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Abstract

The Bloch decomposition plays a fundamental role in the study of quantum me-

chanics and wave propagation in periodic media. Most of the homogenization theory

developed for the study of high frequency or semiclassical limit for these problems as-

sumes no crossing of the Bloch bands, resulting in classical Liouville equations in the

limit along each Bloch band.

In this article, we derive semiclassical models for the Schrödinger equation in peri-

odic media that take into account band crossing, which is important to describe quan-

tum transitions between Bloch bands. Our idea is still based on the Wigner transform

(on the Bloch eigenfunctions), but in taking the semiclassical approximation, we retain

the off-diagonal entries of the Wigner matrix, which cannot be ignored near the point

of band crossing. This results in coupled inhomogenious Liouville systems that can

suitably describe quantum tunnelling between bands that are not well-separated. We

also develop a domain decomposition method that couples these semiclassical models

with the classical Liouville equations (valid away from zones of band crossing) for a

multiscale computation. Solutions of these models are numerically compared with those

of the Schröding equation to justify the validity of these new models for band-crossings.
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1 Introduction

The linear Schrödinger equation with a periodic potential is an important model in solid

state physics. It describes the motion of electrons in a crystal with a lattice structure. We

consider the following one dimensional Schrödinger equation

iεφεt = −ε
2

2
φεxx +

(

V
(x

ε

)

+ U(x)
)

φε, t > 0, x ∈ R. (1.1)

Here, φε is the complex-valued wave function, ε is the dimensionless rescaled Planck con-

stant, V (x) is a periodic potential with the lattice L = 2πZ, so V (x + ν) = V (x) for any

x ∈ R and ν ∈ L. U(x) is a smooth external potential function. We denote the dual lattice

of L by L∗ and L∗ = Z. The fundamental domain of L is (0, 2π) and the first Brillouin zone

is B =
(

− 1
2 ,

1
2

)

.

In the semi-classical regime ε ≪ 1, the Schrödinger equation has a semi-classical limit

governed by the Liouville system [31], which was justified rigorously in [10, 21, 22]. It has

been shown that the electrons remain in a certain quantum subsystem, “move along them-th

band” and the dynamics is given by ẋ = ∂kEm(k), where Em is the energy corresponding to

the m-th Bloch band [2]. Higher order correction relevant to Berry phase can be included,

see [24, 25, 8]. All of these results use the adiabatic assunption, namely, different Bloch

bands are well-separated and there is no band-crossing.

The non-adiabatic or diabatic effect should be considered whenever the transitions be-

tween energy levels of the quantum system play an important role. This may happen

when the gap between the energy levels becomes small enough in comparison to the scaled

Planck constant ε. The well-known Landau-Zener formula [18, 32] describes the asymptotic

effect of avoided crossings in various specific situations. The study of such “qunatum tun-

nellings” is important in many applications, from quantum dynamics in chemical reaction

[30], semiconductors to Bose-Einstein condensation [3]. While in the case of band separa-

tion there have been significant mathematical progress in understanding the semiclassical

limit [1, 10, 22, 24, 25], as well as numerical methods that utilizes the Bloch decomposi-

tion [14], there has been little mathematical and computational works for the band-mixing

case. In the context of “surface hopping method”, associated with the Born-Oppenheimer

approximation, the Landau-Zener phenomenon has been studied computationally by Tully

etc. [30, 29, 26, 7] and mathematically [12, 9, 20, 19]. For a Liouville equation based

computational approach, see [16], and a quantum-classical model for surface hopping, see

[23, 13].
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In this paper, we use the Wigner-Bloch theory to derive semiclassical models for the

Schrödinger equation with periodic potentials (1.1) that account for band-crossing. With-

out band-crossing, the classical Liouville equation can be obtained along each Bloch band

[1, 10, 22], as ε → 0. This only includes the diagonal entries of the Wigner-Bloch matrix

(the Wigner transform of the Bloch functions) which is valid away from the crossing zone.

In our semiclassical models we include the leading order of the off-diagonal entries, result-

ing in system of complex, inhomogeneous Liouville equations. These systems contain terms

that describe for transitions between bands, as well as Berry phase information which is

related to the quantum Hall effect [28]. These systems are still hyperbolic, with oscillatory

forcing terms that converge (in the weak sense) to zero in the semiclassical limit away from

band-crossing zones so the classical Liouville equation can be recovered. Several numeri-

cal experiments using these models produce numerical solutions that adequately describe

the quantum transitions between bands, when compared with the solutions of the original

Schrödinger equation (1.1).

The computational cost of these semiclassical models, while considerably lower than that

of the original Schröginer equation, is higher than the adiabatic Liouville equations without

band-crossing. In order to further reduce the computational cost, a hybrid method that

couples the classical Liouville equation away from the crossing zone to the new semiclassical

models to be used in the crossing zones is introduced. A couple of other more efficient

computational approaches for linear periodic potentials, are also introduced in section 5.

This paper is organized as follows. In Section 2, we introduce the Wigner transform

and the Bloch eigenvalue problem that are the two tools to study the semiclassical limit

of the Schrödinger equation with periodic potentials. We also review the classical limit

without band-crossing which gives rise to the classical Liouville equation for each Bloch band.

In Section 3 we derive the new semi-classical Liouville systems that account for quantum

transitions between different bands. In Section 4 we introduce a domain-decomposition

based hybrid model that couples the classical Liouville systme away from the band crossing

zone to the new semiclassical models used in the crossing zones. Some numerical examples

are presented in Section 5 to validate these semiclassical models for quantum transions

between Bloch bands. More efficient numerical methods were introduced for simpler linear

potentials. Section 6 concludes this paper.
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2 The classical limit without band-crossing

2.1 The Wigner transform

Define the asymmetric Wigner transformation as in [1],

Wε(t, x, k) =

∫

R

dy

2π
eikyφε (t, x− εy) φ̄ε(t, x). (2.1)

where φ̄ε is the complex conjugate of φε, and φε is the solution to the Schrödinger equation

(1.1), then one obtains the Wigner equation:

∂Wε

∂t
+ k

∂Wε

∂x
+

iε

2

∂2Wε

∂x2
=

1

iε

∑

µ∈L∗

eiµx/εV̂ (µ) [Wε(x, k − µ)−Wε(x, k)] (2.2)

+
1

iε

∫

R

dω

2π
eiωxÛ(ω) [Wε(x, k − εω)−Wε(x, k)] ,

where Û(ω) is the Fourier transform of U(y):

Û(ω) =

∫

R

dy e−iωyU(y), ω ∈ R, (2.3)

and V̂ (µ) is the discrete Fourier coefficients of V (y):

V̂ (µ) =
1

2π

∫ 2π

0

dy e−iµyV (y), µ ∈ L∗. (2.4)

Here (0, 2π) is the fundamental domain of the lattice L.

