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Abstract

We review some classical and more recent results on the mean field
limit and propagation of chaos for systems of many particles, leading
to Vlasov or macroscopic equations.
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1 Introduction

The focus of this article is on deterministic second order systems leading to
the kinetic Vlasov equation. In addition of presenting the results, we attempt
to show some proofs when possible. Due to the complexity of the question,
those sometimes had to be simplified leading to results less optimal than the
original one but hopefully keeping the main ideas.

The existing lecture notes on the subject have been very useful, in par-
ticular the classical book by Spohn [148], the more recent notes by Golse [73]
and the seminar by Hauray [85].

1.1 The ODE system and the mean field scaling

Consider N indistiguishable point particles, and denote by Xi ∈ Ω and Vi ∈
Rd the position and momentum of particle number i. The space domain

2



Ω may be the whole Rd, or the torus Πd. The case of a bounded, smooth
domain is trongly dependent on the boundary conditions but can sometimes
be handled in a similar manner with some adjustments.

In the classical case of Newton dynamics, Xi and Pi satisfy

Ẋi = v(Pi),

Ṗi = EN(Xi) = α
∑
j 6=i

F (Xi −Xj).
(1.1)

In the simplest case, the velocity is equal to the momentum v(P ) = P but
most of the results reviewed here are also valid in the more general case,
including for instance special relativity, v(P ) = P/

√
c2 + P 2. We only need

to assume that v(.) ∈ W 1,∞(Rd).
The most classical example of interaction kernel is the Poisson kernel, F =

C x/|x|d in Rd. This corresponds to particles under gravitational interaction
for C < 0 or electrostatic interactions (ions in a plasma) for C > 0. Other
Examples of interaction kernels are discussed in subsection 1.2.

The coefficient α includes the physical parameters of the particles. In
the most classical example of gravitational or electrostatic interactions, then
α = G/m (gravitational) or α = ε q2/m (electrostatic) with q the charge of
one particle and m its mass.

The system (1.1) is supplemented with initial conditions, chosen at t = 0
for simplicity

Xi(t = 0) = X0
i , i = 1 . . . N,

Pi(t = 0) = P 0
i , i = 1 . . . N.

(1.2)

The mean field scaling consists in assuming that α ∼ 1/N , that is in consid-
ering

Ẋi = v(Pi),

Ṗi = EN(Xi) =
1

N

∑
j 6=i

F (Xi −Xj).
(1.3)

At least in the case of classical mechanics with v(P ) = P , it is possible to
rescale (1.1) in position and time and therefore in velocity or momentum. By
choosing the scalings appropriately, it thus seems to be possible to reduce
(1.1) to (1.3).

3



However the rescaling changes the initial conditions in (1.2). Therefore
the rescaling in position and time should instead be chosen so that the initial
positions and velocities are of order 1.

In the specific case where F is homogeneous, F (λx) = λαF (x), one ob-
tains (1.1) with a coefficient α which incorporates both the physical param-
eters of each particles and the initial scales of the positions and velocities
but which has no reason to be of order 1/N . In this respect the mean field
scaling, and subsequently the mean field limits, are only a particular situa-
tion. Still in this homogeneous setting, it can be argued that it is the first
(or simplest) interesting scaling in the system: Formally, assuming F to be
of order 1, the interaction term α

∑
j 6=i F (Xi −Xj) is of order αN .

• If α << 1/N , the acceleration term in the second equation of (1.1)
is small and one expects that the momentum will mostly not change
in time, leading to a not very fascinating regime of free transport as
N →∞.

• If α >> 1/N , the acceleration term is very large and one expects
some sort of singular behavior; For example the momenta could become
very large, or the particles could be distributed along precise patterns
to create cancellations in α

∑
j 6=i F (Xi − Xj). The analysis is likely

complex and heavily dependent on the structure of the interaction.

• Only if α ∼ 1/N , in the mean field scaling, should the acceleration
term precisely be of order 1.

In the general case F is not homogeneous and may for instance have fast
decay at infinity (due to a background charge in electrostatic interactions
for instance). The discussion is even more complex as two dimensionless
parameters are now needed and one finds after rescaling

Ẋi = v(Pi),

Ṗi = EN(Xi) = α
∑
j 6=i

F (β (Xi −Xj)).
(1.4)

There are now several interesting scalings other than the mean field. The
most famous example is the Boltzmann-Grad limit as introduced in [77],
which consists in taking N βd−1 ∼ 1 and αβ ∼ 1. For a force kernel with
fast decay (integrable at infinity) β characterizes the range of the interaction,
so N βd−1 corresponds to the total cross-section.
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The Boltzmann-Grad limit and the derivation of the Boltzmann equation
are at least as important a physical question as the mean field limit. But
we will not review in details the results deriving the Boltzmann equation
here. The limit was obtained for hard-spheres and short times in [114] with
some gaps in the proofs. The proofs were partially completed in [98], [40],
(see also [28] and [146]). A full solution was however only given recently in
the seminal [64], still only for a short time but with possibly more complex
interactions of the type (1.4).

The derivation the Boltzmann equation is in many respects quite different
from the mean field approaches; the limiting equation is not time reversible
for instance. However many of the tools that are used for the mean field were
initially developed in the Boltzmann-Grad setting.

