei(y.n.t)] ey, 1)
m=1,m#j
J+1 J+1 9
< | T wk(m —nm) | ] wr (Tz = () = yz) — Ej(y,n,t) - Vwr(vj —n;)
m=1 =1

J+1 92 J+1
< o(y,n,t) | | ws (n — ) = yz) [T wrlom— nm)} dy dn

=1 m=1,m%#j
A J+1 2 J+1
o\y, 7t Wl T — —n\ry) —y Wi (U, —
2 J]R(Hl)d JQJH (y " ) H ( k ( ) Y ) m_gn#j ( m 77m)

< {[Bs(r,0.) = Ey(,n,0)] - Ver(v; = n5) } dy
+ (JZJ? (r,v,t) -Ej(r,v t))) *p kg Wh %y W

The second term on the right-hand side converges to

2 7,0,t)(0y, - Ej(r,v,t))

in Lllo » as k tends to oo, by standard results for convolutions.

51
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For the first integral, on the one hand, we have that

J+1 J+1 9 J+1
JR(MM Lm o(y,m,t H <7“z = () = yz) [ welwm—nm) Ei(r,v,t) - Vag(v; — ;) dy dn

= m=1,m#j
J+1 J+1 2
JR(J-H)UZ ngﬂ y 1t H (Tl B %n(n) B yl)
J+1
x T wrlvm = nmm) Bj(r,v,t) - &y, (wi(v; — ;) dy dn
m=1,m#j
J+1 J+1 9
= 5 s o P B0ty =) Lo Fote0 )
—1 R+Dd JOJ+1 1=1 k
J+1
X H Wk(vm - nm) dy d77
m=1,m#j

J+1 J+1 9 J+1
JR(J+1)d JQJ+1 n; @ y 1 ) Bj (7“ v t H (rl - 7” rl yl) H wk nm dydna

which converges to
J+1

Z&vg r,v,t) - Ej(r,v,t)

in Llloc as k tends to oo. On the other hand,

J+1 J+1 9 J+1
- Z J(M)d LJH o(y,n,t) [ [ wr (m = () = yz) [T wr(om—nm) Ej(y,n.t) - Vwr(v; —n;) dy dn

=1 m=1, m#j
J+1 J+1 9 J+1
Z f J‘ y 777t) H Wi <Tl - %n(’f’l) yl) H wk(vm - 77m) E](y7777t) : 6771' (OJk(’Uj o 77])) dy d?’]
(J+1)d JOJI+1 =1 m=1,m#j
J+1 J+1 2 J+1
_ 2 f J o(y,n,t) Bj(y,m, t)] wi(v; —n;) 1_[ Wi (rl - %n(m) - yz) 1_[ Wi (Vm — M) dy dn
— (J+1)d JQJ+1 = ]
o =1 m=1,m#j

J+1 J+1 5 J+1
T Z J(H—l)d JQJ+1 o(y:m, )Ej(y’n’t)] Wk (7‘1 o 7” (r1) ) l_[ W (U — Nim) dy dn
iz ~

l
J+1 J+1 2 J+1
- - O, 0(y,1,1) - B (g, t ) dyd
ZJ}R(MM JQM w0y, :) - Ej(y,m )[[w(m ) [T wr(m —nm)dydn

m=1

]+1 J+1 9 J+1
f J o(ysn,t) On, - Ej(y,m,t) | | we <7”z - n(r) ) ]_[ Wk (Um — 1m ) dy dn,
RUJ+1d JQJ+1

which converges to
J+1

—Z@UJ r,v,t) - Ei(r,v,t) o(r,v,t) (Oy; - Ej(r,v,1))

n M+

in Ll oc as k tends to co. Hence rk converges in Lloc to 0 as k tends to co. The general case follows by means
of a density argument, using the inequality stated in the next lemma.

Lemma 5.7. There exists a constant C, which only depends on R and dq, such that the following bound
holds:

Hrli(Q)HLl(’DR) < Cllol2(pgys)-
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Proof. We begin by noting that

J+1 J+1 J+1
Z f f o(y,m,t) H ( - *n (r) — yz) [T wr(om—nm)
RJ+1D)d JOJ+1 =1 m=1, mj

X {[Ej(r,v,t) — Ej(y,n,t)] - Vwyg(vj — nj)} dy dn

J+1
+ Z J(J+1 fQJH y,n, 2
J+1 J+1
wak(rl—n T7) > Hwk )o(y,n,t)dydn

=11 + I,

where we set

J+1 9 J+1
Z f J o(y,n,1) (m = () = yz) [T welwm—nm)
(523) R(J+1)d JOJ+1 =1 m=1, m#j

X {[Ej(r, v,t) — Ei(y,n, t)] - Vwyg(vj — nj)} dy dn,

and
(5.24) , wi|rm— —n r w ,t)dy dn.
L2 f(JH)dngH y n )H k(l ) yl) H k(v ) o(y,m,t)dydn
Let us recall that
1 (2
Ej = Ej(?”,l},t) = ;((*CT)] + U(T]7t)) - 672’UJ
Hence,
5.25 1 1 32
(5.25) Ej(r,v,t) = Ej(y,n,t) = g((ﬁr)j — (Ly);) + g(u(rj7t) —u(y;,t)) — (v =)
Using (5.25) in (5.23), we get
J+1 J+1 2 J+1
I = t -7 - m — Tlm
1: Z J(J+1)d JQJH o(y,n,t) HWk (m kn(m) yl> m—H’L#]’wk(v Nm)

(5.26) 2

y {[1((&% —(Ly)) + = (ulrg,0) — ulys, 1) %(vj - ,,j)] V(v — nj)} dy d
= I + I} + I},

where we set

J+1 J+1 5 Ji1
s f o(y,mt) | | wi <7"l — () — yz) Wk (Vm — M)
1 ; RUI+1)d JoJI+1 E k m=11,_7[n¢j " "

1
< ((Lr v);) - Vwr(v; —n;) dy dn,
T J+1 5 Il
I? .= . 2 B B
1 ; J]R(de LHI o(y,n, 1) E Wi (rz kn(n) yz) H W (Vm — Tm)

m=1,m#j

1
X~ (u(rj, t) — u(y;, 1)) - Vwg(v; — ;) dydn,
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and

-3,

J+1 9 T4l
t R - —
(I+1)d JQJH o(y,n,t) H W (7“[ kn(m) yl> H Wik (U — Nim)

=1 m=1,m#jJ
BQ
X = (vj —nj) - Vwi(vj —nj) dy dn.

On the one hand, we have that

T
I =
(P56 HLI(DR) JO J;QmBR)J“ JB‘IQH

J+1 2

p
< [T wrlom —mm) S (=) - Veor(vj = ny) dy dy

m=1,m#j

J+1
<[
izl (QnBg)’/+1 BJ+1 R+ JoJ+1

J+1

X H Wi (Um nm)fQ (UJ ) vwk( )

m=1,m#j

M|

J+1 5
e LHI o(y,m,t) | ] ws <rz = ) = yz>

=1

dvdrdt

J+1
p)
o(y,n,1) Wk (m - %n(m) yz)

dy dn dov drdt.

Noting that |v; — ;| < % forall j =1,...,J 4+ 1, we then deduce that

9 J+1 J+1
1|2 (o) < B J J J J f o(y,n,t) r— 2n(?“z) — Y
R k62 . (QnBr)7+1 I+t JrU+na Joi+ k

J+1
X H Wk (Vm — Mm) Vwg(v; —n;)|dy dndodrdt
m=1,m%#j
32 J+1 o7 J+1 9
< 9 7t - 7 -
k62 ' f J(QQBR)JH JBIJ%H JR(JHM JQJH o(y;n,t) HWk <n ) yl>
J+1
X H Wk (Vm — NMm) Vwg(v; —n;)|dy dndodrdt
m=1,m#j

N

B J+1 7 J+1 9
ke? ; f j}R(Hl)d JQJH oly:m:1) <H ijBR (7‘1 B %n(rl) B yl) drl)
J+1
< J Wi (Vm — Mm) dvm> (f |Vwk(vj - 77j)| dvj) dy dndt
Bpgr Bpr

m=1,m#j

2J+152 J+1
kez f JBJJrl JQHBR+1 J+1 ( BR‘ (J ])’ 7

R+1

2J+152 J+1
J f J o(y,m,t J ’Vwk |d§ dydndt
BJ+1 QﬂBR+1)J+1

R+1

9J+1 52 J+1 g1
= k Vw(ké)|d€ ) dydnde
ket J fB“’l JQmBR+1 J+1 oy m 1) (de | w £)| f) v

R+1

A

N
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2J+1 ,82 J+1
= f f J o(y,n,t <J k‘Vw(z)‘ dz) dydndt
Bt J(QABgy1) ! Rd

R+1
2J+1(J+1 BQCJ J

B J;QﬁBRH)JH

o(y,n,t)dydndt

\ C’|QHL1('DR+1)7

where C' > 0 is a constant independent of k. On the other hand, we have that

J+1 J+1 2
[ _ -
H ! HLl (Pr) J J;QﬁBR)J+1 JBHl Z fR(JH)d J‘QJ-FI y,n, ) H Wk <rl k‘n(rl) yl>

=1

J+1
< [T wnlvm —nm)((£r); = (Ly);) - Ver(v; — ;) dydn ‘ dv dr dt
m=1,m#j
1 s J+1 5
E ; j J‘Qf\BR J+1 JB‘I+1 j (J+1)d JQJ+1 y T ) ﬂ Wk <rl B En(rl) yl>

J+1

< T wrlvm —nm)((£r); — (Ly);) - Vewr(v; — ;)

m=1,m#j

dydndvdrdt,

and noting that |(£r); — (Ly);| < |rj —y;| < 2 forall j =1,...,J + 1, we get

J+1 T J+1
3 2
Il <= .0 ] ] _Zz
11 HLI(DR) ke ._IJ;) J‘(QQBR J+1 JBJ+1 JR(J+1)d JQJJrl oy, ;1) Wk <Tl k‘n(rl) yl)

J =1

J+1
X H Wk (Vm, — Nim) ’Vwk(vj - nj)‘ dydndvdrdt
m=1,m#j
2J+1 J+ 1
= oy, 1,) dy dy s
Bt J(QnBry1) T

< CHQHLl(DRH)a

where C > 0 is a constant independent of k.
In order to show that, for a constant C' > 0 independent of k, we have |[I1]|11(p,) < Clollr2(py,,), it

remains to prove that |17 ,1(p,) < Clolr2(py, ,)- Using the fundamental theorem of calculus we have, for
any sufficiently smooth real-valued function u, that

u(rj,t) — u(y;,t) = Ll VU(yj +h(r;— yj))(?“j —y;) dh.

Now, for u € L2(0,T; W17 (Q)9), with ¢ > d, a solution to the Oseen system (1.1), we define

) = { u(6 ’ . ﬂgd\g.