Denote z = x
ε as the fast variable. To separate the dependence on both the slow and the

fast variables, one can write Wε(t, x, k) as Wε(t, x, z, k), and replace the spatial derivative

∂
∂x by ∂

∂x + 1
ε

∂
∂z . Then (2.2) becomes:

∂

∂t
Wε + k

(

∂

∂x
+

1

ε

∂

∂z

)

Wε +
iε

2

(

∂

∂x
+

1

ε

∂

∂z

)2

Wε

=
1

iε

∑

µ∈L∗

eiµx/εV̂ (µ) [Wε(x, k − µ)−Wε(x, k)] (2.5)

+
1

iε

∫

R

dω

2π
eiωxÛ(ω) [Wε(x, k − εω)−Wε(x, k)] .

Assume U(x) is smooth enough, one throws away high order terms, and (2.5) becomes:

∂Wε

∂t
+ k

∂Wε

∂x
− ∂U

∂x

∂Wε

∂k
+ i

∂2Wε

∂x∂z
= −1

ε
LWε, (2.6)

where the skew symmetric operator L is given by

Lf(z, k) = k
∂f

∂z
+

i

2

∂2f

∂z2
− 1

i

∑

µ∈L∗

eiµx/εV̂ (µ) [f(x, k − µ)− f(x, k)] .
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Asymptotically one expands Wε by:

Wε(t, x, k) =W0

(

t, x,
x

ε
, k
)

+ εW1

(

t, x,
x

ε
, k
)

+ · · · (2.7)

and plugs this ansatz into (2.5). In the order of O( 1ε ) and O(1) respectively, one gets:

LW0 = 0 , (2.8a)

∂W0

∂t
+ k

∂W0

∂x
− ∂U

∂x

∂W0

∂k
+ i

∂2W0

∂x∂z
= −LW1 . (2.8b)

This implies that W0 is in the kernel of L. We seek a good basis of kerL in section 2.2, and

leave the exact formulation of W0 to section 2.3.

2.2 The Bloch eigenvalue problem

The eigenfunctions of L are constructed by studying the following eigenvalue problem:

−1

2

∂2

∂z2
Ψ(z, p) + V (z)Ψ(z, p) = E(p)Ψ(z, p), (2.9a)

Ψ(z + ν, p) = eipνΨ(z, p), ∀ ν ∈ L, (2.9b)

∂Ψ

∂z
(z + ν, p) = eipν

∂Ψ

∂z
(z, p), ∀ ν ∈ L. (2.9c)

With each specific p, one constructs a boundary condition (2.9b,2.9c) and solves the

eigenvalue problem. Denote Em(p) as the m-th eigenvalue with multiplicity rm, and Ψα
m,

with α = 1, ..., rm, as the associated α-th eigenfunction. Ψm is usually called the m-th

Bloch eigenfunction [2]. For this problem, one can easily check the following properties:

(a) The eigenvalues Em(p) are L∗−periodic in p and have constant finite multiplicity

outside a closed zero-measure subset F of p ∈ R. Outside F , one orders the eigenvalues

as E1(p) < E2(p) < ... < Em(p) < ... with Em(p) → ∞ as m→ ∞, uniformly in p.

(b) For any p ∈
(

− 1
2 ,

1
2

)

, {Ψα
m(·, p)} forms a complete orthonormal basis in L2(0, 2π), i.e.

(Ψα
m,Ψ

β
n) :=

∫ 2π

0

dz

2π
Ψα

m(z, p)Ψ̄β
n(z, p) = δmnδαβ . (2.10)

(c) For all φ ∈ L2(R), one has the following Bloch decomposition:

φ(x) =

∞
∑

m

rm
∑

α=1

∫

B

cαm(p)Ψα
m(x, p) dp (2.11)

where cαm is the Bloch coefficient: cαm(p) =
∫

R
φ(x)Ψ̄α

m(x, p) dx.
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Define

Φα
m(z, p) = e−ipz Ψα

m(z, p), (2.12)

then Φα
m is a z−periodic function with period 2π. For any p ∈

(

− 1
2 ,

1
2

)

, {Φα
m(·, p)} forms a

complete orthonormal basis in L2(0, 2π).

For simplicity, throughout this paper we make the following assumption:

Assumption 1. The multiplicity for each eigenvalue Em is 1 outside F . We will drop the

superscript α when there is no ambiguity.

2.3 The classical limit without band-crossing

In this section, we review the classical limit without band-crossing [1]. For that, we need

the following assumption:

Assumption 2. The set F is a null set, i.e. eigenvalues are strictly apart from each other

everywhere in p, namely E1(p) < E2(p) < ... < Ej(p) < ... .

By taking the Wigner transformation on the Bloch eigenfunctions, one obtains a basis

on the phase space. Define the z−periodic functions Qmn(z, k) by:

Qmn(z, k) = Qmn(z, µk, pk) =

∫ 2π

0

dy

2π
eikyΨm(z − y, pk)Ψ̄n(z, pk), (2.13)

where k is an arbitrary real number and is decomposed as:

k = pk + µk, pk ∈ B, µk ∈ L∗. (2.14)

Lemma 2.1. Define the inner product 〈·, ·〉:

〈f, g〉 :=
∑

µ∈L∗

∫ 2π

0

dz

2π
f(z, µ)ḡ(z, µ), f, g ∈ L2

(

(0, 2π), ℓ2(L∗)
)

,

then for any p ∈ (−1/2, 1/2), {Qmn(·, ·, p)} forms a complete orthonormal basis in L2
(

(0, 2π)×
ℓ2(L∗)

)

.

Proof. The orthonormal condition

〈Qmn, Qjl〉 = δmj δnl, (2.15)

can be proved by simply using (2.10). To prove the completeness, it is sufficient to show

that: if there exists an f ∈ L2
(

(0, 2π) × ℓ2(L∗)
)

, such that 〈f,Qmn〉 = 0 for all m,n ∈ N,

then f(z, µ) ≡ 0. Assume 〈f,Qmn〉 = 0 for all m,n ∈ N. By the definition of Qmn,

∑

µ

∫ 2π

0

∫ 2π

0

dydz

(2π)2
f(z, µ)eiµyΦm(z − y, p)Φ̄n(z, p) = 0, ∀m,n ∈ N.
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Since {Φn(·, p)} forms a complete orthonormal basis in L2(0, 2π), the above equality implies

that
∑

µ

∫ 2π

0

dy

2π
f(z, µ)eiµyΦm(z − y, p) = 0, ∀m ∈ N,

thus
∑

µ

f(z, µ)eiµy ≡ 0,

which implies that f(z, µ) ≡ 0.

