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Abstract

In this work, we prove rigorous convergence properties for a semi-discrete, moment-based approxi-
mation of a model kinetic equation in one dimension. This approximation is equivalent to a standard
spectral method in the velocity variable of the kinetic distribution and, as such, is accompanied by stan-
dard algebraic estimates of the form N−q, where N is the number of modes and q > 0 depends on the
regularity of the solution. However, in the multiscale setting, the error estimate can be expressed in
terms of the scaling parameter ε, which measures the ratio of the mean-free-path to the characteristic
domain length. We show that, for isotropic initial conditions, the error in the spectral approximation is
O(εN+1). More surprisingly, the coefficients of the expansion satisfy super convergence properties. In
particular, the error of the `th coefficient of the expansion scales like O(ε2N ) when ` = 0 and O(ε2N+2−`)
for all 1 ≤ ` ≤ N . This result is significant, because the low-order coefficients correspond to physically
relevant quantities of the underlying system. All the above estimates involve constants depending on N ,
the time t, and the initial condition. We investigate specifically the dependence on N , in order to assess
whether increasing N actually yields an additional factor of ε in the error. Numerical tests will also be
presented to support the theoretical results.
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1 Introduction

In this paper, we study the following linear kinetic model
ε∂tf(x, µ, t) + µ∂xf(x, µ, t) +

1

ε
f(x, µ, t) =

1

ε
f̄(x, t), (x, µ, t) ∈ [−π, π)× [−1, 1]× (0,∞), (1.1a)

f(π, µ, t) = f(−π, µ, t), (µ, t) ∈ [−1, 1]× (0,∞), (1.1b)

f(x, µ, 0) = g(x, µ), (x, µ) ∈ [−π, π)× [−1, 1], (1.1c)

where f̄ = 1
2

∫ 1

−1 f dµ. In particular, we prove interesting convergence properties for spectral discretization
with respect to the variable µ. The function f is a kinetic distribution function; the physical interpretation
is that f(x, µ, t) gives the density of particles with respect to the measure dµdx that at time t are located
at position x ∈ [−π, π) and moving with velocity µ ∈ [−1, 1]. The parameter ε > 0 is a scaling parameter
that measures the relative strength of different processes; more about this will be said below.

System (1.1) is among the most elementary examples of a kinetic model. However, despite its simplicity,
it shares the basic features of many kinetic equations: particle advection (modeled by the operator A : f 7→
−µ∂xf) and particle interactions (modeled by the scattering operator L : f 7→ f̄ − f). These basic features
are found in more realistic models that describe dilute gases [9–11]; neutron [8, 12, 13, 23], photon [27, 28],
and neutrino [26] radiation; charged transport in semiconductor devices [25,30]; and ionized plasmas [5,19].
However, connecting (1.1) to these more realistic models requires the introduction of more complicated
geometries, global field equations, nonlinearities, more complex collision mechanisms, and physical boundary
conditions.

Existence and uniqueness results for (1.1) follow from classical transport theory. See, for example, [12,
Chapter XXI]. For data g(x, µ) ∈ L2(dµdx), (1.1) has a unique solution f ∈ C0([0,∞);L2(dµdx)). If further,
g ∈ D(A) := {u ∈ L2(dµdx) : µ∂xu ∈ L2(dµdx)}, then f ∈ C1([0,∞);L2(dµdx)) ∩ C0([0,∞);D(A)).

The scattering operator L is self adjoint in L2(dµ) and satisfies∫ 1

−1
ψLψ dµ ≤ 0 and

∫ 1

−1
(ψ − ψ̄)L(ψ − ψ̄) dµ = −

∫ 1

−1
(ψ − ψ̄)2 dµ (1.2)

for any function ψ ∈ L2(dµ). This simple dissipative structure motivates a diffusion approximation for (1.1)
when ε � 1. In such cases, f = f (0) + O(ε), where f (0) is independent of µ and satisfies the diffusion
equation [2, 4, 17,21]

∂tf
(0) − 1

3
∂2xf

(0) = 0. (1.3)

The diffusion approximation is useful because it removes the need for angular discretization and is
therefore relatively cheap to compute; however, it does so at the expense of an O(ε) error. Spectral methods
(see [7, 20] in general or [24, Chapter 3] for applications to kinetic transport equations), on the other hand,
are more expensive but can be used to discretize (1.1) with respect to µ when ε is not small. A standard
spectral method for (1.1) seeks an approximation

fN (x, µ, t) =

N∑
`=0

fN` (x, t)p`(µ), (1.4)
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such that
ε∂tf

N = PT fN , fN |t=0 = Pg, (1.5)

where T = A+ε−1L, p` is the normalized, degree ` Legendre polynomial, and P is the orthogonal projection
from L2(dµ) onto the space PN of polynomials on [−1, 1] with degree at most N ; that is

Pψ =

N∑
`=0

ψ`p`, where ψ` =

∫ 1

−1
p`ψdµ (1.6)

for any ψ ∈ L2(dµ). When expressed in terms of the expansion coefficients fN` in (1.4), (1.5) takes the form
of a linear, symmetric hyperbolic system of balance laws in x and t. Standard semi-group theory (see for
example [6, Chapter 7] or [15, Chapter 7.4]) implies that this system has a solution in C0([0,∞); [L2(dx)]N+1)
that is also in C1([0,∞); [L2(dx)]N+1) ∩ C0([0,∞); [H1(dx)]N+1) when the expansion coefficients of Pg are
in H1(dx).

We refer to fN as the spectral approximation or PN solution. A straight-forward calculation shows that
this approximation converges like

‖f(·, ·, t)− fN (·, ·, t)‖L2(dµdx) ≤
C(t)

Nq
, (1.7)

where q is the number of L2 angular derivatives of f and ∂xf and the constant C depends on t but, due to
the dissipative structure of L, does not depend on ε in a bad way.1

A natural question for the spectral approximation is whether it provides an improvement over the diffusion
approximation when ε is small. The goal of the current paper is to derive an error estimate to demonstrate
that this is in fact the case. Specifically, let

f(x, µ, t) =

∞∑
`=0

f`(x, t)p`(µ), where f`(x, t) =

∫ 1

−1
p`(µ)f(x, µ, t)dµ, (1.8)

be the spectral expansion of f in L2(dµ). For small values of `, the coefficients {f`} correspond to measur-
able quantities and thus have physical significance. For example, f0 is a constant multiple of the particle
concentration. Thus we also derive estimates for the errors in these coefficients, respectively.

For the purposes of the current paper, we introduce the following assumption.

Assumption 1.1. The function g is isotropic; that is, it is independent of µ. We write it as g(x, µ) =
1√
2
g0(x), where the 1√

2
is a normalization constant.

This assumption is critical for the results in this paper, but will be removed in future work. With it, our
main result is the following:

Theorem 1.2. Suppose that g0 ∈ H1(dx). Then there exists an absolute constant λ1 > 0 such that the L2

error of the PN approximation satisfies

‖f − fN‖L2(dµdx)(t) ≤ B(g)e−
λ1t

ε2 + C(∂xg)
√
te−

λ1t

ε2 +D(g,N, t)εN+1, (1.9)

where D(g,N, t) is positive and bounded for any t > 0 and is decreasing exponentially in t for t sufficiently
large. Moreover, the L2 error for each coefficient satisfies

‖f` − fN` ‖L2(dx)(t) ≤

{
C(∂xg)

√
te−

λ1t

ε2 + E(g,N, 2, t)ε2N , ` = 0,

C(∂xg)
√
te−

λ1t

ε2 + E(g,N, `, t)ε2N+2−`, 1 ≤ ` ≤ N,
(1.10)

where E(g,N, `, t) is positive and bounded for any t > 0 and is monotonically decreasing with respect to t.

1An estimate of the form (1.7) can be found in [16] when ε = O(1). However, a more general argument is needed to show
that C can be made independent of ε ∈ [0, 1]. We give such an argument in the appendix.
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Remark 1.3. A formal statement of the ε-dependent scaling in (1.10), based on a Chapman-Enskog expan-
sion, can be found in [18]. In [22], formal asymptotic results for the SPN equations, which are equivalent to
the spectral approximation of (1.1) in the current setting, predict a similar scaling, at least for the coefficient
f1.

Remark 1.4. In our proofs, we use λ1 = 1/45 (cf. (3.8) in Section 3.1). We do not believe this value is
optimal; nor have we made any effort to optimize it.

Remark 1.5. All of the rates in (1.9) and (1.10) are observed in the numerical tests in Section 4. Moreover,
we observe these rates numerically even when ∂xg /∈ L2(dx). Further discussion of this point is given in
Section 4.

Theorem 1.2 has important practical consequences for the discretization of (1.1a) in transition regimes,
when ε is small, but not small enough to invoke the diffusion approximation. Indeed, for a fully discrete
scheme in space, time, and angle, it is important to balance errors with respect to each variable. While not
crucial for the solution of (1.1a), the efficiency gained from proper balancing of errors is essential for more
general kinetic problems, for which the distribution function depends on six phase-space variables, plus time.
Theorem 1.2 justifies the use of fewer spectral modes than the standard estimate (1.7) in transition regimes.
The first statement of the theorem says that after an initial layer, the approximation of the transport solution
is accurate up to O(εN+1). The second statement on the individual coefficients, which is much stronger, plays
an even more important role, since it is the low-order coefficients that correspond to physically meaningful
quantities. However, for more realistic applications, these estimates will ultimately need to be extended
beyond the current idealized setting.

The remainder of this paper is dedicated to the proof of Theorem 1.2 and the presentation of supporting
numerical results. Preliminary notation and an introduction of the modified energy are given in Section 2.
Details of proofs are provided in Section 3. In Section 4, we present some numerical tests to validate the
convergence rates in theory. The benefit of increasing the number of moments N is discussed in Section 5.
Conclusions and future work are discussed in Section 6.

2 Preliminaries

In this section, we provide some preliminaries. We first set the notation, and then introduce the modified
energy approach borrowed from [14].

2.1 Setup and Notation

The proof of Theorem 1.2 relies on estimates of expansion coefficients for functions in L2(dµdx).

Definition 2.1 (Legendre and Legendre-Fourier expansion). For any u ∈ L2(dµdx), the Legendre expansion
of u is

u(x, µ) =

∞∑
`=0

u`(x)p`(µ), u`(x) =

∫ 1

−1
u(x, µ)p`(µ)dµ, (2.1)

and the Legendre-Fourier expansion is

u(x, µ) =
1√
2π

∞∑
`=0

∞∑
k=−∞

u`,kp`(µ)eikx, u`,k =
1√
2π

∫ π

−π
u`(x)e−ikxdx. (2.2)

The coefficients u` and u`,k will be referred to as the Legendre and Legendre-Fourier coefficients.

Remark 2.2. The definition of u` in (2.1) is consistent with the use of g0 in Assumption 1.1 and the
definition of f` in (1.8).