Let us first study the smoothed functions
W () t) = %y ws(-, 1) for 6 > 0,

where ws(z) := 5d w(%) denotes the usual mollifier.
We first claim that

u’ — @ in L2(R? x (0,T)) as 6 — 0.
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To prove this, we first note that if @ is smooth, then, for = € R,

r—z

W (2,t) — i, ) = 52[3@ 6)w< “2) (e 1) — e, 1)

:f w(y) (@@ + 5y, 1) — Az, 1)) dy
B(0,1)

1
d

= w(y —(u(x+ hdy,t))dhd

fB(o,n ( )fo dh( ( v.1) dhdy

1
=0 w(y)J Va(r + hdy,t) - ydhdy.
B(0,1) 0

Hence,

1
i (2, £) — iz, 1) <5f f Vii(z + h 6y, 1) dy dh,
0 JB(O,1)

and using the change of variable z = x + hdy,

L |
) ~ ~
u (r,t) —ulx,t S(SJ j Vu(z,t)|dzdh

< C|B|0 Mgy (.1,
where M (z) := sup,-g SB(:C ") |f(y)|dy is the Hardy—Littlewood maximal function.
Thus

| Wt e 0P de < 08 | Mg (a,t) da

(5.27) R R

< Co? f Vii(e, £)[2 da,
R4

where we have used a classical strong (p, p)-bound on the maximal function, which asserts that the maximal
operator is bounded in LP(Rd) for 1 <p<oo,ie.,
IMglp < el fllp,
where ¢ = ¢(d,p) > 0 is a constant. Now, for the smooth functions
(- t) 1= @ %y wy (-, ) with A > 0

and

0

w(-t) =
from estimate (5.27), we still have

sy ws(+, 1) with § > 0,

f (2, 8) — iz, )2 dz < caQJ Vi, )2 da.
R4 R4
Thus,

f (8 % w2 #0 w5) (@, 1) — @ % wr (2, 0)]? dz < caQJ V(@ 5 wy) (@, £)[2 dz

(5.28) Re Re

< caQJ Vii(z, 1)[2 dz.
Rd

Also, since for a.e. t € (0,7
a(-,t) e L7 (RY),
there exists a subsequence (A, )i=0 such that
Ukg wyy, (45 1) =5, o+ U 1) a.e. in R?,
Hence, on the one hand,

(U *z ws) #g wxy, (5 1) =5, 0+ Uz ws(-, 1) a.e. in RY,
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on the other hand, since

(7] *g w/\) ¥ W§ = ('LNL *x wé) *r W),

using Fatou’s lemma in (5.28), we get

J Hminf | (@ #, wy) 4 ws) (2,t) — @ %, wa(z,t)|> dz < liminf [((@ %5 wy) #5 ws) (2, 1) — T, wi(z,t)|* da
R

d )\k —0+ )\ktH0+ Rd
< 052f |Vii(z,t)|? d,
Rd
that is,

fRd (7 5 w5 (2, 8) — i, £)[2 dar < O fRd Vii(z, )2 dz
< C&(1+ [uoliz ()
However, since
C&*(1 + [uo[Z2(0y) —s-0+ O,
which implies that
|16 5) 0 0) = e, O o =500 0

uniformly in ¢ € [0, 7], by Lebesgue’s dominated convergence theorem we then have that

T
| ] 1 ws) ) = e 0 dode =501 0
Rd
that is,
u® — @ in L*(R? x (0,T)) as § — 0,

as was asserted above.
Hence, we deduce that there exists a subsequence (J,),>0 such that

(@ *z ws,)(x,t) — U —5, 0+ 0 for ae. (z,t)€ R? x (0,7).
Set up(x,t) := (U *, ws,)(z,t). Since

J+1 J+1 9 J+1
, ry— —n(r Wk (Um —
JR(HIM f(z“l o(y,m,t H ( L7 % (re) — yl) H k(Vim = )

m=1,m#j

x ;(U(mt) u(y;, 1)) - Vwg(v; — n;) dy dn,

this implies, by Fatou’s lemma, that

J+1 J+1 9 T+
I t _Z o o
17| Z J(Hl)d LJH o(y,m,t) H Wk (rl kn(rl) yl> H w (v D)

R =1 m=1, m#j

1
X = |U(Tjat) —u(y;,t)| [Vwi(v; — ;)| dydn

(5.29) J+1 J+1 9 J+1
’ l1m1nf ,t wplr—=n(r) — Wi (Vm — Mm
ZJ(M)JW o) [T (o= e ) ] cntom =)

1
x — |up(7”j7t> —up(yj,t)| - Vwr(v; — ;) dydny

= lim inf I
6p—0

Moreover,

3 J+1 9 T4t
r<> 2 .
k =IJ(J+1)d LJH o(y,n,t) Hm(rz kn(n) yl> H wi (v )

J =1 m=1,m#j

Jl Vup y; + h(r; ')) dh)' [Vw (v; — ;)| dy dn.

1
€ 0

57
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By noting that (Vw)(z) = k% Vw(kz), which implies that k(Vw)r(2) = Vwi(2), we get

J+1 J+1 ) "
I 7]7 < 3 t 2 -
| | Z f (J+1)d J;ZJ+1 y 77, ) H Wk <7‘l kn(rl) yl) H wkp(’U 77 )

=1 m=1, m#j

x% <f Vup(yJ (rj _yj)) dh)‘ [(Vw)k(v; = ;)| dy dn.

Hence we have that

3. 2] J+1 2
HI1 ’p”Ll(DR) J JB"“ J(Q Bryy)I Q(Z/ , ) (L 5 [Wk (Tj - %n(rj) - yj)
(5.30) R V(@0 Bre) nen

x L V(s + 2 = )| dh] drj> <fBR|(W)k(vj — ) dvj> dy dn dt.

On the one hand,

LJ( n)|dv; < J)w &) de

(5.31) = JRd k| Vw(k€)|dg

. [Vw(z)|dz

<C

where C' is a positive constant, independent of k. Furthermore, we have that

JﬂmBR o (Tj - %n(m - yj) Uol’vup (yj +h(rj - yﬂ')) ’ dh] dr;
- Ll meBR wk (Tl a %n(m - yl) ‘V“p (Z/j +h(rj— yj))‘d'rj dh.

Thus, by using the change of variable z; = r; — y;, which implies that dz; = dr;, where r; and y; € Bry1, we get

that
2 1
f Wk <7"j — %n(rj) — yj) [J ‘Vup (yj + h(r; — yﬁ)‘dh] dr;
QnBr 0
! 2
< J J Wk (Zj - En(zj + yj)) ‘Vup (yj + hzg)‘dzj dh
0 JBa(rt1)

1
:J f kdw<kzj 2n(zj+yj)) Vuy (s + hz )|z dn.
0 JBa(r+1)

Now, by the change of variable §; = k z;, which implies that d¢§; = k? dz; and |¢] < 14 2|n|pega) = R’ since
€5 — 2n( + yj)\ < 1, we obtain

JQNBR Wk <Tj - %n(rj) - yj) [Ll‘Vup (yj +h(r; — yj)) ) dh] dr;

< _E JBHQ o w(gj - 2n(§J +yg>> ‘Vup(yj + - @)’dgj dh

< Ll JBR/‘VUP (v + %gj)‘dgj dh.

n||
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Next, by performing the change of variable s = y; + %fj, which implies that ds = (%)d d¢; and s € B(y;, % R), we

get
9 1 1
J Wh (7’1 = lrg) = yj) U ‘Vup (yj +h(rj— yj))‘dh] dr; < J J
QnBr 0 0 JB(y;, & R)
1
ool
0 JB(y;, % R)

Consider again the Hardy-Littlewood maximal function My (z) := sup,.q §5 (@) |f(y)| dy. We then have that

Vi, (s) } s

(1)

vup(s)‘ dsdh.

2 1
(5.32) f W (Tj - En(%‘) - yj) U ’V% (yj +h(rj— yj)) ’ dh] drj < CrrM v, (Y, t)-
QnBgr 0

Hence, by noting inequalities (5.31) and (5.32) in (5.30), we obtain

2o < 22 CRCS
L LI(DR) = € j=1 0 BJtt

R+1

J(Q - o(y,n, t) Mg, (y;, ) dy dndt.
NDR+1)"

Using the Cauchy-Schwarz inequality and the boundedness of the maximal operator in L?(R%), we get

N

2,
1P| (o) < ;

3.2/ Cp C°&H (7
B — Z L HQ(.’"t)HL2((QNBR+1)J+1><B};¢11) |‘M|Vup|(y]at)||L2(Rd) dt
Jj=1 )

IVup (-, )| 2 ey dt

N

€
3.2/ Cp C(J+1)
€

3-27Cp C(J+1) JT

o Hg(7 -7t)HL2 ((QﬁBRJFl)J‘*'lXB‘};ii)

N

HQHLz((QmBR“)JH Xgéﬁ x(0,7)) HVUpHL2(0,T;L2(]Rd))

(5.33)
3.27Cp C(J+1)

< HQHLz((QmBR“)JHngﬁx(o,T)) HVUHLQ(O,T;L2(R4))
< C(uollr2@sy + D el 2(@npai) 7+ x B < (0.1))

<C HQHL2((QmBR+1)~’+1 x Byt x(0,T))

= CHQHLZ(DRJrl)'

Now, since from (5.29) we have that
|I?| < liminf 27,
6p—0

we deduce that

T
H112HL1(DR)=J- f f |I7| dvdrdt
0 J(QnBg)/+t B!
T
< f f f liminf 137 dv dr dt
0 (QnBg)J+1 B}/;rl 6p—0

T
< liminf f f f 137 dv dr dt
=0 Jo J@@nBg)/+1 JBLH

. 2,
= liminf |17 1 (D).
Finally, from (5.33), we get
HI12HL1(DR) < CHQHL2(DR+1)7
as has been asserted.

Remark 5.8. We note in passing that in bounding |17 |11 (p,) we could have used a more direct argument. Indeed,
by a standard property of the mazimal function (cf., for example, Corollary 4.3 in [1]), we have that if u € W1P(R?),
with 1 < p < oo then there is a set E of measure zero such that the following inequality holds

(5.34) [u(z) — u(y)| < clo = y|(Mvu(2) + Mvu(y)),
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for all x,y € R\E. Since

J+1

J+1 9 J+1
2= T wil| r——n(r Wi (Vm — N
1 Z fuwmﬂi LJH o(y,m,t) H k( 1= () = yz) ngméj K ( M)

1
X = (u(rj, t) — u(y;,t)) - Vwg(v; — n;) dy dn,

we have that

T
I =
H IHLI(DR) J;) f(QmBR)/H fBJH

(u(rjv t) - u(ij t)) : vwk(vj - nj) dy dn

J+1 J+1 2 J+1
, 1, — —n\ry) — W \Um — Nm,
. J JQQBR)J+1 JBJ+1 JR(J+1)d JQJ+1 y 77 n ( k ( l) yl> n k( 7’ )

m=1, m#j
X~ (u(rj,t) u(y;, )) Vwi(v; —n5)

J+1 T J+1 9 J+1
= ;M t wrlr—-n(r) — Wk (Um — Nm
Z L J\(QmBR)Ji»l fBé“ J-R(J+1)d JQJ+1 Q(y " ) 1_! k( ! k ( l) yl) 1_[ k( K )

Jj=1 = m=1,m#j

J+1 J+1 9 J41
2 J}R(,H)d JQ]H o(y, 1, ) 1_[ Wi (7‘1 kn(?‘z) - yl> 1_[ Wi (U, — nm)

=1 m=1, m#j

X dvdrdt

| =

dydndvdrdt

1
X lu(rj, t) — u(y;, t)| |[Vwr (v; — n;)| dy dn dv dr dt.

From inequality (5.34) it then directly follows that

J+1 ~T J+1 9 J+1
12 < 7t - = m — Tlm
H ! ”Ll(DR) ]; JO JQﬁBR)J+1 JBJH JR(J+1)d J-QJ+1 y g ) H ok (Tl kn(rl) yl) H Wk(v 7 )

=1 m=1, m#j

c
x - Irj — yj| [Mvu(rj,t) + Myu(y;,t HVwk -—nj)’dydndvdrdt

X (/\/lw(rj,t) + Mw(yj»t))] drj) (JB [(Vw)r(v; —n5)] dva‘) dydndt

R
3 2J J+1 9
f | ] elwont) (| fen(rs = gntrs) = wy
Bt J(@nBri1)7 1 QnBgr

X (MVU(rj,t) + MVU(yj,t))] drj) dydndt

J+1
2
E f JBJ+1 LQ S o(y,n,t) (JQ . [wk (r]- — En(rj) — yj>MVu(rj,t)] drj) dydndt
j=1 NDR+1 NDR