We will also review the mean field limit for first order systems

Ẋi = EN(Xi) = α
∑
j 6=i

F (Xi −Xj). (1.5)

with the corresponding initial data

Xi(t = 0) = X0
i , i = 1 . . . N. (1.6)

Through a rescaling in time, the system (1.5) becomes

Ẋi = EN(Xi) =
1

N

∑
j 6=i

F (Xi −Xj), (1.7)

which is the now familiar mean field scaling. In fact if F is homogeneous,
the mean field scaling is now the only natural one as it always possible to
scale (1.5) in (1.7) even if one also needs to rescale the initial data (1.6).

However in the general case of a non homogeneous F , if rescaling in space
is necessary, then one obtains as before the more complicated

Ẋi = EN(Xi) = α
∑
j 6=i

F ((Xi −Xj)/β). (1.8)

Just as for the second order models, various interesting scalings leading to
many different limits have been investigated. We only mention here as an
example the case where N−1/d << β << 1, α = β−d−1 and F = −∇V
is a short distance, repulsive potential: For instance, V ≥ 0, V̂ ≥ 0, and
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∫
(1 + |x|2)V dx <∞. In that case one formally expects to derive the porous

medium equation
∂tu = C ∆u2.

We refer to [52] for the introduction of this method and to [118] for a first
step in the analysis of the convergence.

There are many other interesting mean field limits or related questions
that we will not consider here. For instance

• Stochastic or Langevin models. For second order systems, propagation
of chaos was shown in [123] for Lipschitz kernels. The propagation of
chaos for the stochastic vortex system with independent noises was first
proved in the eighties [132], and recently generalized in [63]. We also
refer to [23].

• Quantum mechanics and the derivation of non linear Schrödinger equa-
tions (in particular Schrödinger-Poisson and Gross-Pitaevskii) from lin-
ear, N -particles Schrödinger; see for example [9], [8], [61], [62] and the
references therein.

• Mean Field games: Deterministic or stochastic systems coupled through
the optimization of an averaged utility; see for instance [81], [115].

• Swarming or consensus models with “auto-rescaling”. Instead of (1.5),
one considers for example

Ẋi = α

∑
j(Xi −Xj)φ(Xi −Xj)∑

j φ(Xi −Xj)
.

This is a time continuous variant, derived in [128], of the so-called
Krause model, [111], [89] (see also the review [158]). The interaction
is now automatically rescaled by the number of particles within range,
so Ẋi is always of order 1.

• The study of systems of particles over time scales which are longer
than the validity of the mean field limit. Note that those time scales
are yet unclear: The best current mathematical results predict that the
mean field limit for (1.3) should remain valid for times of order logN .
But this is conjectured to be very suboptimal, see [32, 33, 34] for an

6



extension to polynomial times in a simple setting. The approach in
physics revolves around tracking the fluctuations around the limit and
what is often called as the Lenard-Balescu equation, introduced in [117]
and [6]. We refer for example to [42], [112] for more recent advances on
this problem which is still not very well understood mathematically.

• Corrections to the mean field limit, in particular for high field or large
concentrations, c.f. the discussion about α >> 1/N after (1.4). This
has been in particular developed for so-called Ostwald ripening, for
example in [92, 93]. See also [15] in a numerical context for (1.5).

• Non linear transport equations with long range interactions. Those are
typically models with two scales combining a long range interaction
over distances of order 1 with strong repulsive effects at very short
distance. A good example is the so-called Hughes model (see [56] or
[150]).

From now on, we strictly focus on Systems (1.3) and (1.7). Note that the
discussion would remain valid for many extensions of those models: Adding a
simple velocity dependence in the momentum equation for instance (friction)
or considering multi-species models (electrons and ions for example).

1.2 Some examples of interaction kernels

There are many, many examples of interaction kernels in the literature, and
the purpose of this subsection is only to give a few classical ones together
with some typical order of magnitude for the number of particles N .

• The Poisson kernel. This is the oldest kernel dating back to Newton’s
theory of gravitation.

It is still widely in cosmology and astrophysics to study the formation
and evolution of galaxies, galaxy clusters since relativistic effects can often
be neglected at large scales. Each particle in this context is a star (or even
some larger structure). The number of particles in such physical systems
depends much on the case under consideration, from 1010 to 1020 − 1025;
some models of dark matter even predict up to 1060 particles. We refer to
[1] for example.

In the repulsive case, the Poisson kernel corresponds to electrostatic in-
teractions between particles. It is commonly used in plasma physics (often
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with several species or component), see for instance [18]. The number of
particles is usually around 1020 − 1025.

The Poisson kernel is also used in first order models, for example in the
context of chemotaxis (movement of bacteria or cells induced by a chemical
potential) and introduced in [105], [135]. In that case the force field EN
can be interpreted as the gradient of the concentration c(t, x) of a chemical
produced by each particle. Neglecting the size of the particles, c should
satisfy a simple diffusion equation

τ∂tc−∆c =
N∑
i=1

α δXi . (1.9)

If the diffusion is fast, τ << 1, then (1.9) can indeed be reduced to the
Poisson equation. Note in addition that most of the techniques developed
for the mean field limit could also be applied if the particles’ dynamics was
coupled through (1.9).