A straightforward computation gives:

LQmn(z, k) = LQmn(z, µ, p) = i(Em(p)− En(p))Qmn(z, µ, p) . (2.16)

Apparently, under Assumptions 1 and 2, (2.16) gives:

kerL = span{Qmm,m = 1, 2, · · · }. (2.17)

Therefore, from (2.8a) W0 has the form

W0(t, x, z, k) =
∑

m

σmm(t, x, p)Qmm(z, µ, p), (2.18)

with σmm representing the expansion coefficients. To derive the equation for them, one

plugs it back into (2.8b), and takes the inner product with Qmm on both sides, the right

hand side vanishes due to the skew symmetry of L and (2.16):

〈−LW1, Qmm〉 = 〈−W1,LQmm〉 = 0. (2.19)

The left hand side, on the other hand, gives:

〈∂tW0 + k∂xW0 − ∂xU∂kW0 + i∂xzW0, Qmm〉

=
∑

n

∂tσnn 〈Qnn, Qmm〉+
∑

nn

∂xσnn 〈kQnn, Qmm〉

−∂xU
(

∑

n

∂pσnn 〈Qnn, Qmm〉+
∑

nn

σm 〈∂pQnn, Qmm〉
)

= ∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm . (2.20)

Thus one can combine (2.19) and (2.20), and obtain:

∂tσmm + ∂pEm∂xσmm − ∂xU∂pσmm = 0. (2.21)
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In the derivation of (2.20), the following equalities were used :

〈kQmn, Qjl〉 = − i

2

(

δnl (∂zΨm,Ψj) + δmj (∂zΨl,Ψn)
)

, (2.22a)

〈∂pQmn, Qjl〉 = δnl (∂pΦm,Φj) + δmj (Φl, ∂pΦn) , (2.22b)

〈∂zQmn, Qjl〉 = δnl (∂zΨm,Ψj) − δmj (∂zΨl,Ψn) , (2.22c)

∂pEmδmj + (∂pΦm , Φj) (Em − Ej) = −i (∂zΨm , Ψj) , (2.22d)

(∂pΦm,Φm) + (Φm, ∂pΦm) = 0. (2.22e)

The details can also be found in [1].

Notice that 2.21 is the classical Liouville equation for each Bloch band.

Remark 2.1. Similar results were rigorously proved in [22, 10].

3 Asymptotic models for the band-to-band transition

This section is for the case when Assumption 2 is not satisfied. Physically, ε is small but

nonzero, and electrons can tunnel across bands for all p. But this tunneling is negligible when

bands are far away from each other, the so-called adiabatic assumption. This is the basis

for the asymptotically expansion (2.18), which throws away the dependence on the band-

transition terms Qmn(m 6= n) of W0. However, if there exists m0 6= n0 and a point pc, such

that |Em0
(pc)− En0

(pc)| ∼ O(ε), then LQm0n0
∼ O(ε), so the asymptotic expansion (2.8)

does not hold any more. When this happens, physically one observes significant tunneling

effect. We seek asymptotic models to handle the band-to-band transition in this section.

3.1 The derivation of a two-band semi-classical Liouville system

using the asymmetric Wigner transform

In order to handle the band-to-band transition phenomena, we come back to the asymp-

totic model (2.6) and use the following expression (compare with (2.18)!):

Wε =
∑

m

σmmQmm +
∑

m 6=n

σmnQmn. (3.1)

Without loss of generality, we tackle a two-band problem. Define pc = argminp{|E1 − E2|}
and assume |E1(pc)− E2(pc)| = O(ε) and pc = 0.

Plugging (3.1) into (2.6) and taking the inner product with Qmn as mentioned in Sec.

2.3, one gets a system for σmn’s:
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∂σ11
∂t

+
∂E1

∂p

∂σ11
∂x

+
1

i

(

∂Ψ1

∂z
, Ψ2

)

∂σ12
∂x

− ∂U

∂x

∂σ11
∂p

=
∂U

∂x

[(

∂Φ2

∂p
, Φ1

)

σ21 +

(

Φ1 ,
∂Φ2

∂p

)

σ12

]

,

∂σ22
∂t

+
∂E2

∂p

∂σ22
∂x

+
1

i

(

∂Ψ2

∂z
, Ψ1

)

∂σ21
∂x

− ∂U

∂x

∂σ22
∂p

=
∂U

∂x

[(

∂Φ1

∂p
, Φ2

)

σ12 +

(

Φ2 ,
∂Φ1

∂p

)

σ21

]

,

∂σ12
∂t

+
∂E2

∂p

∂σ12
∂x

+
1

i

(

∂Ψ2

∂z
, Ψ1

)

∂σ11
∂x

− ∂U

∂x

∂σ12
∂p

+ i
E1 − E2

ε
σ12

=
∂U

∂x

[(

Φ2 ,
∂Φ1

∂p

)

σ11 +

(

∂Φ2

∂p
, Φ1

)

σ22 +

(

Φ2 ,
∂Φ2

∂p

)

σ12 +

(

∂Φ1

∂p
, Φ1

)

σ12

]

,

∂σ21
∂t

+
∂E1

∂p

∂σ21
∂x

+
1

i

(

∂Ψ1

∂z
, Ψ2

)

∂σ22
∂x

− ∂U

∂x

∂σ21
∂p

+ i
E2 − E1

ε
σ21

=
∂U

∂x

[(

Φ1 ,
∂Φ2

∂p

)

σ22 +

(

∂Φ1

∂p
, Φ2

)

σ11 +

(

Φ1 ,
∂Φ1

∂p

)

σ21 +

(

∂Φ2

∂p
, Φ2

)

σ21

]

.

This system can be written in vector form as:

∂tσ +A∂xσ +B∂pσ = −BCσ +
iD

ε
σ (3.2a)

where

σ = ( σ11 σ12 σ21 σ22 )T (3.2b)

B = −∂xU I , D = diag ( 0, E2 − E1, E1 − E2, 0 ) (3.2c)

A =

















∂pE1 ψ12 0 0

ψ21 ∂pE2 0 0

0 0 ∂pE1 ψ12

0 0 ψ21 ∂pE2

















, (3.2d)

C =

















0 −φ12 φ21 0

−φ21 φ11 − φ22 0 φ21

φ12 0 φ22 − φ11 −φ12
0 φ12 −φ21 0

















, (3.2e)

ψmn = −i (∂zΨm,Ψn) , and φmn = (∂pΦm,Φn) , (3.2f)
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Where the superscript T denotes the matrix transpose, I is the identity matrix. Generally,

ψ12 = ψ̄21, φ12 = −φ̄21 are complex-valued quantities, and φ11, φ22 are purely imaginary, so

A = A† is Hermitian, and C = −C† is anti-Hermitian (where the superscript † denotes the

matrix conjugate transpose). Note that ∂xUφmm is the so-called Berry-phase [4, 25, 28].

It can be shown the system (3.2) is a hyperbolic system (see the details in Appendix

A). Since the source matrix C = −C†, all of its eigenvalues are purely imaginary. Thus

this system has unique bounded solution if the initial data are bounded [6] uniformly in

varepsilon.

For later convenience, we call the semi-classical Liouville system (3.2) Liouville-A system,

and this is the system that will be discussed and numerically solved in the paper.