R+1

J+1
2
+ Z f f f o(y,m,t) (f W, (Tj —n(ry) - yj) d?"j) My (y;,t) dydn dt}
BT J(QABRy1)/+! QnBg

//\

3-27¢C

R+1
3. 2J J+1 )
S — f J 7 J Q(yﬂ?,t) (J [(A}k <7"j - %TL(T]-) — yj>./\/lvu(rj,t)] drj) dy dndt
Byti J(QnBry1)7+! QnBg
J+1
f J J o(y,n, t)yMwu(y;,t) dydndt.
Byt J(@nBri1)

Then, using changes of variable, we get
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3.27co|'E (T 2
11| oy < ——— J- f J- o(y,n,t) (J [wk <Z — =n(z; + y»))
. € J; 0 JBt J(@nBRy1)IH Ba(r+1) Lok ’
X Mvu(Zj + yj,t)] de) dydndt + 2C |QL2(DR+1)1
3-27cC|’& (T
—lE J f J o(y,n,t) (J [kdw<kzj—2n(zj+yj))
€ j=1J0 JBRT) J(Q@nBRry) Ba(ry1)
X Myu(z; + yj,t)] dzj> dydndt + 2C |QL2(DR+1)1
3-27co|& (T 3
SRS w0 ([ [o(e - 20+ )
€ j=1J0 JBLY J(@nBRi) Y Bps
1
x Mw(g &+ ijt)] d§j> dydndt + 2C ||Q|L2(DR+1)]
3.27co & (T 1
<2 f f i f o(y,n; 1) q [Mw(kQ +yj7t)] d§j> dy dndt
€ j:1 0 BR:l (QHBR+1)J+1 BR’

+2C |Q|L2(DR+1)1 .
Finally, we have

3.27¢C
1122 (pp) < —

J+1 J\TJ\
DI R
j=1v0 JBRI;

ds
J o(y,n,t) (J Myy(s,t) 1> dy dndt
(QHBR+1)J+1 B kd

+2C Q|L2(DR+1)1

3.-27¢C
< — -
€

J+1 T
ZJ f J o(y; n,t) Mg, (yj,t) dydndt
j=1J0 JBLH J(@nBRria) Y

R+1

+2C Q|L2(DR+1)]

3.27¢cC " (T

< i JEIJO ||Q('7'7t)”L2((QmBR+1)J+1><B‘é:11) HMMvu(yjat)HLz(Rd) dt + 2CHQ“L2(DR+1)
3-27¢cC " (T

< Y J2_1JO ”Q('?'7t)”L2((QmBR+1)J+1XB‘};jrrll) HMVu(yjat)HL2(Rd) dt + 2C”QHL2(DR+1)

< COllol 2 i)

Therefore, we have that

121 pr) < ClollL2(prs)s
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Now, we shall show that |I2]z1(p,) < Clolri(py,,). Indeed,

]+1 J+1 2
luen = [ 1D 3% I N R (1= 200 - )
(QnBg)/+1 JBgit+1 R(I+1)d JQJ+1

=1

J+1
X n wi (v )o(y,n,t) dy dn|dvdrdt
m=1
J+1 J+1 9
f J(QmBR - JBRJ“ JR(HW LHI s By, m, )} 111 Wik <rz - En(n) - yz)
J+1
X n wi (v )o(y,n,t) dy dndodrdt

o(y,n,t) |0y, - Ej(y,n,t)| dydndt

J+1
J+1
<o Z J JBJ'H

R+1

[
<C ||QHL1(DR+1)-
In conclusion, we have that
Hrli(Q)HLl(DR) < Cloll2 vy

as has been asserted. That completes the proof of the lemma. O

Then, for o € L®(0,T; L2(Q7+!1 x RUFDE R, ()) we argue again by density: we consider a sequence
(0¢)e=0 of smooth functions, such that g — ¢ in LZOC(D), and we write:

ri(0) = ri(oe) + ri(o — o),

which obviously converges to 0 in L} (D) as k — o0 and € — 0.

Next, we consider the term rk( ). We begin by observing that the following equalities hold:

2 J+1 /62 J+1
252 X1k Wh o Wk — g > 02 ok

7=1
J+1 J+1
J J+1)d JQJ+1{ oly,n,t H Wk (Tl - 7” (i) — yl) 71;[1 Wk (Vm, — Mm)
J+1 J+1
e o ) et

=1

and hence, by using an integration by parts on the first integrand, we obtain

ri(0) = JR(HW LJ+1{ o(y,m,t) (9 [ k(v; — ;)] H Wk <7’z - En(rz) - yl> H Wi (Vm — Mm)

=1 m=1,m%#j

J+1 2 J+1
— oy, 0, 1), [wi (v — )] Hwk(rz—kn(n)—yz> I1 wk(vm—nm)}dydn,

=1 m=1,m#j
J+1 J+1 9 J+1
1) (Aw =N, wi | — —n(r) — Wi (VU —
J(M LM{ o(y, 1, t) (Aw)y,(v; UJ)E k(l Fnlr) yz) m=11_7[n¢j k(Vm — i)

J+1 9 J+1
— o(y,n, ) (Aw)i(v; — ) | [ s (Tz = () = yz) [T wr(om- ﬁm)} dydn

=1 m=1,m#j
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Having dealt with the terms 71 (o), 73(0) and r}(0), we are now left with the task of considering the

remaining term, r2(g). We begin by noting that

J+1 J+1
r,%(g) = Z (@,J - Ej(r,v,t))or — <Z (51;]- -Ej(r,v,t))g> *p fp Wh %y W
j=1
J+1 J+1 5 J+1
. t .n,t _z
-3, o o AP B0 ) T (= e =) T] vt
J+1 5 J+1
= p; - Ei(y,m,t) o(y,m, 1) H W <7“l - " (1) yl> H wi(v }dy dn,

=1

which, as long as ¢ and FE; are sufficiently smooth, converges to 0 in Lloc as k tends to oo by standard
results on convolutions. The general case then follows by using a density argument using the inequality
which we shall next prove. For a constant C' > 0, independent of k, we have that

J+1
J J+1)d JQJ+1 { [(avj ) Ej(T’ v, t)) - am' ’ Ej(yv 7, t)] 9(1/7 n, t)

T
s [ [
CIEERES N WU ) 3§

J+1 2 J+1
X Hwk<7”l—n ) yz) Hwk }dydn dvdrdt
1741
< - i(r,v,t —Op; - Ej NI ;1,1
€ ;f meBR i JBM jRUH)JQJH{ CEj(r,v,t) = 0y, - Ej(y,n,t)] ey, m. 1)
J+1 J+1
X Hwk<7”l—n ) yz) Hwk }dydn’dydndvdrdt
=1
J+1
02J+1 j j f a’UE‘ ’I“,’U,t — 0Oy, - B yanat annat dydndt
Z Bpti (QﬂBRH)‘]HK ’ i ) " i )| ( )
J+1
<C v, - Ejl ., . ff J o(y,n,t) dy dndt
321 5 Bl (0.1:L% (2" Br11)xBrs1) ) Bt J@nBra ( )

< Clolrimus,)-
Then, for o € L®(0,T; L' (Q7/+! x RU+D4: R_ 1)) we argue again by density: we consider a sequence (o)

of smooth functions, such that o — o in L}OC(D), and we write:

r2(0) = 12(0e) + 12(0 — o),

which obviously converges to 0 in L}, (D) as k — o0 and € — 0. That completes Step 2. g
STEP 3: PASSING TO THE LIMIT. Thanks to (5.9) we have that gg(-,t) converges to o(-,t) in L}, (O)
for almost all t € [0,7] and we denote by to such a time. For all k,1 € N the difference g, — ¢; belongs to

whtto,T; I/Vli;O(O)) and solves
Ag;(or — @) =rr—1 in D'(Q7H x RUFD 5 (0, T)).
The estimate (5.7) applied to g — ¢; and Lemma 5.3 imply that, for all compact sets K < O, one has

(5.35) sup |[(ox — o) (-, 7)1 (x) —ki—00 0.

T7€[0,T]
We then deduce from (5.35) that there exists for all ¢ € [0,7'] a function ~y;0 such that gg(-,t) converges to
yo in C([0,T]; L} (O)), and in particular from (5.9), by uniqueness of the limit we get

loc

(5.36) o(r,v,t) = yi0(r,v) for almost every (r,v,t) in Q71 x RU+Dd x (0, T).
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Moreover, for all t € [0,7] and R > 0 we have from (5.9) and (5.36), by lower semi-continuity and thanks

to Lebesgue’s dominated convergence theorem, since gy is bounded in L*(0, T Llloc((’))), that

< i ) = 1.
Iveelzt, e low( D)lLy, = el pn

We have that gi(-,t) = (7:0) *rk Wk *y wi a.e. in O for all k e N and ¢ € [0, 7], and since the two functions
ok (-, t) and (7:0) %,k Wk *, wy are continuous, this holds everywhere in O and thus g(-,t) — e in LZIOC(O)
for all ¢ € [0, T]. We note that v,0 = (-, t). From (5.35), we deduce that o € C([0,T]; L}, .(O)).

The estimate (5.8) applied to gx — 0, Lemma 5.3 and the convergence (5.9) imply that for all compact
subsets K < 0QU) x RUTDE gne has

T
(5.37) f jK yor — il dua(r, v, ) —>pisep 0.
0

We deduce from (5.37) the existence of a function yo € L}, .(0QU) x RU+D4 x [0, T, dus), which is the
limit of (yor).

Finally, for a fixed ¢ € C°(Q7+1 x RU+D x [0, T]) there exists a constant C' > 0 such that |¢(r, v, )| <
Cln(r;) - vj] on QW) x RU+DL » (0,T), to ensure that the integral

J+1 g
2, L Lm) fR(J+l>d(vj -n(r;)) vopdvds(r)dr,
j=1vto

appearing on the right-hand side of (5.5), is finite (since yo € L} (0QU) x RUFTDL x [0,T], dus), where

loc

dpa = |n(rj) - vj]>dvds(r) dr). Therefore, the Green’s formula (5.5) is established by writing it first for
0r and then passing to the limit & — o0. Uniqueness of the trace follows from Green’s formula. That
completes the proof. O

5.2. Fokker-Planck equation with specular reflection on the boundary. We show in this section
that the specular boundary condition is attained in a strong sense by the solution of equation (5.1). In the
previous section we showed that o € L®(0,T; L' (Q/+1 x R+, Rsy)) is a solution to the problem (5.1),
(5.2) in the sense of distributions, i.e.,

T
(5.38) f J f o A% (p)dvdrdr =0,
0o JoJs+1 Jr(I+1d J

for all test functions ¢ € WOI’I(O,T; W2 Q7+ x RUTDD)) with s > (J + 1)d + 1. Now, we want to prove
that the solution o satisfies the following specular boundary condition on dQU), j =1,...,J + 1:
(5.39) o(r,v,t) = o(r, e t) for all (r,v,t) € 00U x RU+Dd 5 (0, T], with v - v0)(r) < 0,
where ‘ A ' '
vfk]) = vi])(r,v) =v—2(v- 1/(])(7’)) 1/(])(7’), j=1,...,J+1.
To do so, let introduce some notational conventions. We define the field II,.; of projection operators on the
hyperplane, which is orthogonal to v(r;), in such a way that
vj = (v(ry) - v;) v(rj) + Iy vj,
and
v(ry) - 1l;v; = 0, for all v; € R%.

Civen three functions ¢ € C°(RU+D4 x (0,T)), 1 € CL([0,0)) with 1(0) = 0, and ¥ € CF(R*1), we
set
(540) (,0(7', v, t) = ¢(T7 t) ¢((V(7"j) ) vj)2> \II(Hijj)v
and we define, following [43], the class RS (standing for réflexion spéculaire) as the space of functions ¢

which can be expressed in the form (5.40). We now show that ¢ satisfies the specular boundary condition.

