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Abstract

The spherical harmonic equations for radiative transport are a linear, hyperbolic set of bal-
ance laws that describe the state of a system of particles as they advect through and collide with
a material medium. For regimes in which the collisionality of the system is light to moderate,
significant qualitative differences have been observed between solutions, based on whether the
angular approximation used to derive the equations occurs in a subspace of even or odd degree.
This difference can be traced back to the eigenstructure of the coefficient matrices in the advec-
tion operator of the hyperbolic system. In this paper, we use classical properties of the spherical
harmonics to examine this structure. In particular, we show how elements in the null space of
the coefficient matrices depend on the parity of the spherical harmonic approximation and we
relate these results to observed differences in even and odd expansions.

1 Introduction

The spherical harmonic equations are a set of linear, Hermitian hyperbolic balance laws that model
radiation transport through a material medium. For a purely scattering material (no absorption
and no sources) and an infinite medium, the time dependent version of these equations for the
vector-valued unknown u : R3 × R≥0 → Cn is{

∂tu(x, t) +
∑3

i=1Ai∂xiu(x, t) + σs(x)Qu(x, t) = 0 , (x, t) ∈ R3 × R>0

u(x, 0) = u0(x) , x ∈ R3
. (1)

Here the initial condition u0 is given; the matrices Ai are constant and Hermitian; Q is a constant
diagonal matrix with non-negative entries; and the non-negative coefficient σs(x) is the scattering
cross-section.

The kinetic interpretation (1) is straightforward. Let f : R3 × S2 × R≥0 → R≥0, where S2 is the
unit sphere in R3, be the solution of the linear kinetic equation{

∂tf(x,Ω, t) + Ω · ∇xf(x,Ω, t) + σs(x)Qf(x,Ω, t) = 0 , (x,Ω, t) ∈ R3 × S2 × R>0

f(x,Ω, 0) = f0(x,Ω) , (x,Ω) ∈ R3 × S2
. (2)

Here Q, which models particle scattering at the kinetic level, is an integral operator in Ω at each
(x, t); for any function h : S2 → R,

(Qh)(Ω) = h(Ω)−
∫
S2
g(Ω · Ω′)h(Ω′)dΩ′ , (3)
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where g is a bounded probability distribution on [−1, 1].

Let θ ∈ [0, π) and ϕ ∈ [0, 2π) be polar and azimuthal angles on the sphere so that, in Cartesian
coordinates, Ω = (Ω1,Ω2,Ω3) = (sin θ cosϕ, sin θ sinϕ, cos θ). For any integer ` ≥ 0, let Y` : S2 →
C2`+1 be a vector-valued function whose components are the 2`+ 1 spherical harmonics of degree
` (we abuse notation and let Y m

` (θ, ϕ) = Y m
` (Ω)):

Y k
` (θ, ϕ) =

√
(2`+ 1)

4π

(`− k)!

(`+ k)!
P k` (cos θ) eikϕ , |k| ≤ ` , (4)

where P k` is an associated Legendre function:

P k` (µ) =


(1− µ2)k/2d

kP`
dµk

(µ), k ≥ 0

(−1)k (`+k)!(`−k)!P
−k
` (µ), k < 0,

(5)

and P` : [−1, 1]→ R is the degree ` Legendre polynomial, normalized such that
∫ 1
−1 |P`|

2 = 2/(2`+
1).

Given a fixed positive integer N , set Y = [YT
0 , . . . ,Y

T
N ]T . Then Y : S2 → Cn, where n =

∑N
`=0 2`+

1 = (N + 1)2. The spherical harmonic approximation of f is given by

fN (x,Ω, t) := YH(Ω)u(x, t) =
N∑
`=0

YH
` (Ω)u`(x, t) =

N∑
`=0

∑
|k|≤`

Y k
` (Ω)uk` (x, t) , (6)

where u = 〈YfN 〉 satisfies (1), with Ai and Q given by

Ai =
〈
ΩiYYH

〉
and Q =

〈
Y(QYH)

〉
, (7)

where QYH is evaluated component by component, and we have adopted the shorthand nota-
tion 〈·〉 :=

∫
S2(·) dΩ. Here YH is the conjugate transpose of Y, and we have adopted for u

the natural indexing for the spherical harmonics, namely u = [uT0 , . . . ,u
T
N ]T , where for each `,

u` = [u−`` , . . . , u0` , . . . , u
`
`]
T . Because f is a real-valued function, the number of independent com-

ponents in u is only (N + 1)2. Indeed, since Y k
` = (−1)kY −k` , it follows that uk` := 〈Y k

` fN 〉 =

(−1)k〈Y −k` fN 〉 = (−1)ku−k` .

