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Abstract. We propose a positive-preserving moment closure for linear kinetic transport equa-
tions based on a filtered spherical harmonic (FPN ) expansion in the angular variable. The recently
proposed FPN moment equations are known to suffer from the occurrence of (unphysical) negative
particle concentrations. The origin of this problem is that the FPN approximation is not always
positive at the kinetic level; the new FP+

N
closure is developed to address this issue. A new spherical

harmonic expansion is computed via the solution of an optimization problem, with constraints that
enforce positivity, but only on a finite set of pre-selected points. Combined with an appropriate PDE
solver for the moment equations, this ensures positivity of the particle concentration at each step in
the time integration. Under an additional, mild regularity assumption, we prove that as the moment
order tends to infinity, the FP+

N
approximation converges, in the L2 sense, at the same rate as the

FPN approximation; numerical tests suggest that this assumption may not be necessary.

For purposes of comparison, we also consider a positive-preserving UDN closure that is based
on the uniform damping of coefficients in the FPN approximation. While simple and less expensive
to implement, the UDN approximation does not converge as fast as the FPN approximation for
problems with limited regularity. We simulate the challenging line source benchmark problem with
moment equations using several different choices of closure. The line source results indicate that,
when compared to the UDN closure, the accuracy of the FP+

N
closure makes up for the overhead

incurred by the optimization problem. In addition, we observe that for a regularized version of the
line source problem, the UDN closure causes severe degradation in the space-time convergence of the
PDE solver, while the FP+

N
closure does not.

1. Introduction. Kinetic transport equations are used to model particle-based1

systems in various areas including rarefied gases [8,9], radiative transport [12,31,40],2

and semiconductors [33]. These equations govern the evolution of a positive scalar3

function, the kinetic distribution, that depends on position, momentum, and time. In4

typical settings, the position-momentum phase space is six-dimensional. This makes5

the numerical simulation of these equations difficult.6

Moment methods are commonly used to approximate the solution of kinetic equa-7

tions. These methods track a finite number of moments (or weighted averages) of the8

kinetic distribution with respect to the momentum variable. Equations to describe the9

evolution of these moments are derived directly from the kinetic equation. However,10

for any finite number of moments, the exact moment equations are not closed, i.e.,11

they require additional information about the kinetic distribution that is lost when12
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retaining only a finite number of moments. Hence a moment closure is needed to fill13

in the missing kinetic information and close the system of equations.14

In this paper, we consider linear kinetic equations with a momentum variable that15

specifies the direction of particle travel by an angle on the unit sphere. In this setting,16

the most common moment closure method is the spherical harmonic approximation,17

or PN method [7,31]. This method is equivalent to a standard spectral discretization18

of the kinetic equation with respect to the momentum variable. The finite expansion of19

the kinetic distribution in spherical harmonics provides the necessary closure, and the20

coefficients of the expansion are related to the tracked moments via a linear mapping.21

Although computationally fast, the PN method suffers from several well-known22

drawbacks. Like most spectral methods, it may produce highly oscillatory solutions23

that can lead to local negative values in the particle concentration.1 Several mo-24

ment closures have been proposed to address these issues. The MN [5, 14, 22, 37] and25

PPN [18, 23] closures were proposed to maintain the positivity of solutions by using26

a positive ansatz for the closure. This is in contrast to the spherical harmonic expan-27

sion for the PN method, which may take on negative values. However, both the MN28

and PPN solutions are still quite oscillatory [18, 23] and much more expensive than29

PN [1,2,17]. The recently proposed FPN closure [34,42] still uses a spherical harmon-30

ics expansion, but damps the oscillations via a low pass filter on the moments. While31

the filter mitigates the occurrence of negative particle concentrations, they are not32

fully removed. Small negative values in the particle concentration may not hurt linear33

kinetic models, but for nonlinear models, negative concentrations may make the sys-34

tem unstable.2 Hence, it is of interest to develop a positive-preserving3 modification35

of the FPN method.36

In the current work, we propose a modification of the FPN closure that preserves37

non-negativity on a finite, predetermined set of quadrature points. This set is part of a38

quadrature rule that is used to evaluate moments of the spherical harmonic expansion39

up to a given order exactly (up to machine precision). As shown in [2], this condition40

is sufficient to maintain a non-negative particle concentration. We refer to this new41

method as the FP+
N method.42

Implementation of the FP+
N method requires a PDE solver to update the moment43

system in time and the solution of a constrained optimization problem to define the44

closure. For the PDE solver, we use the kinetic scheme developed in [2]; see also [18].45

Meanwhile, the optimization problem can be written as a strictly convex quadratic46

program (CQP) with a large number of inequality constraints, which enforce positivity47

on the prescribed quadrature. We extend the constraint-reducedMehrotra’s predictor-48

corrector (MPC) linear program solver proposed in [44] to solve the CQPs that arise49

from the FP+
N method. The benefit of the constraint reduction technique increases50

with the number of quadrature points.51

Further, the consistency properties of the FP+
N closure are analyzed in this pa-52

per. Under an additional, mild regularity assumption, we prove that as the moment53

order tends to infinity, the FP+
N approximation converges to the underlying target54

function, in the L2 sense, as fast as the FPN approximation. We then provide nu-55

merical results which suggest that this property holds even without the additional56

1In this paper, we use the term “concentration” when referring to the integral of the kinetic
distribution with respect to angle. The concentration is a function of position and time only.

2For example, when solving radiative transfer equations coupled with a material equation, the
negative radiative energy-density can cause a negative material temperature [35, 39].

3In this paper, the term “positive-preserving” refers to methods that maintain the non-negativity
of particle concentration.
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assumption. For comparison, we also analyze and test the consistency properties of57

another positive-preserving closure that, for reasons that will become clear later, we58

refer to as the uniform damping (UDN ) closure. This closure was originally proposed59

in [32] to generate spatial reconstructions in the numerical simulation of hyperbolic60

conservation laws. More recently, it was applied to finite volume, weighted essentially61

non-oscillatory (WENO) and discontinuous Galerkin schemes in [46]. Because of its62

simplicity and fast implementation, the method has been applied in a variety of ap-63

plications; see [47] for review and further references. We prove convergence results64

for the UDN closure that are suboptimal when compared to the FPN closure; nu-65

merical tests suggest that the estimates are likely sharp. For smooth problems, the66

difference in the accuracy of the closures is negligible. However, for problems with67

less regularity, the difference is substantial.68

Finally, we compute the numerical solution from the FP+
N method on the line69

source benchmark problem [16] and compare it to solutions from the PN , FPN , PPN ,70

and UDN methods. For the same number of moments, the FP+
N method performs71

much better than the UDN method. However, enforcing positivity does create some72

local trade-offs in accuracy when compared to the FPN method. The PN and PPN73

methods are not competitive. We also compare the efficiency of the more accurate74

FP+
N closure with the less expensive UDN closure. In particular, we consider the75

solution time needed to reach a given level of accuracy in the particle concentration.76

For the line source problem, we conclude that the FP+
N solutions are generally two to77

ten times faster than the UDN solutions to reach the same accuracy.78

The remainder of the paper is organized as follows. In Section 2, we review the79

kinetic equation, moment equations, and several moment closures including PN , FPN ,80

PPN , and UDN closures. Section 3 introduces the proposed FP+
N closure and illus-81

trates the implementation details in the FP+
N method. In Section 4, the consistency82

analysis of the FP+
N and UDN closures and numerical convergence results are pro-83

vided. In Section 5, we present results for the line source problem. Section 6 is for84

conclusion and discussion.85

2. Preliminaries and Notations.86

2.1. Kinetic Equations and Moment Models. As in [18], we consider a lin-87

ear kinetic model of particles traveling with unit speed4 which scatter isotropically88

off of a background material medium. Emission, absorption, and external sources89

are neglected for simplifying the presentation; they can be included easily. The ki-90

netic description is given by a non-negative distribution function f = f(x,Ω, t) where91

x = (x1, x2, x3) ∈ R3 is the spatial position, Ω = (Ω1,Ω2,Ω3) ∈ S2 is the direction92

of particle travel, and t ≥ 0 is the time. In terms of the polar angle θ and the az-93

imuthal angle φ, (Ω1,Ω2,Ω3) = (sin θ cosφ, sin θ sinφ, cos θ). In what follows, it is94

often convenient to express functions on S2 in terms µ := cos θ and φ.95

The governing linear kinetic equation is of the form96

∂tf +Ω · ∇xf =
σ

4π
〈f〉 − σf , (2.1)

where σ is the scattering cross-section, and the angle brackets denote integration97

with respect to Ω over the angular space S2, i.e., 〈f〉(x, t) =
∫

S2
f(x,Ω, t) dΩ. To98

obtain a unique solution, one must equip (2.1) with appropriate initial and boundary99