By replacing v in (5.40) with v,(kj), we have

(5.41) e(r. o) = o(r. ) p((w(ry) - o)) W (I ).
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Since

we have that Hrjv,(kj) = II,,v; and (v(rj) - 1),(,3))2 = (v(r;) - vj)*lv(rj)|? = (v(rj) - v;)?. In particular, we get

o(r, v 1) = o(r,v;,1).

Therefore, thanks to (5.38) and the Green’s formula (5.5), the trace g is well-defined and satisfies
J+1
(5.42) Z f f J (vj - v(ry))vo(r,v,7) p(r,v,7)dvds(r)dr =0 VeeRS.
00U JRJ+1)d

Hence, for almost every (r,t) € 902 x (0,T), for all ) odd, such that [¢)(z)| < C 22, for all ¥, by summing
twice the same integral we have that

(5.43) Jf f

/ J// [’yg(r, v+ 0" v(ry), ) + yo(r, v + 0" v(rj), 7')] (v (") dv}- dv” = 0.
j:1 v EHTj (Rd) v GR)Q

Hence, by performing a change of variable in the second integral (v” becomes —v” and we use the fact that
1 is an odd function), we get

J+1
(5.44) > f

/ J// [’yg(r, v+ 0" v(ry), ) — yolr,v —v" v(rj), T)] U(v) z&(v”) dv} dv” =0,
j=1vv EHTj (R4) Jv"eRxg

which is equivalent to yo(r,v,t) = yo(r, vfkj), t) for almost every (r,v,t) € dQU) x RU+DE 5 (0,77, ie., o
satisfies the specular reflection boundary condition (5.39).
6. THE SMALL-MASS LIMIT AND EQUILIBRATION IN MOMENTUM SPACE
In the previous section we showed the existence of functions u = u. and 9 = 0., such that
ue € C([0, TT; L7(Q)) A L*(0, T Wy " ()) 0 WH(0, T; W7 (2)%),

with 0 = min(6,2) > d, 6 := 2 + % and z = d + ¥ for some ¥ € (0,1), is a weak solution to the Oseen
system (1.1), and p. with
F(0e) € L™(0,T; L, (7! x RUTDER o)),
Vo € L0, T; L, (@71 x RUHD)),
Vode € L2(0,T; LY, (7 x RUFVD)) and M 6,5, € L2(0,T; (W*2(Q/ T x RUFDYYY s > (J+1)d+1,
satisfies the following weak form of the Fokker—Planck equation: for all ¢ € (0,77,

t 2 [J+1
Mo, 7), dr + 2 O De - 0. pdvdrd
JO< Q( T > T <ZJ JQJ+1J(]+1)d i€ 5P CUEr T)

J+1
- = (ZJ j J v]QG-é’rjcpdvdrdT>
QJ+1 R(J+l)d

1 J+1 ~¢
T e (Z J f J M(U)((Lr)j+U5(’I“j,7'))§6'avj§0dvd7‘d7'> =0
€ i1 0 JOJ+1 Jr(J+1)d

(6.1) Ve L2(0,T; W02 (7T x RUFDD) A 2+ 5 RUFDD)) - g > (J 4 1)d + 1.
Furthermore (-, -,0) = o(-,-) in the sense of Cy, ([0, T]; L1, (Q7F! x RUFDER_)), and

(6.2) M pe(r,v,t)drdv = f M oo(r,v)drdv =1 Vte (0,7].

JQJ+1xR(J+1)d QJ+1xR(JJ+1)d
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In addition, p. satisfies the following energy inequality:

ﬁ2 J+1 |au Q6|2
f f M (v) F(0c(t)) dvdr + 2 J J f : dvdrdr
OJ+1 JRr(J+1)d 2e QJ+1 R(J+1)d Qe

(6.3) [1 " Lm JR(’“)d Floo)de dr}

where C' = C’(Huoﬂwl_%ﬂmy|\bHLoo(07T;Loo(Q))), o =min(6,2) > d, 6 := 2+ % and z = d + ¥ for some

¥ € (0,1), as in the previous section; in particular, C' is independent of ¢ > 0. Motivated by the ideas in
[46], the aim of this section is to rigorously identify the small-mass limit of the system, corresponding to
passage to the limit € — 0.

We begin by noting that (F(8c))e=o is bounded in L*(0,T; L}, (27! x RUFTD4))  and the sequence
(Vur/0e)e is bounded in L2(0,T;L3,(Q2/+! x RUFTD4)). Hence from equation (6.1) we have that the
sequence (M ;0.)e0 is bounded in L2(0, T; (W*2(Q7+1 x RUADN)) for s > (J 4+ 1)d + 1.

We now proceed analogously as in the paragraph following (3.50i). We consider the Maxwellian-weighted
Orlicz space LY, (Q7+1 x RU+DY) with Young’s function ®(r) = F(1+ |r|) (cf. Kufner, John & Fuéik [33],
Sec. 3.18.2). This has a separable predual EY, (2771 x RU+1D4) with Young’s function ¥(r) = el"l —|r| - 1;
the space Ey;(Q2771 x R(/+1D4) is defined as the closure of all bounded measurable functions in the norm of
the Orlicz space LY, (2741 x RW+14) As there exists a constant K such that F(1+7) < K(1+F(r)) for all
r = 0, it follows from (3.50a) that the sequence (F(1+ 0c))eso is bounded in L (0, T; L}, (Q/F! x RU+Dd)),
Hence, g, is bounded in L (0, T; L, (Q/ ! x RU+D)) = 12(0, T; (EY,(Q7+1 x RU+D))") | By the Banach—
Alaoglu theorem, there exists a subsequence (not indicated) of the sequence (9¢)e~0 and a
0(0) € L7(0,T; L (! x RUFDEL R ) (whereby also F(3)) € L*(0,T; L}, (@7 x RUTDE R ()))
(not to be confused with the initial datum gp) such that, as e — 0.,

(6.4) 2 — 00y =0 weakly* in L®(0,T; L5 (1 x RUFTV)) = £2(0, T; (EY, (Q7+! x RUTD))),
As, by definition, L*(Q/+1 x RU+Dd) < B¥ (Q7+1 x RU+D) it follows in particular that
0 — 0(0) weakly in LP(0,T; L}, Q771 x RU+Dd)  vpe[1, ),
(6.5) M 6,6 — M 6,59y weakly in L?(0,T; (W*2(Q/+! x RUFDIN) - s > (J +1)d + 1.
vj 0 — vj 00y  weakly in L2(0,T; L}, (/1 x RUFDA)) - i =1 . J+1,
After multiplying (3.47) by €2, taking ¢ = T, omitting the first and third term from the left-hand side,

passing to the limit a — 04 for a fixed 7 € (0, 1] using the weak lower-semicontinuity of the second term
on the left-hand side, and then passing to the limit ¢ — 04, noting, as in (4.12), that

(6.6) HUGHL2(O,T;WLU(Q))leaQ(O,T;W—laU(Q)) <C(1+ HUOHWkg,a(Q))?
with o > d, whereby
el 220,700 () < C(1 + \|U0HW1%,U(Q))7

where C' is a positive constant independent of €, we have that

J+1 ’av |
(6.7) ZJ f f 2201 gyardr <
QJ+1 (J+1)d ( ) —|— ¥

Hence, 0y;0(0) = 0 a.e. in Q7+t RUADE 5 (0, T) for all j € {1,...,J +1}. As 0(0) has vanishing
weak derivatives with respect to all coordinates of v; for all j € {1,...,J + 1} it follows that g is
constant with respect to all v;, j € {1,...,J + 1}. In other words, g()(r,v,t) = n(r,t) for a function
ne L*(0,T; L' (Q27*1)), to be determined.

An identical argument to the one following Lemma 3.1 implies that

8(0) € Cw([0,T; Ly (Q7F! x RUFDE R ).
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It then follows from (6.2) that

(6.8) 0(0)(ryv,t)drdv =1 Vte (0,7

JQJ-H xR(J+1)d

We deduce from (6.6) that

Ue — () weakly in L2(0, T WOI’U(Q)d) as e — 04, o>d,
(6.9) Ue — U () weakly in WH2(0, T; W17 (Q)9) as ¢ — 04, o>d,
Ue — U () strongly in L2(0,T;C%7(Q)%) as ¢ — 0, O<y<l1l-— g, o >d,

where the last result follows, via the Aubin-Lions lemma, thanks to the compact embedding of the Sobolev
space W1 (Q)? into the Holder space C%7(Q)% for 0 <y < 1 — g, o > d. Hence also

(6.10) ((Lr)j +ue(ry, 7)) 0e — ((L7); + u(o)(ry, 7)) 0(0) Weakly in L?(0,T; L}\/I(Q‘]Jrl X R(Jﬂ)d))’

for each j =1,...,J + 1. Using (6.4), (6.5), (6.9) and (6.10) we can now pass to the limit ¢ — 04 in (6.1)
to deduce that, for all t € (0,77,

J+1 ¢
ZJ J f M (v) Oy; 0(0) - Ov;pdvdrdr = 0
o1 Jo Jar+ Jrena J ’

(6.11) Ve L2(0,T; W22 (71 x RUFDD) A s+ 5 RUFDD)) - s> (J 4 1)d + 1.
Thus,
J+1
(6.12) D10y (M(v)0y,000) =0 in D/(Q/F x RUFDE x (0,7)).
j=1
By defining
(6.13) 0.0y = M 00y = M n,

with n e L®(0,T; L*(Q7*1)), to be determined, it directly follows from (6.12) that
Liooy =0  inD(QIF x RUTDD » (0, 7).

Using (6.11), (6.1) can now be rewritten in the following equivalent form: for all ¢ € (0,77,

¢ & 0c — 0(0
6f <M8T§6('7'77-)7()0(‘7'77-)>d7-+ <62 Z J J J M(U) 61)]' <E()> : 6ng0d’l}d7“d7'>
0 =1 0 JQJ+1 Jr(J+1)d €
J+1 ¢t
_ (ZJJ f M(v)vj@-&rjcpdvdrd7'>
o1 Jo Jass Jrena

J+1 st
B (ZIJ J f M(v) ((Lr); +Ue(7”j77))§e-0yjcpdvdrdr> —0
j=170 QJ+1 JR(I+1)d ;
(6.14) Ve L20,T; W5, (7 x RV o a2/ RUFDD) 5 > (] 4 1)d + 1.