We begin by decomposing the error eN := f − fN into the sum of two components:

η = f − Pf =

∞∑
`=N+1

η`(x, t)p`(µ) and ξ = Pf − fN =

N∑
`=0

ξ`(x, t)p`(µ), (2.3)
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where
η`(x, t) = f`(x, t) and ξ`(x, t) = f`(x, t)− fN` (x, t). (2.4)

These components are orthogonal with respect to the L2(dµ) inner product, i.e.,
∫ 1

−1 ηξdµ = 0.
Equations for the expansion coefficients {f`}∞`=0 are derived using the three-term recurrence relation for

the Legendre polynomials:
µp`(µ) = a`p`+1(µ) + a`−1p`−1(µ), (2.5)

where
1

2
< a` =

`+ 1√
(2`+ 1)(2`+ 3)

≤ 1√
3
. (2.6)

By taking the L2(dµ) inner product of (1.1a) with p`, ` = 0, . . . ,∞, and invoking (2.5), one arrives at an
infinite system of equations for the expansion coefficients {f`}∞`=0:{

ε∂tf0 + a0∂xf1 = 0, ` = 0,
ε∂tf` + a`∂xf`+1 + a`−1∂xf`−1 + 1

ε f` = 0, ` ≥ 1.
(2.7)

When applied to (1.5), the same procedure yields a similar set of equations for the coefficients {fN` }N`=0:
ε∂tf

N
0 + a0∂xf

N
1 = 0, ` = 0,

ε∂tf
N
` + a`∂xf

N
`+1 + a`−1∂xf

N
`−1 + 1

ε f
N
` = 0, 1 ≤ ` ≤ N − 1,

ε∂tf
N
N + aN−1∂xf

N
N−1 + 1

ε f
N
N = 0, ` = N,

(2.8)

with initial condition fN` (·, 0) = f`(·, 0), for ` = 0, . . . , N . We refer to this system as the PN system. The
equations in (2.8) differ in form from the first N + 1 equations of (2.7) only when ` = N ; it is this difference
that is the origin of the error between Pf and fN . Subtracting (2.8) from (2.7) yields a system equations
for {ξ}N`=0, with an additional source term in the last equation: ε∂tξ0 + a0∂xξ1 = 0, ` = 0,

ε∂tξ` + a`∂xξ`+1 + a`−1∂xξ`−1 + 1
ε ξ` = 0, 1 ≤ ` ≤ N − 1,

ε∂tξN + aN−1∂xξN−1 + 1
ε ξN = −aN∂xfN+1, ` = N.

(2.9)

with initial condition ξ`(·, 0) = 0, for ` = 0, . . . , N .
By taking Fourier transforms in x, we can write (2.7) in terms of the Legendre-Fourier coefficients of f .{

ε∂tf0,k + a0ikf1,k = 0, ` = 0,
ε∂tf`,k + a`ikf`+1,k + a`−1ikf`−1,k + 1

ε f`,k = 0, ` ≥ 1.
(2.10)

Similarly, the Legendre-Fourier coefficients of fN satisfy
ε∂tf

N
0,k + a0ikf

N
1,k = 0, ` = 0,

ε∂tf
N
`,k + a`ikf

N
`+1,k + a`−1ikf

N
`−1,k + 1

ε f
N
`,k = 0, 1 ≤ ` ≤ N − 1,

ε∂tf
N
N,k + aN−1ikf

N
N−1,k + 1

ε f
N
N,k = 0, ` = N,

(2.11)

and the Legendre-Fourier coefficients of ξ satisfy ε∂tξ0,k + a0ikξ1,k = 0, ` = 0,
ε∂tξ`,k + a`ikξ`+1,k + a`−1ikξ`−1,k + 1

ε ξ`,k = 0, 1 ≤ ` ≤ N − 1,
ε∂tξN,k + aN−1ikξN−1,k + 1

ε ξN,k = −aN ikfN+1,k, ` = N.
(2.12)

It turns out the behavior of the Legendre-Fourier coefficients f`,k and ξ`,k depends on the wave number
k, with the long-time behavior being dominated by the low frequency parts. We therefore separate the
coefficients into high and low frequency terms.

Definition 2.3 (High and low frequency parts). Let ε > 0 be given and let u ∈ L2(dµdx) have Legendre and
Legendre-Fourier coefficients as defined in Definition 2.1. Then u` can be decomposed into a high frequency
part uhigh` and a low frequency part ulow` , given by

uhigh` (x) :=
∑
|k|ε> 1

2

u`,ke
ikx, and ulow` (x) :=

∑
|k|ε≤ 1

2

u`,ke
ikx, (2.13)
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respectively. Similarly, u can be decomposed into a high frequency part uhigh and a low frequency part ulow,
given by

uhigh(x, µ) :=

∞∑
`=0

uhigh` (x)p`(µ), and ulow(x, µ) :=

∞∑
`=0

ulow` (x)p`(µ), (2.14)

respectively.

2.2 Modified energy method

One may conclude from (1.2) that solutions of (1.1) dissipate the energy functional H : L2(dµdx)→ R, given
by

H(u) = ‖u‖2L2(dµdx). (2.15)

A key tool in the proof of Theorem 1.2 is the spectral decomposition of H.

Definition 2.4. Given ε > 0 and any u ∈ L2(dµdx) with Legendre-Fourier expansion in (2.2), let

Hjk(u) :=
1

2

∞∑
`=j

|u`,k|2. (2.16)

A direct consequence of Definitions 2.3 and 2.4 is that∑
|k|ε> 1

2

H0
k(u) =

1

2
‖uhigh‖2L2(dµdx) and

∑
|k|ε≤ 1

2

H0
k(u) =

1

2
‖ulow‖2L2(dµdx). (2.17)

Since f satisfies (2.10), it follows that

∂tH0
k(f) +

2

ε2
H1
k(f) + ik

∞∑
`=0

a`
(
f∗`,kf`+1,k + f∗`+1,kf`,k

)
= 0. (2.18)

For real-valued f , the real part of (2.18) gives

∂tH0
k(f) +

2

ε2
H1
k(f) = 0. (2.19)

Thus H0
k(f) is a non-increasing function of time. However, this is not enough to prove that H0

k(f) decays to
zero or how. In a similar calculation, (2.12) implies

∂tH0
k(ξ) +

2

ε2
H1
k(ξ) ≤ aN |k|

ε
|ξN,k||fN+1,k| ≤

1

2ε2
|ξN,k|2 +

k2

6
|fN+1,k|2, (2.20)

where the third expression is a direct consequence of Young’s inequality and the bound on aN from (2.6).
In order to estimate the decay rate of the H0

k(f) or H0
k(ξ), the energy needs to be modified. Thus

following [14], we modify the energy by adding a compensating function.

Definition 2.5 (Compensating function). Given any u ∈ L2(dµdx) with Legendre-Fourier expansion in
(2.2), a compensating function for H0

k(u) in (2.16) is a real-valued function

hγk(u) = − γ

4a0
Im(u0,ku

∗
1,k), (2.21)

where γ ∈ R is a positive scalar parameter to be determined and a0 is the constant defined in (2.6).

The role of the compensating function is elucidated by the following lemma
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Lemma 2.6. Let u ∈ L2(dµdx) have Legendre-Fourier coefficients that satisfy{
ε∂tu0,k + a0iku1,k = 0,
ε∂tu1,k + a1iku2,k + a0iku0,k + 1

εu1,k = 0.
(2.22)

Then
(1− γ

2
)H0

k(u) ≤ (H0
k + hγk)(u) ≤ (1 +

γ

2
)H0

k(u); (2.23)

and, for positive k, the time derivative is bounded by

∂th
γ
k(u) ≤ −γ

(
k

16ε
|u0,k|2 −

(
k

4ε
+

3

8ε3k

)
|u1,k|2 −

k

5ε
|u2,k|2

)
. (2.24)

Proof. From the definition of hγk in (2.21) and the fact that a0 = 1/
√

3, it follows that

|hγk(u)| ≤ γ

2
|u0,k||u1,k| ≤

γ

2

(
1

2
|u0,k|2 +

1

2
|u1,k|2

)
≤ γ

2
H0
k(u), (2.25)

which immediately implies (2.23). To derive (2.24), we differentiate (2.21) in time and use (2.22) to conclude
that

∂th
γ
k(u) =

γ

4

(
−k
ε
|u0,k|2 +

k

ε
|u1,k|2 +

1

a0ε2
Im(u0,ku

∗
1,k)− a1k

a0ε
Re(u0,ku

∗
2,k)

)
. (2.26)

Using Young’s inequality, we compute bounds for the last two terms in (2.26):

1

a0ε2
Im(u0,ku

∗
1,k) ≤ k

2ε
|u0,k|2 +

1

2a20ε
3k
|u1,k|2 =

k

2ε
|u0,k|2 +

3

2ε3k
|u1,k|2 (2.27)

and

−a1k
a0ε

Re(u0,ku
∗
2,k) ≤ k

4ε
|u0,k|2 +

a21k

a20ε
|u2,k|2 =

k

4ε
|u0,k|2 +

4k

5ε
|u2,k|2. (2.28)

These bounds, when substituted into (2.26), give (2.24).

3 Proofs

This section is dedicated to the proof of Theorem 1.2, which proceeds in 4 steps. First, in Section 3.1, we
determine bounds on the coefficients f`,k for ` = 0, . . . ,∞ and k = −∞, . . . ,∞. Second, in Section 3.2,
we use the bounds on f`,k to estimate η. Third, in Section 3.3, we use the bound on fN+1,k to estimate
ξ. Fourth, in Section 3.4, we compute finer estimates on ξlow` for ` = 0, . . . , N . In Section 3.5, the results
of these four steps are combined to prove Theorem 1.2. More specifically, the first three steps are used to
establish the spectral error in (2.8), while the last is required to establish the moment errors given in (2.9).

In many cases, the proofs below rely on the decomposition of functions into high- and low-frequency
components, as prescribed in Definition 2.3. Since we consider only real-valued functions u ∈ L2(dµdx),
u∗`,k = u`,−k. Therefore |u`,k| = |u`,−k|, which means it is sufficient to consider only non-negative components
of the Fourier spectrum, i.e., wave numbers k ≥ 0.

3.1 Bounding the coefficients of f

In this section, we first use the method of modified energy to bound H0
k(f) in Lemma 3.1. With such bounds

and method of induction, we find bounds on f`,k in Lemma 3.2.

Lemma 3.1. For any g0 ∈ L2(dx),

H0
k(f)(t) ≤


6e−

2λ1t

ε2 H0
k(g), |k|ε > 1

2
,

6e−2λ2k
2tH0

k(g), |k|ε ≤ 1

2
,

(3.1)

(3.2)

with λ1 = 1
45 (cf. (3.8)) and λ2 = 4

45 (cf. (3.12)).
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Proof. We set u = f in (2.24), add the result to (2.19), and use the fact that H1
k(f) = H3

k(f) + 1
2 |f1,k|

2 +
1
2 |f2,k|

2. This gives

∂t
(
H0
k(f) + hγk(f)

)
≤ − 2

ε2
H3
k(f)−

2∑
`=0

cγ,`|f`,k|2, (3.3)

where

cγ,0 =
γk

16ε
, cγ,1 =

1

ε2
− γk

4ε
− 3γ

8ε3k
, cγ,2 =

1

ε2
− γk

5ε
. (3.4)

We next separate the frequency spectrum into high-frequency terms, when kε > 1/2, and low-frequency
terms, when 0 ≤ kε ≤ 1/2. The choice of γ and the subsequent estimates will depend on which part of the
spectrum is being considered.

(i) High frequency. For kε > 1/2, we set

γ = γhigh :=
16

29

1

kε
<

32

29
(3.5)

so that

cγ,0 =
1

29ε2
, cγ,1 =

(
1

ε2
− 4

29ε2
− 6

29k2ε4

)
>

1

29ε2
, cγ,2 =

(
1

ε2
− 16

145ε2

)
>

1

29ε2
. (3.6)

By substituting these bounds into (3.3), we find that

∂t
(
H0
k(f) + hγk(f)

)
≤ − 2

ε2
H3
k(f)− 1

29ε2

2∑
`=0

|f`,k|2 ≤ −
2

29ε2
H0
k(f) ≤ − 2

45ε2
(
H0
k(f) + hγk(f)

)
, (3.7)

where the last inequality uses the upper bound on H0
k(f) + hγk(f) in (2.23) and the upper bound on

γhigh in (3.5). We integrate the inequality in (3.7) and apply the bounds in (2.23), using the fact that
1
3 <

13
29 < 1− γ

2 < 1 + γ
2 <

45
29 < 2. This gives

1

3
H0
k(f)(t) <

(
H0
k(f) + hγk(f)

)
(t) ≤ e−

2λ1t

ε2
(
H0
k(g) + hγk(g)

)
< 2e−

2λ1t

ε2 H0
k(g), λ1 =

1

45
, (3.8)

from which (3.1) follows.