In general in applications to the Bio-sciences, the number of particles N
is lower, typically between 108 − 109 and at most 1015.

The Poisson kernel is unbounded, not smooth, anti-symmetric F (−x) =
−F (x). It is a critical case in many respects as F 6∈ BV but ∇F is bounded
on Lp as a convolution kernel.

• Point vortices. This consists in taking F = C x⊥/|x|2 in dimension
2. The first order model (1.7) then corresponds to the dynamics of point
vortices for the 2d incompressible Euler equations. In the strict framework
of (1.7), all points would have the same vorticity and instead in that case
the system is usually generalized to

Ẋi = EN(Xi) =
1

N

∑
j 6=i

ωi F (Xi −Xj), (1.10)

with the ωi fixed coefficients.
Because of its importance, both for numerical and theoretical purposes

in statistical physics, this case has been extensively studied on its own, [76],
[96], [75], [97], [144], [145] and [63]. For numerics, up to 109 − 1010 particles
can typically be used.

The singularity of the kernel is obviously the same as in the Poisson case.

• Polynomial potentials. Take F = −∇V with V (x) = A |x|a − B |x|b.
The potential has an attractive part −B |x|b and a repulsive one A |x|a. This
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is a common choice for many life science applications, in particular swarm-
ing and flocking: The collective motion of animals (birds, fishes) or other
living organisms, see for instance [47], [48], [153]. The interaction should be
repulsive at short range because individuals try to avoid collisions. But it is
attractive at long range in order to keep the flock together.

Note that the actual interaction between individuals is probably extremely
complex and unknown: Hence this simple choice of F , still capturing the main
features.

The number N of individuals can range up to 1012 for bacteria or cells
but can be much lower for animals, often too low for mean field limits to
really apply.

The regularity of the kernel of course depends on the choices a and b.

• “Pointy” kernels. The interaction kernel is a smooth function of |x|,
F = F̃ (|x|), or the gradient of one, F = −∇V with V = Ṽ (|x|). This
is somewhat comparable to the previous example and often used in similar
situations.

Because of the dependence on |x| (instead of |x|2 for instance), those force
kernels are not necessarily smooth. In fact, unless F (0) = 0, F̃ (|x|) is at most
Lipschitz even if F̃ ∈ C∞; hence the name “pointy”.

• Particles in a fluid. Each particle influences the others by modifying
a fluid surrounding them which in turn affects all the particles. This leads
to a whole range of models, varying in the complexity of the description
of the interaction or the fluid dynamics: Navier-Stokes, Stokes or Euler,
incompressible or sometimes compressible...

While in general the interaction is too complex to be exactly represented
by a system like (1.3) or (1.7), it can sometimes be well approximated by
such a reduced model for a large number N of particles.

For example, consider an incompressible Stokes flow with N rigid spheres.
The complete model involves solving the Stokes system out of the volume
occupied by the spheres, with a no-slip boundary condition on each sphere.
The solution to the fluid system gives the force applied on each sphere by
integrating the stress tensor on the surface of the sphere.

The interaction is in general extremely non linear and complex. However
with the right scaling as N becomes large, the force acting on particle i is in
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fact approximated by, in dimension 3

−λPi +
µ

N

∑
j 6=i

(
Id

|Xi −Xj|
− (Xi −Xj)⊗ (Xi −Xj)

|Xi −Xj|3

)
.Pj,

fitting with the description of (1.3). At those larger scales, the interaction
between particles has thus just become a sum of Stokeslet. The kernel F
now depends on Pj and is again non-smooth with a singularity like 1/|x|.
We refer to [100] for the formal derivation, to [55] for a rigorous justification
provided the particles are well distributed, and to [99] for a proof that the
dynamics itself keeps the particles well distributed if they were so initially.

There are many applications from sedimentation to aerosols and the num-
berN typically ranges from 1010 to 1015 or even 1020 for the smallest particles.

A similar question concerns self propelled particles in a fluid. It allows to
consider micro-organisms like bacteria who can “swim” in the fluid. Though
the modeling approach is roughly similar, the structure of the interactions
and of the final model is changed as the particles add energy to the system.
The Stokeslet are typically replaced by dipoles and the kernel F has a singu-
larity in 1/|x|2 in dimension 3. See [82, 51] for examples of such modeling.

• Kernels with cut-off. Many of the kernels important for applications
are singular, which poses problems both for the theory and for numerical
simulations. For numerical purposes an easy remedy is to regularize the
kernel. Thus instead of F , one considers FN with a regularization depending
on N .

There are of course several ways of achieving this, usually through the
choice of a small scale εN . For instance one can take FN(x) = F (x) if |x| ≥ εN
and some constant or smooth value for |x| ≥ εN . In the case of the Poisson
kernel, it is also possible to consider for example

FN(x) = C
x

(|x|2 + ε2
N)d/2

.