One also needs to equip it with appropriate initial condition. Choose the initial data of

the Schrödinger equation as two wave packets along the two Bloch bands in the following

form [4, 14]:

φI = a1(x) Φ1

(x

ε
, ∂xS0(x)

)

eiS0(x)/ε + a2(x) Φ2

(x

ε
, ∂xS0(x)

)

eiS0(x)/ε. (3.3)

Then, the initial data of the Wigner function, for ε≪ 1, has the approximation:

WI(x, z, k) ∼ |a1(x)|2W11(z, k) + |a2(x)|2W22(z, k)

+a1(x)a2(x)
(

W12(z, k) +W21(z, k)
)

, (3.4)

with

Wmn(z, k) =

∫

R

dy

2π
eikyΦm(z − y, ∂xS0(x− εy))Φ̄n(z, ∂xS0(x))e

i(S0(x−εy)−S0(x))/ε.

Using Taylor expansion on S0(x− εy)− S0(x) and Φm(z − y, ∂xS0(x− εy)), one gets

Wmn(z, k) =

∫

R

dy

2π
ei(k−∂xS0(x))yΦm(z − y, ∂xS0(x))Φ̄n(z, ∂xS0(x)) +O(ε),

then by ignoring the O(ε) term, and using the periodicity of Φm(z, p) on z, one can change

the integral into a summation of integrals from 0 to 2π:

Wmn(z, k) =
∑

ν∈L

∫ 2π

0

dy

2π
ei(k−∂xS0(x))(y+ν)Φm(z − y, ∂xS0(x))Φ̄n(z, ∂xS0(x)).

Applying the equality
∑

ν∈L

eikν =
∑

µ∈L∗

δ(k + µ),
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one gets

Wmn(z, k) =
∑

µ∈L∗

δ(k + µ− ∂xS0)

∫ 2π

0

dy

2π
ei(k−∂xS0)yΦm(z − y, ∂xS0)Φ̄n(z, ∂xS0)

=
∑

µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, ∂xS0)Ψ̄n(z, ∂xS0)

=
∑

µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, pk + µ)Ψ̄n(z, pk + µ)

=
∑

µ∈L∗

δ(pk + µ− ∂xS0)

∫ 2π

0

dy

2π
eikyΨm(z − y, pk)Ψ̄n(z, pk)

=
∑

µ∈L∗

δ
(

pk + µ− ∂xS0

)

Qmn(z, µk, pk). (3.5)

In the above derivation, from the second line to the third line, we use the fact that

∫

δ(p− p0)f(p0)g(p) dp = f(p0)g(p0) =

∫

δ(p− p0)f(p)g(p) dp

to replace the argument ∂xS0 to pk + µ.

Without loss of generality, we assume that ∂xS0 ∈ (−1/2, 1/2), then (3.5) becomes

Wmn(z, k) = δ
(

pk − ∂xS0

)

Qmn(z, µk, pk). (3.6)

Compare (3.6) with (3.4), one has the initial data for σ:

σ(0, x, p) = δ (p− ∂xS0(x))
(

a21 a1a2 a1a2 a22

)T

. (3.7)

3.2 The semi-classical Liouville system using the symmetric Wigner

transform

All the analysis above is done in the framework of the asymmetric Wigner transform

(2.1). One could also use the symmetric Wigner transform:

W s
ε (t, x, k) =

∫

R

dy

2π
eikyφε

(

t, x− εy

2

)

φ̄ε
(

t, x+
εy

2

)

. (3.8)

The derivation is similar, thus we skip the details, and give a list of the results:

1. The Wigner equation corresponding (2.2) is

∂W s
ε

∂t
+ k

∂W s
ε

∂x
=

1

iε

∑

µ∈L∗

eiµx/εV̂ (µ)
[

W s
ε

(

x, k − µ

2

)

−W s
ε

(

x, k +
µ

2

)]

(3.9)

+
1

iε

∫

R

dω

2π
eiωxÛ(ω)

[

W s
ε

(

x, k − εω

2

)

−W s
ε

(

x, k +
εω

2

)]

.
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2. Corresponding to the asymptotic Wigner equation for asymmetrical transformation

(2.6), one has:
∂W s

ε

∂t
+ k

∂W s
ε

∂x
− ∂U

∂x

∂W s
ε

∂k
= −1

ε
LsW s

ε , (3.10)

where the skew symmetric operator Ls is given by

Lsf(z, k) = k
∂f

∂z
− 1

i

∑

µ∈L∗

eiµx/εV̂ (µ) [f(x, k − µ/2)− f(x, k + µ/2)] .

3. Corresponding to (2.8), one has the O( 1ε ) and O(1) expansions:

LsW s
0 = 0, (3.11a)

∂W s
0

∂t
+ k

∂W s
0

∂x
− ∂U

∂x

∂W s
0

∂k
= −LsW s

1 . (3.11b)

4. Same as in (2.13), one has the following symmetrical definition for Qmm

Qs
mn(z, k) = Qs

mn(z, µ, p) =

∫ 2π

0

dy

2π
ei(p+µ)yΨm

(

z − y

2
, p
)

Ψ̄n

(

z +
y

2
, p
)

. (3.12)

They are eigenfunctions of Ls

LsQs
mn = i(Em − En)Q

s
mn . (3.13)

5. If the eigenvalues {En} are well separated, i.e. Em 6= En, for m 6= n, the solution to

(3.11a) is:

W s
0 =

∑

m

σs
mmQ

s
mm. (3.14)

By taking the inner product with Qs
mm on both sides of (3.11b), one obtains the same

classical Liouville equations for σs
mm as in (2.21)

∂tσ
s
mm + ∂pEm∂xσ

s
mm − ∂xU∂pσ

s
mm = 0. (3.15)

6. If some bands touch at point pc, the solution to (3.10) is given by:

W s
ε =

∑

m

σmmQ
s
mm +

∑

m 6=n

σmnQ
s
mn. (3.16)

In the two-band case, m,n = 1, 2, then σs
mn is governed by,

∂tσ
s +As∂xσ

s +Bs∂pσ
s = −BsCsσs +

iDs

ε
σs, (3.17)
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where σs = (σs
11 σ

s
12 σ

s
21 σ

s
22 )

T , then Bs = B, Cs = C and Ds = D are the same as

the asymmetric case, while As is given by

As =

















∂pE1
1
2ψ12

1
2ψ21 0

1
2ψ21 ∂p

E1+E2

2 0 1
2ψ21

1
2ψ12 0 ∂p

E1+E2

2
1
2ψ12

0 1
2ψ12

1
2ψ21 ∂pE2

















and ψmn, φmn are given by (3.2f). Noted that As = (As)†.

We call this new system obtained by the symmetric Wigner transform (3.17) the Liouville-

S system. Apparently the only difference from Liouville-A lies in the transport matrices

A 6= As. But they share the same weak limit as ε → 0 (see Appendix B for detail). This

formally suggests the similar behavior of σ11, σ22 and σs
11, σ

s
22, which is confirmed by

numerical results in Section 5.1.