The matrices Ai can be computed using the following recursion relations to expand ΩiY in terms
of spherical harmonics [2]:

ΩY k
` = 1

2

 −c
k−1
`−1Y

k−1
`−1 + dk−1`+1Y

k−1
`+1 + ek+1

`−1Y
k+1
`−1 − f

k+1
`+1 Y

k+1
`+1

i
(
ck−1`−1Y

k−1
`−1 − d

k−1
`+1Y

k−1
`+1 + ek+1

`−1Y
k+1
`−1 − f

k+1
`+1 Y

k+1
`+1

)
2(ak`−1Y

k
`−1 + bk`+1Y

k
`+1)

 , (8)

where the nonzero recursion coefficients are known, see [2], and we set Y k
` ≡ 0 for ` < 0 and

|k| > `. The relations in (8) follow directly from well-known recursion formulas for the associated
Legendre functions; see, for example, [1]. The matrix Q, on the other hand, is found by expanding
g in Legendre polynomials and applying the additional formula for spherical harmonics. See, for
example [12, Appendix A].

We focus in this paper on the structure of the matrices Ai; the specific values of the matrix elements
will not be necessary. The values of the matrix elements in Q are also not necessary.
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2 Difference between N odd and N even

In practice, the spherical harmonic equations are rarely applied with even values of N . Most of
the discussion in the literature on this point refers to the reduced equations in a slab geometry. In
this case, many of the elements of u are identically zero, but the equations for the N + 1 nonzero
elements again form a hyperbolic balance law in one dimension with a single flux matrix A. (See
for example [14, Section 3.5], [12, Appendix D], [4, Section 8.4], [6, Chapter 10], or [11, Section
2.1].) The disadvantages of even N in slab geometry are noted, somewhat in passing, in [4,12,14].
To our knowledge, the most substantial (although somewhat dated) presentation, which includes
some of the discussion below, can be found in [6, Chapter 10].

For N odd, the eigenvalues of A appear in pairs that differ only by sign; for N even, they also
appear in signed pairs, except for a single zero eigenvalue. This zero eigenvalue means that for
steady-state equations in a void (σs = 0), the system has an infinite number of solutions and is
therefore not well-posed. In addition, the specification of well-posed boundary conditions is more
complicated: any strong-form prescription which treats both ends of the slab in the same way leads
to an even number of boundary conditions. Therefore, unless chosen very specifically, the boundary
conditions will be either under or over-specified. Finally, enforcing continuity of f across material
interfaces (discontinuities in σs) leads to unique interface conditions on the moments only for odd
N . For even N , an additional ad-hoc condition is required.

For the multidimensional case, we are aware of even less discussion in the literature. While the
results for the slab geometry case are still relevant, it turns out that each of the matrices Ai has
(multiple) zero eigenvalues for both N even and odd, making the steady-state equations in a void
ill-posed. A finite element version of the spherical harmonic equations can be formulated directly
from the original kinetic equation, imposing boundary conditions weakly. For σs > 0 it is possible
to define a bilinear form which leads to a well-posed problem for both N odd and even. See,
for example [7, 13]. However, when σs vanishes, the finite element formulation requires certain
properties between even and odd test spaces which are not satisfied by the spherical harmonic
formulation [8].

For low-order solutions (N small) with little scattering, the even and odd cases exhibit distinctly
different wave behavior, even for the whole-space problem (1) with no boundary conditions or
internal interfaces. We demonstrate these differences using the so-called linesource benchmark,
which was designed in [9] and has since been used to study the performance of various approximation
methods for (2) [3, 10]. The problem involves an initial particle source concentrated on an infinite
line in R3. The symmetry of the problem allows it to be formulated in a reduced two-dimensional
geometry. The initial source is represented mathematically by the initial condition

f0(x, y,Ω1,Ω2,Ω3) =
1

4π
δ(x, y) (9)

and σs = 0. Numerical results for several values of N are given in Figure 1.1 In all cases, we
observe wave-like behavior. However, only for even N do we see that a significant fraction of the
mass remains very near the origin.