The delicate question is how to choose εN . Obviously the larger εN the
smoother FN will be, the better behaved is the system (less singularity when
particles are close) and the easier it will be to show the convergence of (1.3)
or (1.7). However one is not computing the real interaction and the smaller
εN is, the closer FN is to the real F and thus the better the approximation
to the actual system.
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Ideally one would be able to show regularity of the system (1.3) or (1.7)
even if εN = 0. Unfortunately the present theory is unable to handle εN = 0
for most realistic force kernels F in the case of second order systems like
(1.3). Note that the case of the first order (1.7) seems to be easier, see [37],
[63], [75], [76], [84], [96], [97], [144], [145]...

Consequently the necessary balance between accuracy (small εN) and
regularity (large εN) makes a difficult choice. The theory of convergence
could inform this choice and part of the analysis we review here tries to do
just that. However in practice, εN is usually chosen much lower than the
“safe” value suggested by the theory.

In many respects, a critical scale is εN ∼ N−1/d which is a sort of average
minimal distance between N particles in dimension d. It is for instance
the distance between two neighboring particles on a mesh. Heuristically
if εN << N−1/d then it should be rather unlikely that two particles are at
distance less than εN and the cut-off should not influence much the dynamics.
On the other hand if εN >> N−1/d, one would expect to see many particles
with a distance less than εN . Note that although this argument is reasonable,
a rigorous justification is out of reach, for the time being...

Unfortunately many of the mean field results for (1.3), require εN >>
N−1/d, even for particles initially on a mesh, see [66], Wollman [157] and
Batt [12]. If particles are not initially well distributed, the assumption on εN
is usually even worse as in [65].

• The “typical” structure of F . Let us summarize here which kind of
assumptions one can reasonably make on F .

First of all, F is often non smooth. If it is singular though, it is usually
singular only at x = 0 when two particles are very close. Therefore we assume
that

∃C > 0, ∀x ∈ Rd\{0}, |F (x)| ≤ C

|x|α
, |∇F (x)| ≤ C

|x|α+1
, (1.11)

for some α.
The behavior near x = 0 should be precised if a cut-off is used (see the

previous point). In that case we may assume that

i) F satisfies a (Sα)− condition for some α < d− 1,
ii) ∀ |x| ≥ N−m, FN(x) = F (x),
iii) ∀ |x| ≤ N−m, |FN(x)| ≤ Nmα.

(1.12)
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Note that these assumptions suggest that the singularity in the interaction is
similar for (1.3) and (1.7) but it is not so. Consider the interaction between
2 particles i and j in the space of their relative position Xi −Xj for (1.7) or
their relative position Xi −Xj and relative momentum Pi − Pj for (1.3). In
the case of (1.7), the singularity is a point, 0, of Rd. In the case of (1.3), the
singularity is a plane of dimension d of R2d, that is a much larger structure.

Finally note that in many, but not all, cases, F derives from a potential:
F = −∇V . In general though, F is odd, F (−x) = −F (x), as a consequence
of the law of action-reaction: The force applied on particle i from particle j
is the opposite of the force applied on particle j from particle i.

1.3 The limit: The Jeans-Vlasov equation

Formally the discrete system (1.3) is close to “continuous” model for large
number of particles N . This model involves the distribution density of parti-
cles over Ω×Rd, that is the distribution function f(t, x, v) in time, position
and velocity. The evolution of that function f(t, x, v) is given by the Jeans-
Vlasov equation (or collisionless Boltzmann equation)

∂tf + v(P ) · ∇xf + E(t, x) · ∇pf = 0 ,

E(t, x) =

∫
Rd
ρ(t, y)F (x− y) dy,

ρ(t, x) =

∫
Rd
f(t, x, p) dp,

(1.13)

where here ρ is the spatial density and the initial density f 0 is given.
This equation was derived in moments form and in the context of stellar

dynamics by Jeans in [102]. Under its present form, it was obtained by
Vlasov, [155] and [156] for the English translation, in the context of plasmas
and electrostatic interactions.

In the whole space in dimension d ≤ 3 and in the classical case v(P ) =
P , the well posedness of the Vlasov system is now well established, up to
singularity including the Poisson kernel F = C x/|x|d. Weak solutions were
obtained in [5], [60]; classical solutions for small initial data in [7]. The
conditions to obtain strong solutions were formalized in [94]. Global strong
solutions were finally obtained in [137], [143] (see also [95]) and at the same
time in [119], see [68] and [71] as well. Strong solutions requires an initial
data f 0 ∈ L1∩L∞(R2d) with compact support or enough moment in velocity
(see [120] for the best uniqueness condition).
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Strong solutions in a bounded domain Ω are more delicate. The periodic
case is handled in [134] with a new method completing [13]. The relativistic
case, v(P ) = P/

√
1 + P 2, is still open. The Vlasov-Maxwell system then

makes more sense (charged particles with relativistic speed create magnetic
fields), see [57], [72] in dimension 2; strong solutions are still an open problem
in dimension 3, we refer to [27] for the best result so far. The gravitational
relativistic case with the Einstein-Vlasov system is even more delicate, see
[4] for a positive result in the spherically symmetric case.

In dimension d ≥ 4, strong solutions to Vlasov-Poisson typically only
exist for short times (see again [94] for instance) and even weak solutions
may have blow-up in finite time in the gravitational case, see [116]. If the
force kernel is less singular then strong solutions may of course exist globally
in time; for example F ∼ 1/|x| in [87].