(ii) Low frequency. For k = 0, the result in (3.2) follows trivially from (2.22). For 0 < kε ≤ 1
2 , we let

γ = γlow :=
64

29
kε ≤ 32

29
(3.9)

so that

cγ,0 =
4k2

29
, cγ,1 =

(
1

ε2
− 16k2

29
− 24

29ε2

)
≥ 4k2

29
, cγ,2 =

(
1

ε2
− 64

145ε2

)
>

4k2

29
. (3.10)

By substituting these bounds into (3.3), we find that

∂t
(
H0
k(f) + hγk(f)

)
≤ − 2

ε2
H3
k(f)− 4

29
k2

2∑
`=0

|f`,k|2 ≤ −
8

29
k2H0

k(f) ≤ − 8

45
k2
(
H0
k(f) + hγk(f)

)
,

(3.11)
where the last inequality uses the upper bound on H in (2.23) and the upper bound on γlow in
(3.9). We integrate the inequality in (3.11) and apply the bounds in (2.23), using the fact that
1
3 <

13
29 ≤ 1− γ

2 < 1 + γ
2 ≤

45
29 < 2. This gives

1

3
H0
k(f)(t) <

(
H0
k(f) + hγk(f)

)
(t) ≤ e−2λ2k

2t
(
H0
k(g) + hγk(g)

)
< 2e−2λ2k

2tH0
k(g), λ2 =

4

45
, (3.12)

from which (3.2) follows.
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Lemma 3.2. Let g0 ∈ L2(dx) be given. For |k|ε > 1/2,

|f`,k|(t) ≤
√

12H0
k(g) e−

λ1t

ε2 , ` = 0, 1, 2, . . . . (3.13)

As a result,

‖fhigh` ‖L2(dx)(t) ≤ ‖fhigh‖L2(dµdx)(t) ≤
√

6 ‖ghigh‖L2(dµdx)e
−λ1t

ε2 , ` = 0, 1, 2, . . . , (3.14)

For |k|ε ≤ 1/2,

|f`,k|(t) ≤ Ck` ε`k`e−λ2k
2t, ` = 0, 1, 2, . . . , (3.15)

with

Ck` (g) =
√

12H0
k(g)A` and A =

2√
3(1− λ2/4)

' 1.2. (3.16)

As a result,
‖f low` ‖L2(dx)(t) ≤ F (g, `, t)ε`, ` = 0, 1, 2, . . . (3.17)

where

F (g, `, t) =

[
2 max
k>0

(Ck` )2
∑
k>0

k2`e−2λ2k
2t + δ`,0|g0,0|2

] 1
2

=

[
24 max

k>0
H0
k(g)

∑
k>0

(Ak)2`e−2λ2k
2t + δ`,0|g0,0|2

] 1
2

(3.18)

is positive, bounded for any t > 0, independent of k or ε, and monotonically decreasing with respect to t. As
a result,

‖f`‖L2(dx)(t) ≤
√

6‖ghigh‖L2(dµdx)e
−λ1t

ε2 + F (g, `, t)ε`. (3.19)

Proof. We again consider high and low frequencies separately.

(i) High frequency. For |k|ε > 1/2, the definition of H0
k in (2.16), along with bound in (3.1), implies

that
|f`,k|2(t) ≤ 2H0

k(f)(t) ≤ 12H0
k(g)e−

2λ1t

ε2 . (3.20)

Taking square roots gives (3.13). We sum (3.20) over all k such that |k|ε > 1/2 and use the definition

of fhigh` in (2.13) and the expression for H0
k in (2.17) to conclude that

‖fhigh` ‖2L2(dx)(t) =
∑
|k|ε> 1

2

|f`,k|2(t) ≤
∑
|k|ε> 1

2

12H0
k(g)e−

2λ1t

ε2 = 6‖ghigh‖2L2(dµdx)e
− 2λ1t

ε2 . (3.21)

Taking square roots gives (3.14).

(ii) Low frequency. To establish (3.15) for 0 ≤ kε ≤ 1/2, we consider three cases, the first two of which
are rather specific.

– Case 1: ` = 0, k = 0. In this case, direct inspection of (2.10) shows that f0,0(t) = g0,0 is constant
w.r.t. t. The assumption that g is isotropic implies that g`,0(t) = 0 for ` ≥ 1 and all t ≥ 0. Hence
H0

0(g) = 1
2 |g0,0|

2, whereby C0
0 =
√

6|g0,0|. Thus the bound in (3.15) is satisfied.

– Case 2: ` ≥ 1 , k = 0. In this case, (2.10) implies that f`,0(t) = e−
t
ε2 f`,0(0). Hence, with the

isotropic assumption on g, f`,0(t) = 0. Thus the bound in (3.15) holds.
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– Case 3: ` ≥ 0, 0 < kε ≤ 1/2. In this case, we actually prove the stronger statement

|fn,k|(t) ≤ Ck` ε`k`e−λ2k
2t, ` ≥ 0, n ≥ `, (3.22)

with Ck` defined in (3.16). The result in (3.15) then follows by setting n = ` in (3.22). We proceed
by induction on `. According to the definition of H0

k in (2.16) and the bound in (3.2),

|fn,k|2(t) ≤ 2H0
k(f)(t) ≤ 12H0

k(g) e−2λ2k
2t , λ2 =

4

45
, n ≥ 0. (3.23)

Taking square roots in (3.23) recovers (3.22) for the case ` = 0. Next, assume that (3.22) holds
for ` = `∗ for some `∗ ≥ 0 fixed. Using (2.10), the estimate (3.22) with ` = `∗, and the fact that
an ≤ 1/

√
3 for all n ≥ 0, we arrive at the following estimate for |fn,k| for all n ≥ `∗ + 1:

∂t|fn,k|+
1

ε2
|fn,k| ≤

k

ε
(an|fn+1,k|+ an−1|fn−1,k|) ≤

2k√
3ε

(
Ck`∗ε

`∗k`∗e−λ2k
2t
)
. (3.24)

Thus integration of (3.24) in time (with an integrating factor on the left-hand side) gives

|fn,k|(t) ≤ e−
t
ε2 |gn,k|+

2k√
3ε

∫ t

0

e−
t−s
ε2

(
Ck`∗ε

`∗k`∗e−λ2k
2s
)
ds

=
2k√
3ε

∫ t

0

e−
t−s
ε2

(
Ck`∗ε

`∗k`∗e−λ2k
2s
)
ds

=
2√
3

Ck`∗
1− λ2ε2k

ε`∗+1k`∗+1
(
e−λ2k

2t − e−
t
ε2

)
≤ ACk`∗ε

`∗+1k`∗+1e−λ2k
2t

= Ck`∗+1ε
`∗+1k`∗+1e−λ2k

2t, (3.25)

where Ck`∗+1 is given in (3.16) and we have again used the fact that gn,k = 0 for n ≥ 1. This
proves (3.22) and hence (3.15).

To show (3.17), we sum (3.15) over all low frequency values of k:

‖f low` ‖2L2(dx)(t) =
∑
|k|ε≤ 1

2

|f`,k|2(t) ≤ |f`,0|2(t) + 2
∑

0<kε≤ 1
2

|f`,k|2(t)

≤ δ`,0|g0,0|2 + 2
∑

0<kε≤ 1
2

{
(Ck` )2ε2`k2`e−2λ2k

2t
}

≤ δ`,0|g0,0|2 + 2ε2` max
0<kε≤ 1

2

(Ck` )2
∑

0<kε≤ 1
2

k2`e−2λ2k
2t

≤ F (g, `, t)2ε2`, (3.26)

where F (g, `, t) is given in (3.18). This proves (3.17).

Remark 3.3. While F (g, `, t) is independent of ε, it depends on `. A more careful examination of this
dependence is provided in Section 5.

Remark 3.4. The assumption that g is isotropic is critical to the proof above. More specifically, it is needed
in order to ignore the contribution of the initial condition in the first line of (3.25). If gn,k is not zero,
then the estimates are quite different and the proofs are much more complicated. We leave the analysis for
anisotropic initial conditions to future work.

Remark 3.5. The proof above also works for the coefficients fN` of the PN system. Hence the estimates
on f` in Lemma 3.2 also apply to fN` . In Section 4, we use fN` as a proxy for f` in order to verify these
estimates numerically.
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3.2 Estimating η

In this section, we use the bounds on f` to bound η.

Lemma 3.6. Let g0 ∈ L2(dx) be given.

‖ηhigh‖L2(dµdx)(t) ≤
√

6‖ghigh‖L2(dµdx)e
−λ1t

ε2 , (3.27)

and
‖ηlow‖L2(dµdx)(t) ≤

√
2F (g,N + 1, t)εN+1, (3.28)

where F is given in (3.18) with ` = N + 1. As a result,

‖η‖L2(dµdx)(t) ≤
√

6‖ghigh‖L2(dµdx)e
−λ1t

ε2 +
√

2F (g,N + 1, t)εN+1. (3.29)

Proof. We prove (3.27) and (3.28), which combine to give (3.29).

(i) High frequencies. We first recall the high-frequency definitions in (2.13) and (2.14) and the definition
of η in (2.3). We then apply (3.14). This gives

‖ηhigh‖L2(dµdx)(t) ≤ ‖fhigh‖L2(dµdx)(t) ≤
√

6‖ghigh‖L2(dµdx)e
−λ1t

ε2 . (3.30)

(ii) Low frequencies. We recall the low-frequency definitions in (2.13) and (2.14) and then apply the
bound in (3.17). This gives

‖ηlow‖2L2(dµdx)(t) =

∞∑
`=N+1

‖f low` ‖2L2(dx)(t) ≤
∞∑

`=N+1

[
F (g, `, t)ε`

]2
(3.31)

Using the definition of F (g, `, t) in (3.18), we have

∞∑
`=N+1

[
F (g, `, t)ε`

]2
=

∞∑
`=N+1

(
24 max

k>0
H0
k(g)

∑
k>0

(Ak)2`e−2λ2k
2tε2`

)
(3.32)

= ε2(N+1)24 max
k>0
H0
k(g)

∑
k>0

(Ak)2(N+1)e−2λ2k
2t
∞∑
`=0

(Akε)2` (3.33)

= [F (g,N + 1, t)]
2
ε2(N+1)

∞∑
`=0

(Akε)2`. (3.34)

Recall that 0 < A < 1.2. Therefore, (Akε) < 0.6 < 1 and

∞∑
`=0

(Akε)2` =
1

1− (Akε)2
< 2. (3.35)

3.3 Estimating ξ

With bounds on fN+1,k in (3.13), we use method of modified energy to bound H0
k(ξ) and then estimate ξ.