conditions.100

4The unit speed assumption reduces the problem from six dimensions to five.
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Moments uf associated to f are defined as101

uf = uf (x, t) := 〈mf(x, ·, t)〉 , (2.2)

where m is a vector of basis functions over S2. Following standard practice, we102

use spherical harmonic basis functions.5 For moments up to order N , the spherical103

harmonics basis m : S2 → Rn, n = (N + 1)2, is given by m = [m0; m1; . . . ; mN ],104

where mℓ is the collection of the 2ℓ + 1 harmonics of degree ℓ, which are defined105

explicitly in [18]. The components of m form an orthogonal basis for PN (S2), the106

space of polynomials in Ω on S2 with degree at most N . We assume the components107

of m are normalized so that 〈mmT 〉 = In×n.108

Equations for uf are derived by multiplying the kinetic equation (2.1) by m and109

integrating over S2, which gives110

∂tu
f +∇x · 〈mΩf〉 = −σRuf , (2.3)

where the n × n matrix R = diag(0, 1, . . . , 1). Equation (2.3) is exact, but it is not111

closed due to the flux term 〈mΩf〉. Specifically, the spherical harmonic expansion of112

mNΩ involves harmonics of degree N + 1 so that 〈mΩf〉 cannot be expressed as a113

function of uf .114

In order to close (2.3), we define an operator E : Rn → L2(S2) that maps a given115

set of moments to a distribution on S
2 that approximates f . Then (2.3) can be closed116

by substituting the ansatz E [u] for f , which yields the closed moment system117

∂tu+∇x · 〈mΩE [u]〉 = −σRu . (2.4)

The solution u = [u0; u1; . . . ; uN ] of system (2.4) is an approximation of the exact118

moments uf . Equation (2.4) can be solved numerically in a variety of ways. In this119

paper, we use the kinetic scheme proposed in [2,18]; the full description of the scheme120

is included in the supplementary materials.121

In slab geometry, the distribution f in (2.1) is independent of x1 and x2, i.e.,122

∂x1f = ∂x2f = 0. Thus one can express the angular dependence of f in terms of123

µ = Ω3 only, thereby reducing the angular domain from S2 to [−1, 1].6 Thus, we124

consider also in the paper convergence of the FP+
N closure on the interval [−1, 1]. In125

this case, the angle brackets denote integration with respect to µ ∈ [−1, 1], and the126

moment basis m : [−1, 1] → R
n, n = N + 1, is given by m = [m0; m1; . . . ; mN ],127

where mℓ is the ℓ-th order Legendre polynomial on µ. The components of m in this128

case form an orthogonal basis for PN ([−1, 1]), the vector space of polynomials on129

[−1, 1] of degree at most N . We assume the standard normalization 〈m2
ℓ 〉 = 2

2ℓ+1 .130

Note that (2.3) and (2.4) still hold true for slab geometry, with the modified angular131

space and moment basis.132

In the remaining parts of Section 2 and Section 3, we present several moment133

closures in full geometry. These closures can be formulated analogously in the case of134

slab geometry with minor modifications, as described in the preceding paragraph.135

2.2. PN Closures. The PN equations approximate the linear kinetic equation136

(2.1) via a standard spectral method. For u ∈ Rn, the PN operator EPN
: Rn →137

5Spherical harmonics are eigenfunctions of general scattering operators. See, for example, [31,
Section 1-4].

6In spherically symmetric geometries, the effective angular space also reduces to [−1, 1], (See,
for example, details in [40, Chapter 5].)
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PN (S2) maps moments u to PN (S2), with138

EPN
[u] := α̂PN

(u)Tm , (2.5)

where the PN ansatz EPN
[u] solves the L2 entropy minimization problem139

minimize
g∈L2

1

2

〈

g2
〉

subject to 〈mg〉 = u , (2.6)

and the expansion coefficients α̂PN
(u) solve the dual problem of (2.6), and are given140

by141

α̂PN
(u) := argmin

α∈Rn

{

1

2

〈

|αTm|2
〉

− uTα

}

= 〈mmT 〉−1u = u . (2.7)

Setting E [u] = EPN
[u] in (2.4) gives the PN equations:142

∂tu+∇x ·
〈

ΩmmT
〉

u = −σRu . (2.8)

2.3. Filtered PN Closures (FPN). Filtering is commonly used to mitigate143

Gibbs phenomena in spectral methods for the spatial discretization of hyperbolic144

problems [20, 21]. Filtered spherical harmonics expansions for angular moment clo-145

sures were first proposed in [34] in order to suppress oscillations and mitigate the146

occurrence of negative concentrations in the PN solution.147

The filter can be embedded directly into the numerical PDE solver for the PN148

equations (2.8): before each time step, the moment u is replaced by Fu where149

F = blockdiag(FℓI(2ℓ+1)×(2ℓ+1)) is an n× n matrix and each Fℓ ∈ [0, 1] is a filtering150

coefficient, with F0 = 1. Associated to Fu is the ansatz151

EFPN
[u] := EPN

[Fu] = α̂FPN
(u)Tm , (2.9)

where α̂FPN
(u) := α̂PN

(Fu) solves the filtered version of dual problem (2.7)152

α̂FPN
(u) = argmin

α∈Rn

{

1

2

〈

|αTm|2
〉

− (Fu)Tα

}

= F α̂PN
(u) . (2.10)

We call this the discrete embedding of the filter.153

The original choice of Fℓ in [34] was based on an optimization problem that154

penalizes angular derivatives of the ansatz. In [42], a more general formulation leads155

to a modified system of equations. There Fℓ is given by156

Fℓ =

[

κ

(

ℓ

N + 1

)]ν

, where ν = − σF∆t

log[κ(N/(N + 1))]
(2.11)

depends on the time step, σF is a tuning parameter, and κ : R+ → [0, 1] is a filter157

function. We say κ has order p > 0 if κ ∈ Cp(R+) and κ(0) = 1 and κ(k)(0) = 0 for158

k = 1, . . . , p− 1.159

The choice of ν in (2.11) ensures the discrete embedding is formally consistent in160

the limit ∆t → 0 with a modified version of (2.8), the FPN equations:161

∂tu
∗ +∇x ·

〈

ΩmmT
〉

u∗ = −σRu∗ − σFLu
∗ , (2.12)

where L = blockdiag(LℓI(2ℓ+1)×(2ℓ+1)), and Lℓ =
log(κ( ℓ

N+1))
log(κ( N

N+1))
. We refer to (2.12) as162

a continuous embedding of the filter.163
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In the following sections, we consider both types of embeddings: discrete and164

continuous. The discrete approach is more conducive to the consistency analysis165

in Section 4, while the continuous approach is better for assessing the space-time166

convergence of the PDE solver in Section 3.2.1. In Section 4.2, the convergence167

results of the FPN closures are presented for the 2nd-order Lanczos filter [42], 4th-168

order spherical spline filter [42], and the 6th-order exponential filter [15]. The filter169

functions κ are given by170

κLanczos(η) =
sin(η)

η
, κSSpline(η) =

1

1 + η4
, κExp(η) = exp(cη6) , (2.13)

where, in the definition of κExp, c = log(ǫM ), ǫM being the machine precision. In the171

numerical tests presented in Section 5.2, the 4th-order spherical spline filter is used.172

While the FPN closure effectively damps oscillations in the numerical solution, it173

still suffers from some challenges. These include (i) the occurrence of negative particle174

concentrations that can affect the stability of nonlinear systems (see [35,39]) and (ii)175

the lack of a systematic way to choose the tuning parameter σF. In the remainder of176

this paper, we address the former.177

2.4. Positive PN Closures (PPN). In [23], a positive particle concentration178

is ensured imposing point-wise positivity constraints on a discretized version of (2.6).179

Let Q and W be the points and (strictly positive) weights of a quadrature rule on S2180

with degree of precision 2N + 1—that is, the quadrature rule integrates polynomials181

in P2N+1(S
2) exactly (in exact arithmetic). Then the discrete PPN ansatz EPPN

:182

R
n → R

|Q| maps u to the unique minimizer for183

minimize
g∈R|Q|

1

2

|Q|
∑

k=1

wk|gk|2

subject to

|Q|
∑

k=1

wkm(Ωk)gk = u ,

gk ≥ 0 , ∀k ∈ {1, . . . , |Q|} ,

(2.14)

where (Ωk, wk) ∈ (Q,W) for all k ∈ {1, . . . , |Q|}. If EPN
[u] ≥ 0 on Q, then EPPN

[u]184

is just the restriction of EPN
[u] to Q.185

In [18], a continuum variant of the PPN closure was proposed to enforce positivity186

by adding a log penalty term to (2.6). In this case, the PPN operator EPPN
: Rn →187

L2(S2) maps u to the unique minimizer for188

minimize
g∈L2(S2)