We now continue by performing some formal calculations, where the word ‘formal’ refers to the fact
that all manipulations with limits with respect to ¢ — 0, that we shall encounter will be assumed to
be meaningful, without rigorous justification. The purpose of these formal calculations is to illuminate
why the partial differential equation satisfied by 7 is indeed the one that our subsequent rigorous, but less
enlightening, argument will ultimately deliver.
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First we let € — 04 in (6.14) and note (6.5) and (6.10) to deduce that, for all t € (0,77,

ey 0c — 0(0)
. 2 I A T
6111’(1)1 (B Z f f N f . M (v) 8v] ( p ) 8ngde dr dT)

J+1
(Z f f J V) vj0(0) * Or;p dv drd7>
QJ+1 (J+1)d

T4l
- <Z f f j M () (£r)j + u)(r5:7)) 20) - 3Uj<pdvdrd7> -0
j=170 QJ+1 JR(J+1)d

(6.15) Ve L20,T; W, (7T < RUFDD) A w2/ 5« RUFDD)) s > (J 4+ 1)d +1,

and hence, also, for all test functions ¢ € C(Q7/+1 x RU+DE x (0,T)).
We define g(1) € D'(Q7F1 x RV x (0,T)) by

@\(1) = lim _—,

e—04 €
with the limit understood in the sense of D'(Q7+ x RU+Dd x (0,T)), and let
eqy = M q)-
By taking ¢t = T in (6.15) passage to the limit e — 0, yields
Lioqy = —Li(ug) ¥  in D(Q/H x RUFD x (0,7)).
Expanding the right-hand side of this equality we have that

J+1
(6.16)  Lioq) 2 M vj - 0rn + ((Lr); + u)(rj, 1)) - (0s,M)n  in D(Q7F x RG+D 5 (0,T)).
7=1
As vjM = —B0,; M, we therefore have that
J+1
(6.17)  Lioay =— ), (/3 Oy —n ((Lr); + um)(rj,t))) S0y, M in D/(Q7F x RUFDD (0, 7).
j=1

By (2.1), £§ ;(0y; M) = —(0y; M), and upon taking the inner product of this d-component equality with
the d-component vector field 30,7 —n ((£Lr); + u((rj,t)), which is, clearly, independent of v;, and then
summing through j =1,...,J + 1, we deduce that one solution of (6.17) is

J+1

(6.18) > (Borm = n((£r); + u)(r5,1))) - 00, M.
j=1

Therefore the general solution of (6.17) is

J+1
= >3 (Bonn =1 (L) + u)(r5,1))) - 00, M +ngay(r,6) M
j=1
J+1
ﬁ Z ( (o)(rjvt))—ﬂarjn) “vj + ey () M,

where 71y € D'(Q7+ x (O,T)) is arbitrary, because L§(n1)M) = n)L5(M) = 0 thanks to L§(M) = 0.
As it will transpire from the calculations that follow, the choice of 7(;) does not affect n, and 7(;) will be
therefore, ultimately, set to 0. Since M and 0,,; M, j = 1,...,J + 1, belong to the topological vector space
S of rapidly decreasing functions defined on R(/+1)d (the test space for the Schwarz space S’ of tempered
distributions), the structure of g(;) implies that o(;) € D'(Q7+1 x (0,T)) ® S, where the latter is the linear
space of all finite linear combinations of products of the form a(r,t)b(v) with a € D'(Q/+! x (0,T)) and
beS.
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We now define g9y € D'(Q7+! x RV x (0,7)) by

. 0e— D) — €0n)
Q(Q) T 61—1>%1+ 62 )

with the limit understood to be in D'(Q7/*! x RU+D » (0, 7)), and let
o) = M o).

Next, we subtract the equality (6.15) from (6.14), divide the difference by €, and use test functions
@ € CL(Q/H xRUHDD % (0, 7)), s0 as to rewrite the resulting equality as one in D'(Q7/*1 x RV x (0, T)),
and then pass to the limit ¢ — 0., noting the definitions of g(g), 0(1), 0(2), %(0), and defining

. 1; Ue — U(0) in D'(Q T
u) = Jim - in D'(2 x (0,7)).
Hence,
J+1 J+1 J+1
M&tﬁ(o) — Z (9 M&v] Q(g) Z MU] TJ Z ([,7“)]' . &,j (M@\(l))
j=1 j=1
J+1

+ >y (ry, ) - Gu, (MB(0)) + oy (1, ) -, (M2(1)) = 0.

Recalling that, by definition, o(;) = M‘_ﬁ(i), 1 =0,1,2, we then have that

J+1 J+1 J+1
0r0(0) — L£50@) + D, Vi~ Ory00) + Y (£r)j - dus00) + Z )(755°) - Ou;0(0) + w(0) (1, °) - ;001 = 0.
i=1 =
Equivalently,
J+1 J+1 J+1
(6.19) L5o@) = Qo) + . vj - Oryo) + O, (Lr); + gy (r5,-) - )+ Z u)(75,-) - Ov; 0(0)-
j=1 j=1

Since both g(g) and (1) belong to D'(Q7+ x (0,T)) ® S, the same is true of the right-hand side of (6.19).
It is therefore meaningful to test both sides of (6.19) with I(v) (considered as an element of S'); upon
noting that

s<1(v), L50(2))s = s{Lo(l(v)), 002))s = 50, 0(2))s =0
because Lo j(I(vj)) =0 forall j =1,...,J + 1, we arrive at

J+1 J+1 J+1
0= <H(U)7 Qo) + . v+ Orjoiy + O, (Lr); + o) (15, )) - Quyoy + Y ueay(r, ) - 9vj9(0)> :
S j=1 j=1 J=1 S

as an equality in D'(Q7*+! x (0,T)), where 5<+»)g denotes the duality pairing between S" and S. Hence,

ot (10 + (105 ),

J+1 J+1
+ S<H(v)a 2 ((Lr)j + ug)(rj, ) - 0,0 > < U(l) r],-)-ang(o)>8,

j=1

as an equality in D'(Q7F! x (0,T)). Thanks to the definition of partial derivative of a tempered distribution
the last two terms on the right-hand side vanish, while g(I(v), M)g = {5(s41a M(v) dv = 1, resulting in

J+1
om + <]I(v)7 Z Vj * Or; g(l)> = 0.
S’ S

j=1
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In order to simplify the second term on the left-hand side, we consider

J+1

vj - Or; 0(1) = V5 * Or; (Z (5 Ore — 1 ((L7)k + u(o)(rx, '))) : 5ka> + ;- Op; (n1y M).
=1

As v+ 0, (n(1y M) = =B 0y; (M (0r,n01))), we have that ¢(I(v),v;-0r,(n1)yM))s =0forallj=1,...,J+1.
Consequently, the precise choice of 7(;) is immaterial, to the extent that

J+1 J+1
(620) o+ <H<v>, v, (Z (86nm—n (L) +u) (1)) am) > -0,
s’ j=1 k=1 S

regardless of the specific choice of 7(;). Now (with the integral over R+14 considered below understood
as a Gel’fand—Pettis integral of a function with values in a topological vector space, which is in our case

D'(Q/+1 x (0,7))), we have that

S/<H(U) JZ—? vj - O, (il(ﬁ Ory = 1 ((L7r)k + uo) (T, ))) 'aka> >8

7j=1

J+1 J+1
- j (+1)d 4 Z vj * Oy (Z (5 O —n ((Lr)g + U(O)(Tky ))) 'aka> dv

k=1

J+1
- 2 J(,H)dvﬂ Or, (557"k77—77((£"”)k+U(o)(rk,-))> -&ka) dv

7.k=1
J+1 J+1 J+1
=— Z J(JH ok ijJ>Mdv— Z J(JH tr (Aj; )M dv = — Ztr i)
7,k=1

where
Ajy = 0y, (ﬂ Oy — 1 (L7, + uo) (T -))) e [D(Q7 x (0, 7)™, k=1,...,J+1L

Thus, (6.20) yields the following partial differential equation satisfied by 7:

J+1
(6.21) om= 23 (802n=ap, - (n((£r); +u@(r5,)) =0, in D@7 % (0,T)).

Jj=1

This is the nonlinear Fokker—Planck equation associated with the McKean—Vlasov diffusion

(6.22) f’j = (L‘T')j + U(p) (Tj, t; 77) +1/28 Wj,
where wu(g) is the limit (cf. (6.9)) of the sequence (u¢)e>o defined above. We emphasize here that we are
yet to show that u (g is a solution of the Oseen equation, whose right-hand side is to be identified.

This concludes our formal calculations. The rest of the section is devoted to making the above formal
passage to the small-mass limit e — 0. rigorous, including the rigorous identification of the equation (6.21)
satisfied by 7.

We shall suppose henceforth that the initial datum pg for the Fokker—Planck equation has the fol-
lowing factorized form: go(r,v) = M(v) po(r), where gy is a nonnegative function of r only, such that

§or41 00(r)dr =1, and
/Q\O € L2(QJ+1; Rgo).
Under this hypothesis it directly follows that
b € L(0,T; L3, (7T x RUFDE R 0)) A L2(0, T; L2 Q7 W A (RUFD4))

and
010 € L2(0,T; (W2 (Q7F x RUFDA))).
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Consequently, by a density argument, (6.1) implies that

t 2 [J+1
M 0:0c(+,-,7), 0 d — Op; Oc * Oy, pdvdrd
[amacenmas 58], [0 apm)
J+1
- - (ZJ J f ngg'ﬁrjcpdvdrd7'>
QJ+1 R(J+1)d

J+1
T (ZJ f f ((Lr); +u6(7"j,7'))§5-5vjcpdvdrd7'> =0
QJ+1 R(J+1)d

(6.23) Ve L20,T; W2, (@7 x RUADD)Y - v e (0,T].

Further, 9¢(,+,0) = 9o(-,) in the sense of C,, ([0, T]; L3,(Q7F! x RUADL R ).

The next step in our rigorous passage to the limit € — 04 in (6.23) is motivated by the proof of Lemma 2
on p.1374 in the work of Carrillo and Goudon [18]. First, we formulate the ‘macroscopic’ equations satisfied
by the moments of .. By taking o(r,v,t) = ¢(r,t) with ¢ € L2(0,T; W12(Q7+1)) in (6.23) and defining

1 ~ .
Pe(r,t) ::J M(v) pe(r,v,t)dv and T j(r,t) := f M(v)vj oe(r,v,t)dv, j=1,...,J+1,
RJ+1)d R(J+1)d

we have that

(6.24)
J+1
f (0:pe(-y7), (-, 7)ydT — Z J L i Op,pdrdr =0 Ve L*0,T;Wh(Q/Th), Vte (0,77,
Q

subject to the initial condition pe(-,0) = po(:) := §g(rs1ya M (v) 0e(r,v,0) dv.

Next, let v; 0, £ = 1,...,d, denote the components of the vector v; € R?, and consider the test functions
o(r,v,t) = ¢(r,t)vig in (6.1), fori=1,...,J+1and £ =1,...,d, and let J;y, for £ = 1,...,d, denote
the components of the d-component vector-function J.; for i« = 1,...,J + 1. Hence, we are led, for

i1=1,....,J+1land £=1,...,d, to

t t
¢ J <aﬂ7e,i,€a ¢> dr + ﬁ2 J J Z@g ¢odrdr
0 Joi+1

J+1
— Z f f (J M (v) vj vj ¢ 0 dv) - (Or; @) drd7
QJ+1 R(J+1)d

ff (Lr)ig +uce(ri, 7)) ¢ drdr =0 Ve L20,T;CL (7)), Vte (0,7,
QJ+1

where (L7); ¢, £ = 1,...,d, are the components of the vector-function (Lr);, and ucs, £ = 1,...,d, are the
components of the vector-function wu..
We note that

J+1 J+1J+1
Z Vj Vg Op; 0 = Z Z Vg Vi Or; @ = [(V®0)0r @i, 1=1,...,J+1, ¢=1,....d,
7j=1 k=1
where v and r are (J + 1)d-component vectors, whose components are denoted by v;x, j = 1,...,J + 1,

k=1,...;d (orvjg,i=1,....,J4+1,£=1,....d),and rj;, j=1,...,J + 1, k = 1,...,d, respectively.
Thus, by defining the R(Z+1d x RU+Dd_yalued function P by

[Pe(r, )i = j M(0) 50035 8e(r, 0, 1) do,

R(J+1)d
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fori,j=1,...,J+1and £,k =1,...,d, we have that
t t
e | @dandyars | | Fasodrar
0 0 JQJ+1
t
—J f [Pe 0r]; , drdr
QJ+1
(6.25) f f (Lr)ig +uce(ri, 7)) ¢ drdr =0 Ve L20,T;CF (7)),
QJ+1

where [P, 67‘525]14 = 2J+1 Zk 1[ ]Z,&j,k aTj,k(b'
Lemma 6.1. Let 0 <T < o0 and 0 < € < 1; then, the following properties hold:

Vte (0,71,

(1) The sequence (uc)eso is bounded in L*(0,T;C%Y(Q)?), with 0 < v < 1 — g, o>d,d=2,3, and

therefore also in L2(0,T; L*(Q)%);

(i) (8.)es0 and (Lr3.)e=0 are bounded in LP(0,T; L*(Q7*1)) and L®(0,T; L*(Q7/+1) D) - respec-

tively;
(iii) Consider the (J + 1)d-component vector-function peue, whose components are

Pe(T1y .y Tye1,t) ue(ri, t), fori=1,...,J + 1.