Lemma 3.7. Let g0 ∈ H1(dx), then

H0
k(ξ)(t) ≤


6te−

2λ1t

ε2 H0
k(∂xg), |k|ε > 1

2
,

t

2
[CkN+1]2k2(N+2)e−2λ2k

2tε2(N+1), |k|ε ≤ 1

2
,

(3.36)

(3.37)
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with λ1 = 1
45 , λ2 = 4

45 and CkN+1 defined in (3.16). Hence

‖ξhigh‖L2(dµdx)(t) ≤
√

6te−
λ1t

ε2 ‖∂xghigh‖L2(dµdx) (3.38)

and

‖ξlow‖L2(dµdx)(t) ≤
√
t

A
F (g,N + 2, t)εN+1, (3.39)

where F is given in (3.18) with ` = N + 2. As a result,

‖ξ‖L2(dµdx)(t) ≤
√

6t‖∂xg‖L2(dµdx)e
−λ1t

ε2 +

√
t

A
F (g,N + 2, t)εN+1. (3.40)

Proof. The proof relies on the same calculations as Lemma 3.1, but must incorporate the presence of a source
term in the energy equation. (Compare (2.19) to (2.20).) We set u = ξ in (2.24), add the result to (2.20),
and use the fact that H1

k(ξ) = H3
k(ξ) + 1

2 |ξ1,k|
2 + 1

2 |ξ2,k|
2. This gives

∂t
(
H0
k(ξ) + hγk(ξ)

)
≤ − 2

ε2
H3
k(ξ)−

2∑
`=0

cγ,`|ξ`,k|2 +
1

2ε2
|ξN,k|2 +

k2

6
|fN+1,k|2

≤ − 1

ε2
H3
k(ξ)−

2∑
`=0

cγ,`|ξ`,k|2 +
k2

6
|fN+1,k|2, (3.41)

where the coefficients cγ,0, cγ,1, and cγ,2 are defined in (3.4) and the term 1
2ε2 |ξN,k|

2 in the first line has been
absorbed by − 2

ε2H
3
k(ξ).2 As in the proof of Lemma 3.1, we separate the frequency spectrum of ξ into high

frequency and low-frequency parts, and choose γ appropriately in each case.

(i) High frequency. For kε > 1/2, we set γ = γhigh (defined in (3.5)) into (3.41) and repeat the
arguments in part (i) of the proof of Lemma 3.1. This gives

∂t
(
H0
k(ξ) + hγk(ξ)

)
≤ −2λ1

ε2
(H0

k(ξ) + hγk(ξ)) +
k2

6
|fN+1,k|2. (3.42)

We integrate (3.42) in time. Using (3.13) to evaluate |fN+1,k| and the fact that
(
H0
k(ξ) + hγk(ξ)

)
(0) = 0,

we find that

(
H0
k(ξ) + hγk(ξ)

)
(t) ≤ k2

6

∫ t

0

e−
2λ1(t−s)

ε2 |fN+1,k|2(s)ds ≤ 2te−
2λ1t

ε2 k2H0
k(g). (3.43)

Applying the left bound from (2.23), we find

H0
k(ξ)(t) ≤ 6te−

2λ1t

ε2 k2H0
k(g) = 6te−

2λ1t

ε2 H0
k(∂xg), (3.44)

which is (3.36). Then (3.38) is recovered by summing over all high frequency values of k.

(ii) Low frequency. When k = 0, (2.12) implies that ξ`,k = 0 (since the initial condition is zero by
definition). For 0 < kε ≤ 1/2, we set γ = γlow (defined in (3.9)) into (3.41) and repeat the arguments
in part (ii) of the proof of Lemma 3.1. This gives

∂t
(
H0
k(ξ) + hγk(ξ)

)
≤ −2λ2k

2
(
H0
k(ξ) + hγk(ξ)

)
+
k2

6
|fN+1,k|2. (3.45)

2The cost of combining these two terms is that the coefficient of H3
k(ξ) in (3.41) is only half the coefficient of H3

k(f) in (3.3).
However, the bound with respect to these coefficients is very loose. Hence the estimates in the proof of Lemma 3.1 follow,
except for the source term.
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We integrate (3.45) in time, using the fact
(
H0
k(ξ) + hγk(ξ)

)
(0) = 0 and the estimate in (3.15) for

|fN+1,k|. This gives

(
H0
k(ξ) + hγk(ξ)

)
(t) ≤ k2

6
e−2λ2k

2t

∫ t

0

e2λ2k
2s|fN+1,k|2 ds

≤ t

6
(CkN+1)2k2(N+2)e−2λ2k

2tε2(N+1). (3.46)

To arrive at (3.37) from (3.46), we use the fact that H0
k(ξ) ≤ 3(H0

k(ξ) + hγk(ξ)) (cf. (2.23)). Then to
establish (3.39), we sum (3.37) over the low frequency values of k:

‖ξlow‖2L2(dµdx)(t) ≤
∑
|k|ε≤ 1

2

12t

A2
(Ak)2(N+2)e−2λ2k

2tH0
k(g)ε2(N+1)

≤ 24t

A2
ε2(N+1) max

0<kε≤ 1
2

H0
k(g)

∑
0<kε≤ 1

2

(Ak)2(N+2)e−2λ2k
2t

≤ t

A2
ε2(N+1) [F (g,N + 2, t)]

2
, (3.47)

with F defined in (3.18).

3.4 Finer estimate on ξlow
`

In Lemma 3.7, we proved an ε-dependent estimate for ξlow. In this section, we combine the method of
induction with a reduced version of the modified energy to refine the estimate for ξlow` .

Lemma 3.8. Let g0 ∈ L2(dx) be given. For |k|ε ≤ 1
2 ,

|ξ`,k|(t) ≤

C̃kN−1(t)ε2Nk3Ne−λ2k
2t, ` = 0,

C̃kN+1−`(t)ε
2N+2−`k3N+4−2`e−λ2k

2t, 1 ≤ ` ≤ N,

(3.48)

(3.49)

where
C̃kN+1−`(t) = M(t)C̃kN−`(t), and C̃k1 (t) = max{1, t1/2}Ĉ(t)CkN+1, (3.50)

with

M(t) =
2 max{1, t1/2}√

3(1− λ2/4)
and Ĉ(t) =

2t1/2 + k−1√
3(1− λ2/4)

, (3.51)

and CkN+1 defined in (3.16).

Proof. For k = 0, (3.48) and (3.49) hold, since direct inspection of (2.12) shows that ξ`,0(t) = 0 for all
` = 0, 1, · · · , N . We therefore consider only 0 < k ≤ 1

2ε . In this case, we establish (3.49) and (3.48) by
proving the stronger statements:

(1) for 2 ≤ ` ≤ N ,

|ξn,k|(t) ≤ C̃kN+1−`(t)ε
2N+2−`k3N+4−2`e−λ2k

2t, 0 ≤ n ≤ `; (3.52)

(2) for ` = 1,

|ξ1,k|(t) ≤ C̃kN (t)ε2N+1k3N+1e−λ2k
2t. (3.53)

When ` = 0, (3.48) is recovered by setting ` = 2 and n = 0 in (3.52). When ` = 1, (3.49) is recovered by
(3.53). When 2 ≤ ` ≤ N , (3.49) is recovered by setting n = ` in (3.52).

(1) To prove (3.52), we use the method of induction, starting with N and working backward.
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(a) For the initial step in the induction, we need to show that for ` = N ,

|ξn,k|(t) ≤ C̃k1 (t)εN+2kN+4e−λ2k
2t, n = 0, 1, . . . , N. (3.54)

We prove (3.54) in two sub-steps.

(i) The first sub-step is to show (3.54) for n = 1, . . . , N . We combine the last two equations of
(2.12). This gives

∂t|ξn,k|+
1

ε2
|ξn,k| ≤

k

ε
(an−1|ξn−1,k|+ (1− δn,N )an|ξn+1,k|+ δn,NaN |fN+1,k|) , (3.55)

for 1 ≤ n ≤ N . It follows from (3.37) that

|ξ`,k|(t) ≤ t1/2CkN+1ε
N+1kN+2e−λ2k

2t, ` = 0, 1, · · · , N, 0 < k ≤ 1

2ε
, (3.56)

where CkN+1 is defined in (3.16). We use (3.56) to estimate ξn−1,k and ξn+1,k and (3.15) to
estimate fN+1,k. Then (3.55) reduces to

∂t|ξn,k|+
1

ε2
|ξn,k| ≤

1√
3

(
2t1/2 +

1

k

)
CkN+1ε

NkN+3e−λ2k
2t, 1 ≤ n ≤ N. (3.57)

We then integrate in time, using the zero initial condition for ξn,k to find

|ξn,k|(t) ≤ Ĉ(t)CkN+1ε
N+2kN+3e−λ2k

2t, 1 ≤ n ≤ N, (3.58)

with Ĉ(t) defined in (3.51). Since ĈCkN+1 ≤ C̃k1 , (3.58) verifies (3.54) for n = 1, . . . , N . 3

(ii) The second sub-step is to use the result of (i) to show that (3.54) holds for n = 0. Since
using (2.12) directly will result in order reduction by one power of ε, we instead consider the

smaller system for {ξn,k}N−1n=0 and treat ξN,k as a source term: ε∂tξ0,k + a0ikξ1,k = 0, n = 0;
ε∂tξn,k + anikξn+1,k + an−1ikξn−1,k + 1

ε ξn,k = 0, 1 ≤ n ≤ N − 2;
ε∂tξN−1,k + aN−2ikξN−2,k + 1

ε ξN−1,k = −aN−1ikξN,k, n = N − 1.
(3.59)

We then repeat the arguments used to establish (3.37) using the estimate for ξN,k in (3.58)
instead of the estimate for fN+1,k. This procedure requires the introduction of a new func-
tional

Hj,ik : u 7→ 1

2

i∑
n=j

|un,k|2, u ∈ L2(dµdx), (3.60)

which is defined such that Hj,Nk = Hjk (cf. (2.16)). With H0,N−1
k (ξ) and compensating

function hγk(ξ), defined in (2.21), one can first derive a differential inequality analogous to
(3.41) and then follow the arguments in part (ii) of the proof of Lemma 3.7. The result is

H0,N−1
k (ξ)(t) ≤ t

2
Ĉ(t)2(CkN+1)2ε2(N+2)k2(N+4)e−2λ2k

2t, (3.61)

and then
|ξn,k|(t) ≤ t1/2Ĉ(t)CkN+1ε

N+2kN+4e−λ2k
2t, 0 ≤ n ≤ N − 1. (3.62)

As compared to (3.37), the extra powers of ε and k in (3.62) come from the higher powers
in the estimate for ξN,k in (3.58) when compared to the estimate for fN+1,k in (3.15). Since

t1/2ĈCkN+1 ≤ C̃k1 , (3.62) verifies (3.54) for n = 0.

3Note that power of k in (3.58) is N+3, which is actually better than the estimate in (3.54). However in the second substep,
an additional power of k is needed (cf. (3.62)) in order to gain an additional factor of ε in the estimate for ξ0,k.
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(b) For the next step of the induction, we assume that for some 3 ≤ `∗ ≤ N fixed, (3.52) holds for
` = `∗:

|ξn,k|(t) ≤ C̃kN+1−`∗(t)ε2N+2−`∗k3N+4−2`∗e−λ2k
2t, 0 ≤ n ≤ `∗. (3.63)

We would like to show

|ξn,k|(t) ≤ C̃kN+1−(`∗−1)(t)ε
2N+2−(`∗−1)k3N+4−2(`∗−1)e−λ2k

2t, 0 ≤ n ≤ `∗ − 1. (3.64)

(i) We first show (3.64) for 1 ≤ n ≤ `∗ − 1. Using (2.12), the estimate (3.63) for ξn−1,k and
ξn+1,k and the fact that an−1 ≤ 1/

√
3 and an ≤ 1/

√
3, we derive the following estimate for

|ξn,k| for 1 ≤ n ≤ `∗ − 1:

∂t|ξn,k|+
1

ε2
|ξn,k| ≤

k

ε
(an−1|ξn−1,k|+ an|ξn+1,k|)

≤ 2√
3
C̃kN+1−`∗(t)ε2N+1−`∗k3N+5−2`∗e−λ2k

2t. (3.65)

Integration of (3.65) in time gives

|ξn,k|(t) ≤
2√

3(1− λ2/4)
C̃kN+1−`∗(t)ε2N+3−`∗k3N+5−2`∗e−λ2k

2t, (3.66)

which recovers (3.64), using the definition of C̃kN+2−`∗ in (3.50).