〈

1

2
g2 − δ log g

〉

subject to 〈mg〉 = u , (2.15)

where δ > 0 is a penalty parameter. Although (2.15) is formulated as a continu-189

ous problem, a quadrature rule is still required to approximate the integrals in the190

objective.191

While both variants (2.14) and (2.15) of the PPN closures generate a positive192

ansatz, numerical solutions of the modified optimization problems (2.14) and (2.15)193

are significantly more expensive to obtain. Moreover, neither ansatz is a polynomial.194

A consequence of this is that solutions of the PPN equations suffer from artifacts,195

known as ray effects [31, Section 4-6], due to the fact that the quadrature rule is not196

exact.197
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2.5. Uniform Damping Closures (UDN ). Uniform damping (UD) is a simple198

method for generating a non-negative polynomial reconstruction from given moments.199

It was first proposed in [32] as a limiter for finite volume discretizations of hyperbolic200

PDE, and has recently been used to generate discontinuous Galerkin and finite volume201

WENO methods [46, 47] that satisfy maximum principles while maintaining high-202

order.203

The UDN closure is a simple application of the UD method. It works by damping204

moments uℓ uniformly for all ℓ > 0, while preserving u0. Given quadrature points205

and weights (Q,W), the UDN operator EUDN
: Rn → PN (S2) maps u to the ansatz206

EUDN
[u] :=

u0
u0 + 〈m0cN 〉 (EFPN

[u] + cN ), cN = −min

{

min
Ωk∈Q

EFPN
[u](Ωk), 0

}

.

(2.16)
This ansatz is still a spherical harmonics expansion; hence UDN solutions do not suffer207

from ray effects as PPN solutions do. In addition, it is inexpensive to implement.208

However, as proved in Theorem 4.4 in Section 4.1 and shown in Section 5.2, the UDN209

closure may lose accuracy for problems with non-smooth solutions.210

3. Positive Filtered PN Closures (FP+
N ). To overcome the drawbacks of the211

FPN , PPN , and UDN closures, we design positive filtered PN (or FP+
N ) closures. This212

closure prevents the occurrence of negative particle concentrations using a polynomial213

ansatz that is non-negative at a pre-selected set of quadrature points. The FP+
N214

ansatz is defined via the solution of an optimization problem. The FP+
N ansatz is215

more expensive to compute than the UDN ansatz; however, it is more accurate. The216

benefits of this additional accuracy are analyzed and explored in Sections 4 and 5.217

3.1. Formulation. The FP+
N operator EFP+

N
: Rn → PN(S

2) maps moments u218

to the ansatz219

EFP+
N
[u] := α̂FP+

N
(u)Tm , (3.1)

where α̂FP+
N
(u) solves220

minimize
α∈Rn

1

2
‖αTm− EFPN

[u]‖2L2(S2)

subject to α
Tm(Ωk) ≥ 0 , ∀Ωk ∈ Q ,
〈

m0α
Tm

〉

= u0 ,

(3.2)

and Q is a quadrature set. The FP+
N ansatz is the best L2 approximation to the FPN221

ansatz in PN (S2) that is non-negative on Q and preserves particle concentration.7222

The set Q is chosen so that the associated quadrature rule has degree of precision223

2N + 1. This implies that the flux term 〈ΩmE [u]〉 in (2.4) is evaluated exactly224

whenever E [u] ∈ PN (S2). It also ensures that u0 is non-negative in the next update225

of the PDE solver (see Section 3.2.1 and the supplementary materials for details).226

Like the standard filter, the positive-preserving filter (3.2) can be discretely em-227

bedded into the numerical PDE solver for the PN equations (2.8)8: before each time228

step, the moment u is replaced by 〈mEFP+
N
[u]〉. If the inequality constraints in (3.2)229

are not active at the solution, then 〈mEFP+
N
[u]〉 = Fu. Indeed, in this case, (3.2) is230

7The scalar u0 is a positive constant multiple of the particle concentration.
8See the discussion on discrete and continuous embeddings in Section 2.3.
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equivalent to the dual problem in (2.10). When the inequality constraints are active,231

〈mEFP+
N
[u]〉 depends on u in a nonlinear way that cannot be expressed in closed form.232

Rather it must be determined from the numerical solution of (3.2). With the contin-233

uous embedding, the filter is built in to the equations, but positivity is still embedded234

in the numerics: at each time step of the numerical PDE solver for the FPN equations235

(2.12), the moment u∗ is replaced by 〈mEP+
N
[u∗]〉 where EP+

N
is given by (3.1) when236

there is no filter—that is, when F = I.237

3.2. Implementation. In this subsection, we summarize the implementation of238

the FP+
N closures, which includes a numerical PDE solver for (2.4) and an algorithm239

for the optimization problem (3.2). Further details can be found in the supplementary240

materials.241

3.2.1. Numerical PDE Solver. We generate a numerical solution of the FP+
N242

equations using a second-order kinetic scheme that was developed in [2]. (See refer-243

ences therein for early developments of this type of method.) The scheme is based on244

the following discrete ordinate approximation of (2.1):245

∂tf
Q +∇x · ΩfQ =

σ

4π
〈fQ〉Q − σfQ , (3.3)

where fQ(x,Ω, t) ≈ f(x,Ω, t) for each ordinate Ω in a quadrature set Q and 〈·〉Q246

denotes the quadrature rule associated to Q. With an appropriate choice of quadra-247

ture, the PN equations (2.8) can be derived directly from (3.3). Indeed, by taking248

quadrature-based moments of (3.3) and using the ansatz EPN
[u] to approximate fQ,249

we arrive at the following system for the unknowns u:250

∂t〈mEPN
[u]〉Q +∇x · 〈ΩmEPN

[u]〉Q =
σ

4π
〈m〉Q〈EPN

[u]〉Q − σ〈mEPN
[u]〉Q . (3.4)

If, as in Section 3.1, the quadrature set Q is chosen so that 〈·〉Q has degree of precision251

2N + 1, then (3.4) is equivalent to (2.8). This is our motivation for the choice of252

quadrature. A similar procedure can also be used to update the FPN equations in253

(2.12).254

It is known [2] that with an appropriate CFL condition, a finite volume discretiza-255

tion of (3.3) preserves the positivity of fQ. The corresponding kinetic scheme for (3.4)256

is derived by taking quadrature moments of this discretization and thus preserves pos-257

itivity of the particle concentration. Details of this scheme and a precise statement258

of the positivity result are given in the supplementary materials.259

3.2.2. Solving the FP+
N Optimization Problem. If α̂FPN

(u) satisfies the260

non-negativity constraints in (3.2), then α̂FPN
(u) solves (3.2)—that is, α̂FP+

N
(u) =261

α̂FPN
(u). Otherwise, a numerical optimization algorithm is needed. We discuss such262

an algorithm here.263

Due to the orthonormality of spherical harmonics, the equality constraint
〈

m0α
Tm

〉

=264

u0 in (3.2) is equivalent to α0 = u0. Hence the variable α0 can be removed from the265

minimization problem, and (3.2) can be rewritten as266

minimize
α̃∈Rn−1

1

2

〈

|α̃T m̃|2
〉

− (F̃ ũ)T α̃

subject to α̃
T m̃(Ωk) ≥ −m0u0 , ∀Ωk ∈ Q ,

(3.5)

where α̃ = [α1, . . . , αn−1]
T , and similarly for ũ, m̃, and F̃ . This is a convex quadratic267

program (CQP), which can be solved using primal-dual interior-point methods, includ-268

ing affine-scaling (AS) [45] and Mehrotra’s predictor-corrector (MPC) approach [36].269
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Because the main computational cost (per iteration) of standard interior-point meth-270

ods is proportional to the number of constraints, constraint-reduced variants of these271

algorithms are preferred. Constraint reduction for the AS algorithm was developed272

in [24]. Details of our version of the constraint-reduced MPC algorithm are provided273

in the supplementary materials. For the test problem in Section 5, we find that the274

MPC algorithm performs better than the AS algorithm; and in both cases, constraint275

reduction provides additional efficiency, particularly for larger quadrature sets.276

3.2.3. Quadrature. We use two types of quadrature to define the FP+
N and277

UDN closures and evaluate the numerical flux in the PDE solver. One of them is a278

product quadrature on the unit sphere [3,43]. For closures with moment order N , we279

require the quadrature to have degree of precision 2N + 1, so we need a grid of at280

least N + 1 (or (N + 1)/2, for even functions on µ) Gauss-Legendre points in the µ281

direction and 2(N + 1) equally spaced points in the φ direction.282

Another quadrature we use is the Lebedev quadrature [26–30], which requires283

fewer quadrature points than the product quadrature does to achieve the same degree284

of precision. This property significantly reduces the computation time of the FP+
N285

method, where the quadrature points are not only used in numerical integration, but286

also involved in the formulation of the optimization problem (3.5). Some comparisons287

of these two types of quadrature are given in Table 5.1, and discussed in Remark 4.288