Then, (B.ue)eso is bounded in L*(0,T; L2(Q/+1Dd)(J+1)d).
(iv) The sequences of dissipation terms

1 Uj 1 .
——— | 2o —VeEM (V) uc(r;, ) + 0y, 0c | =: —D¢ ; , =1,...,J+1,
(Vo (Be-varomes s a) = o)

M (v)

are bounded in L?(Q7+1 x RU+DL » (0, T))?,
(v) The sequences (Jej)e=0, j = 1,...,J + 1, are bounded in L?(Q7+1 x (0,7))%;

(vi) Pc can be expressed as Pe = B3, 1+ /€Re, with (Re)eso bounded in L*(Q7+1 x (0, 7)) +Ddx(J+1)d,

and]IiM’k = (51'7]'(557]g fori,j=1,....J+1and ,k=1,...,d.
Proof. (i) In the previous section we showed that

ue € C([0,T]; L7 ()% A L2(0, T; Wy ° (), with o > d,

and (uc)e=o is a bounded sequence in the norms of the function spaces appearing on the right-hand side of

this inclusion. Hence, using Morrey’s inequality, we readily deduce (i).

(ii) The Cauchy—Schwarz inequality implies the following bound:

P ([ awa) ([ 1aeeoparea),

which then implies (ii), since 9. = g¢/M is bounded in the function space

L(XJ(07T; L%\/[(QJ-H % R(J+l)d)) A LQ(O,T; LQ(QJ-&-l;WJb}Q(R(J-i-l)d)))’

and |Lr] < C for all r € Q/*1 where C' is a positive constant, independent of e.

(iii) Finally, we have that
r 2 r 2 2
[ ], mPardt < [ 1 0lRagren el d
0 QJ+1 0

S |Qe”%°0(O,T;L2(QJ+1))J;) e (-, )70 ()

which proves (iii) by using (i) and (ii).
(iv) Now, let us show that the sequence (D¢ j)e=o is bounded in L2(Q7+1 x R(J+Dd

x (0,T))% for each

j=1,...,J 4+ 1. On the one hand, we know that (9)e~0 is a bounded sequence in the function space
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L0, T; L2(Q7+Y L2 (RUFD))) ~ L2(0,T; L2(Q7+ WA (RUFD4)): in particular,

6 26
. Oc 1 . 2 2 T ~
]Q L M(v)dvdrdt = BQJ J f ‘avj Q6|2M(U)dvdet<C’,
€ 0 QJ+1 JR(J+1)d

f fQJ+1 fR(J+1)d 5M( )

where C is a positive constant, independent of e.
On the other hand, we write

2
UJQe 1 Vj0e
e(ri, )| M(v)dvdrdt
f fQJ+1 J‘]R(J‘H)d ﬂM() ~ Veu (rj>) (v) dvdr
9 1 vjoc |?
= IZ€ 1 M (v) dodrdt
J ngﬂ J\R(J-H)d ,BM() (v) dvdr

+2J J J !ﬁue(rj,t)FM(v)dvdrdt
0 QJ+1 JR(J+1)d

T
<062+2m\%f f e (5, )2 dr dit.
0 JQ

Thus, using (i) and (6.26) it follows that, for each j =1,...,J + 1,

T
J f J |Dej|? dvdrdt < Ce
o Jai+1 Jru+nd ’

where C' is a positive constant, independent of €, which completes the proof of (iv).

(v) Next, we have that, since,

f M(v)vjdv =0, j=1,...,J+1,
R(J+1)d

also
J Qe(r,t)M(v)vjdvzge(r,t)f M(v)vjdv =0, j=1...,J+1.
RJ+1)d

R(J+1)d

Therefore, by the Cauchy—Schwarz inequality and a Poincaré—Sobolev inequality with a Gaussian weight

function,? we have that
v 2 1 2
Tei(r ) = “Loc(r,v,t)dv| = = Vi (0e(r,v,t) —0.(r,t) M(v))dv
) 2 J €
R(J+1)d € € R(J+1)d
—2 + . ¢ 2
< ) J ;1% M (v) do f 0w ) d
€2 R(J+1)d R(J+1)d Qe(rv t) M(U)
—92 2
Q¢ (Ta t) J 2 f Q¢ (T‘, v, t)
< i|“M(v)d v | ———————= || M(v)d
€2 < R(J+1)d lo; " M (v) do R(J+1)d v 0c(rt) M(v) (w)de
1 2 Qe(rvvvt) ? .
= — i|“M(v)d Vo | ————= | Mw)dv |, =1,...,J+ 1
€2 (JR(JHM [vs] (v) v> (JR(J-H)d < M (v) (v) dv J *
Hence,
C ~ .
| Te.; (T, )2 < - M |V0c(r,v, 1) dv, j=1,...,J+1,
€° JrR(J+1)d

where C' is a positive constant, independent of €. Therefore,
T C T
f f ]$7j(r,t)]2drdt<2f f f M |Vy0c(r,v,t)|> dvdrdt < C, j=1,...,J+1,
0 QJ+1 € 0 QJ+1 JR(J+1)d
where C' is a positive constant, independent of e. That completes the proof of (v).

2See p.941 in Nash [45], p.533 in Chernoff [20], and p.397 in Beckner [13].
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(vi) We recall from part (iv) the definition of D, ;, j = 1,...,J + 1, and denote its k-th component by
D, k=1,...,d. Analogously, let ucj denote the k-th component of u., & = 1,...,d. We then have
that

[Pe(r, )ik = J Vi 0 Vj i Oe dv

RJ+1)d
D, p(r,v,t
=BﬁfﬂHMGw M@)“ﬂk)>®
R

FOVE[ il ) M) o= 5 [ 0,00
R(J+1)d R(J+1)d ’

Focusing on the first two integrals, we define
D¢ ip(r,v,t
Relriaiai= 5 [ (e @ P ) o5 [ ety 0) (o) do
R(J+1)d \/E R(J+1)d

The last of the three integrals in the expression for P, is equal to d; ; d, 1 0, by partial integration. Hence,

[Pe(r, )]stk = B 0ij ok 0 + Ve [Re(r,1)]ie k-
To complete the proof of (vi) it therefore remains to establish a uniform (with respect to €) bound on
[Reliz ik in the norm of L2(Q7+ x (0,7)), fori,j =1,...,J +land £,k =1,...,d.
We have that

1 (T ,
BZJ;) J;)J+1 |[R€]Mﬁ}k‘ drdt

’ D, t 2
= J f f (Ui’g M(’U) 7]7,19(7",1},)) dv + J (’Ui’g u@k(rj, t)) M(’U) dvl drdt
0 JQJ+1 | JR(I+1)d R(J+1)d

) Ve
| Lo

Dein(r vt 2
f <W M(v)’j’k\(;v)) do| drdt
R(J+1)d €

T 2
+2J J f (Vip e g (15,t)) M(v) dv| drdt
o JQJ+1 | Jr(J+1)d
T D.. o2
o[ (L mera) ([ Pl g ) arar
0 QJ+1 R(J+1)d R(J+1)d \/E
+2(f |vi | M(v) > (f f e i (rj, )] drdt)
R(J+1)d QJ+1

C JT f J Deji(r,v, t)
0 QJ+1 R(J-H)d \/g

where C' is a positive constant, since moments of any order of M are finite. Thus, the statement in part
(vi) of the lemma follows from the assertions in parts (iv) and (i). O

dfudrdt+C\Q|"f J ek (75, t) | dr; dt,
0 JQ

Using the equations (6.24), (6.25) together with the splitting of P, introduced in part (vi) of Lemma 6.1,
we arrive at the following system of moment equations:
(6 27) 8@6 + div, J. = 0,

' B(?r@e:\f(—e\fﬁtje Div,.R 6)+§€UG—BJ€+ET§€.

Lemma 6.2. The sequence (2,). converges to g = 1 weakly in the space L*(Q7T! x (0,T)) and strongly in
LP(Q7F1 % (0,T)) for all p e [1,2). Furthermore, we have that

lim f j f 0c — oM (v)|dvdrdt = 0.
e—04 QJ+1 ]R(J+l)ri

Proof. We begin by focusing on the first equation in the system (6.27). We observe that the sequence
(div(y4)(Te, 0c))e=0 (where div(, ) (T, 0,) is the divergence with respect to the (r,t) variables of the vector
field (Je, 0.), defined as (div, 0)-(Je, ,),) is, thanks to (6.27);, the zero-sequence (0)¢~0, and it is therefore,
trivially, precompact in W~=12(Q7*+1 x (0,7)).
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Next, we focus on the second equation in the system (6.27), which we restate here for clarity:
(6.28) B 0,0, = Ve(—ev/e 0y T — Div,. R,) + o.ue — B Je + Lr 0,

Thanks to parts (iii), (v) and (ii) of Lemma 6.1 the sequence (g, ue(7;, ) — B Je,j + (L£7); 0c)e>0 is bounded
in the function space L?(Q7/*! x (0,7))?, and therefore, thanks to the compact embedding of the space
L2(Q71 % (0,7)) into W=L2(Q7+1 x (0, 7)), the sequence (g uc(rj, ) — B Jej + (Lr); De)e=0 is a precompact
set in the space W~12(Q7+1 x (0,7))?, for each j =1,...,J + 1.

Furthermore, by parts (v) and (vi) of Lemma 6.1 the sequences (J¢)e=0 and (R¢)e~o are bounded in the
spaces L2(Q7F1 x (0, 7)) +Dd and W—12(Q7+1 x (0, T))/+1Ddx(J+Dd respectively; therefore, the sequence
(—ey/€0sJ. —Div, Re) e is bounded in W=12(Q7*1 % (0, T))*+D4 whereby, upon multiplication by /e, we
have that the sequence (y/e(—ey/€d; J. —Divy. R¢))es0 is precompact in the space W~52(Q7+1 x (0, 7))/ +14;
more precisely, it converges to 0 in W—12(Q7+1 x (0,7))/+14 as ¢ — 0,. Thus, since 8 > 0, we deduce
from (6.28) that the sequence (8,8, )e>0 is precompact in W=52(Q7+1 x (0, 7))+, Hence, the sequence
(curl(y(0,8.))e>0 (Where curl(,. 4 (0, 9.) is the curl with respect to the (r,t) variables, defined as d(,. ;) —557t),
of the ((J + 1)d + 1)-component vector field (0,9,), where 0 is a (J + 1)d-component zero-vector), is a
precompact set in W12(Q7+1 x (0, 7))((J+Dd+1)x ((J+1)d+1)

Hence, a direct application of the Div-Curl Lemma (cf. [50]) yields that the weak limit of the scalar
product of the sequences ((Je, 0.))e=0 and ((0,2,))e=0 is equal to the scalar product of their weak limits;
ie.,

(t7€7@e) ’ (0756) = @z - (j,@) ’ (07@) = @2 in D,(QJ+1 x (OaT))
Combining this with the weak convergence result g, —  in L?(Q7*! x (0,T)), we have that

f |ge—g|2¢drdt=f [ge]wdrdwf [g]2<z>drdt—2f 5. 26 drdt
QJ+1x(0,T) QJ+1x(0,T) QJ+1%(0,T) QJ+1x(0,T)
= {oJ% ¢) + [o]*, ¢) — 20,00y > 0  ase— 0, for all ¢ € CL(Q/+! x (0,T)).

This proves the strong convergence of g, to p in L%OC(QJ +1 % (0,T)). Thus, for any compact subset ® of
Q7+1x(0,T), we can extract a subsequence from the sequence (g, )0 that converges to g a.e. on ®. Hence,
by considering a countable nested family of compact sets ©; < Q71 % (0,T) with Ujz19; = Q7L % (0,T),
by successive extraction of subsequences, there exists a subsequence of (g.)c~o (not indicated), which
converges to ¢ a.e. on Q71 x (0,7).