(ii) We next show (3.64) for n = 0, repeating the argument from step (a)(ii). We consider the

smaller system for {ξn,k}`∗−2n=0 and treat ξ`∗−1,k as a source term: ε∂tξ0,k + a0ikξ1,k = 0, n = 0;
ε∂tξn,k + anikξn+1,k + an−1ikξn−1,k + 1

ε ξn,k = 0, 1 ≤ n ≤ `∗ − 3;
ε∂tξ`∗−2,k + a`∗−3ikξ`∗−3,k + 1

ε ξ`∗−2,k = −a`∗−2ikξ`∗−1,k, n = `∗ − 2.
(3.67)

Using the energy H0,`∗−2
k (ξ) defined in (3.60) and compensating function hγk(ξ), defined in

(2.21), we have

H0,`∗−2
k (ξ)(t) ≤ 2t(√

3(1− λ2/4)
)2 (C̃kN+1−`∗(t)

)2
ε2(2N+3−`∗)k2(3N+6−2`∗)e−2λ2k

2t, (3.68)

and then

|ξn,k|(t) ≤
2t1/2√

3(1− λ2/4)
C̃kN+1−`∗(t)ε2N+3−`∗k3N+6−2`∗e−λ2k

2t, 0 ≤ n ≤ `∗ − 2. (3.69)

This estimate is analogous to (3.62).

(2) To prove (3.53), one just need to repeat the argument in (b)(i) with `∗ = 2.

The coefficients C̃kN−1(t) and C̃kN+1−`(t) in the estimates for ξ`,k(t) can be replaced by some time inde-
pendent coefficients, at the cost of a reduced decay rate in the error.

Lemma 3.9. Let g0 ∈ L2(dx) be given. For |k|ε ≤ 1
2 ,

|ξ`,k|(t) ≤

C̄(N, 2)CkN+1ε
2Nk3Ne−

λ2
2 k

2t, ` = 0,

C̄(N, `)CkN+1ε
2N+2−`k3N+4−2`e−

λ2
2 k

2t, 1 ≤ ` ≤ N,

(3.70)

(3.71)

where

C̄(N, `) = 2AN−`+1

(
N − `+ 2

λ2

)N−`+2
2

e−
N−`

2 +
λ2
2 −1 (3.72)
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and CkN+1 is defined in (3.16). Hence

‖ξlow` ‖L2(dx)(t) ≤

{
E(g,N, 2, t)ε2N , ` = 0,

E(g,N, `, t)ε2N+2−`, 1 ≤ ` ≤ N,
(3.73)

(3.74)

where
E(g,N, `, t) = C̄(N, `)A−2N−3+2`F (g, 3N + 4− 2`, t/2) (3.75)

and F is defined in (3.18).

Proof. The strategy is simple: use part of the exponentially decaying term in (3.48) and (3.49) to control
powers of t in the other coefficients. Since max{1, t1/2} ≤ (t + 1)1/2, (3.50) and (3.51) imply the following
bound:

C̃kN+1−`(t)e
−λ2k

2t ≤ AN−`+1(t+ 1)(N−`+1)/2

(
t1/2 +

1

2k

)
CkN+1e

−λ2k
2t

≤ 2AN−`+1(t+ 1)(N−`+2)/2e−
λ2
2 tCkN+1e

−λ22 k
2t, k > 1, (3.76)

The product 2AN−`+1(t + 1)(N−`+2)/2e−
λ2
2 t takes its maximum value C̄(N, `) at t = (N − ` + 2)/λ2 − 1.

This proves (3.70) and (3.71).
To establish (3.73) and (3.74), we sum (3.70) and (3.71), respectively, over all low frequency values of k.

For example, summing (3.71) gives

‖ξlow` ‖2L2(dx)(t) =
∑
|k|ε≤ 1

2

|ξ`,k|2(t) ≤ 2
∑

0<kε≤ 1
2

(
C̄(N, `)CkN+1ε

2N+2−`k3N+4−2`e−
λ2
2 k

2t
)2

≤ (C̄(N, `))2ε2(2N+2−`)2 max
0<kε≤ 1

2

(CkN+1)2
∑

0<kε≤ 1
2

k2(3N+4−2`)e−λ2k
2t

= (C̄(N, `))2ε2(2N+2−`)24 max
0<kε≤ 1

2

H0
k(g)A2(N+1)

∑
0<kε≤ 1

2

k2(3N+4−2`)e−λ2k
2t, (3.77)

which yields (3.74). Then (3.73) is derived similarly.

Remark 3.10. One could easily prove bounds of the form (3.73) and (3.74) by using (3.48) and (3.49)
directly, with the coefficient E replaced by Ẽ(g,N, `, t) = max{1, t1/2}Ĉ(t)M(t)N−`A−2N−3+2`F (g, 3N + 4−
2`, t). Although Ẽ decays more quickly for large t (due to the difference in the third argument in F ), the
time-dependent factor max{1, t1/2}Ĉ(t)M(t)N−` makes the analysis of Ẽ as a function of N more difficult.
We instead use E in (3.75) because it is easier to bound its growth with respect to N . This fact will be useful
in Section 5.2.

3.5 Proof of Theorem 1.2

We first prove the error estimate for fN . Since f − fN = η+ ξ, we simply apply the triangle inequality and
combine the estimates for η in (3.29) and ξ in (3.40), and get

‖f − fN‖L2(dµdx)(t) ≤
√

6‖ghigh‖L2(dµdx)e
−λ1t

ε2 +
√

2F (g,N + 1, t)εN+1

+
√

6t‖∂xg‖L2(dµdx)e
−λ1t

ε2 +

√
t

A
F (g,N + 2, t)εN+1. (3.78)

This establishes (1.9) with constants

B(g) =
√

6‖g‖L2(dµdx), C(∂xg) =
√

6‖∂xg‖L2(dµdx), D(g,N, t) =
√

2F (g,N + 1, t) +

√
t

A
F (g,N + 2, t).

(3.79)
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We next prove the error estimate for fN` . Since f` − fN` = ξ` = ξhigh` + ξlow` , we combine the estimate

(3.38) with (3.73) and (3.74). After some additional trivial bounds (‖ξhigh` ‖L2(dx) ≤ ‖ξhigh‖L2(dµdx) and

‖∂xghigh‖L2(dµdx) ≤ ‖∂xg‖L2(dµdx)), we arrive at

‖f` − fN` ‖L2(dx)(t) ≤


√

6te−
λ1t

ε2 ‖∂xg‖L2(dµdx) + E(g,N, 2, t)ε2N , ` = 0,
√

6te−
λ1t

ε2 ‖∂xg‖L2(dµdx) + E(g,N, `, t)ε2N+2−`, 1 ≤ ` ≤ N,

(3.80)

(3.81)

with E defined in (3.75). This establishes (1.10) and completes the proof.

4 Numerical Examples

In this section, we perform numerical tests to demonstrate the theoretical results, by exploring different
values of ε, N , and the initial condition g. All calculations are based on the PN system (2.8). Since the exact
solution of f is not readily available, we use fN with N = 65 as a reference solution in order to calculate L2

errors, and as discussed in Remark 3.5, we use fN` as a proxy for the coefficients f` of the exact solution in
order to test the asymptotic estimates in Lemma 3.2.

For the spatial discretization of (2.8), we use a Fourier-Galerkin method, typically with 100 Fourier modes,
although more modes are added as needed to ensure that the spatial error neglected can be neglected. The
method is implemented with a fast Fourier transform (FFT) algorithm. What remains is an ODE for the
Fourier-Galerkin coefficients that can be solved exactly (up to machine precision). In some situations, the
size of the coefficients differs by many orders of magnitude. Thus in order to rule out the effect of cumulative
round-off error that this discrepancy may create, we use the Multiprecision Computing Toolbox for MATLAB
by Advanpix LLC. [1] with 250 digits.

Example 4.1. We start with the kinetic equation (1.1) with three different initial conditions:

g(x, µ) = g(1)(x) = 1 + 1[−π2 ,
π
2 ](x),

g(x, µ) = g(2)(x) = 1 + cos(x)1[−π2 ,
π
2 ](x),

g(x, µ) = g(3)(x) = 1 + cos(x).

(4.1)

Simple calculations with Fourier analysis imply g(1) ∈ Hq(dx) for q < 1
2 and g(2) ∈ Hq(dx) for q < 3

2 , while

g(3) is a smooth function. However, g(1) does not satisfy the regularity assumption in Theorem 1.2 which is
required for the high-frequency bound (3.36) in Lemma 3.7.

We solve the PN system (2.8) with ε = 2 · 4−m, with m = 1, . . . , 5, and N = 1, 2, · · · , 5. For each ε and
N , L2(dµdx) errors with respect to the reference solution are listed in Table 1. The convergence rates of the
coefficients fN` for P4 and P5 are listed in Tables 2 and 3. The convergence rates of the errors ξ` for fN` are
listed in Tables 4 and 5.

For all three initial conditions, we observe the convergence rates for fN indicated by (1.9) in Table 1, the
convergence rates for ξ` indicated by (1.10) in Tables 4 and 5, and the covergence rates for fN` indicated by
Remark 3.5 in Tables 2 and 3. We observe these rates even for g(1), which is not in H1(dx) and thus does
not satisfy the hypothesis used to prove these estimates. This discrepancy may be due to the fact that the
Fourier-Galerkin method uses a finite number of waves and thus the numerical approximation of g(1) is in
H1(dx). However, even with 10, 000 Fourier modes, the results do not change. Thus while g(1) ∈ H1(dx)
may be a necessary condition, it may be impossible to verify it numerically in this example.

5 The benefit of increasing N

The goal of any apriori error estimate is to provide an indication of how the accuracy of an approximation will
improve as a given parameter varies. For example, the spectral estimate in (1.7) suggests that eN = f − fN
behaves like

‖eN+1‖
‖eN‖

∼
(

N

N + 1

)q
, (5.1)
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g(1)

ε P1 error order P2 error order P3 error order P4 error order P5 error order
1/2 6.34E-02 3.27E-02 2.07E-02 1.48E-02 1.17E-02
1/8 2.60E-03 2.30 1.71E-04 3.79 1.97E-05 5.02 3.39E-06 6.05 6.39E-07 7.08
1/32 1.60E-04 2.01 2.50E-06 3.05 7.09E-08 4.06 3.00E-09 5.07 1.39E-10 6.08
1/128 9.99E-06 2.00 3.89E-08 3.00 2.76E-10 4.00 2.91E-12 5.00 3.38E-14 6.01
1/512 6.24E-07 2.00 6.07E-10 3.00 1.08E-12 4.00 2.84E-15 5.00 8.24E-18 6.00

g(2)

ε P1 error order P2 error order P3 error order P4 error order P5 error order
1/2 4.39E-02 1.59E-02 6.63E-03 3.44E-03 2.21E-03
1/8 2.41E-03 2.09 1.76E-04 3.25 1.88E-05 4.23 2.27E-06 5.28 2.90E-07 6.45
1/32 1.49E-04 2.01 2.65E-06 3.03 7.04E-08 4.03 2.11E-09 5.04 6.64E-11 6.05
1/128 9.31E-06 2.00 4.14E-08 3.00 2.74E-10 4.00 2.05E-12 5.00 1.62E-14 6.00
1/512 5.82E-07 2.00 6.46E-10 3.00 1.07E-12 4.00 2.00E-15 5.00 3.94E-18 6.00

g(3)

ε P1 error order P2 error order P3 error order P4 error order P5 error order
1/2 5.78E-02 1.24E-02 2.37E-03 3.94E-04 5.79E-05
1/8 3.51E-03 2.02 2.14E-04 2.93 1.35E-05 3.73 8.50E-07 4.43 5.34E-08 5.04
1/32 2.18E-04 2.00 3.31E-06 3.01 5.21E-08 4.01 8.18E-10 5.01 1.28E-11 6.01
1/128 1.36E-05 2.00 5.17E-08 3.00 2.03E-10 4.00 7.98E-13 5.00 3.13E-15 6.00
1/512 8.50E-07 2.00 8.07E-10 3.00 7.94E-13 4.00 7.80E-16 5.00 7.64E-19 6.00