4 A multiscale domain decomposition method

4.1 Asymptotic behavior of the two-band semi-classical Liouville

systems

Away from pc, E1 and E2 are well-separated, and the i
ε terms for the transition coef-

ficients σ12 and σ21 in Liouville-A/S lead to high oscillations, thus as ε → 0, the system

formally goes to its weak limit: the classical one (2.21).

For ε > 0, around pc, however, both σ12 and σ21 become significant, and the band-to-

band transition is no longer negligible.

In fact, based on the distance to the crossing point pc, one could obtain some asymptotic

properties of the transition coefficients σmn(m 6= n).

Assume that the initial data for the transition coefficients are all zero, and that Ux does

not change sign in time for all x, take −Ux > 0 for example, then:

Case 1. If p ≪ −C0
√
ε for C0 = O(1), then σ12 and σ21 are of o(

√
ε);

Case 2. If −C0
√
ε < p < C0

√
ε, then σ12 and σ21 are of O(

√
ε), and σ12 and σ21 are slowly

varying, i.e. ∂tσ12 ≪ O
(

1
ε

)

, and ∂tσ21 ≪ O
(

1
ε

)

;

Case 3. If p ≫ C0
√
ε, σ12 and σ21 are highly oscillatory with mean 0.
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We leave the justification for a simpler model problem to Appendix B.

Remark 4.1. The assumption σmn(t = 0) = 0 (m 6= n) is a reasonable assumption. In

fact, given arbitrary initial condition, one could check that away from pc, the weak limit

of σmn is always zero, as ε → 0, as can be seen in Appendix B. So numerically we treat

the initial data for both σ12 and σ21 zero, given the initial velocity ∂xS0(x) away from the

crossing point, i.e.

σ(0, x, p) ≈ δ (p− ∂xS0(x))
(

a21 0 0 a22

)T

, if ∂xS0(x) 6= pc. (4.1)

This assumption is intuitive and empirical, but it does give us some convenience in solving

the Liouville-A/S numerically. In fact, the numerical examples provided in Section 5 indeed

show that the band-to-band transition is captured very well with initial data (4.1).

4.2 A domain decomposition method

Clearly, one has several observations in hand:

• the classical Liouville is an approximation (in weak limit) to Liouville-A away from

the crossing point;

• σ12 and σ21 are slowly varying in a neighborhood of pc = 0, with a small amplitude

before the characteristic hitting pc, and a rapid oscillation after that.

These observations motivate a domain decomposition method in p-space. The idea is, away

from pc, when the classical Liouville equation (2.21) is a good approximation, we solve this

set of equations, and then switch back to Liouville-A when the approximation breaks down

around pc (in the O(ε) neighborhood of pc). The gain is obvious: numerically it is much

easier and more efficient to solve the classical one, thus this approach saves a great amount of

computational cost than solving Liouville-A everywhere. Based on the asymptotic properties

of the transition coefficients, we propose the following:

Given a fixed spatial point x, the sign of −Ux determines the traveling direction of wave

in p. Assume −Ux > 0, i.e. the wave we study is right-going:

Classical regions: p < −C0
√
ε and p > C0

√
ε: In this region, coarse mesh independent

on ε is used to solve the classical Liouville system (2.21), and σ12 and σ21 are set to

be zero.
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Semi-classical region: p ∈ B\{Classical region}: Solve Liouville-A. The incoming bound-

ary conditions for σ12 and σ21 are set to be zero, and the incoming boundary condition

for σ11 and σ22 are the inflow boundary condition. A fine mesh is used with ∆x and

∆t much less than
√
ε.

In case of −Ux < 0, and the wave if left-going, boundary condition can be set up in the

same way.

Remark 4.2. Our analysis is based on the regularity of the coefficient matrix C in Liouville-

A. But usually, the value of C’s element can be of O(1/δ) where δ = minp |E1(p) − E2(p)|
is the minimal band gap. So C will be large if the minimal band gap δ is small, and the

numerical discretization in the semi-classical region should resolve this small parameter δ.

In the interested regime ε ∼ δ2, o(
√
ε) mesh is enough.

5 Numerical examples

In this section we solve the Liouville-A and Liouville-S numerically. Firstly in Section

5.1, we present a numerical method for the equation with a linear external potential U(x).

In this special case, we provide an efficient solver without using the domain decomposition

method. In Section 5.2, the domain decomposition method is applied for general U(x).

For both examples, we use the Mathieu model, i.e. the periodic potential is V (z) = cos z.

The first eight Bloch eigenvalues are shown in Figure 5.1. Apparently, some eigenvalues get
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Figure 5.1: The eigenvalues of the Mathieu Model, V (x) = cosx.

very close to each other around p = 0, ±0.5.

16



We will focus on the 4th and 5th bands1. Denote Ψ1 and Ψ2 as the Bloch functions

corresponding to the 4th and 5th bands respectively.

For comparison, we will compare the numerical results to the ones given by the original

Schrödinger equation, computed through the methods given in [14] with mesh size and time

step much smaller than ε.

5.1 Linear U(x)

We deal with the linear external potential in this section:

U(x) = U0 − βx.

Then the Schrödinger equation is:

iεφεt = −ε
2

2
φεxx +

[

cos
(x

ε

)

+ (U0 − βx)
]

φε, (5.1)

with the initial data given as a wave packet along the 4th band:

φI = a0(x) Φ1

(x

ε
, ∂xS0(x)

)

eiS0(x)/ε, with S0(x) = p∗x. (5.2)

Correspondingly, the Liouville-A becomes:

∂tσ + β∂pσ = Rσ, (5.3a)

σ(0, x, p) = σI(x, p) = |a0(x)|2δ (p− ∂xS0(x))
(

1 0 0 0
)T

, (5.3b)

with R given by:

R = −βC +
iD

ε
−A∂x. (5.4)

One encounters two computational challenges here. Firstly, one needs to numerically resolve

the rapid oscillation. We will present an efficient way to overcome this difficulty by following

the characteristics in Section 5.1.1. Secondly, the initial data contains a delta function.

Usually one uses a Gaussian function with small variance to approximate it, and the error

is related to this variance. As will be discussed in Section 5.1.2, in some special cases, this

can be avoided by using the singularity decomposition idea of [15].

Remark 5.1. Here we only discuss Liouville-A. Liouville-S can be computed similarly.

1The minimum gap between the 4th and 5th bands is 0.0247, located at p = 0. The gap is considered

small enough so that the quantum effect can be seen for the ε being used.
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5.1.1 A Fourier transform based integration method

Let the Fourier transform of f(t, x, p) with respect to x be

f̂(t, η, p) =

∫

R

e−iηxf(t, x, p)dx.