By combining the weak convergence g, — 9 in L*(Q7*! x (0,T)) (which implies the weak converge
0. — 0 in LY(Q27*! x (0,T)), and thereby, thanks to the Dunford-Pettis theorem (cf. Theorem 2.54 in
[27]), equiintegrability of (3,)e=0 on Q7+! x (0,T)) and the a.e. convergence of g, to g, Vitali’s convergence
theorem (cf. Theorem 2.24 in [27]) yields the strong convergence of g, to ¢ in L'(Q7*! x (0,7)), and
therefore, thanks to the boundedness of the sequence g, in LP(Q/*1 x (0,T)), 1 < p < 2, we have strong
convergence g, — 0 in LP(Q71 x (0,T)) for all p € [1,2).

Next, by the triangle inequality and noting that SR( sina M(v)dv = 1, we have that

T T T
f f f |Qe—M(v)g|dvdet<J f f |Q5—M(v)ge|dvdrdt+f f [o — o, drdt.
0 OJ+1 JRr(J+1)d 0 QJ+1 Jr(J+1)d 0 QJ+1

We have already shown that the second integral on the right-hand side of this inequality tends to 0 as €
tends to 0. For the first integral, using the Cauchy—Schwarz inequality and a Poincaré—Sobolev inequality
with a Gaussian weight function (cf. the proof of item (v) in Lemma 6.1), we obtain

1
1 2
e — M 0 d < € M 2.7 d
JR(J+1)d lo (v)2c] dv (JR(JHM e (e M (v) U>

0 < JR(J+1>d Ee]\gj(v) - QM(U) dv)é
2 3
S (J}R(JHW VU<JV~’Q(€U)> M) dv)
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(L Lo 7 (s)

we deduce by the Cauchy—Schwarz inequality that

T
f f J |Qe_M(U)§E|dUd7’dt<CQ
o JoJ+1 JR(J+1)d

T
lim f j f |oe — M (v)p|dvdrdt = 0.
=0+ Jo JoJ+1 JR(J+1)d

That completes the proof of the lemma. O

Since
: :
M (v)dvdr dt) < Ck,

and therefore,

Remark 6.3. The strong convergence g — M(v)o = M(v)n = p) in L'(Q7F x RG+D 5 (0,T)) in
the small-mass limit € — 04, which we have rigorously proved above, is referred to in the chemical physics
literature as equilibration in momentum space (cf. p.71 in [22]), in the sense that the limiting probability
density function p(y has the factorized form M (v)n, where n = n(r,t) is completely independent of v, and
satisfies a Fokker—Planck equation, which we shall carefully identify below; furthermore, by noting part (vi)
of Lemma 6.1 and Lemma 6.2, we deduce that

lim Vi1 Vjk Oe dv = Béi,j 5Z,k n, where 8 = kT(,

e—=04 Jr(J+1)d
strongly in LP(Q7+1 x (0,T)) for all p € [1,2) and weakly in L*(Q7F! x (0,T)), which is yet another
manifestation of equilibration in momentum space, as a consequence of the small mass limit ¢ — 04.
For further details in this direction, we point the reader to the paper of Schieber and Ottinger [47], and
references therein.

Having shown the strong convergence o — M (v) @ = M(v)n = p(gy in L'(Q7*! x R+D % (0,T)), we
are now ready to pass to the limit ¢ — 04 in the Oseen equation. All that remains to be done in this
respect is to identify the weak™® limit K of the sequence (K¢)eo in terms of the limit n of the sequence

(§€)€>05 where

with

M&

f JxRU+1)d =

f (B(q, x), v,t) dg dv.
JX]R(I+1)d

The limit K is anticipated to be of the form

F(q;) ® q5) MQE(B( )71)775) dgdv,

o)
B’

where

J J
40 = fDJxR(J+1) Z () ® q;) Mn(B(g, ), t dqdv—f 321 (4j) ® 4j) n(B(g, ), t) dg,

DJ xR(J+1)d DJ

The proof of this is identical to the proof, presented in Section 4.4, that the weak® limit K of the sequence
(K (k))k>o, where K*) = %((2)), k=0,1,..., considered in terms of the limit g of the sequence (610, is of
the form , the key ingredient in the argument being the strong convergence o, — M (v) @ = M (v)n = p(

in LI(Q‘]Jr1 x RU+Dd x (0,T)), guaranteed by Lemma 6.2. We do not repeat the proof, therefore.
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We now return to (6.24), and perform partial integration in the first term on the left-hand side, yielding

J+1
f pe(r,t) (1, 1) dr—f f (ry7) 0z p(r,T) deT—EJ Tej - Or;pdrdr
QJ+1 QJ+1 QJ+1

(6.29) =J;Hﬁdwwnmm"V¢eL%uﬂwﬂﬂﬂ“ﬂ>mw&%@ﬂL%Q”U» vie (0,T],

since pe(-,0) = po(-) := Sp+1a M(v) 0(r,v,0) dv. Passage to the limit e — 0 then gives

J+1

f n(r,t) ¢(r,t) dr—ff rT)(3¢7"Td7“dT—ZJ Jj Orpdrdr
QJ+1 QJ+1

QJ+1
(6.30) =f po(r) ¢(r,0)dr Ve L*(0,T; WH(Q7H1) a WH2(0, T; L*(Q7F)),  Vite (0,71,
QJ+1

where Jj := —B0,,m +n((Lr)j + u)(rj,-)) for j = 1,...,J + 1. To see that this is indeed the case, we
recall from the proof of Lemma 6.2 that the sequence

(\/E(_E\/E atu7€ — Div, IRe))e>0

converges to 0in W=12(Q7*1x (0, T))? as € — 0. It then follows from (6.28) that, for each j = 1,...,J+1,
(6.31) T (<802, + (L) +uclry, ) = T in IR (0,T))"

Thanks to (6.9)3 and since g, — @ = 7 weakly* in L®(0,T;L*(Q7+1)), it follows that, for each j =

LT,
0c((Lr)j + ue(ry, ) = n((Lr)j +u(ry,-))  weakly in L*(0,T; L*(Q7*1)%).
Also, 80,0, — B 0r,n weakly™ in L*(0, T’; W=12(Q7+1)4), Hence,
Tj = =Bormn+n((Lr); +ue(rs-),  j=1,....J+1,

as an equality in W—12(Q7*1 x (0, 7))
Now, since J; € L*(Q7+1 x (0, T))% and 1 ((Lr); +u(oy(rj,-)) € L*(Q7T1 x (0, 7)) forall j = 1,...,J +1,
it follows that d,,n € L*(Q7 x (0,T))% for all j = 1,...,J + 1. Therefore,

(6.32) % = —ﬂ@rjn-l—’ﬂ((ﬁ?")j-l-U(O)(Tj,-)), j=1,....J+1,

as an equality in L2(Q7*! x (0,7))%.

To summarize the main result of this section, we have shown that the small-mass limit of the coupled
Oseen—Fokker—Planck system under consideration satisfies the following coupled problem: the velocity-
pressure pair (u(g), 7)) solves the Oseen system

druoy + (b V)u) — pduggy + Vg = V- K for (z,t) € Q x (0,77,
Vv =0 for (z,t) € Q x (0,7,
(6:33) u(o)(z,t) =0 for (x,t) € 0Q x (0,77,
u(0)(7,0) = up(x) for z € Q,
with
J
(6.34) Koy (z,t) := Yps 21 (Flay) ©4;) n(Blg,x).t) dg for (z,t) € Q x (0,77,

SDJ H(B(q, x)v t) dg
and the nonnegative function n, with {1 n(r,t)dr = 1 for all t € [0,T], solves the following parabolic
initial-boundary-value problem:

J+1
(6.35) om =Y (B3 n =0+ (n((Lr); +uey(ry, ) in @ x (0,7,

j=1
(6.36) n(-,0) = 2o € L*(Q7+1; Rxy),

=
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subject to the weakly imposed boundary condition J; - v(r;) = 0 on QW x (0,T] for j = 1,...,J + 1
(implied by the third term on the left-hand side of the equation (6.30)); i.e., by recalling the identity (6.32),
we have the following zero-normal-flux boundary condition on #:

(6.37) (ﬁ Or;n — n((Lr); + u(o)(rj,-))) -v(r;) =0 on 00U x (0, 7] for j=1,...,J+ 1.

We note that the partial differential equation (6.35) is of the form div(, ) (J,n) = 0, where div(,4) is the
space-time divergence of the ((J+ 1)d + 1)-component vector-function (7, 7) defined on Q7+ x (0,T), with
(J,n) € L2(Q7+1 x (0, T))V+Dd x L2(Q/+Dd » (0,T)). Consequently, by a standard trace theorem for the
function space H(div,®), with ® = Q7! x (0,T), the vector-function (J,7) has a well-defined normal
trace on the boundary (%! x (0, T)) of the domain Q’/*! x (0, T), contained in W_%’z((?((l‘]“ x (0,7)));
see, for example, Theorem 18.7 in [2]. Thus, the boundary condition (6.37) for (6.35) is meaningful, as an
equality in W_%Q(@Q(j) x (0,T)) (the dual space of WO%Q(&QU) x(0,7)),j=1,...,J+1; cf., for example,
Theorem 18.9 in [2]).

We complete this section by proving the existence of a unique solution to the parabolic initial-boundary-

value problem satisfied by 1. To this end, we introduce the real-valued function 7 defined on Q7+ x [0, T
by

- 1
77(7”7 t) = U(Tvt) ~ Tol 77(7”7 t) dr
0 o
(rt) - =
=mr,
[

Hence, we have that the function 7, with §,;,, 7(r,t) dr = 0 for all ¢ € [0, T'], solves the following parabolic
initial-boundary-value problem:

J+1

(6.38) 6] = Z (Bezi—on, - ((7+ Klz) ((£r); +u)(ry, ) in Q7+ x (0,77,
(6.39) 7o :=7(-,0) = 20 — |(12| e (71 Rxo), LJH fio(r) dr =0,
(6.40) (8,7 — (ﬁ + Klz‘) ((Lr); + ug)(ry, -))) w(rj) =0 on 000) x (0,T], j=1,...,J + 1.

Let us introduce the Hilbert space
H} Q) = {gpeHl(QJH) :j Lp(r)drzo}
QJ+1

equipped with the norm of H!(Q/*!), with an analogous definition of L2(27*!) equipped with the norm
of L2(Q7+1).
By (6.30), the weak formulation of the problem (6.38)—(6.40) therefore amounts to seeking a function
0 e C([0, T LI(Q7) A L0, T He (7))
with
o € L*(0, T; Hy (2771)),
such that 7(-,0) = 70(+), and

J+1
@, iy @y + Z j On,ii — 71 ((Lr); + ugy (s> )] - ryipdr

QJ+1

= 1/0J+1
Efmm )i + u)(r5,7)) - Oypdr Ve H (7).
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We consider the bilinear form a(-,-) defined on H}(Q/*1) x H}(Q/*+1) by

J+1
alv,¢) = ), LJH (80,0 =¥ ((Lr)j +uw)(ry, )] - Orpdr, w0 Hy(Q7H),
j=1

and set
J+1

- ) . 1 J+1
ZJM |Q| )i T uy(rgs ) - Onypdr,  p e H Q7).