For first order systems (1.7), the formal limit is the macroscopic equation

∂tρ+ div(F ? ρ ρ) = 0, (1.14)

on the macroscopic density ρ(t, x). The well posedness theory strongly de-
pends on the structure of F . Without any particular assumptions, we refer
to [17] for a general Lp theory for aggregation equations, and to [16] for a
proof of blow-up for kernels F with singularity.

If F is a gradient, F = ∇V , then blow-up still occurs in general. However
gradient flow techniques can be used effectively even if F is singular but
typically assuming some type of convexity on V ; see [38] and [39].

The special case F = −x/|x|d corresponding to the Patlak [135], Keller-
Segel [105] model of chemotaxis has been extensively studied and we only
quote a small subset of the relevant references here. Generally speaking
blow-up may occur if the appropriate norms are above some critical value
(the mass in dimension 2): See for example [90], [101], [130], [133], [139].
Below the critical value, global solutions exist, see [44], [35], [136].

In the case when divF = 0 then Eq. (1.14) is in general well posed
globally in time, at least for weak solutions thanks to the propagation of
Lp bounds of ρ. The most important example is incompressible Euler in
dimension 2, F = C x⊥/|x|2. Measure-valued solutions with finite energy
exist globally in time, [54]. Uniqueness usually requires ρ0 ∈ L∞, [103], [160]
(see [138] for an extension to the critical Besov space). We also refer to [121],
[43].
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To summarize the discussion in this subsection, by possibly reducing the
time interval [0, T ] over which we are working, we may assume that

Proposition 1. Given f 0 ∈ L∞(Ω×Rd) and ρ0 ∈ L∞(Ω) both with compact
support, there exist a unique, compactly supported, f ∈ L∞([0, T ]×Ω×Rd)
and ρ ∈ L∞([0, T ]× Ω) solutions in the sense of distribution to respectively
(1.13) and (1.14).

1.4 The choice of the initial data

It is very delicate to choose the initial data for very large systems like (1.3)
or (1.7). The question is framed very differently when one solves the system
for numerical purposes or investigate the behavior of a large physical system.

When (1.3) or (1.7) is used, as particles’ method, in order to approximate
numerically the solution to (1.13) or (1.14), one is free to choose the initial
positions and velocities provided they yield a good approximation of the
initial data. One of the simplest and most common choice is to take the
particles on a regular mesh. Another possibility, sometimes used for particles
in a cell, is to choose randomly the positions and velocities of the prescribed
number of particles in the cell under consideration.

In essentially every case, the resulting distribution of the particles is regu-
lar. The method can be repeated giving for each choice of N . This produces
a sequence of initial data (X0,N

1 , P 0,N
1 , . . . , X0,N

N , P 0,N
N ) or (X0,N

1 , . . . , X0,N
N ),

indexed by the number of particles. For simplicity we denote by Z0,N
i the vec-

tor (X0,N
i , P 0,N

i ) or X0,N
i depending on whether (1.3) or (1.1) is considered.

The whole vector of initial data is denoted by Z0,N and we will use similarly
ZN
i (t) and ZN(t). The aim is to show that the corresponding sequence of

solutions ZN(t) to (1.3) or (1.1) converges in an appropriate sense to the
solution to (1.13) or (1.14). It is even better if good rates of convergence can
be obtained.

On the other hand, in any actual physical setting, one cannot choose the
initial data (or the number of particles). But experiments and observations
cannot provide accurate positions and velocities for 1010 or more particles;
they can at best give good statistical informations about the distribution of
particles.

The question in this case is usually formulated in terms of the joint law of
the initial positions denoted here by f 0

N(z1, . . . , zN). If the initial condition
is deterministic then f 0

N is simply a Dirac mass.
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For indistinguishable particles, it is natural to assume that the law is
invariant by permutation of the particles leading to the notion of exchange-
ability

Definition 1. A law with N component f 0
N(z1, . . . , zN) is exchangeable if for

any permutation σ, f 0
N(z) = fN(zσ) = fN(zσ(1), . . . , zσ(N)).

This is of course insufficient to characterize f 0
N . Instead a usual assump-

tion is that f 0
N is chaotic

Definition 2. A law fN is chaotic if f 0
N(z1, . . . , zN) = ΠN

i=1f
0
N,1(zi).

That means that the initial positions of each particle is randomly and
independently distributed with the 1 component law fN,1. This is in general
legitimate and can be justified in some cases.

In general the initial condition is itself the result of some dynamics. This
dynamics can correspond to a different model: In experimental settings for
instance, it is the result of whichever design lead to the experiment. But
it can also be the same model: In cosmology for example the initial data is
itself the result of the dynamics of particles (stars, galaxies) in gravitational
interaction.

Therefore it is reasonable to take as initial data the equilibrium measure or
a fluctuation around the equilibrium measure of a dynamical system, similar
but possibly different from (1.3) or (1.1); the question is now whether the
corresponding measure satisfies (2). In general this only occurs in some
asymptotic sense as N → ∞ but not exactly for any finite N , leading to
the notion of chaotic sequences of initial data as introduced in [104] (see also
[36, 88]

Definition 3. Let E be a measurable metric space (here E = Ω×Rd or E =
Ω), and f a probability measure on E. A sequence (fN)N∈N of exchangeable
probabilities on EN is said to be f -chaotic, if one of the following equivalent
properties holds:

i) for all k ∈ N, the k-marginals of fN , defined as

fN,k(t, z1, . . . , zk) =

∫
ΩN−k×Rd(N−k)

fN(t, z1, . . . , zN) dzk+1 . . . dzN ,

converges weakly towards f⊗k as N goes to infinity: fN,k ⇀ f⊗k,
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ii) the second marginal fN,2 converges weakly towards f⊗2: fN,2 ⇀ f⊗2.