Table 1: Errors and convergence rates for the PN solutions in Example 4.1. According to Theorem 1.2, the
theoretical order of convergence is N + 1.

g(1)

ε fN0 order fN1 order fN2 order fN3 order fN4 order
1/2 2.16E+00 1.43E-01 3.84E-02 1.48E-02 1.35E-02
1/8 2.16E+00 0.00 3.32E-02 1.06 2.19E-03 2.07 1.62E-04 3.25 1.96E-05 4.72
1/32 2.16E+00 0.00 8.25E-03 1.00 1.36E-04 2.01 2.49E-06 3.01 7.09E-08 4.05
1/128 2.16E+00 0.00 2.06E-03 1.00 8.48E-06 2.00 3.89E-08 3.00 2.76E-10 4.00
1/512 2.16E+00 0.00 5.16E-04 1.00 5.30E-07 2.00 6.07E-10 3.00 1.08E-12 4.00

g(2)

ε fN0 order fN1 order fN2 order fN3 order fN4 order
1/2 1.91E+00 1.21E-01 3.65E-02 1.28E-02 5.90E-03
1/8 1.90E+00 0.00 2.73E-02 1.07 1.99E-03 2.10 1.73E-04 3.10 1.88E-05 4.15
1/32 1.90E+00 0.00 6.78E-03 1.00 1.23E-04 2.01 2.65E-06 3.01 7.04E-08 4.03
1/128 1.90E+00 0.00 1.69E-03 1.00 7.69E-06 2.00 4.14E-08 3.00 2.74E-10 4.00
1/512 1.90E+00 0.00 4.23E-04 1.00 4.81E-07 2.00 6.46E-10 3.00 1.07E-12 4.00

g(3)

ε fN0 order fN1 order fN2 order fN3 order fN4 order
1/2 1.61E+00 2.24E-01 5.50E-02 1.20E-02 2.36E-03
1/8 1.59E+00 0.01 5.20E-02 1.05 3.36E-03 2.02 2.13E-04 2.91 1.35E-05 3.72
1/32 1.59E+00 0.00 1.29E-02 1.00 2.09E-04 2.00 3.31E-06 3.01 5.21E-08 4.01
1/128 1.59E+00 0.00 3.23E-03 1.00 1.30E-05 2.00 5.17E-08 3.00 2.03E-10 4.00
1/512 1.59E+00 0.00 8.08E-04 1.00 8.15E-07 2.00 8.07E-10 3.00 7.94E-13 4.00

Table 2: Convergence rates of the coefficients fN` for the P4 solution in Example 4.1. According to Lemma
3.2, the theoretical order of convergence is `.
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g(1)

ε fN0 order fN1 order fN2 order fN3 order fN4 order fN5 order
1/2 2.16E+00 1.43E-01 3.80E-02 1.54E-02 1.00E-02 8.71E-03
1/8 2.16E+00 0.00 3.32E-02 1.06 2.19E-03 2.06 1.62E-04 3.28 1.90E-05 4.52 3.39E-06 5.66
1/32 2.16E+00 0.00 8.25E-03 1.00 1.36E-04 2.01 2.49E-06 3.01 7.08E-08 4.03 3.00E-09 5.07
1/128 2.16E+00 0.00 2.06E-03 1.00 8.48E-06 2.00 3.89E-08 3.00 2.76E-10 4.00 2.91E-12 5.00
1/512 2.16E+00 0.00 5.16E-04 1.00 5.30E-07 2.00 6.07E-10 3.00 1.08E-12 4.00 2.84E-15 5.00

g(2)

ε fN0 order fN1 order fN2 order fN3 order fN4 order fN5 order
1/2 1.91E+00 1.21E-01 3.65E-02 1.30E-02 4.91E-03 2.85E-03
1/8 1.90E+00 0.00 2.73E-02 1.07 1.99E-03 2.10 1.73E-04 3.11 1.85E-05 4.02 2.27E-06 5.15
1/32 1.90E+00 0.00 6.78E-03 1.00 1.23E-04 2.01 2.65E-06 3.01 7.03E-08 4.02 2.11E-09 5.04
1/128 1.90E+00 0.00 1.69E-03 1.00 7.69E-06 2.00 4.14E-08 3.00 2.74E-10 4.00 2.05E-12 5.00
1/512 1.90E+00 0.00 4.23E-04 1.00 4.81E-07 2.00 6.46E-10 3.00 1.07E-12 4.00 2.00E-15 5.00

g(3)

ε fN0 order fN1 order fN2 order fN3 order fN4 order fN5 order
1/2 1.61E+00 2.24E-01 5.50E-02 1.20E-02 2.30E-03 3.93E-04
1/8 1.59E+00 0.01 5.20E-02 1.05 3.36E-03 2.02 2.13E-04 2.91 1.35E-05 3.71 8.50E-07 4.43
1/32 1.59E+00 0.00 1.29E-02 1.00 2.09E-04 2.00 3.31E-06 3.01 5.21E-08 4.01 8.18E-10 5.01
1/128 1.59E+00 0.00 3.23E-03 1.00 1.30E-05 2.00 5.17E-08 3.00 2.03E-10 4.00 7.98E-13 5.00
1/512 1.59E+00 0.00 8.08E-04 1.00 8.15E-07 2.00 8.07E-10 3.00 7.94E-13 4.00 7.80E-16 5.00

Table 3: Convergence rates of the coefficients fN` for the P5 solution in Example 4.1. According to Lemma
3.2, the theoretical order of convergence is `.

g(1)

ε ξ0 order ξ1 order ξ2 order ξ3 order ξ4 order
1/2 5.93E-03 3.62E-03 4.78E-03 4.71E-03 5.87E-03
1/8 6.71E-08 8.22 1.35E-08 9.02 2.62E-08 8.74 1.18E-07 7.64 6.17E-07 6.61
1/32 9.34E-13 8.07 4.45E-14 9.11 3.20E-13 8.16 6.59E-12 7.06 1.39E-10 6.06
1/128 1.42E-17 8.00 1.68E-19 9.01 4.81E-18 8.01 4.00E-16 7.00 3.38E-14 6.00
1/512 2.16E-22 8.00 6.42E-25 9.00 7.33E-23 8.00 2.44E-20 7.00 8.25E-18 6.00

g(2)

ε ξ0 order ξ1 order ξ2 order ξ3 order ξ4 order
1/2 8.37E-04 4.47E-04 7.31E-04 8.59E-04 1.35E-03
1/8 2.28E-08 7.58 5.15E-09 8.20 7.69E-09 8.27 3.89E-08 7.21 2.85E-07 6.11
1/32 3.01E-13 8.10 1.71E-14 9.10 8.96E-14 8.19 2.25E-12 7.04 6.65E-11 6.03
1/128 4.55E-18 8.01 6.46E-20 9.01 1.35E-18 8.01 1.37E-16 7.00 1.62E-14 6.00
1/512 6.94E-23 8.00 2.46E-25 9.00 2.05E-23 8.00 8.34E-21 7.00 3.95E-18 6.00

g(3)

ε ξ0 order ξ1 order ξ2 order ξ3 order ξ4 order
1/2 1.62E-08 9.57E-08 8.87E-07 7.49E-06 5.70E-05
1/8 5.52E-11 4.10 9.91E-12 6.62 2.13E-10 6.01 3.36E-09 5.56 5.32E-08 5.03
1/32 9.48E-16 7.91 3.47E-17 9.06 3.21E-15 8.01 2.02E-13 7.01 1.28E-11 6.01
1/128 1.46E-20 8.00 1.32E-22 9.00 4.89E-20 8.00 1.23E-17 7.00 3.13E-15 6.00
1/512 2.22E-25 8.00 5.02E-28 9.00 7.46E-25 8.00 7.53E-22 7.00 7.65E-19 6.00

Table 4: Convergence rates of the error ξ` in the coefficients fN` for the P4 solution in Example 4.1. According
to (1.10) in Theorem 1.2, the theoretical order of convergence is 2N = 8 for fN0 and 2N + 2− ` = 10− ` for
fN` , ` = 1, . . . , 4.
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g(1)

ε ξ0 order ξ1 order ξ2 order ξ3 order ξ4 order ξ5 order
1/2 4.06E-03 2.96E-03 3.32E-03 3.28E-03 3.62E-03 4.55E-03
1/8 4.02E-09 9.97 1.13E-09 10.66 1.23E-09 10.68 4.42E-09 9.75 2.27E-08 8.64 1.18E-07 7.62
1/32 3.13E-15 10.15 2.10E-16 11.18 7.85E-16 10.29 1.52E-14 9.08 3.12E-13 8.07 6.56E-12 7.07
1/128 2.95E-21 10.01 4.93E-23 11.01 7.31E-22 10.02 5.75E-20 9.01 4.74E-18 8.00 3.98E-16 7.00
1/512 2.81E-27 10.00 1.17E-29 11.00 6.96E-28 10.00 2.19E-25 9.00 7.22E-23 8.00 2.43E-20 7.00

g(2)

ε ξ0 order ξ1 order ξ2 order ξ3 order ξ4 order ξ5 order
1/2 5.07E-04 2.72E-04 4.34E-04 4.69E-04 5.59E-04 8.59E-04
1/8 1.42E-09 9.22 3.26E-10 9.84 4.12E-10 10.00 1.27E-09 9.25 6.31E-09 8.22 3.89E-08 7.22
1/32 1.15E-15 10.12 6.76E-17 11.10 2.54E-16 10.32 4.28E-15 9.09 8.73E-14 8.07 2.23E-12 7.04
1/128 1.09E-21 10.01 1.60E-23 11.01 2.35E-22 10.02 1.62E-20 9.01 1.32E-18 8.00 1.36E-16 7.00
1/512 1.03E-27 10.00 3.80E-30 11.00 2.24E-28 10.00 6.17E-26 9.00 2.02E-23 8.00 8.29E-21 7.00

g(3)

ε ξ0 order ξ1 order ξ2 order ξ3 order ξ4 order ξ5 order
1/2 1.09E-10 8.15E-10 9.02E-09 9.28E-08 8.74E-07 7.45E-06
1/8 2.10E-13 4.51 3.97E-14 7.16 8.41E-13 6.69 1.32E-11 6.39 2.10E-10 6.01 3.34E-09 5.56
1/32 2.33E-19 9.89 8.53E-21 11.07 7.89E-19 10.01 4.98E-17 9.01 3.16E-15 8.01 2.01E-13 7.01
1/128 2.24E-25 9.99 2.02E-27 11.00 7.51E-25 10.00 1.90E-22 9.00 4.82E-20 8.00 1.23E-17 7.00
1/512 2.14E-31 10.00 4.82E-34 11.00 7.16E-31 10.00 7.23E-28 9.00 7.35E-25 8.00 7.49E-22 7.00

Table 5: Convergence rates of the error ξ` in the coefficients fN` for the P5 solution in Example 4.1. According
to (1.10) in Theorem 1.2, the theoretical order of convergence is 2N = 10 for fN0 and 2N + 2 − ` = 12 − `
for fN` , ` = 1, . . . , 5.

where q is related to the regularity of f . Thus the gain realized by increasing N to N + 1 is not expected to
be large, especially when q is small. On the other hand, the estimate in (1.9) of Theorem 1.2 suggests that
by increasing N , we gain an additional factor of ε in the error estimate; that is,

‖eN+1‖
‖eN‖

∼ ε. (5.2)

Similarly, (1.10) of Theorem 1.2 suggests that we gain an additional factor of ε2 in the error estimate for
eN` := ξ` = f` − fN` ; that is

‖eN+1
` ‖
‖eN` ‖

∼ ε2. (5.3)

However, the statements in (5.2) and (5.3) are misleading since, unlike the spectral estimate in (1.7),
the ε-dependent estimates in (1.9) and (1.10) include coefficients that depend on N and `. We begin by
exploring this question numerically.