A brief explanation for the differences observed in Figure 1 is given in [2, Section 2.2] based on
the eigenstructure of A1, A2, and A3. There, it is noted that for even N , there is an eigenvector

1To reduce spatial grid effects, we use a sharp Gaussian with a standard deviation of 0.03 to approximate the
initial condition.
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(a) Degree 3 approximation
(N = 3, n = 16)
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(b) Degree 4 approximation
(N = 4, n = 25)
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(c) Degree 7 approximation
(N = 7, n = 64)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0

4

8

12

16

20

24

(d) Degree 8 approximation
(N = 8, n = 81)

Figure 1: Shown in each figure is the spherical harmonic approximation of the particle density
〈f〉 at time t = 1, using initial condition (9) and several different values of N . For odd degree
approximations, all particles move away from the origin, while for even degree approximations, a
substantial amount of particles remain there.

with zero eigenvalue whose first component is nonzero. Because the first component is a multiple
of the particle density, this corresponds physically to a nontrivial number of stationary particles.
The goal of this paper is to provide a more in-depth analysis of this structure.

Theorem 1. For N odd, all eigenvectors of A3 (or A1, A2) associated with the eigenvalue 0 have
first component equal to zero. For N even, there is an eigenvector of A3 (or A1, A2) associated
with the eigenvalue 0 which has first component not equal to zero.

In the remainder of the paper, we prove Theorem 1 using classical results on spherical harmonics.
We also present a few generalizations and related results.
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3 Analysis of the eigenstructure

3.1 Preliminaries

Before presenting the main theorems, we prove two lemmas which will form the foundation for
the proofs of the main results. The first lemma allows us to use information gained about
A3 =

〈
Ω3YYH

〉
to be used for the matrices A1 =

〈
Ω1YYH

〉
and A2 =

〈
Ω2YYH

〉
.

Lemma 1. Given any ν, ν∗ ∈ S2, the matrices M := 〈(ν · Ω)YYH〉 and M∗ := 〈(ν∗ · Ω)YYH〉
have the same eigenvalues, while their eigenvectors differ by a unitary transformation; that is, if
Mv = λv, then M∗(Uv) = λ(Uv) for some unitary matrix U. Furthermore, the matrix U is block
diagonal with U = diag(U(0),U(1), . . . ,U(N)), where each block U(`) is a square matrix of length
2`+ 1.

Proof. Let Q be an orthogonal matrix such that ν∗ = Qν. The invariance of the measure dΩ under
orthogonal transformations implies that

M∗ = 〈(ν∗ · Ω)YYH〉 = 〈(ν · Ω)PPH〉 , (10)

where P(Ω) := Y(QΩ). Because the span of the components of Y` is invariant under orthogonal
transformations [5], we can write for each `, P` = U(`)Y`, where U(`) is a square matrix. Or-
thonormality of the spherical harmonics implies that U(`) = 〈P`Y

H
` 〉; thus each U(`) is unitary,

since
U(`)(U(`))H = U(`)〈Y`P

H
` 〉 = 〈U(`)Y`P

H
` 〉 = 〈P`P

H
` 〉 = Id. (11)

Now set U = diag(U(0),U(1), . . .U(N)). Because M and M∗ are conjugations of one another, i.e,

M∗ = 〈(ν · Ω)PPH〉 = 〈(ν · Ω)UYYHUH〉 = UMUH , (12)

their eigenvalues are the same. Furthermore if Mv = λv, then by (12),

M∗Uv = UMv = λUv. (13)

The following two properties are a direct consequence of Lemma 1.

Corollary 1. The matrices A1, A2, and A3 all have the same eigenvalues; moreover, the nonzero
eigenvalues come in pairs.