4. Consistency Results. In this section, we analyze consistency properties of289

the FP+
N and UDN approximations and report numerical convergence results, for290

both full and slab geometries. We consider target functions Ψ = Ψ(µ, φ) where291

µ = Ω3 ∈ [−1, 1] and φ ∈ [0, 2π] is the azimuthal angle on the sphere, and functions292

ψ = ψ(µ) which correspond to the slab geometry case discussed in Section 2.1.293

For q ∈ R, the fractional Sobolev spaces Hq([−1, 1]) is the set of functions ψ such294

that the norm295

‖ψ‖Hq([−1,1]) :=

(

∞
∑

ℓ=0

ℓq(1 + ℓ)q
(

2ℓ+ 1

2

)

|αℓ|2
)1/2

, αℓ =

∫ 1

−1

ψ(µ)mℓ(µ)dµ

(4.1)
is finite [38]. In this definition, mℓ is the ℓ

th Legendre polynomial. The space Hq(S2)296

is the set of functions ψ such that the norm297

‖ψ‖Hq(S2) :=





∞
∑

ℓ=0

∑

|j|≤ℓ

ℓq(1 + ℓ)q|αjℓ |2




1/2

, αjℓ =

∫

S2

ψ(Ω)mj
ℓ(Ω)dΩ (4.2)

is finite [21]. In this definition, mj
ℓ is the degree ℓ, order j spherical harmonic. In298

the remainder of this section, we use S to denote either [−1, 1] or S2. Recall that299

H0(S) = L2(S).300

For q > 0, let q = v + w, v a positive integer and w ∈ [0, 1). Then the space301

Cq([−1, 1]) is defined as the set of functions ψ such that the norm302

‖ψ‖Cq([−1,1]) := ‖ψ‖L∞([−1,1]) + sup
µ1,µ2∈[−1,1]

µ1 6=µ2

|ψ(v)(µ1)− ψ(v)(µ2)|
|µ1 − µ2|w

(4.3)

is finite [38]. Here ψ(v) is the v-th strong derivative of ψ on [−1, 1]. Similarly, the303
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space Cq(S2) is defined as the set of functions ψ such that the norm304

‖ψ‖Cq(S2) := ‖ψ‖L∞(S2) + max
1≤i<j≤3

sup
0<|ϑ|≤1

‖(I −Ri,j,ϑ)D
v
i,jψ‖L∞(S2)

|ϑ|w , (4.4)

is finite [11]. Here the operator Di,j := xi∂xi
− xj∂xj

, x1, x2, x3 are the Cartesian305

coordinates on the sphere, I denotes the identity operator, and Ri,j,ϑ denotes the306

rotation operator such that Ri,j,ϑg(Ω) = g(Ω′), where Ω′ is obtained by rotating Ω307

with angle ϑ in the xi-xj plane. Note that, for q ∈ N, the space Cq(S) is the space of308

functions with a continuous q-th derivative on S. Finally, recall that Cq(S) ⊂ Hq(S).309

4.1. Error Estimates of approximations. The PN approximation (2.5) is310

based on the degree N spherical harmonic expansion of ψ ∈ L2(S2) with moments311

uN := u.9 For ψ ∈ C∞(S2), this expansion converges to ψ (in the L2 sense) faster312

than any negative power of N . For ψ ∈ Hq(S2), it converges to ψ (in the L2 sense)313

at rate q [10]. The filtered expansion (2.9) shares the convergence rate q with the PN314

approximation if the filter order p satisfies p ≥ q, but has a slower convergence rate315

p otherwise; see [15]. Based on these results, we establish the following convergence316

properties for the FP+
N approximation.317

Theorem 4.1. For M > 0, let DM = {g ∈ L∞(S) : ‖g‖L∞(S) ≤ M‖g‖L1(S)}.318

Then, given a non-negative function ψ ∈ Cq(S) ∩ DM , q ≥ 0, there exists a constant319

A(q,M) such that320

‖ψ − E
FP

+
N
[uN ]‖L2(S) ≤ A(q,M)N−s‖ψ‖Cq(S), ∀N ∈ N , (4.5)

where uN ∈ Rn consists of the moments of ψ up to order N , and s = min{q, p}, with321

p the order of filter F in (2.10).322

Before proving Theorem 4.1, we give two lemmas which are used in the proof.323

The first lemma gives the convergence rate of the FPN approximation, and the sec-324

ond lemma provides an L∞ error estimate of the best polynomial approximation for325

continuous functions.326

Lemma 4.2. For every q ∈ R, there exists a constant A1(q) such that, for all327

ψ ∈ Hq(S),328

‖ψ − EFPN
[uN ]‖L2(S) ≤ A1(q)N

−s‖ψ‖Hq(S), ∀N ∈ N , (4.6)

where uN ∈ R
n consists of the moments of ψ up to order N , and s = min{q, p}, with329

p the filter order in (2.10).330

Proof. See [15].331

Lemma 4.3. For every q ≥ 0, there exists a constant A2(q) such that, for all332

ψ ∈ Cq(S),333

min
ϕ∈PN(S)

‖ψ − ϕ‖L∞(S) ≤ A2(q)N
−q‖ψ‖Cq(S), ∀N ∈ N , (4.7)

where the minimum is attained.334

Proof. From [41, Theorem 2] (for S = [−1, 1]) and [11, Theorem 4.8.1] (for S = S2)335

inf
ϕ∈PN(S)

‖ψ − ϕ‖L∞(S) ≤ A2(q)N
−q‖ψ‖Cq(S) . (4.8)

9In this section, we use a superscript to emphasize the dependence of the moment vector on N .

10



Since PN (S) is a finite dimensional subspace of the Banach space Cq(S), it follows336

from Theorem 1.1 in [13] that the infimum in (4.8) is attained.337

We now prove Theorem 4.1 for the case S = S2; when S = [−1, 1], the result can338

be proved analogously. To simplify notation, we write339

‖ · ‖Cq = ‖ · ‖Cq(S2) ; ‖ · ‖Lp = ‖ · ‖Lp(S2) ; EFPN
= EFPN

[uN ] ; EFP+
N
= EFP+

N
[uN ].

(4.9)
Proof of Theorem 4.1. If ψ = 0, then uN = 0 and EFP+

N
= 0, and the claim holds340

trivially. Hence consider the case for ψ 6= 0, i.e., 〈ψ〉 > 0. Using Lemma 4.3, let ϕ̂N341

be the minimizer on the left-hand side of (4.7), and let ϕN = ϕ̂N + 1
4π 〈ψ− ϕ̂N 〉. Then342

〈ϕN 〉 = 〈ψ〉 > 0, and343

‖ψ − ϕN‖L∞ ≤ ‖ψ − ϕ̂N‖L∞ +
1

4π
〈|ψ − ϕ̂N |〉 ≤ 2‖ψ − ϕ̂N‖L∞ ≤ 2A2(q)N

−q‖ψ‖Cq .

(4.10)
We now modify ϕN to generate a non-negative polynomial that still approximates344

ψ well. Let c̄N = −min{minΩ∈S2 ϕN (Ω), 0} ≥ 0. Then by definition, ϕN + c̄N is345

non-negative, and 〈ϕN + c̄N 〉 is positive. Hence the function346

ϕ+
N :=

〈ϕN 〉
〈ϕN + c̄N 〉 (ϕN + c̄N) =

〈ψ〉
〈ψ + c̄N 〉 (ϕN + c̄N ) (4.11)

is a well-defined, non-negative polynomial on S2, and 〈ϕ+
N 〉 = 〈ϕN 〉 = 〈ψ〉. Moreover,347

‖ϕN − ϕ+
N‖L2 =

‖〈c̄N 〉ϕN − 〈ψ〉c̄N‖L2

〈ψ + c̄N 〉 =
4πc̄N

√

〈ϕ2
N 〉 − 〈ψ〉2

4π

〈ψ〉+ 4πc̄N
≤ 4πc̄N

‖ϕN‖L2

〈ψ〉 .