5.1 Numerical experiments

Example 5.1. We return to Example 4.1 from Section 4 with initial condition g(2). We again use the P65

solution as a reference. We compute PN solutions with ε = 2 · 4−m, m = 1, . . . , 5, and values of N up to 40,
which in practice is quite large. We examine the solutions at times t = 0.1, 1, 10.

As before the spatial discretization is a Fourier-Galerkin method that uses fast Fourier transforms (FFT)
for implementation. For most cases, the spatial grid has 100 points. However, for smaller t or larger ε,
gradients in x become larger; in such cases, more points are needed to ensure that the spacial discretization
error can be neglected. Specifically, for t = 0.1 and ε = 1/8, 1000 points are used; for t = 0.1 and ε = 1/2,
2500 points are used; for t = 1 and ε = 1/2, 1000 points are used.

In Figure 1, the ratio in (5.2) (normalized by ε) is plotted as a function of N . In Figures 2–4, the ratio
in (5.3) (normalized by ε2) is plotted for ` = 0, 1, 2. We observe the following trends:
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Figure 1: Results from Example 5.1. Top figures: ‖eN‖. Bottom figures: ‖e
N+1‖
‖eN‖ε .

1) Larger values of t lead to smaller error ratios. Numerically, we find that for 1 ≤ N ≤ 40,

‖eN+1‖
‖eN‖

≤ G1(N, t)ε, where G1(N, t) ≤


13, t = 0.1,

4.5, t = 1,

1.1, t = 10,

(5.4)

and for 1 ≤ N ≤ 40 and 0 ≤ ` ≤ 2,

‖eN+1
` ‖
‖eN` ‖

≤ G2(N, t)ε2, where G2(N, t) ≤


400, t = 0.1,

50, t = 1,

20, t = 10.

(5.5)

2) For fixed t, the solution profiles of the normalized error ratios appear to convergence at ε decreases.

3) As N varies, the solution profiles of the normalized error ratios exhibit plateaus with sharp transitions
in between. We do not yet understand the origin of this behavior.

Example 5.2. We repeat the previous test, this time using the initial condition g(3) from Example 4.1.
Because g(3) is smooth, 20 grid points are sufficient to ensure that the spatial error in the Fourier-Galerkin
discretization is negligible. For large values of N , the errors are so small that 300 digits are used.

In Figure 5, the ratio in (5.2) (normalized by ε) is plotted as a function of N . In Figures 6–8, the ratio
in (5.3) (normalized by ε2) is plotted for ` = 0, 1, 2 as a function of N . As in the previous example, profiles
of the normalized error ratios appear to convergence at ε decreases. However, unlike the previous example,
the ratios do not appear to decay significantly as time increases. Indeed, they are already less than one for
t = 0.1. Numerically, we see that eN+1 ≤ 0.5εeN and eN+1

` ≤ 0.25ε2eN` (` = 0, 1, 2) for all three tested value
of t. Also, we do not observe the plateaus and transitions seen in the previous example.
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Figure 2: Results from Example 5.1. Top figures: ‖eN0 ‖. Bottom figures:
‖eN+1

0 ‖
‖eN0 ‖ε2
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Figure 3: Results from Example 5.1. Top figures: ‖eN1 ‖. Bottom figures:
‖eN+1

1 ‖
‖eN1 ‖ε2

.
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Figure 4: Results from Example 5.1. Top figures: ‖eN2 ‖. Bottom figures:
‖eN+1

2 ‖
‖eN2 ‖ε2

.

5 10 15 20 25 30 35 40

N

10
-100

10
-50

ǫ = 1/2

ǫ = 1/8

ǫ = 1/32

ǫ = 1/128

ǫ = 1/512

(a) t = 0.1, g(3)

5 10 15 20 25 30 35 40

N

10
-100

10
-50

ǫ = 1/2

ǫ = 1/8

ǫ = 1/32

ǫ = 1/128

ǫ = 1/512

(b) t = 1, g(3)

5 10 15 20 25 30 35 40

N

10
-100

10
-50

ǫ = 1/2

ǫ = 1/8

ǫ = 1/32

ǫ = 1/128

ǫ = 1/512

(c) t = 10, g(3)

5 10 15 20 25 30 35

N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d) t = 0.1, g(3)

5 10 15 20 25 30 35

N

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(e) t = 1, g(3)

5 10 15 20 25 30 35

N

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(f) t = 10, g(3)

Figure 5: Results from Example 5.1. Top figures: ‖eN‖. Bottom figures: ‖e
N+1‖
‖eN‖ε .
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Figure 6: Results from Example 5.1. Top figures: ‖eN0 ‖. Bottom figures:
‖eN+1

0 ‖
‖eN0 ‖ε2
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Figure 7: Results from Example 5.1. Top figures: ‖eN1 ‖. Bottom figures:
‖eN+1

1 ‖
‖eN1 ‖ε2

.
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Figure 8: Results from Example 5.1. Top figures: ‖eN2 ‖. Bottom figures:
‖eN+1

2 ‖
‖eN2 ‖ε2

.

5.2 Quantifying coefficients in the error estimates

The manner in which the estimates in (1.9) and (1.10) depend on N and ` can ultimately be traced back
to the coefficient F (g, n, t), defined in (3.18). Indeed the results in (3.17), (3.28), (3.39), (3.73) and (3.74)
all depend on F (g, n, t) for some value of n: in (3.17), n = `; in (3.28), n = N + 1; in (3.39), n = N + 2;
in (3.73), n = 3N , and in (3.74), n = 3N + 4 − 2`. The dependence of F (g, n, t) on n arises via the term
an(2λ2t), where (recall that) λ2 = 4/45 and

an(s) :=
∑
k>0

{
(Ak)2ne−k

2s
}
. (5.6)

For example, according to (1.9) and (3.79), after an initial layer,

‖eN‖(t) ≤ c̃(t)
√
aN+2(2λ2t) ε

N+1, where c̃(t) = 2

(√
2 +

√
t

A

)(
24 max

k>0
H0
k(g)

)1/2

. (5.7)

Similarly, it follows from (1.10), (3.75), and (3.18) that after an initial layer,

‖eN` ‖(t) ≤ d̃
(
N − n` + 2

eA2λ2

)N−n`+2

2 √
a3N+4−2n`(λ2t) ε

2N+2−n` , (5.8)

where

n` =

{
2, ` = 0

`, 1 ≤ ` ≤ N,
and d̃ = 8

(
6 eλ2 max

k>0
H0
k(g)

)1/2

. (5.9)

By interpreting the right-hand side of (5.6) as a Riemann sum, we bound an as follows:

an(s) ≤ A2n

(
e−s +

∫ ∞
1

(x+ 1)2ne−sx
2

dx

)
≤ A2n

(
e−s +

∫ ∞
1

(2x)2ne−sx
2

dx

)
≤ (2A)2n

(
e−s +

∫ ∞
1

x2n+1e−sx
2

dx

)
= (2A)2n

(
e−s +

1

2
e−sbn(s)

)
, (5.10)
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where

bn(s) =

n∑
k=0

(
1

s

)k+1
n!

(n− k)!
, n ≥ 0. (5.11)

Setting (5.10) into (5.7) gives

‖eN‖(t) ≤ c̃(t)(2A)N+2e−λ2t

(
1

2
bN+2(2λ2t) + 1

)1/2

εN+1 =: EN (t), (5.12)

and setting (5.10) into (5.8) gives

‖eN` ‖(t) ≤ d̃
(
N − n` + 2

eA2λ2

)N−n`+2

2

(2A)3N+4−2n`e−λ2t/2

(
1

2
b3N+4−2n`(λ2t) + 1

)1/2

ε2N+2−n` =: EN` (t).

(5.13)

Thus, the error-bound ratios

EN+1(t)

EN (t)
= 2A

(
bN+3(2λ2t) + 2

bN+2(2λ2t) + 2

)1/2

ε (5.14)

and

EN+1
` (t)

EN` (t)
=

(
N − n` + 3

eA2λ22

)1/2(
1 +

1

N − n` + 2

)N−n`+2

2

(2A)3
(
b3N+7−2n`(λ2t) + 2

b3N+4−2n`(λ2t) + 2

)1/2

ε2

≤ 8A2

(
N − n` + 3

λ22

)1/2(
b3N+7−2n`(λ2t) + 2

b3N+4−2n`(λ2t) + 2

)1/2

ε2 (5.15)

can be used to quantity how much the estimates of ‖eN‖ and ‖eN` ‖ improve as N increases.
It is easy to verify that bn satisfies the following recurrence formula:

b0(s) =
1

s
and bn+1(s) =

n+ 1

s
bn(s) +

1

s
, for n ≥ 0. (5.16)

Hence, for any n ≥ 1,(
bn+1(s) + 2

bn(s) + 2

)
=

( n+1
s bn(s) + 1

s + 2

bn(s) + 2

)
=
n+ 1

s

(
bn(s) + 1

n+1

bn(s) + 2

)
+

(
2

bn(s) + 2

)
≤ n+ 1

s
+ 1. (5.17)

When applied to (5.14), (5.17) with n = N + 2 implies that

EN+1(t)

EN (t)
≤ 2A

(
N + 3

2λ2t
+ 1

)1/2

ε. (5.18)

This dependence on t suggests that the normalized true-error ratio ‖eN+1‖/(ε‖eN‖) decreases as t increases,
as observed in Example 5.1. Similarly, using (5.17) in (5.15) with n = 3N + 4− 2n`, . . . , 3N + 6− 2n` gives

EN+1
` (t)

EN` (t)
≤ 8A2

(
N − n` + 3

λ22

)1/2(
3N + 5− 2n`

λ2t
+ 1

)1/2(
3N + 6− 2n`

λ2t
+ 1

)1/2(
3N + 7− 2n`

λ2t
+ 1

)1/2

ε2

≤ 8A2

(
N − n` + 3

λ22

)1/2(
3N + 7− 2n`

λ2t
+ 1

)3/2

ε2, (5.19)

This also suggests that the normalized true-error ratio ‖eN+1
` ‖/(ε2‖eN` ‖) decreases as t increases, as observed

for the first three moments in Example 5.1. However, in both cases, t needs to be sufficiently large in order
for these ratios to be small. In particular, any increase in the coefficient λ2 = 4/45 will yield better bounds
for EN+1/EN and EN+1

` /EN` . The numerical results in the following and final example suggest that this
value of λ2, which is established in Lemma 3.1, is probably not optimal.
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Figure 9: Results from Example 5.3 for different values of s. The orange curves are an+1/an vs. n. The
blue dashed curves are of (n+ 1)/s.

Example 5.3. We investigate the ratio an+1/an numerically using the finite sum

aKn (s) =
∑

0<k≤K

{
(Ak)2ne−k

2s
}
. (5.20)

Numerical test suggest that aKn converges as K →∞ and that K = 1000 is sufficient to capture the behavior
of the infinite sum in (5.6), and therefore use an ≈ a1000n in the remainder of the computation. We compute
an(s) for n = 1, . . . , 120 and different values s. We then plot the ratios an+1/an in Figure 9 and make the
following observations:

1) It appears from the plots in Figure 9 that

an+1(s)

an(s)
∼ n+ 1

s
. (5.21)

This approximation is consistent with the theoretical bound in (5.17) for large n, and the profiles of
the two ratios match quite well.