Proof. It is immediate from the Lemma that A1, A2, and A3 all have the same eigenvalues; one
need only choose ν and ν∗ to align with any two of the three Cartesian axes. Furthermore, if
Ai = 〈(ν ·Ω)YYH〉, then −Ai = 〈(ν∗ ·Ω)YYH〉 with ν∗ = −ν. Hence, Ai and −Ai have the same
set of eigenvalues, meaning the nonzero eigenvalues of Ai must come in pairs.
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Corollary 2. If (λ,v) is an eigenpair of A3, then there exist unitary matrices U1 and U2 such
that (λ,U1v) is an eigenpair of A1 and (λ,U2v) is an eigenpair of A2. Furthermore, because of the
block diagonal structures of U1 and U2, v00 = 0 if and only if (U1v)00 = 0 if and only if (U2v)00 = 0.

As mentioned above, the utility of Lemma 1 is that the study of the eigenstructure in the spherical
harmonic equations can be reduced to an analysis of the spectrum of A3 only. The simplicity of
A3, when compared to A1 and A2, is due to the choice of coordinates for expressing the spherical
harmonics. Specifically, the form of the third recursion relation in (8) implies that A3 is diagonal
in the k index; that is,

[A3]
kk′
``′ = ck``′δ

kk′ , (14)

where

ck`,`′ =


bk1δ1,`′ , ` = 0 ,

ak`−1δ`−1,`′ + bk`+1δ`+1,`′ , 0 < ` < N ,

akN−1δN−1,`′ , ` = N .

(15)

Lemma 2. The eigenvalues of A3 are the roots of the polynomials ∂
(|j|)
µ PN+1 for |j| ≤ N . If λ is

a root of ∂
(|j|)
µ PN+1, then for any fixed ϕ, the vector v with components

vk` = Y j
` (cos−1(λ), ϕ)δjk, (16)

is an eigenvector associated with λ.

Remark 1. The choice of ϕ in (16) simply introduces a multiplicative constant.

Proof. Fix j and ϕ with |j| ≤ N , and let ∂
(|j|)
µ PN+1(λ) = 0. Then by the definition (4) of the

spherical harmonics
Y j
N+1(cos−1(λ), ϕ) = 0. (17)

From the third recursion relation in (8) and the subsequent decomposition of A3 in (14),

cos θY j
` (θ, ϕ) = aj`−1Y

j
`−1(θ, ϕ) + bj`+1Y

j
`+1(θ, ϕ)

=
∑
`′

[A3]
jj
``′Y

j
`′(θ, ϕ) + δ`Nb

j
N+1Y

j
N+1(θ, ϕ). (18)

Setting θ = cos−1(λ) in (18) gives, using (17),

λY j
` (cos−1(λ), ϕ) =

∑
`′

[A3]
jj
``′Y

j
`′(cos−1(λ), ϕ). (19)

Now let v be given by (16). A direct calculation gives

(A3v)k` =
∑
`′,k′

[A3]
kk′
``′ Y

j
`′(cos−1(λ), ϕ)δjk

′

=
∑
`′

[A3]
kk
``′Y

j
`′(cos−1(λ), ϕ)δjk = λY j

` (cos−1(λ), ϕ)δjk = λvk` , (20)

which shows that (λ,v) is an eigenpair.
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We now show that all the eigenvalues are generated in this way by the roots of ∂
(|j|)
µ PN+1. From the

general properties of Legendre polynomials [1], it is known that ∂
(|j|)
µ PN+1 has N + 1 − j distinct

roots. Moreover, it is clear from (16) that the eigenvectors associated to different j are orthogonal.

Hence, the roots of ∂
(|j|)
µ PN+1, |j| ≤ N , generate distinct eigenvectors. In total there are

N∑
j=−N

(N + 1− |j|) = (2N + 1)(N + 1)−N(N + 1) = (N + 1)2 (21)

distinct eigenpairs given by Lemma 2 which, since A3 : Rn → Rn, accounts for all the eigenpairs.

Remark 2. Let Aj
3 (j = −N, . . . , N) be the diagonal blocks of A3 with respect to the upper index

j:

[Aj
3]``′ = [A3]

jj′

``′ . (22)

Then (19) is the eigenvalue problem for Aj
3. Furthermore, if (λ,x) is eigenpair of Aj

3, then (λ,v),
where vk` = x`δ

jk, is an eigenpair of A3.