(4.12)
By Hölder’s inequality, ‖ϕN‖L2 ≤

√
4π‖ϕN‖L∞ . Using triangle inequality, (4.10),348

and the fact that ϕ̂N is the minimizer, we have349

‖ϕN‖L∞ ≤ ‖ψ‖L∞ + ‖ψ − ϕN‖L∞ ≤ ‖ψ‖L∞ + 2‖ψ − ϕ̂N‖L∞ ≤ 3‖ψ‖L∞ . (4.13)

Applying Hölder’s inequality and substituting the bound for ‖ϕN‖L∞ in (4.13) into350

(4.12) yield351

‖ϕN − ϕ+
N‖L2 ≤

(

24π3/2 ‖ψ‖L∞

‖ψ‖L1

)

c̄N ≤ 24π3/2Mc̄N , (4.14)

where the second inequality comes from the assumption that ψ ∈ DM . This bound352

will be used below in (4.18).353

By construction, the vector of expansion coefficients for ϕ+
N is a feasible point354

of (3.2). Because the corresponding vector of expansion coefficients for EFP+
N

solves355

(3.2), we have356

‖EFPN
− EFP+

N
‖L2 ≤ ‖EFPN

− ϕ+
N‖L2 . (4.15)

Hence,357

‖ψ − EFP+
N
‖L2 ≤ ‖ψ − EFPN

‖L2 + ‖EFPN
− EFP+

N
‖L2

≤ ‖ψ − EFPN
‖L2 + ‖EFPN

− ϕ+
N‖L2

≤ ‖ψ − EFPN
‖L2 + ‖EFPN

− ψ‖L2 + ‖ψ − ϕ+
N‖L2

≤ 2‖ψ − EFPN
‖L2 + ‖ψ − ϕ+

N‖L2

(4.16)
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We bound each of these terms separately. Lemma 4.2 and the fact that ‖ψ‖Hq ≤358

A3‖ψ‖Cq for some constant A3, gives a bound on the first term:359

‖ψ − EFPN
‖L2 ≤ A1(q)N

−s‖ψ‖Hq ≤ A1(q)A3N
−s‖ψ‖Cq . (4.17)

For the second term, we apply the triangle inequality, Hölder’s inequality, and (4.14).360

This gives361

‖ψ−ϕ+
N‖L2 ≤ ‖ψ−ϕN‖L2+‖ϕN−ϕ+

N‖L2 ≤
√
4π‖ψ−ϕN‖L∞+

(

24π3/2M
)

c̄N . (4.18)

Since ψ ≥ 0, c̄N ≤ ‖ψ−ϕN‖L∞ . We substitute this bound into (4.18), combine terms362

in ‖ψ − ϕN‖L∞ , and apply the bound in (4.10). This gives363

‖ψ − ϕ+
N‖L2 ≤

(√
4π + 24π3/2M

)

‖ψ − ϕN‖L∞ ≤ A4(q,M)N−q‖ψ‖Cq (4.19)

where A4(q,M) = 2A2(q)
(√

4π + 24π3/2M
)

. Finally, by substituting the bounds in364

(4.17) and (4.19) into (4.16), the claim (4.5) is proved, with A(q,M) = 2A1(q)A3 +365

A4(q,M)366

For comparison, the next theorem provides error estimates for the uniform damp-367

ing (UDN ) approximation.368

Theorem 4.4. For M > 0, let DM = {g ∈ L2(S) : ‖g‖L2(S) ≤ M‖g‖L1(S)}.369

Then, given a non-negative ψ ∈ Hq(S) ∩ DM , q ≥ 0, ǫ > 0, there exists a constant370

B(q,M, ǫ) such that,371

‖ψ − EUDN
[uN ]‖L2(S) ≤ B(q,M, ǫ)N−(s−a−ǫ)‖ψ‖Hq(S), ∀N ∈ N , (4.20)

where uN ∈ R
n consists of the moments of ψ up to order N , and s = min{q, p}, with372

p the order of filter F in (2.10). The constant a depends on S: when S = [−1, 1],373

a = 3/4; when S = S2, a = 1.374

The following lemma is used in the proof of Theorem 4.4.375

Lemma 4.5. For every q ≥ 0 and δ > 0, there exist constants B1(q, δ) and376

B2(q, δ) such that, for all ψ ∈ Hq([−1, 1]) and N ∈ N,377

‖ψ−EFPN
[uN ]‖L∞([−1,1]) ≤ ‖ψ−EFPN

[uN ]‖
H

1
2
+δ([−1,1])

≤ B1(q, δ)N
−(s− 3

4−
3δ
2 )‖ψ‖Hq([−1,1]),

(4.21)
and for all ψ ∈ Hq(S2) and N ∈ N,378

‖ψ − EFPN
[uN ]‖L∞(S2) ≤ ‖ψ − EFPN

[uN ]‖H1+δ(S2) ≤ B2(q, δ)N
−(s−1−δ)‖ψ‖Hq(S2) ,

(4.22)
where uN ∈ Rn consists of the moments of ψ up to order N , and s = min{q, p}, with379

p the filter order in (2.10).380

The first inequalities in (4.21) and (4.22) are Sobolev embedding theorems that381

can be found in [38] and [19], respectively. The second inequalities can be found382

in [6, Theorem 2.2] and [21, Theorem 8.2], respectively.383

Proof of Theorem 4.4. For convenience, we denote EFPN
[uN ] and EUDN

[uN ] as384

EFPN
and EUDN

, respectively. By the triangle inequality,385

‖ψ − EUDN
‖L2(S) ≤ ‖ψ − EFPN

‖L2(S) + ‖EFPN
− EUDN

‖L2(S) . (4.23)

The bound for the first term in (4.23) is given by (4.6) in Lemma 4.2. For the second386

term, we use the definition of EUDN
in (2.16) to compute (recalling that m0 and cN387
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are constant over S)388

‖EFPN
− EUDN

‖L2(S) =
‖〈m0cN 〉EFPN

− 〈m0ψ〉cN‖L2(S)

〈m0ψ〉+ 〈m0cN 〉 =
B3cN

√

〈E2
FPN

〉 − 〈ψ〉
B3

〈ψ〉+ 〈cN 〉 ,

(4.24)
where B3 = 〈1〉. Because ‖EFPN

‖L2(S) ≤ ‖EPN
‖L2(S) ≤ ‖ψ‖L2(S) and cN ≤ ‖ψ −389

EFPN
‖L∞(S), it follows from (4.24) and ψ ∈ DM that390

‖EFPN
−EUDN

‖L2(S) ≤
B3cN‖EFPN

‖L2(S)

〈ψ〉+ 〈cN 〉 ≤ B3

‖ψ‖L2(S)

‖ψ‖L1(S)
cN ≤ B3M‖ψ−EFPN

‖L∞(S).

(4.25)
The bound for the second term in (4.23) is then obtained by applying either (4.21) or391

(4.22) in Lemma 4.5 on the right-hand side of (4.25). Finally, by bounding for both392

terms in (4.23), the claim (4.20) is proved, with393

B(q,M, ǫ) =

{

A1(q) +B1(q, 2ǫ/3)B3M , when S = [−1, 1]

A1(q) +B2(q, ǫ)B3M , when S = S2
(4.26)

chosen to be the constant.394

Remark 1. The error estimate in (4.20) appears to be sharp for both choices of395

S. This is illustrated in Tables 4.1 and 4.2 with Sobolev target functions in the next396

subsection.397

Remark 2. The fact that ψ may be zero on S is what limits the error esti-398

mates for both the FP+
N approximation (Theorem 4.1) and the UDN approximation399

(Theorem 4.4). However, if ψ is strictly positive and EFPN
[uN ] converges to ψ uni-400

formly, then one can prove that both E
FP

+
N

and EUDN
recover the optimal rate for401

the FPN approximation. Indeed, uniform convergence to a strictly positive func-402

tion implies that EFPN
[uN ] > 0 for all N greater than some Ñ . In this case,403

E
FP

+
N
[uN ] = EUDN

[uN ] = EFPN
[uN ].404

4.2. Convergence Tests. In this subsection, we present numerical convergence405

results for the FP+
N and UDN approximations. These results suggest that the stronger406

assumptions for the FP+
N approximation about the underlying function (Cq vs. Hq)407

in Theorem 4.1 may not be necessary. Meanwhile, the convergence rates for the UDN408

approximation in Theorem 4.4 appear to be sharp.409

We begin with one-dimensional tests for functions defined on [−1, 1]. For an410

expansion of degree N , we use for Q (cf. (3.2)) a Gauss-Legendre quadrature rule411

with N + 1 points, which has degree of precision 2N + 1. The observed convergence412

rates of the L2 approximation errors for several functions on [−1, 1], each with different413

regularity properties, are listed in Table 4.1. Corresponding results for the PN and414

FPN approximation are included for reference.415

The target functions (except for the smooth function) are of the form416

ψ(µ) =

{

(µ− µ̂)r, µ ∈ [µ̂, 1]
0, µ ∈ [−1, µ̂)

, (4.27)

where r and µ̂ are regularity parameters. For µ̂ ∈ (−1, 1), the function (4.27) belongs417

to Hq([−1, 1]) for all q < r + 1
2 .418

• Step function : (r, µ̂) = (0, 0.75). This function is in Hq([−1, 1]), ∀q < 0.5. From419