The study of the chaoticity of equilibrium measures was performed in
[30, 31, 106, 107, 124, 108]. Quantitative estimates could even be obtained
in [140] for the Coulombian interaction.

1.5 The questions to solve

As a consequence of the previous discussion on initial data, there are different
ways of formulating the question of the convergence of (1.3)-(1.7) to (1.13)-
(1.14).

The mean field limit per se means showing the convergence for a specific,
deterministic sequence of initial data Z0,N . Of course the answer could de-
pend on the choice of the sequence as the convergence could hold for some
and not for others. In fact when F is singular, this is bound to happen as it
is easy to choose Z0,N s.t. (1.3) or (1.7) is ill posed (just have all particles
occupy the same initial position).

Therefore this mean field limit question can be reformulated as identifying
criteria on the sequence Z0,N s.t. the convergence holds.

For the propagation of chaos, one needs to prove that for random initial
data chosen according to Definitions 2 or 3, the (random) solutions to (1.3)
or (1.7) converge to (1.13) or (1.14) with probability 1 asymptotically as
N → ∞. Propagation of chaos has for consequence that the solution to
(1.3)-(1.7) has in fact vanishing random fluctuations around its mean, being
asymptotically close to the deterministic solutions to the PDE’s (1.13)-(1.14).

The two formulations are somewhat connected as for instance the propa-
gation of chaos implies the mean field limit for almost all initial data accord-
ing to the law determined by Definitions 2 or 3. Reciprocally the common
strategy to obtain the propagation of chaos consists in proving the mean field
limit for a large class of initial data; large enough so that initial conditions
chosen according to 2 or 3 belong to it with probability close to 1.

Nevertheless many interesting mean field results do not imply the propa-
gation of chaos: Showing the convergence for particles initially on a mesh is
important for numerical purposes but irrelevant from a propagation of chaos
point of view.

Apart from this discussion between mean field limit and propagation of
chaos, one can also distinguish between compactness methods where only
some abstract convergence is proved; and quantitative estimates explicitly
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bounding some distance between solutions to the ODE system and the limit.
The second type of results are of course much more useful and are the only
meaningful results in a non numerical context. The number N is then fixed
and determined by the problem so an abstract convergence as N increases
to ∞ does not imply much...

1.6 Why the mean field limit: The complexity of sys-
tems (1.3) or (1.1)

The complexity of large systems of ODE’s typically increases with the dimen-
sion: They become more and more costly to solve numerically, more sensitive
to changes in the initial data...

This would be a problem for systems like (1.3) and (1.7). The best direct
numerical methods to solve them are probably fast particles methods as in-
troduced in [78, 79] (see also [53] and [80] for particle-in-cell methods). They
can handle up to 1010 particles in the right conditions. This is remarkable
but still much lower than the 1025 particles that some applications would re-
quire. In addition as the initial data are often random as per the discussion
in 1.4, one would possibly require many realizations of the solution to (1.3)
or (1.7). However in practice, one notices that one realization of the system
with far fewer particles is usually enough.

Our main goal is precisely to justify this fundamental reduction in com-
plexity by proving that, with large probability, any realization of a solution
to (1.3) or (1.7) is close to the solution to (1.13) or (1.14).

Note that it can only be true in some statistical sense that (1.3)-(1.7)
depend only weakly on the number of particles or their exact initial positions.
Obviously the trajectory of a given fixed particle will strongly depend on the
starting point of the said particle. But the trajectory of most other particles
and the force field EN will not be much affected.

Second this reduction in complexity can only be true for some limited
time. The behavior in large times of (1.3) or (1.7) is in general very different
from the behavior of (1.13) or (1.14).

Limiting the discussion to the Hamiltonian case, (1.3) with F = −∇V ,
one expects the long time behavior of (1.3) to be described by some equilib-
rium measure, unique in the ergodic case. In particular this measure should
be the same for t → −∞ and t → +∞. The typical example is the Gibbs
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equilibrium
1

ZN
exp(−N HN), (1.15)

with N HN the total energy of the system.
However Eq. (1.13) usually has more possible equilibria. In addition even

though it is formally reversible in time, (1.13) exhibits some damping of the
solution to the equilibrium. This famous Landau damping, first surmised
in [113], was eventually proved in [129]. This phenomenon also occurs for
first order systems, like the 2D incompressible Euler as was recently shown
in [14].

The nature of the long time behavior of (1.13) is hence very different from
(1.3). It is further demonstrated by the fact that the limit of the solution to
(1.13) is different for t→ −∞ and t→ +∞.