Taking this transform on Liouville-A (5.3a), one gets:

∂tσ̂ + β ∂pσ̂ =

(

−βC +
iD

ε
− iηA

)

σ̂ =: R̂σ̂ (5.5)

In this special case, β is a constant so the characteristic line can be obtained analytically.

and consequently one can avoid using the mesh thus removes the difficulty due to the high

oscillation introduced by the term iD
ε , as will be clear in the following. We take the first

time step t ∈ [0,∆t] for example. Along the characteristic line p(t) = p0 + βt, one evaluate

σ̂ and R̂ at (t, p(t), η) and has:
dσ̂

dt
= R̂ σ̂. (5.6)

Solution to this ODE system satisfies

σ̂11(t) = σ̂11(0)−
∫ t

0
iη ∂pE1 σ̂11(t)dt+

∫ t

0

(

β(φ12σ̂12 − φ21σ̂21)− iη ψ12σ̂12
)

dt , (5.7a)

σ̂12(t) = e
∫

t

0
Kε(τ)dτ σ̂12(0) +

∫ t

0
e
∫

t

s
Kε(τ)dτ

(

G(s)σ̂11(s)−H(s)σ̂22(s)
)

ds , (5.7b)

where:

Kε =
i

ε
(E2 − E1)− iη ∂pE2 − β(φ11 − φ22), G = −βφ̄12 − iηψ21, H = βφ̄12.

For t small. an approximation to (5.7) is

σ̂11(t) ≈ σ̂11(0)− iηt∂pE1

(

p(t)
)

σ̂11(t)

+
(

βφ12(0)− iηψ12(0)
)

∫ t

0

σ̂12dt− βφ21(0)

∫ t

0

σ̂21dt , (5.8a)

σ̂12(t) ≈ σ̂12(0)e
∫

t

0
Kε(τ)dτ

+
(

G(0)σ̂11(0)−H(0)σ̂22(0)
)

∫ t

0

e
∫

t

s
Kε(τ)dτds . (5.8b)

Plug (5.8b) into (5.8a), to evaluate σ̂11(∆t) and σ̂12(∆t), one needs to compute:

F0 := e
∫

t

0
Kε(τ)dτ , F1 :=

∫ ∆t

0

e
∫

t

0
Kε(τ)dτ dt, and F2 :=

∫ ∆t

0

∫ t

0

e
∫

t

s
Kε(τ)dτ ds dt.

(5.9)

However, to compute F0, F1 and F2 is not easy since their integrands are highly oscillatory.

But if one chooses |β|∆t = ∆p, then at each time step one follows exactly the characteristics,
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so p(t) always lie on the grid points, thus F0, F1 and F2 are time independent, and one only

needs to compute them once (with a highly resolved calculation). Similar analysis can be

carried out for σ̂21 and σ̂22.

We prove the stability of this method by using it on a simpler model problem, and it

will be justified in Appendix C.

5.1.2 A singularity decomposition idea

To handle the delta function in the initial condition (5.3b), one usually approximates it

with a Gaussian function with small variance, and numerical error was determined by the

width of the Gaussian. As stated before, in some special cases, this error could be avoided,

and the example we are discussing here is for when ∂xS0(x) ≡ p∗ = const, for which, we

apply the singularity decomposition method introduced in [15] to reduce the error. Write

the ansatz of σ̂mn(t, x, p) as:

σ(t, x, p) = ω(t, x, p) δ
(

θ(t, p)
)

(5.10)

in which:

• θ(t, p) = p− (p∗ + βt), which solves the Liouville equation

∂tθ + β ∂pθ = 0 ,

• ω satisfies the same equation as σ:

∂tω + β ∂pω = Rω . (5.11)

These can be proved by simple derivations. Formally, one has

∂σ

∂t
=

∂

∂t

(

ω δ(θ)
)

=
∂ω

∂t
δ(θ) + ω δ′(θ)

∂θ

∂t

= Rω δ(θ)− β
∂ω

∂p
δ(θ)− βω δ′(θ)

= Rω δ(θ)− β
∂ω

∂p
δ(θ)− βω δ′(θ)

∂θ

∂p

= Rω δ(θ)− β
∂

∂p

(

ω δ(θ)
)

= Rσ − β
∂σ

∂p
.

The equalities above should be understood in the distributional sense. The decomposition

(5.10) enables one to solve for ω and θ separately with good (bounded) initial data |a0(x)|2
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and ∂xS0(x) respectively. The equation ω satisfies is the same as the one for σ, thus the

numerical method introduced in Section 5.1.1 can be used. In the final output, one needs to

get back to σ using (5.10), so a discrete delta approximation is only needed at the output

time, not during time evolution.

5.1.3 Numerical experiments

We show the numerical results of the Liouville-A/S with the following data

β = 1, p∗ = −0.25, a0(x) = exp

(

−25(x− π)2

2

)

. (5.12)

We compute the density, the cumulative density function (c.d.f.) and mass in the 1st

band, defined respectively by:

ρε = |φε|2, γε =

∫ x

−∞

ρε(y)dy, m1(t) =

∫

|P1φ
ε(t, x)|2dx , (5.13)

where Pn is the projection onto the nth band:

Pnφ(x) =

∫

B

dp

∫

R

dyφ(y)Ψ̄n(y, p)Ψn(x, p), φ ∈ L2(R), m ∈ N .

The two integrals in (5.13) are calculated by the midpoint quadrature rule numerically.

Figure 5.2 shows the density and c.d.f. computed for the Schrödinger equation, the

Liouville-A and the Liouville-S respectively at t = 0.5. The results match quite well.

Figure 5.3 shows the evolution of m1 as a function of time t. One can see the total mass

on the first band jumps down at around t = 0.25, when the momentum p reaches pc = 0,

reflecting the 4th-to-5th band transition. The experiment also shows that smaller ε gives

smaller transition rate. Note that some small oscillations occur around the crossing region.

They are related to the interference phenomena, and are usually called the Stueckelberg

oscillation [5, 27, 29].

Define L1 error in the cumulative distribution function (c.d.f.) [11, 17]:

Errε(t) =

∫

R

∣

∣

∣

∣

∫ x

−∞

(

ρεS(t, z)− ρεL(t, z)
)

dz

∣

∣

∣

∣

dx, (5.14)

where ρεS and ρεL denote the density calculated by the Schrödinger equation and the Liouville

system respectively. Numerically we compute (5.14) using the midpoint quadrature rule.

Figure 5.4 shows this at time t = 0.5. As ε → 0, the Liouville system gets more accurate,

and the error decreases with the speed of O(ε).
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Figure 5.2: The example in Sec. 5.1.3, t = 0.5. The left and right column are for the position

density ρε, and c.d.f. γε respectively. The solid line, the dash line and the dotted line are

the numerical solutions to the Schrödinger, the Liouville-A and the Liouville-S respectively.
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Figure 5.3: The example in Sec. 5.1.3 : time evolution of m1(t) defined in (5.13).
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Figure 5.4: The example in Sec. 5.1.3 : Errε as function of ε at t = 0.5.

5.2 A domain decomposition computation

This section shows examples with varying Ux. For this general case, the p-characteristic

is no longer a straight line, and the fast solver in the previous section is no longer valid.