Table 4.1, it can be seen that the P+
N (FP+

N with no spectral filter) and FP+
N ap-420

proximations converge roughly at the same rate as the PN and FPN approximation.421
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The UDN approximations, on the other hand, have a slower convergence rate, which422

is consistent with result of Theorem 4.4. Note that µ̂ can be arbitrarily chosen from423

(−1, 1) . However, for some choices of µ̂, the approximation errors may converge424

faster than the (worst case) error estimates given in Theorems 4.1 and 4.4.425

• Singular function : (r, µ̂) = (−0.1, 0.75). This function is an L2 function with426

a singularity at µ = 0.75. For this function, the UDN approximation does not427

converge, while the FP+
N approximation still converges roughly at the same rate as428

the FPN approximation.429

• Smooth function : ψ(µ) = exp(5µ sin(10µ)). This function is in C∞([−1, 1]).430

Here we observe, as is expected from Theorems 4.1 and 4.4, that the FP+
N and431

UDN approximations to converge with the order of the spectral filter used to define432

them. If no filter is applied, both approximations converge spectrally.433

• Sobolev function : (r, µ̂) = (0.5, 0.975) and (r, µ̂) = (3, 0.75). These functions434

belong to Hq([−1, 1]) for all q < 1 and for all q < 3.5, respectively. For such435

functions, the UDN approximations typically converge at slower rates than the PN436

and P+
N approximations. In the first case, we select µ̂ = 0.975 in order to show that437

the estimate in Theorem 4.4 is most likely sharp. Indeed, as reported in Table 4.1,438

the convergence rate of the UDN ansatz for this target function is around 0.25,439

which matches the error estimate provided in Theorem 4.4. In the second case,440

r = 3 is chosen to illustrate the effect of the spectral filters on the convergence441

rate. In the results shown in Table 4.1, we observe that a loss in order occurs for442

the UDN approximation when p > r + 1/2—that is, when the order of the filter is443

greater than the regularity of ψ.444

We next consider target functions Ψ on S2 that are simple extensions of functions445

ψ on [−1, 1]:446

Ψ(µ, φ) := ψ(µ), ∀(µ, φ) ∈ [−1, 1]× [0, 2π] . (4.28)

Due to behavior at the poles of S2, these extensions may not have the same regularity447

on S2 as the original function does on [−1, 1]. However, because of the tensor product448

construction, we expect the same convergence rates. For approximations of degree N ,449

we use for Q (cf. (3.2)) the product quadrature rule on S2 defined in Section 3.2.3,450

with degree of precision 2N+1. To ensure that our results do not depend on a special451

alignment of the quadrature with the coordinate axes, we rotate the points about the452

x1 and x2 axes by one and two radians, respectively.453

The observed L2 convergence rates for functions of the form (4.28) with ψ defined454

as in (4.27) are also listed in Table 4.1. We observe that, for most cases, the rates for455

the extended functions with rotated quadrature are close to the rates for the corre-456

sponding functions on [−1, 1]. Larger variations occur with the UDN approximation,457

most noticeably for the singular function.458

Finally, we consider general functions on S
2. Convergence rates for these functions459

are presented in Table 4.2. In Table 4.2, the step function Ψ on S2 is defined as460

Ψ(µ, φ) =

{

1, Ω1 ∈ [−0.2, 0.4],Ω2 ∈ [0.5, 0.9]
0, otherwise

, (4.29)

where Ω1 =
√

1− µ2 cosφ and Ω2 =
√

1− µ2 sinφ. This function is in Hq(S2) for all461

q < 0.5. The location of the support for Ψ can be arbitrarily chosen; some choices462

may lead to faster convergence rates. For this particular choice, we observe that463

the UDN approximation does not converge (or does so very slowly), while the FP+
N464

approximation converges with rate ≈ 0.5, just as the FPN approximation does.465
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Filter Approx. Step Singular Smooth Sobolev Sobolev

Order Type q < 0.5 q < 0.4 q = ∞ q < 1 q < 3.5

[-1, 1] S
2

[-1, 1] S
2

[-1, 1] S
2

[-1, 1] S
2

[-1, 1] S
2

No filter

PN 0.49 0.51 0.53 0.50 ∞ ∞ 0.97 1.33 3.49 3.47
UDN 0.08 0.06 -0.04 -0.22 ∞ ∞ 0.21 0.06 3.09 2.92

P+

N
0.51 0.51 0.51 0.49 ∞ ∞ 1.02 1.15 3.52 3.49

p = 2

FPN 0.49 0.51 0.52 0.50 1.99 1.95 0.97 1.32 1.99 1.96
UDN 0.09 0.10 -0.02 -0.23 1.99 1.95 0.25 0.05 2.03 2.20

FP+

N
0.51 0.51 0.51 0.49 1.99 1.95 1.02 1.15 1.99 1.96

p = 4

FPN 0.49 0.50 0.52 0.49 3.98 3.90 0.97 1.27 3.47 3.43
UDN 0.07 0.15 -0.05 -0.19 3.98 3.89 0.26 0.08 3.02 2.77

FP+

N
0.51 0.51 0.51 0.48 3.98 3.90 1.01 1.15 3.53 3.61

p = 6

FPN 0.49 0.47 0.44 0.40 5.96 5.84 0.98 1.07 3.47 3.41
UDN 0.10 0.23 0.05 0.00 5.96 5.81 0.18 0.11 3.04 2.86

FP+

N
0.49 0.47 0.45 0.41 5.96 5.81 0.97 1.05 3.42 3.39

Table 4.1: Convergence Rates – The observed L2 convergence rates for the PN , FPN , UDN , and
FP+

N
approximations to target functions on [−1, 1] listed in Section 4.2 and and their extensions on

S2 defined in (4.28). Note that the index q express the regularity of the target functions on [−1, 1].

Filter Approx. Step Sobolev Filter Approx. Step Sobolev

Order Type (4.29) (4.30) Order Type (4.29) (4.30)

No filter

PN 0.51 1.87
p = 4

PN 0.50 1.73
UDN 0.02 1.07 UDN 0.07 1.10

P+

N
0.52 1.81 P+

N
0.52 1.71

p = 2

PN 0.50 1.83
p = 6

PN 0.45 1.37
UDN 0.04 1.18 UDN 0.07 1.14

P+

N
0.52 1.78 P+

N
0.46 1.36

Table 4.2: Convergence Rates – The observed L2 convergence rates for the PN , FPN , UDN , and
FP+

N
approximations to functions defined in (4.29) and (4.30).

The next target function is a Sobolev function on S2, which is given by466

Ψ(µ, φ) = ψ1(µ)ψ2(φ), (4.30)

where467

ψ1(µ) =







0.25, |µ| ∈ [0, 0.25)
0.5− |µ|, |µ| ∈ [0.25, 0.5)
0, otherwise

, ψ2(φ) =







0.25π, |φ| ∈ [0, 0.25π)
0.5π − |φ|, |φ| ∈ [0.25π, 0.5π)
0, otherwise

,

(4.31)
respectively. This function Ψ is in Hq(S2), for all q < 2. The convergence rate468

of the UDN approximation is near one, as predicted by the error estimate given469

in Theorem 4.4. Hence, (4.20) appears to be a sharp error estimate for the UDN470

approximation. The FP+
N approximation still converges at roughly the same rate as471

the FPN approximation.472

Remark 3. In all the convergence tests we performed, the FP+
N approximation473

always converges at roughly the same rate as the FPN approximation, even if the474

continuity assumption in Theorem 4.1 is violated, i.e., the target function belongs to475

Hq, but not to Cq.476

5. Numerical Results on Line Source Benchmark Problem. In this sec-477

tion, we present solutions of the line source problem using the FP+
N closure and478
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compare them to the results using PN , FPN , and PPN closures (cf. Sections 2.2,479

2.3, 2.4). Similar results for PN , FPN , and PPN can be found in [4], [42] and [18],480

respectively. Results from the UDN closure (cf. Section 2.5) are also included in the481

comparison.482

5.1. The line source benchmark. The line source benchmark problem was483

first formulated in [16], along with an exact solution. Since then, it has been used to484

study the behavior of various angular approximations for linear kinetic equations [4,485

23,34,42]. It is a notoriously difficult problem that provides insight into the strengths486

and weaknesses of different approximations and how to pursue improvements.487

The problem is as follows: An initial pulse of particles are distributed isotropically488

along an infinite line in space and move through an infinite material medium with489

constant scattering cross-section. If this line is aligned with the x3-axis, then f does490

not depend on x3 and the transport equation (2.1) reduces to491

∂tf + ξ∂x1f + η∂x2f =
σ

4π
〈f〉 − σf (5.1)

with initial condition f in(x,Ω) = 1
4π δ(x1, x2).492

5.2. Numerical results. We simulate the line source problem with σ = 1.0. A493

steep Gaussian distribution with variance ς2 = 9 × 10−4 is used to approximate the494

delta function initial condition, and a small positive floor is added:495

f in(x,Ω) ≈ 1

4π

(

max

(

1

2πς2
e

−(x2
1+x2

2)