Corollary 3. A basis of the null space of A3 is given by {v(j) : j = −N,−N + 2, . . . , N − 2, N},
with components

[v(j)]k` = Y j
` (cos−1(0), ϕ)δjk. (23)

Proof. In Lemma 2, there is an eigenvector corresponding to the eigenvalue λ = 0 only for indices

j such that ∂
(|j|)
µ PN+1(0) = 0. This happens if and only if the polynomial is odd which, based on

basic properties of Legendre polynomials, happens if and only if N + 1− j is odd. Hence a basis is
given by vectors of the form (16) with j = −N,−N + 2, . . . , N − 2, N and λ = 0.

3.2 Main results

In this section, we establish Theorem 1 as stated in the introduction as well as other theorems on
the null spaces of A1, A2, and A3. All the theorems are specifically stated for A3, but in light
of Lemma 1 and corresponding corollaries, the theorems apply to A1 and A2 as well. We restate
Theorem 1 for convenience.

Theorem 1. For N odd, all eigenvectors of A3 (or A1, A2) associated with the eigenvalue 0 have
first component equal to zero. For N even, there is an eigenvector of A3 (or A1, A2) associated
with the eigenvalue 0 which has first component not equal to zero.

Proof. Suppose A3v = 0. Then v is a linear combination of basis elements in (23). The (0, 0)
component of each basis element is

[v(j)]00 = Y 0
0 (cos−1(0), ϕ)δj,0 , (24)

which is nonzero if and only if j = 0. According to Corollary 3, the basis does not include v(0), the
eigenvector corresponding to the index j = 0, when N is odd. Consequently, [v]00 = 0. However, if
N is even, then the basis does include v(0); in particular, v(0) verifies the second statement of the
theorem.
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Figure 2: A graphical depiction of v in the null space of A3 with N = 5 split into rows corresponding
to degree ` and columns corresponding to order k. Each grayed out entry must be zero. The circled
entries indicate possible nonzeros with lines connecting nonzero entries of the basis vectors in (23).

Theorem 2. The null space of A3 has dimension N + 1.

Proof. The dimension of the null space of A3 is the number of vectors in the basis (23) which is
N + 1.

Theorem 3. Suppose A3v = 0. If N is odd and either ` is even or k is even, then vk` = 0. If N
is even and either ` is odd or k is odd, then vk` = 0.

Proof. If N is odd, then the basis in Corollary 3 includes eigenvectors for which j is odd. Thus if
k is even (more generally if k 6= j), then [v(j)]k` = 0 for each j. When k = j and ` is even, then

` − j is odd and thus ∂
(|j|)
µ P`(0) = 0. This implies Y j

` (cos−1(0), ϕ) = 0 and hence [vj ]k` = 0. The
proof is similar for N even.

Figure 2 illustrates the conclusion of Theorem 3. The ` even cases correspond to the completely
grayed out rows and the k even cases correspond to the completely grayed out columns. At least
one circled entry in the bottom row (` = N) must be nonzero. Moreover, the recursion relation in
(18) (with cos θ = λ = 0), implies that if one circled entry is nonzero, then so too are all the circled
entries in the same column (i.e., with same index k).

Finally, we return to the original motivation of the paper. Recall that for N even, the spherical
harmonic method has a qualitative defect which can be interpreted physically as incorrectly pre-
dicting a large number of stationary particles in the system. As N increases, it is reasonable to
expect that this defect will be suppressed. The next theorem shows this to be the case.
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Theorem 4. If v is in the null space of A3 and ||v||2 = 1, then v00 ≤
(
N
2 + 1

)−1/2
.

Proof. Suppose A3v = 0. If N is odd, then by Theorem 1, there is nothing to prove since v00 = 0.
Suppose then that N is even. Setting cos θ = λ = 0 in (18) yields a0`−1v

0
`−1 + b0`+1v

0
`+1 = 0. Thus

because2 |b0`+1| < |a0`−1|, it follows that |v00| < |v02| < . . . < |v0N−2| < |v0N |. Therefore

1 ≡ ‖v‖22 ≥
(
v00
)2

+
(
v02
)2

+ . . .+
(
v0N
)2 ≥ (N

2
+ 1

)(
v00
)2
, (25)

and this gives the desired result.
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