2 Well posedness for a finite number of par-

ticles

This section presents some of the well posedness results available for systems
of ODE’s as (1.3)-(1.7) for a fixed number of particles with two goals

• Explain in what sense we may have solutions to (1.3) or (1.7) when
the interaction kernel F has some singularity. Global solutions would
be ideal but if one only obtains existence for a fixed time interval then
that time has to be bounded from below uniformly in N .

• Study how quantitative estimates, developed for well posedness, change
as N increases. Stability estimates which are independent of N would
be very useful for the mean field limit.

2.1 The Cauchy-Lipschitz theory

The Cauchy-Lipschitz theory provides the existence and uniqueness of a max-
imal solution to (1.3) or (1.7) if F ∈ W 1,∞

loc . If in addition F is bounded then
the solution is global in time.

Note however that if F increases too fast at ∞ or near ∂Ω, the solution
could diverge to ∞ or ∂Ω in finite time T and moreover that time T would
in general depend on N and the initial data, which is not satisfactory.

18



At the heart of the Cauchy-Lipschitz theory is the Gronwall estimate.
Assume from now on that F ∈ W 1,∞(Ω) globally (so in particular a global
solution exists). Consider two solutions (X,P ) and (Y,Q) to (1.3) with
X = (X1, . . . , XN), P = (P1, . . . , PN), and a similar notation for Y and Q.
In order to compare the two solutions, one needs a norm on RN d, typically
a p norm

‖U‖p =

(
1

N

∑
i

|Ui|p
)1/p

, (2.1)

which is normalized here with N .
Then since v(p) is Lipschitz

d

dt
‖X − Y ‖p ≤ ‖Ẋ − Ẏ ‖p = ‖v(P )− v(Q)‖p ≤ C ‖P −Q‖p.

And

d

dt
‖P −Q‖p ≤ ‖V̇ − Ẇ‖p

≤ 1

N

N∑
j=1

‖(F (X1 −Xj)− F (Y1 − Yj), . . . , F (XN −Xj)− F (YN − Yj))‖p

≤ 1

N

N∑
j=1

‖∇F‖L∞ ‖(|X1 − Y1|+ |Xj − Yj|, . . . , |XN − YN |+ |Xj − Yj|)‖p

≤ ‖∇F‖L∞ (‖X − Y ‖p + ‖X − Y ‖1) .

Since ‖U‖1 ≤ ‖U‖p, one deduces that

‖X − Y ‖p + ‖P −Q‖p ≤
(
‖X0 − Y 0‖p + ‖P 0 −Q0‖p

)
exp(t (1 + 2 ‖∇F‖L∞)).

(2.2)

This estimate provides well posedness for (1.3) but even more importantly
for our purpose it gives a quantitative stability estimate which is completely
independent of N . A similar control is available for (1.7).

Those estimates are at the heart of the first rigorous results on the mean
field limit in [29], [60], [131].
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2.2 The system (1.3) with repulsive potentials

The Cauchy-Lipschitz theory can be extended to some cases with singu-
lar interactions kernel F . Because of assumption (1.11), the singularity is
concentrated on the configurations with particles too close to one another:
lim inft→t0 |Xi −Xj| = 0 for some i 6= j at some time t0. If it is possible to
show that such singularity never occur then one obtains well posedness.

The classical example is the case with repulsive potential: F is odd,
F = −∇V with V ≥ 0 and

V (x) −→ +∞, as |x| → 0. (2.3)

In that situation, one uses the conservation of the total energy

HN(t) =
1

N

N∑
i=1

eK(Pi) +
1

2N2

N∑
i=1

∑
j 6=i

V (Xi −Xj) = HN(t = 0), (2.4)

with eK(P ) the kinetic energy of a particle with momentum P : eK(P ) =
|P |2/2 in the classical case, eK(P ) =

√
1 + |P |2 in the relativistic case and

in general ∇P eK(P ) = v(P ).
Denoting the minimal distance in physical space

dN,x(t) = min
i 6=j
|Xi −Xj|,

then (2.4) implies that

V (dN,X(t)) ≥ 2N2HN(t = 0).

The combination of (1.11) and (2.3) then guarantees that the interaction
remains smooth and that (1.3) is well posed for any initial data s.t. HN(t =
0) <∞.

A similar analysis may be performed for (1.7) depending on the exact
structure. For instance in the gradient flow case, F = −∇V then the poten-
tial energy

1

2N2

N∑
i=1

∑
j 6=i

V (Xi −Xj)

is dissipated, yielding the same control on dN,X(t).
Let us observe that while they give abstract well posedness for a fixed N ,

this type of techniques do not provide any reasonable quantitative stability
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estimates, contrary to the previous Lipschitz case. Take as an example the
Coulombian potential for (1.3). Then

V (x) ≥ 1

C |x|d−2
,

except in dimension d = 2 where the divergence is logarithmic. Therefore
this only implies

dN,X(t) ≥ (N2HN(t = 0))1/(d−2)

C
.

Assuming that HN(t = 0) ∼ 1, then

|∇F (Xi −Xj)| ≤
C

N2d/(d−2)
,

which combined with (2.2) yields

‖X − Y ‖p + ‖P −Q‖p ≤
(
‖X0 − Y 0‖p + ‖P 0 −Q0‖p

)
exp(C tN2d/(d−2)).