2ς2 , ffloor

))

. (5.2)

The floor is only needed for the PPN closure, which requires a strictly positive dis-496

tribution. For our calculations, we set ffloor = 10−4. We truncate the infinite spatial497

domain to a [−1.5, 1.5]× [−1.5, 1.5] square centered at the origin and impose artificial498

boundary condition equal to ffloor. The computation is run to a final time tfinal = 1.0.499

The calculations are performed using a 200×200 mesh, hence each square spatial500

cell has side length h = 0.015. The time step for the PN and FPN methods is501

∆t = 0.45h; for the UDN , PPN , and FP+
N methods is ∆t = 0.225h and a minmod-type502

slope limiter is used to enforce positivity in the kinetic scheme. See the supplementary503

materials for details. The more restrictive step is used to maintain positivity of the504

particle concentration for the FP+
N , UDN , and PPN closures.505

The optimization algorithm used to solve (3.5) is presented in the supplementary506

materials.507

In Figures 5.1 and 5.2, we plot the particle concentration ρ = 〈f〉 for various508

methods with moments of order N = 11 and quadrature precision of degree NQ =509

2N + 1 = 23 (the minimum required precision) and NQ = 47. We consider both510

product and Lebedev quadrature rules defined in Section 3.2.3. Figure 5.1 shows the511

heat maps over the entire two-dimensional domain and Figure 5.2 presents the one-512

dimensional line-outs along the x1-axis. For comparison, the exact transport solution513

is included in all the line-out figures.514

We observe the following qualitative features from the numerical results:515

• PN (Figures 5.1(b), 5.2(b)) The PN method clearly suffers from severe oscillations516

that lead to particle concentrations with large negative values. The PN solution517

preserves the rotational invariance of the exact line source solution and the quadra-518

ture has minimal effect on the PN solution, as long as it has degree of precision519

2N + 1.520
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• FPN (Figures 5.1(c), 5.2(c)) The FPN solution contains only mild oscillations. Like521

the PN method, the FPN method maintains rotational invariance in the solution.522

However, it still suffers from the loss of positivity in the particle concentration,523

as can be seen near the wave front. Like the PN solution, the FPN solution is524

unaffected by the degree of quadrature precision NQ, as long as NQ ≥ 2N + 1.525

• PPN (Figures 5.1(d), 5.1(g), 5.2(d), 5.2(g)) Oscillations still occur in the PPN so-526

lution. However, they are much weaker than those occurring in the PN solution.527

Because the PPN closure uses a positive ansatz, the PPN solution maintains posi-528

tivity in the particle concentration. However, because the ansatz is not polynomial,529

its moments cannot be evaluated exactly with a numerical quadrature rule. As530

a consequence, the PPN solution loses rotational invariance and suffers from ray531

effects. Moreover, the accuracy of the PPN solution is highly dependent on the532

quadrature precision.533

• UDN (Figures 5.1(e), 5.1(h), 5.2(e), 5.2(h)) The UDN closure imposes strong damp-534

ing which effectively removes all oscillations from the solution. The closure also535

maintains a positive particle concentration. However, the damping has a signifi-536

cant effect on accuracy; indeed, the UDN solution completely misses the location537

of the wave front.538

• FP+
N (Figures 5.1(f), 5.1(i), 5.2(f), 5.2(i)) As expected, the FP+

N solution preserves539

the positivity of the particle concentration. It contains only tiny oscillations that are540

barely visible in the figures, which indicates that the nonlinear filter (constrained541

optimization) in the FP+
N method not only maintains the positivity of the ansatz,542

but also slightly damps the oscillations. This damping does reduce the accuracy of543

the solution near the origin, when compared to the FPN results. Like the PN and544

FPN solutions, the FP+
N solution is also rotationally invariant. The accuracy of545

the FP+
N solution is slightly improved by using quadrature with a higher degree of546

precision. However, the computational cost of solving problem (3.2) may become547

prohibitive. (See Table 5.1 in Section 5.3 below.)548

Remark 4 (Lebedev Quadrature). The Lebedev quadrature [26] requires fewer549

quadrature points than the product quadrature (see Section 3.2.3) does to achieve the550

same degree of precision. For comparison, we test the FP+
N closure with Lebedev551

quadrature rules that have degree of precision NQ = 23 and NQ = 47 on the line552

source problem, and the solutions are shown in Figures 5.1(j), 5.1(k), and 5.2(j),553

5.2(k). With the Lebedev rule, the computation time is reduced by about 25%, due to554

the fewer number of constraints in optimization problem, as shown in Table 5.1.555

Remark 5 (Location of “hard” problems). In the numerical tests, we observed556

that most of the computation time of the FP+
N method is spent in solving the “hard”557

optimization problems that occur near the wave front, as seen in Figure 5.3 for quadra-558

ture precision NQ = 23 and NQ = 47.559

5.3. Computational performance. In Table 5.1, we list the computation560

times for the line source calculations in Section 5.2. The PN and FPN methods are561

significantly faster because they (i) can take larger time steps, since positivity does562

not need to be enforced; (ii) have simpler flux evaluations; and (iii) most importantly,563

require no numerical optimization for their closure. The UDN method has the least564

computation cost among all positive-preserving methods (UDN , PPN , FP
+
N), but still565

takes about twice the time of the PN and FPN methods. The PPN method is by far566

the slowest. The computation time for the FP+
N method depends heavily on the type567

of optimization algorithm and the number of quadrature points. For NQ = 47, con-568

straint reduction (CR) reduces the computation time for the FP+
N method by about569
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a factor of two. For NQ = 23, the benefit of CR is less significant (10 ∼ 30%), as the570

number of constraints in the optimization problem is lower. In addition, our extended571

version of Mehrotra’s Predictor-Corrector (MPC) algorithm clearly outperforms the572

affine-scaling (AS) algorithm, with or without CR. The computation time using the573

Lebedev quadrature with degree of precision 23 and 47 is also reported in Table 5.1.574

As discussed in Remark 4, the Lebedev quadrature rule requires fewer points to reach575

the same degree of precision than the product quadrature, leading to lower compu-576

tation time. Overall the best algorithm is MPC/CR with the Lebedev quadrature.577

With degree of precision NQ = 23 (the minimum required), the computation time578

is about ten times that of the UDN closure. In the next subsection, we compare579

efficiency of these methods, taking into account accuracy.580

Quadrature Type Product Product Lebedev Lebedev
Degree NQ = 23 NQ = 47 NQ = 23 NQ = 47
# of points |Q| = 144 |Q| = 576 |Q| = 105 |Q| = 401

P11 270 286 — —
FP11 272 287 — —
UD11 448 1732 — —
PP11 13798 49574 — —

FP+

11
(AS) 7726 32941 6212 22092

FP+

11
(MPC) 6600 27319 5192 16925

FP+

11
(AS/CR) 5731 16277 4383 11537

FP+

11
(MPC/CR) 5929 12925 4336 8877

Table 5.1: The computation times (sec) for the line source benchmark with various closures with
N = 11. The optimization problems in the FP+

N
closure are solved by the algorithms described in

the supplementary materials, including affine-scaling (AS), Mehrotra’s predictor-corrector (MPC),
and their constraint-reduced (CR) variants.

5.4. Efficiency. The ultimate goal in the development of the FP+
N closure is to581

generate an approximate solution of the transport equation that is accurate, preserves582

positivity of the particle concentration, and is efficient for challenging test problems583

when the underlying solution lacks high regularity. To this end, we compare the584

efficiency of the FP+
N and UDN closures by examining the cost and accuracy of solving585

the line source benchmark for different values of the moment order N . To allow for586

larger values of N , we use a smoother initial condition (a Gaussian distribution, as587

in (5.2), with variance ς2 = 10−2), reduce the spatial mesh from 200 × 200 cells to588

100 × 100 cells, and use only quadrature rules with NQ = 2N + 1 (the minimum589

required degree of precision). All other parameter values are identical to those listed590

in Section 5.2.591

Figure 5.4 illustrates the efficiency comparison between the UDN and FP+
N clo-592

sures, the latter implemented with the MPC/CR optimization algorithm. The FP+
N593

closure is tested on both the product and Lebedev quadrature. We plot the spatial594

errors595

EFP+
N
:= ‖ρexact − ρFP+

N
‖L2(R2) and EUDN

:= ‖ρexact − ρUDN
‖L2(R2), (5.3)

versus the computation time. Here ρexact, ρFP+
N
, and ρUDN

are the particle concen-596

tration at tfinal of the exact, FP+
N , and UDN solutions, respectively. Each data point597

in Figure 5.4 represents a solution of the moment equations and is marked with a598

number that corresponds to the value of N . The data shows that, except for very599
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low orders, the FP+
N solutions are two to ten times faster than the UDN solutions to600

reach the same accuracy.601

5.5. Space-Time Convergence. In this subsection, we compute space-time602

convergence rates of the second-order kinetic scheme used in the solution of (2.4)603