Because ugy € L*(0,T; L®(Q)%), we have that £ € L2(0,T; H}(Q/*!)). The bilinear form af(-,-) is
obviously well-defined for every 1, ¢ in H}(Q/*1). Moreover, by the Cauchy-Schwarz inequality, a(-,-) is
bounded (and therefore continuous); i.e.,

la(y,0)| < C ”W‘Hl(QJH)H‘PHHl(QJH) Y, pe H}(QJ”),

for some positive constant C, independent of ¢ € [0,T]. Furthermore, a(-,-) satisfies a Garding inequality;
indeed, we have that

J+1

J+1
a(ap, ) = BZJ 120, 012 - Zf ) + iy (>)) - Oy o dr

J+1

J+1
SZJ | rﬂ/”Z ,3 Z J;ZJ+1 |(Lr); +U(0)(T‘], )| |¢| dr

J+1
s

> 2 Wl — 55 (555 D) 1067 + 073 Y3 e
j=1
B 6 1 J+1
= B Hle%ql(QJﬂ) - 26 (ess SUPpeqJ+1 Z |(Lr); +u(0)(T]7 ) ) Hq/}H%%QJﬂ)
7j=1

for all ¢ € H}(Q/*1), which leads to
a(,¥) = a ‘WHHI g1y —C |‘7/’H%2(QJ+1) Ve HY(QTH),

where
J+1

(ess.supTEQJH Z [(Lr); + U(0) (5, )’2>

=1

ﬁ 1
a:= (/2 and C:= 2 %
are positive constants.

A classical abstract result due to J.-L. Lions (cf. [16], Theorem 10.9) then implies that, for any initial
datum 7jp € LZ(Q7+1) (and u() € L*(0,T; Who(Q)9), with o > d, fixed), there exists a unique function 7
satisfying:

e C([0,T]; LI (Q7HY) n L2(0, T HE(Q7FY)),  aie L*(0,T; HH(QHY),

Ol )i @r+1y < @iy + alil, ©) = L) forae te(0,T), Vee H(QM),
and
7(-,0) = 7o(-)-

That concludes the proof of the existence of a unique weak solution to the parabolic initial-boundary-value
problem (6.38)-(6.40) satisfied by 7, which therefore also establishes the existence of a unique weak solution
to the parabolic initial-boundary-value problem satisfied by n = 7j + 1/|Q|, for u() € L*(0,T; W' (Q)9),
with ¢ > d, fixed. Similarly, the Oseen system has, for a given fixed 7, a unique weak solution pair
(u(0), 7(0)) (With 7(p) understood to be unique up to an additive constant). The uniqueness of a solution
triple (U(O), T(0)s n) satisfying the coupled problem we have arrived at in the small-mass limit is of course
not guaranteed, since K(g) is a nonlinear function of n and u g enters into the evolution equation for 7, so
the coupled system for the small-mass limit (u(o), T(0),7) is still very much nonlinear.
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7. THE SMALL MASS LIMIT PROBLEM AND THE CLASSICAL HOOKEAN BEAD-SPRING-CHAIN MODEL

Our aim in this final section is to explore the connection between the small-mass-limit problem (6.33)—
(6.37) and the classical Hookean bead-spring-chain model for dilute polymeric fluids. We begin by recalling

that
1

:L' =
J+1
and perform a change of variables in order to transform the partial derivatives in (6.35) with respect to

the variables r;, 7 = 1,...,J + 1, into partial derivatives with respect to x and ¢;, j = 1,...,J. To this
end, note that

(T1+"'+rj+1) and Qj:Tj+1_Tj fOI'jzl,...,J,

Ory = —0g, + %_H&z,
8rj+1=5qj—é’qj+1+%+15x, j=1,...,0—1,
Orye1 = Og; + max.
Thus,
672’1 tooot &zul - (_aq1)2 + (0 — aqz)2 + 4 (0gy — an)Q + (an)Q + %Hag

Consider the matrix B € R(Z*+14xJd called the incidence matriz, which is a (J + 1) x J block matrix with
d x d blocks, defined by

-I O O ... O
I -1 o . O
e I
O ... O I -I
O ... O 0 I

The d x d block at position (i,7) in B is equal —I if the jth spring starts at bead i, it is equal to I if the
jth spring ends at bead ¢, and it is equal to @ otherwise, fori =1,...,J+1and j=1,...,J. Note that

2 -1 O ... O
T 21 -1 . O
r_glg.| @ -1 2 -1 O
O ... -1 21 -I
O ... 0O -1 21

The symmetric positive definite block matrix R := BTB of size Jd x Jd is referred to as the Rouse matriz.
In terms of the Rouse matrix we have

(7.1) 02 4+ 02, =0, B"Bo, +

TJ+1

b

1
2 T 2
0= R+ 0

J+17

where 0, := (8(?1, . .,6;5)T.

Next, note that
Ory - (N(Lr)1) = (Orym) - (Lr)1 +00ry - (L1)1 = (Or,m) - 1 — d.
We define, with r = B(q, ), where ¢ = (¢, .. .,q?)T e D’ and z € Q,
U(x,q,t) := n(B(q,x),t) = n(r,t).

Hence,

67“1 ’ (77(57“)1) = < 5q1¢ + J_li_laxw> cqp — dp.
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Similarly,
Orge )y 10) = (200 = 80+ 700 - =) =20, G =1 T
and

6TJ+1 ’ (U(ET)J—H) = ( qﬂb ‘|' 3:77/1) ( ) - dw-
Thus we have that

J+1
D 0, - (n(Lr);) = =[Bogtp - Bq + 2d.J¢p] = —[(041) BT Bq + 2d.Jy]
j=1
(7.2) = —[(049) B Bg + (94 (B"Ba))¢] = —0; (¥ Rq).
By combining (7.1) and (7.2) we deduce that
J+1
s
- ;lwazjn = Ory - (n(Lr);) = = [BG RO + 85 (Rq¥)] = 5020
(7.3) =—B04-|R a¢+1w —iaw
' - @ Tl J+17r
Let X
M(q) := (2n8) 2" exp (—[q|?/28),  where g = (q],...,q})" € D’.
Hence, (7.3) yields
J+1 " 8
2 . e p— . [ e —
(7.0 - 29 (e = R0, (i) |- 5
Next, observe that
q1¢+ J_Ha 'Qb, Jj=1
Or; - (uoy(rj, 1)) = w(o) (14, 1) - Oy = woy(rj, t) - {4 Og; 1% — 5qj¢ + 7702, i=2,...,J
qlzp+J Oz, j=J+1L

Thus we have that

J+1 1 J+1
2. Oy - (nuoy(rj,t)) = <J+1 ! ) o Z u(o) (7j+1,) = u(0) (75,1)) + Og, .

=1

By performing the approximations

1 J+1
(J—i—l le U(0) (Ua@) ~ ug)(z,1)
J:

and
(u)(rj+1,t) — u)(rj,t)) ~ (Vu)(z,8))(rjt1 — ) = (Vue))(z,t)g;,

we obtain

J+1 J

D 0r, - (nugoy(ry 1) ~ ug) Z (z,t)q; - ;¥

j=1 j=1
(7.5) -

= () (1) Ot + Z (, t)qj1)),

where the last equality is a consequence of the fact that

&q]' . ((Vu(o))q]) = tI‘(VU,(O)) =V Uy = 0.
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By substituting (7.4) and (7.5) into (6.35) and writing V instead of 0, and A instead of 02, we have that

J
Y B
. . ) — . m — Ay ~
oY + U(0) Vip + j§_1 aqj ((VU(O))‘]ﬂ/’) B0q [R (4) 9 <9ﬁ(q))] J+1 ¥~ 0,

which can also be written as

J
Y p
(7.6) &tw+u(0)-vw+;6%- qu ,31]215% [Rmm )& (9)?(q)>]_J+1AwRO'

Upon replacing the approximate equality in (7.6) by equality we arrive at the Fokker—Planck equation for
the classical Hookean bead-spring-chain model with centre-of-mass diffusion:

J
¥ B
(7.7) at¢+u(0)-v¢+;aqj- (Vo)) a;%) ﬁuzlaqj [R”sm q) 0, <m<q)>]—J+lA¢=o.

The equation (7.7) is supplemented by the initial condition
(78) L/J(%,q, 0) = ¢0(x7Q)a

where (2, q) := 00(B(g, x)) (cf. (6.36)).

Since (7.7) is now posed on the domain © x D’ x (0,7T] rather than on Q/*1 x (0,77, it is natural to
replace the zero-normal-flux boundary condition (6.37) on 6Q(/*1) x (0, 7] by zero-normal-flux boundary
conditions on 0Q x D7 x (0,T] and Q x D7 x (0,T7; i.e

(7.9) Vi(x,q,t) - ny(z) =0 for all (z,q,t) € dQ x D7 x (0,T],
where n; is the unit outward normal vector to 0f2, and
J
(7.10) D BRi; M(g) 0 v v : =0
: ] C]) Qi m(q) - (( U(O))QJL/J) "Ng; =
i=1
for all (z,q,t) € Qx (D x---x 0D x---x D) x (0,T], j =1,...,J, where ng; is the unit outward normal

vector to 0D for the jth copy of the domain D in the Cartesmn product D’ =D x---xD.
By integrating the Fokker-Planck equation (7.7) over D’ and using the boundary condition (7.10), and
then integrating both the boundary condition (7.9) and the initial condition (7.8) over D”, we obtain

s B .
6t< DJ?/qu> + () -V( DJz/;dq) — J_|_1A< DJ¢dq> =0 in Q x (0,71,
(7.11) V( wdq) “ng =0 on 09 x (0,77,
DJ

()0 ([ ) wo

If the initial datum g is such that, for some constant n > 0,
J Yo(z,q)dg =n~! for a.e. x € Q,
DJ
then, by uniqueness of the solution to the initial-boundary-value problem (7.11), it follows that
f Y(z,q,t)dg =n"" for a.e. (z,t) € Q x [0,T7;
DJ

that is
| G- | vwandg=nT forac @nen x0T
DJ DJ

whereby the expression for the tensor Ko stated in (6.34) simplifies to

(7.12) = f Z (¢5) ® ¢;) ¥(z, ¢, ) dg.
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In this form, Koy is referred to as Kramers’ expression for the polymeric extra stress tensor for the bead-
spring-chain model with J springs. We highlight one small but relevant difference between the classical
Kramers expression and (7.12): in the classical Kramers expression the integral in ¢ is taken over the whole
of R7?, whereas in our case the integral in ¢ is over D’ < R7?, where D := Q—. In this respect the formula
(7.12) is more consistent with the definition of the configuration vectors g; := rj11 —rj, j = 1,...,J, than
its classical counterpart; it also avoids the nonphysical feature of the classical Hookean model that springs
in a linear bead-spring-chain are allowed to stretch out to infinity even though their endpoints are confined
to a bounded flow domain Q. In our case, in contrast, if € is bounded, then so is D”. Of course, if
happens to be the whole of R? then D7 = R7?, so (7.12) and its classical counterpart will coincide.

The main obstacle in proving the existence of global weak solutions to the Hookean bead-spring-chain
model (cf. [8], for example,) where integration in the Kramers expression is over R79, is lack of weak com-
pactness of the sequence of approximating solutions to the Fokker-Planck equation in the |g|?-weighted L*

space L|14\2 (R7?) (even though the sequence of approximating solutions is strongly convergent in Ll (R’ ),

which then obstructs passage to the limit in the classical Kramers expression precisely because integration
with respect to the configuration space variable g there is over the whole of R/ rather than a bounded sub-
set of R74, This difficulty was ultimately overcome in [12] in the case of d = 2 through a rigorous proof of
the fact that the macroscopic closure of the Hookean dumbbell model (J = 1) is the Oldroyd-B model, for
which a global existence result is available (cf. [3]). The existence of global weak solutions to the Hookean
dumbbell model in the case of d = 3, with the Kramers expression in its classical form (i.e. with integration
over ¢ € R’?) however remains an open problem. With the Kramers expression defined by (7.12) now, the
situation is radically different: the technical difficulties caused by loss of compactness disappear, enabling
completion of the proof of existence of global weak solutions to the Hookean bead-spring-chain model in
both two and three space dimensions by replicating the proof contained in [8].
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