To numerically solve Liouville-A, we use the domain decomposition method. The classical

finite volume method is used for the convection terms.

We compute the Liouville-A system with both a pure and a mixed state initial data with:

U(x) = −x− sinx

2
.

5.2.1 A pure state initial data

In this example, we use the same pure state initial data as in the previous example

(5.2),(5.12). Correspondingly, the initial data for the Liouville-A system is given by (5.3b).

Numerically a Gaussian function centered at p∗ with variance of ε/16 is used to approximate

the δ−function.

Figures 5.5 and 5.6 show the density, the c.d.f at t = 0.5 and evolution of m1 (5.13)

computed for both the Schrödinger equation and the Liouville-A system. The numerical

results for the two systems agree well. Figure 5.7 gives decay of Errε (5.14). The numerical

results show that the hybrid model can capture the band-to-band transition phenomena,
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Figure 5.5: The example in Sec. 5.2.1. t = 0.5. The left and right columns show the position

density ρε, and the c.d.f. γε respectively.

24



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t

m
1

 

 

Schrödinger
Liouville-A

(a) ε = 2−8

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

t

m
1

 

 

Schrödinger
Liouville-A

(b) ε = 2−9
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(d) ε = 2−11

Figure 5.6: The example in Sec. 5.2.1: time evolution of m1(t) defined in (5.13).
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Figure 5.7: The numerical example in Sec. 5.2.1: the L1 error Errε between Liouville-A

and the Schrödinger solution at t = 0.5.

and the error decays like O(ε).

Remark 5.2. As Ux varies with x, the wave packet becomes decoherent. This weakens

the interference phenomenon [5, 27, 29]. As one can see in Figure 5.6, the Stueckelberg

oscillations around the crossing region is much weaker than those in the previous example.

5.2.2 A mixed state initial data.

This example is for the case when the initial data is a mixed state:

φI = a0(x)
[

Φ1

(x

ε
, p∗
)

eip
∗x/ε +Φ2

(x

ε
, p∗
)

eip
∗x/ε

]

, p∗ = −0.25.

Correspondingly, the initial data for the semi-classical Liouville system should be:

σ = a20(x) δ(p− p∗) [1, 1, 1, 1]
T
.

Since p∗ is away from the crossing point and σ12 and σ21 weakly converge to zero as ε→ 0,

numerically, we regard them as zero and use

σ ≈ a20(x) δG(p− p∗) [1, 0, 0, 1]
T

as the initial condition, where δG(p) is a Gaussian function centered at zero.
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The density and the c.d.f. are computed for the Liouville-A and the Schrödinger, com-

pared in Figure 5.8. Errε as a function of ε is shown in Figure 5.9.

6 Conclusion

In this paper we derive semiclassical models for the linear Schrödinger equation with

periodic potentials. These models take into account the band corssing, which is important to

describe quantum transitions between different Bloch bands. Away from the band-crossing

zones these models reduce (in the sense of weak limit) to the classical Liouville system for

each Bloch band. We also couple these semiclassical models (to be used near the corssing

zones) and the classical Liouville equation (used away from the crossing zones) for an efficient

multiscale computation. Our numerical experiments show that these semiclassical models

provide correct quantum transitions near the crossing zones when compared with the direct

simulation of the original Schrödinger equation.
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Figure 5.8: The example in Sec. 5.2.2: at time t = 0.5. The left and the right columns show

the position density ρε, and the c.d.f. γε respectively.
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Figure 5.9: The numerical example in Sec. 5.2.2: the L1 error Errε as a function of ε at

t = 0.5.

Appendices

A Hyperbolicity of the two-band semi-classical Liou-

ville systems

The semi-classical Liouville system (Liouville-A) is

∂tσ +A∂xσ − Ux∂pσ = Sσ (A.1)

where

S = C +
iD

ε
,

and σ, A, C, D are defined in (3.2). Noted that A = A† and S = −S†. To check the

hyperbolicity, we separate the real and imaginary parts.

σ = Reσ + i Imσ,

A = ReA+ i ImA,

S = ReS + i ImS,
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with ReF and ImF denoting the real part and imaginary part of F respectively. Then one

can get




Reσ

Imσ





t

+





ReA −ImA

ImA ReA









Reσ

Imσ





x

+Ux





Reσ

Imσ





p

=





ReS −ImS

ImS ReS









Reσ

Imσ





(A.2)

Since A = A†, then ReA = ReAT , ImA = −ImAT . Thus have that the matrix




ReA −ImA

ImA ReA





is a symmetric matrix, which implies the hyperbolicity of the system.

In addition, since S = −S†, then ReS = −ReST , ImS = ImST . Therefore the matrix




ReS −ImS

ImS ReS





is a skew-symmetric matrix.

Similarly, one can obtain the hyperbolicity of system Liouvill-S (3.17).

B Some basic analysis of the semi-classical Liouville sys-

tems

To understand the asymptotic behavior of the solution to the Liouville-A system (3.2),

as mentioned in Section 4.1, we look at a simpler model system:






















∂tg + ∂xf + b(x)∂pg = 0 ,

∂tf + a(p)∂xf + ∂xg + b(x)∂pf = i
εc(p)f ,

g(0, x, p) = gI(x, p), f(0, x, p) = fI(x, p).

(B.1)

The initial conditions gI and fI are bounded smooth functions independent on ε, b > 0 and

the set of zeros for c(p): Sc = {p : c(p) = 0} is measured zero. It is easy to check that (B.1)

is a linear hyperbolic system, and the solutions g and f are bounded uniformly in ε [6].

B.1 Weak convergence

We consider the weak limit of the solution of (B.1) in this subsection. To do this, we

introduce the inner product 〈 ·, · 〉 as

〈u, v 〉 =
∫ ∞

0

∫

R2

u(t, x, p)v̄(t, x, p) dx dpdt.
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Choose an arbitrary test function h ∈ C∞
0 (R+ × R

2), take the inner product on both side

of (B.1) w.r.t h, one gets











〈 ∂tg, h 〉 − 〈 f, ∂xh 〉+ 〈 b∂pg, h 〉 = 0 ,

〈 f, ∂th 〉+ 〈 af, ∂xh 〉+ 〈 g, ∂xh 〉+ 〈 bf, ∂ph 〉 = − i
ε 〈 cf, h 〉 .

(B.2)

The derivatives in the equation of (B.2) are acted on the smooth function h, and the left

side is bounded. One gets

〈 cf, h 〉 → 0 as ε→ 0 for all h ∈ C∞
0 (R+ × R

2).

Given that c is almost surely nonzero, and f is bounded, one gets

f ⇀ 0 weakly.

Combined with the first equation in (B.2), one gets

∂tg + b(x)∂pg ⇀ 0 weakly.