(see [2] and the supplementary materials for details) when using the UDN and FP+
N604

closures. Convergence rates when using the FPN closure are also included for refer-605

ence. In the numerical tests reported in this section, the spectral filter is implemented606

in the filtered equation (2.12), and the FPN , UDN , and FP+
N closures are defined based607

on the moments u∗ in (2.12). By doing so, we eliminate the influence of the spectral608

filter on the convergence properties of the numerical scheme (see [15]), so that the609

numerical results reflect only the effect of enforcing positivity in the UDN and FP+
N610

closures.10611

As before, we truncate the spatial domain to a [−1.5, 1.5] × [−1.5, 1.5] square612

centered at the origin and impose artificial boundary condition equal to ρfloor = 10−4.613

The computation is run to a final time tfinal = 1.0. The numerical scheme is tested614

with initial condition on the particle concentration615

ρin(x) =

{

cos5(2
√

x21 + x22), if 2
√

x21 + x22 ≤ π
2 ,

ρfloor, otherwise,
. (5.4)

For N > 0, all moments are initially set to zero. All parameter values we used were616

identical to those listed in Section 5.2, except that the moment order N is chosen to617

be 5 and 7, instead of 11.618

Since an analytic solution is not available in our problem, we define the space-time619

error Eph by620

Eph := ‖uh − uh/2‖Lp(R2,L2(Rn)) , (5.5)

where uh(x) ∈ Rn is the computed solution to the moment equation with the finite621

volume scheme at tfinal = 1, h denotes the side length of the square spatial cells,622

and the norm is defined as ‖v‖Lp(R2,L2(Rn)) :=
(∫

R2 ‖v(x)‖p2dx
)1/p

for p < ∞, and623

‖v‖L∞(R2,L2(Rn)) := maxx∈R2 ‖v(x)‖2 for p = ∞.624

Table 5.2 reports the space-time errors and observed convergence rates for FPN ,625

UDN , and FP+
N closures with p = 1 and p = ∞ for moment order N = 5 and N = 7.626

The observed convergence rate ν is computed by627

ν := log

(

Ephi

Ephi+1

)

log

(

hi
hi+1

)−1

, i = 1, . . . , 4, (5.6)

where hi is the side length of spatial cells defined by the square meshes listed in the628

first column of Table 5.2.11 The results in Table 5.2 indicate that the expected rate629

ν ≈ 2 is achieved by the FPN and FP+
N closures12, while the UDN closure causes a630

serious degradation in the convergence order.631

10We referred to this in Section 2.3 as the continuous embedding of the filter. With it, we
expect (and observe) second-order space-time accuracy for the FPN closure, whereas for the discrete

embedding approach that applies the filter at each time step, we expect (and observe) only first-order
accuracy in time.

11The time step ∆t is also refined in such a way that the ratio ∆t/h stays fixed.
12The only noticeable difference is the convergence rate for E∞

h
with N = 5 on the 3202 mesh.
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FP5 UD5 FP+

5
FP7 UD7 FP+

7

mesh E1
h

ν E1
h

ν E1
h

ν E1
h

ν E1
h

ν E1
h

ν

202 4.9e-3 — 1.5e-2 — 5.7e-3 — 5.8e-3 — 1.4e-2 — 6.2e-3 —
402 1.48e-3 1.7 1.4e-3 3.4 1.3e-3 2.1 1.8e-3 1.7 1.7e-3 3.0 1.6e-3 2.0
802 3.7e-4 2.0 6.9e-4 1.1 3.6e-4 1.9 4.4e-4 2.0 7.7e-4 1.2 4.3e-4 1.9
1602 8.9e-5 2.0 1.3e-3 -0.9 8.7e-5 2.1 1.1e-4 2.0 8.6e-4 -0.2 1.0e-4 2.1
3202 2.2e-5 2.0 2.6e-3 -1.0 2.2e-5 2.0 — — — — — —

E∞
h

ν E∞
h

ν E∞
h

ν E∞
h

ν E∞
h

ν E∞
h

ν

202 1.1e-2 — 4.7e-2 — 1.7e-2 — 1.2e-2 — 4.4e-2 — 1.6e-2 —
402 4.0e-3 1.5 6.0e-3 3.0 5.0e-3 1.8 4.3e-3 1.5 7.2e-3 2.6 5.1e-3 1.7
802 1.0e-3 1.9 7.2e-3 -0.3 1.2e-3 2.0 1.1e-3 1.9 9.0e-3 -0.3 1.1e-3 2.2
1602 2.5e-4 2.0 2.3e-2 -1.7 2.7e-4 2.2 2.8e-4 2.0 2.0e-2 -1.1 2.8e-4 2.0
3202 6.2e-5 2.0 3.9e-2 -0.8 8.0e-5 1.8 — — — — — —

Table 5.2: Convergence of space-time errors with p = 1 and p = ∞ for FPN , UDN , and FP+

N

closures. The results for moment orders N = 5 and N = 7 are reported. The spatial mesh sizes are
listed in the first column. In order to minimize the influence of the optimization tolerance in the
FP+

N
method, the tolerance ε is set to 10−8.

6. Conclusion and Discussion. We have presented a new moment closure,632

the FP+
N closure, for generating approximate solutions of the transport equation.633

The new closure is based on the solution of an optimization problem that modifies634

the coefficients in the filtered spherical harmonic expansion by enforcing positivity on635

a properly chosen quadrature set.636

We have proven that for target functions in the space Cq, where q ≥ 0 is an integer,637

the FP+
N approximation converges in L2 at the same rate as the FPN approximation.638

However, the necessity of this assumption was not observed in the numerical results;639

indeed for several target functions in Hq \Cq, we observe that the two approximations640

still converge at the same rate. For some special cases (not discussed in this paper),641

we are able to prove this fact. However, a general result is the subject of future work.642

We have also investigated a simpler closure, which we refer to as the UDN closure,643

that is based on a spatial limiter developed in [32] for finite volume schemes. For644

functions in Hq, we prove suboptimal convergence rates for the UDN approximation.645

Based on numerical tests, we believe that these rates are sharp. For problems with less646

regularity, we expect that the additional accuracy of the FP+
N closure will outweigh647

the additional cost, when compared to the UDN approach. Our simulation results648

support this conjecture in the case of the line source benchmark. They also show that649

the UDN closure degrades the space-time convergence rate of the PDE solver for the650

moment equations. For the FP+
N closure, we observe minimal, if any, effect. For more651

regular problems, we expect the accuracy of the two closures to be comparable. In652

fact, we have observed this for other test problem results not reported here. For these653

problems, the UDN closure may be more efficient, and a more careful comparison will654

be performed in later work.655

The optimization problem which defines the FP+
N closure requires a numerical656

solution; there are a variety of algorithms to do this. Here we have focused on interior-657

point algorithms. Because the main cost (per iteration) of these algorithms is propor-658

tional to the number of constraints, it is important to choose a quadrature rule that659

uses a small number of quadrature points while still maintaining the necessary degree660

of precision. Of the four algorithms tested, the new Mehrotra’s Predictor-Corrector661
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(MPC) algorithm with the constraint reduction (CR) technique is the most efficient662

for the line source benchmark.663

This paper has focused on the properties of the FP+
N approximation and also664

the efficiency of the optimization algorithm for (3.2). Future work will focus on665

improving the efficiency of the PDE solver used to integrate the moment equations.666

The current solver was designed for a general positive ansatz and enforces positivity667

at the kinetic level—that is, at every point in the quadrature set Q. (Again, refer668

to the supplementary materials for details.) However, the simple polynomial form of669

the FP+
N approximation opens the possibility for a cheaper solver that still preserve670

positivity of the particle concentration and is also accurate and stable when the cross-671

section σ is very large, so that the particle transport becomes diffusive [25]. The672

current solver requires ∆t = ∆x = O(σ−1) for accuracy and stability. Furthermore,673

the final time of interest typically scales linearly with σ. See [2] and citations therein674

for more details.675
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Fig. 5.1: Heat maps – the particle concentration ρ = 〈f〉 of the solutions to the line
source benchmark for various methods.
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Fig. 5.2: Line-outs (along the x1-axis) – the particle concentration ρ = 〈f〉 of the
solutions to the line source benchmark for various methods.
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Fig. 5.3: The number of iterations needed to solve the optimization problem (3.5) for
FP+

11 at each cell on the x1-axis of the space and each time step.
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