2) Recall again from Lemma 3.1 that λ2 = 4/45. Thus if we set s = s(t) = 2λ2t, the first values
of s = 8/450, 8/45, 80/45 in Figure 9(a)-(c) correspond to the values t = 0.1, 1, 10 that are used
in Examples 5.1 and 5.2. As s increases (9(d)-(f)), we begin to see plateaus connected by sharp
transitions. This behavior is most notable in Figures 9(d)–9(f), and it is reminiscent of the profiles of
the normalized error ratios from Example 5.1 (cf. plots (e) and (f) of Figures 1–4), albeit at smaller
values of t. Currently, we do not have any explanation for these jumps or their locations. However, the
fact that this behavior emerges for larger values of s suggests that it may be possible to prove Lemma
3.1 with a larger value of λ2.

6 Conclusion

In this paper, we give error estimates, in terms of a multiscale parameter ε, for the spectral approximation in
the velocity variable of an idealized kinetic model. This approximation yields a linear, symmetric hyperbolic
system of partial differential equations for the expansion coefficients, which are functions of x and t. Under the
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assumption that the initial data g is isotropic, with g ∈ L2(dµdx) and ∂xg ∈ L2(dµdx), we prove that the error
in the spectral approximation with N modes is O(εN+1). In additional, we prove super-convergent results for
the expansion coefficients. We also provide numerical results that support the theoretical estimates. These
results exhibit the predicted order of convergence even when ∂xg /∈ L2(dµdx). Thus it remains open whether
this condition is necessary for our result.

The coefficients of the error estimates are independent of ε but not N . Thus, in an effort to demonstrate
the practical benefit when increasing N , we investigate these coefficients both theoretically and numerically.
In particular, we find that the ratio of successive error bounds in N is itself bounded above by the product
εαN (t), where

αN (t) ≤ 2A

(
N + 3

2λ2t
+ 1

)1/2

, (6.1)

with λ2 = 4/45 and A = A(λ2) ' 1.2. Meanwhile, the ratio in the error estimate for the moments is bounded
above by the product ε2βN,`(t), where

βN,`(t) = 8A2

(
N − n` + 3

λ22

)1/2(
3N + 7− 2n`

λ2t
+ 1

)3/2

. (6.2)

Thus for reasonable (but not too large) values of N and t sufficiently large, our estimate of the spectral error
improves significantly as N is increased. In our analysis, we are able to prove our theoretical results with
λ2 = 4/45. However, numerical results suggest that a larger value of λ2 is possible and demonstrate that
the theoretical benefit of having a larger value is significant.

In the future we intend to establish the theoretical results of this paper with a larger value of λ2. In
addition, we will explore the ε-dependent behavior of the error under more general initial conditions such as
anisotropic initial conditions, real boundary conditions, non-zero absorption and sources, spatially dependent
scattering, and higher-dimensional problems. We also hope to investigate alternative angular discretizations
and nonlinear systems.

A Spectral Error Estimate

The purpose of the section is to show that, with sufficient regularity on the initital condition g, the standard
estimate (1.7) holds with a constant C that is independent of ε ∈ [0, 1].

Definition A.1. Let r, q, s, and S be non-negative integers. For any u ∈ L2(dµdx), define the shorthand
u(r,q) = ∂rx∂

q
µu and the semi-norm |u|r,q = ‖u(r,q)‖L2(dµdx). Then define the space

V s(dµdx) =

{
u ∈ L2(dµdx) :

s∑
q=0

|u|s−q,q <∞

}
(A.1)

with the associated semi-norm | · |V s(dµdx) =
s∑
q=0
| · |s−q,q. Finally, let

HS(dµdx) =

{
u ∈ L2(dµdx) :

S∑
s=0

| · |V s(dµdx) <∞

}
(A.2)

be the usual Sobolev space with norm ‖ · ‖HS =
∑S
s=0 | · |V s(dµdx).

Lemma A.2. Let f solve (1.1) with initial condition g ∈ V s(dµdx) for some positive integer s. Then
f ∈ C([0,∞);V s(dµdx)) with

|f |s−q,q(t) ≤ (q + 1)! |g|V s(dµdx) (A.3)

for all integers q ∈ [0, s] and t ≥ 0.
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Proof. Given h ∈ C([0,∞);L2(dµdx)) and v ∈ L2(dµdx), the equation ∂tu(x, µ, t) +
1

ε
µ∂xu(x, µ, t) +

1

ε2
u(x, µ, t) = h(x, µ, t), (x, µ, t) ∈ [−π, π)× [−1, 1]× (0,∞), (A.4a)

u(x, µ, 0) = v(x, µ), (x, µ) ∈ [−π, π)× [−1, 1], (A.4b)

has a mild solution (see, for example, [29, p.402]) u ∈ C([0,∞);L2(dµdx)), given by

u(x, µ, t) = e−
t
ε2 v(x− 1

ε
µt, µ) +

∫ t

0

e−
t−τ
ε2 h(x− 1

ε
µ(t− τ), µ, τ) dτ. (A.5)

where the argument x− ε−1µt is understood with respect to the periodicity of the spatial domain. Applying
the triangle equality to (A.5) gives, for each t ≥ 0,

||u||L2(dµdx)(t) ≤ e−
t
ε2 ||v||L2(dµdx) +

∫ t

0

e−
t−τ
ε2 ||h||L2(dµdx)(τ) dτ

≤ e−
t
ε2 ||v||L2(dµdx) + ε2(1− e−

t
ε2 ) max

τ∈[0,t]
||h||L2(dµdx)(τ). (A.6)

We now proceed by induction on q. If q = 0, then differentiation of (1.1a) in x gives

ε∂tf
(r,0) + µ∂xf

(r,0) +
1

ε
f (r,0) =

1

ε
f (r,0) (A.7)

for any integer r ≥ 0. Hence u = f (s,0) satisfies (A.4) with source h = 1
ε2 f

(s,0) ∈ C([0,∞);L2(dµdx)) and

initial condition v = g(s,0) ∈ L2(dµdx). Thus (A.6) gives

|f |s,0(t) ≤ e−
t
ε2 |g|s,0 + (1− e−

t
ε2 ) max

τ∈[0,t]
||f (s,0)||L2(dµdx)(τ)

≤ e−
t
ε2 |g|V s(dµdx) + (1− e−

t
ε2 ) max

τ∈[0,t]
|f |s,0(τ), (A.8)

Let t∗ ∈ [0, t] be such that |f |s,0(t∗) = max
τ∈[0,t]

|f |s,0(τ). Then |f |s,0(t∗) = max
τ∈[0,t∗]

|f |s,0(τ) so that, according

to (A.8),

|f |s,0(t∗) ≤ e−
t∗
ε2 |g|V s(dµdx) + (1− e−

t∗
ε2 )|f |s,0(t∗). (A.9)

Therefore
|f |s,0(t) ≤ |f |s,0(t∗) ≤ |g|V s(dµdx), (A.10)

which verifies (A.3).
Next assume that (A.3) holds for q = q0, with 0 ≤ q0 < s. Differentiation of (1.1a) in x and µ gives

ε∂tf
(r,q0+1) + µ∂xf

(r,q0+1) +
1

ε
f (r,q0+1) = −(q0 + 1)f (r+1,q0) (A.11)

for any r ≥ 0. Therefore u = f (s−(q0+1),q0+1) satisfies (A.4) with the source h = − q0+1
ε f (s−q0,q0) ∈

C([0,∞);L2(dµdx)) and initial condition v = g(s−(q0+1),q0+1) ∈ L2(dµdx). Thus (A.6) gives

|f |s−(q0+1),q0+1(t) ≤ e−
t
ε2 |g|s−(q0+1),q0+1 + ε(1− e−

t
ε2 )(q0 + 1) max

τ≥0
|f |s−q0,q0(τ)

≤ |g|V s(dµdx) + ε(q0 + 1)(q0 + 1)! |g|V s(dµdx)
≤ (q0 + 2)! |g|V s(dµdx). (A.12)

Remark A.3. For sufficiently small ε, the bound

|f |s−q,q(t) ≤

(
q∏
i=0

(1 + iε)

)
|g|V s(dµdx) (A.13)

provides a sharper estimate than (A.3). The proof of this alternative bound uses the same arguments.
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Theorem A.4. Suppose that g ∈ H1+q(dµdx) for some integer q > 0. Then there exists a constant
C = C(g, q), such that

‖f − fN‖L2(dµdx)(t) ≤ C(1 + t1/2)N−q, ∀t ≥ 0. (A.14)

Proof. We begin by estimating ξ = Pf − fN in terms of η. A direct calculation using (1.1) and (1.5) shows
that

∂tξ +
1

ε
P (µ∂xξ) +

1

ε2
(ξ − ξ̄) = −1

ε
P (µ∂xη) , (A.15)

which is equivalent to the system (2.9). Integrating (A.15) against ξ on the left gives

1

2
∂t‖ξ‖2L2(dµdx) +

1

ε2
‖ξ̃‖2L2(dµdx) = −1

ε

∫∫
ξ P (µ∂xη) dµdx

= −1

ε

∫∫
ξ µ∂xη dµdx

= −1

ε

∫∫
ξ̄ µ∂xη dµdx−

1

ε

∫∫
ξ̃ µ∂xη dµdx, (A.16)

where ξ̃ = ξ − ξ̄. For N ≥ 1, µ and η are orthogonal; hence the first term in the last line of (A.16) is zero.
Meanwhile Young’s inequality yields a bound on the second term:

−1

ε

∫∫
ξ̃ µ∂xη dµdx ≤

1

2ε2
‖ξ̃‖2L2(dµdx) +

1

2
‖µ∂xη‖2L2(dµdx). (A.17)

Hence, (A.16) reduces to

∂t‖ξ‖2L2(dµdx) +
1

ε2
‖ξ̃‖2L2(dµdx) ≤ ‖µ∂xη‖

2
L2(dµdx), (A.18)

and therefore,
∂t‖ξ‖2L2(dµdx) ≤ ‖µ∂xη‖

2
L2(dµdx). (A.19)

Since ξ|t=0 = 0, integrating (A.19) in time gives

‖ξ‖2L2(dµdx)(t) ≤ t sup
τ≥0

{
‖µ∂xη‖2L2(dµdx)(τ)

}
≤ t sup

τ≥0

{
‖∂xη‖2L2(dµdx)(τ)

}
(A.20)

Thus it remains only to bound ‖∂xη‖L2(dµdx).
We now turn to polynomial approximation theory: given a function ψ ∈ Hq(dµ), where Hq(dµ) is

the Sobolev space of functions with q weak derivatives in L2(dµ), there exists a constant K1 > 0 such
that [3, Lemma 2.2]

‖ψ − Pψ‖L2(dµ) ≤ K1‖ψ‖Hq(dµ)N−q. (A.21)

We apply this result to ∂xη = ∂xf − P∂xf , using also Lemma A.2, to find that

‖∂xη‖L2(dµdx)(τ) ≤ K1‖∂xf‖L2(dx;Hq(dµ))(τ)N−q

= K1

 ∑
0≤r≤q

|f |1,r(τ)

 N−q

≤ K1

∑
0≤r≤q

(r + 1)! |g|V 1+r(dµdx)N
−q

≤ K1(q + 1)! ‖g‖H1+q(dµdx)N
−q. (A.22)

This bound is independent of t. Thus combining (A.20) and (A.22) gives

‖ξ‖L2(dµdx)(t) ≤ K1(q + 1)! t1/2‖g‖H1+q(dµdx)N
−q. (A.23)

To complete the proof, we estimate η = f − Pf using (A.21) and Lemma A.2,

‖η‖L2(dµdx)(t) ≤ K1‖f‖L2(dx;Hq(dµ))(t)N
−q ≤ K1(q + 1)! ‖g‖Hq(dµdx)N−q, ∀t ≥ 0. (A.24)

Combining (A.23) and (A.24) recovers (A.14) with C = K1(q + 1)! ‖g‖H1+q(dµdx).
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