B.2 Strong convergence: for constant b

In these two subsections, we formally prove that before getting close to the crossing

region, c(p) is assumed to be bigger than a constant c0 that is unrelated to ε. In this region,

f is constantly small and controlled by O(ε). This subsection is for the case when the speed

on p direction is a constant: b(x) = β. Along the p-characteristic line p(t) = p0 + βt, one

applies the Fourier transform to the x-variable, and gets:

d

dt
f = iR(t)f , (B.3)

where f(t, η) = ( ĝ(t, η, p(t)), f̂(t, η, p(t)) )T and

R(t) =





0 −η
−η c(p(t))/ε− ηa(p(t))



 .

The two eigenvalues of R(t) are both real, and thus the system above has a bounded solution

satisfying

|ĝ(t, η)|2 + |f̂(t, η)|2 = |ĝI(η)|2 + |f̂I(η)|2.

The equivalence between norms gives:

|ĝ(t, η)|+ |f̂(t, η)| < C(|ĝI(η)|+ |f̂I(η)|). (B.4)
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Adopt it into the solution to (B.3), one gets

|∂tg(t, x)| =
1

2π

∣

∣

∣

∣

∫

R

ηf̂(t, η)eiηxdη

∣

∣

∣

∣

≤ 1

2π

∫

R

|η| |f̂(t, η)|dη ≤ C

∫

R

|η|
(

|ĝI(η)|+ |f̂I(η)|
)

dη

∣

∣∂2txg(t, x)
∣

∣ =
1

2π

∣

∣

∣

∣

∫

R

η2f̂(t, η)eiηxdη

∣

∣

∣

∣

≤ 1

2π

∫

R

|η|2 |f̂(t, η)|dη ≤ C

∫

R

|η|2
(

|ĝI(η)|+ |f̂I(η)|
)

dη

If the initial conditions ĝI and f̂I are smooth enough, and decay fast as η → ∞, one could

easily get that ∂tg(t, x) and ∂
2
txg(t, x) are both bounded in time independent of ε, and thus

g and ∂xg are slowly varying in time.

Remark B.1. In the derivation above, we dropped the p(t)-dependence in the functions for

simplicity. The partial derivative in the t-variable ∂t should be understood as taking along

the p-characteristic line p(t), i.e. ∂tg(t, x) = ∂tg(t, x, p) + β∂pg(t, x, p).

Assume that fI(x) ≡ 0, one follows the characteristics of x(t) by solving ẋ(t) = a(t, x)

and gets:

f
(

t, x(t), p(t)
)

= −
∫ t

0

exp

(

i

ε

∫ t

t−s

c (p(τ)) dτ

)

∂g

∂x

(

t− s, x(t− s), p(t− s)
)

ds .

By the assumption, before hitting the crossing region, c(p(τ)) > c0 > 0, then the stationary

phase argument suggests that, given slowly varying ∂xg(t, x, p(t)), f = O(ε).

The observations from the above two subsections suggest that f ⇀ 0, and before getting

close to the crossing region, f is as small as of O(ε). Based on these arguments, for the

Liouville-A system (3.2), and propose the following conjecture: if σ12 and σ21 are initially

zero, then:

Case 1. If p ≪ −√
ε, then σ12 and σ21 are of o(

√
ε);

Case 2. If p ∈ [−√
ε,
√
ε], then σ12 and σ21 are of O(

√
ε), and slowly varying;

Case 3. If p ≫ √
ε, σ12 and σ21 are highly oscillatory, and converge to 0 weakly.

C The integration method of a simple model system

In this section, we apply the method in (5.8) onto a simple model to show stability.

d

dt
f(t, p0 + t) = R(p0 + t) f(t, p0 + t),

where f(t, p) = (g(t, p), f(t, p))T , p = p0 + t, and

R(p) =





r11(p) r12(p)

−r̄12(p) rε22(p)



 .

32



with rε22(p) = r22(p) +
i
εc(p), while r11 and r22 are purely imaginary, and c(p) real and

positive. r11, r22 and r12 are independent on ε.

Set up mesh as tj = j∆t, and pi = − 1
2 +(i−1)∆p, with ∆p and ∆t being the mesh size.

Denote gji and f ji as the numerical result at (tj , pi), then (5.8) gives

f(t, p(t)) = f ji e
∫

t

0
rε22(p

i+τ)dτ − gji r̄12(p
i)

∫ t

0

e
∫

t

s
rε22(p

i+τ)dτds, (C.1a)

g(t, p(t)) = gji + g(t, p(t)) r11(p(t)) + r12(p
i)

∫ t

0

f̃(tj + s, pi + s) ds (C.1b)

Plug (C.1a) into (C.1b), and evaluate them at (tj+1, pi+1), one obtains:

(

1− r11(p
i+1)∆t

)

gj+1
i+1 = gji

(

1− |r12(pi)|2
∫ ∆t

0

∫ t

0

e
∫

t

s
rε22(p

i+τ)dτds dt

)

+f ji r12(p
i)

∫ ∆t

0

e
∫

t

0
rε22(p

i+τ)dτdt . (C.2)

Written in vector form gives

f
j+1
i+1 = Mi f

j
i , (C.3)

with

Mi =





1−|r12(p
i)|2

∫ ∆t

0

∫
t

0
e
∫ t
s rε22(pi+τ)dτds dt

1−r11(pi+1)∆t

r12(p
i)

∫ ∆t

0
e
∫ t
0 rε22(pi+τ)dτdt

1−r11(pi+1)∆t

−r̄12(pi)
∫∆t

0
e
∫ ∆t

s
rε22(p

i+τ)dτds e
∫ ∆t

0
rε22(p

i+τ)dτ



 .

The following quantities in the matrix Mi should be evaluated very accurately:

F0 = e
∫ ∆t

0
rε22(p

i+τ)dτ , F1 =

∫ ∆t

0

e
∫

t

0
rε22(p

i+τ)dτdt, F2 =

∫ ∆t

0

∫ t

0

e
∫

t

s
rε22(p

i+τ)dτds dt.

Since rε22 is purely imaginary, F0 = O(1), F1 = O(∆t), F2 = O((∆t)2).

Remark C.1. These three quantities only depend on the mesh grid point index i but not

the time steps index j, thus they only need to be computed once at the beginning of the

computation.

Given ε ≪ ∆t, the integrands of F1 and F2 are highly oscillatory, and one can see that

|F1| ∼ O(ε) and |F2| ∼ O(ε2). Simple calculation shows that Mi can be written as

Mi = Ω M̃i,

with

Ω = diag

(

1

1− r11(pj+1)∆t
, 1

)

, M̃i =





1− |r12(pi)|2 F2 r12 F1

−r̄12 F̄1 F0



 .

With purely imaginary r11 and rε22, it is easy to prove that ‖Ω‖∞ ≤ 1, and ‖M̃i‖∞ ≤
(1 + O(∆t)), and thus ‖Mi‖∞ ≤ (1 + O(∆t)). This implies asymptotic stability of the

scheme (C.3) independent of ε→ 0.
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