This estimate is not only useless for mean field limit, it is actually already
extremely bad for values of N that are not so large: In dimension 3, at time
t = 1/C, with only N = 10 particles, it would control the growth of the
difference between (X,P ) and (Y,Q) by a factor exp(106) ≥ 10105 which for
all practical purposes could just as well be +∞...

2.3 The Liouville equation

In the non repulsive but singular cases, it does not seem possible to avoid
collisions between particles from any initial configuration. In the oldest and
most classical example of two particles under gravitational interaction, a sin-
gularity will happen in finite time only if the relative position of the particles
and their relative velocities are parallel. Therefore even though a blow-up
may occur, it is only the case for a set of initial data of measure 0.

A natural idea would therefore be to obtain well posedness for almost
every initial configuration. This leads to the so-called Liouville equation
which gives the evolution in time of the law fN(t, x1, p1 . . . , xN , pN) of the
distribution of the particles

∂tfN +
N∑
i=1

v(pi) · ∇xifN +
N∑
i=1

1

N

∑
j 6=i

F (xi − xj) · ∇pifN = 0, (2.5)
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for (1.3) and

∂tfN +
N∑
i=1

1

N

∑
j 6=i

divxi (F (xi − xj) fN) = 0, (2.6)

for (1.7).
These equations were actually derived by J. W. Gibbs (see [69] and [70])

but are based on Liouville’s earlier observation that Hamiltonian systems
preserve volume.

For simplicity, we limit ourselves here to the case where divF = 0 if (1.7)
or (2.6) is considered. This can easily be extended to divF ∈ L∞ but the
situation can be very different in the other cases with possible concentrations
in finite time.

Eqs (2.5) and (2.6) have two straightforward a priori estimates, which are
essentially the preservation of volume noticed by Liouville

‖fN(t)‖L1 = ‖f 0
N‖L1 , ‖fN(t)‖L∞ = ‖f 0

N‖L∞ , (2.7)

yielding for instance if f 0
N satisfies Def. 2

‖fN(t)‖L1 = ‖f 0‖NL1 , ‖fN(t)‖L∞ = ‖f 0‖NL∞ . (2.8)

Assume f 0 ∈ L∞ (or at least f 0 ∈ L1 and not only a measure) and denote
by CN the configurations with singularity

(X,P ) = (X1, P1, . . . , XN , PN) ∈ CN iff Xi = Xj for some i 6= j.

Because, until the time of first collision, the dynamics is continuous in time,
it is enough to show that for almost all initial configurations and any rational
time t ∈ Q then (X(t), V (t)) 6∈ CN . As Q is countable, it would be enough
to show that CN is of negligible measure. Unfortunately CN is unbounded,
so if one defines for instance CN,ε by

(X,P ) = (X1, P1, . . . , XN , PN) ∈ CN,ε iff |Xi−Xj| ≤ ε for some i 6= j,

then |CN,ε| = +∞ because of possible unbounded positions or velocities. In
particular one does not have that |CN,ε| → 0 as ε→ 0.

The best that one may say in general is the following if-theorem
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Theorem 1. If for any compact K ⊂ ΩN × RdN , one has that∣∣{(X0, P 0) ∈ K | ∃t ∈ Q ∩ [0, 1] (X,P )|t ∈ CN,ε}
∣∣ −→ 0, as ε→ 0,

then the system (1.3) is well posed for almost every initial configuration.

Because Ẋi = v(Pi), the bound on the positions is mostly irrelevant and
what Theorem 1 implies is that one has to control the singularities where at
least one particle has a large momentum. We give some examples in the next
subsection but such a control is not easy in general even when the trajectories
are close to lines ([11]).

Note that a similar theorem may be obtained for (1.7), provided again
divF = 0. The conclusion is sometimes easier in that setting: If Ω is bounded
for instance then well posedness is automatic.

2.4 Well posedness in the attractive case with bounded
or logarithmic potential

We briefly present as an application of Theorem 1 the classical argument
about well posedness for (1.3) in the Hamiltonian case F = ∇V with V
bounded or weakly singular. For simplicity assume that we are in the classical
case v(P ) = P with periodic positions, Ω = Πd.

We again rely on the conservation of energy (2.4). In the case of V
bounded from below by some constant C this directly implies that all mo-
menta Pi are in a ball of diameter

√
N HN(0) +N C.

Therefore if (X,P ) are in a compact set of radius R then HN(0) ≤ C R
and for any fixed t∣∣{(X0, P 0) ∈ K | (X,P )|t ∈ CN,2 ε}

∣∣ ≤ C N2NdN/2RdN/2 εd.

Furthermore because the velocities are bounded, one does not need to con-
sider all t ∈ Q but only time steps of length ε/(C N R). Indeed if (X,P )|t ∈
CN,ε then (X,P )|s ∈ CN,2 ε for any |s− t| ≤ ε/(C N R)1/2. Finally∣∣{(X0, P 0) ∈ K | ∃t ∈ Q ∩ [0, 1] (X,P )|t ∈ CN,ε}

∣∣
≤ C N3+dN/2R1+dN/2 εd−1 −→ 0,

as ε→ 0. Note that this only works in dimension d ≥ 2 and it is indeed well
known that collisions between particles occur generically in dimension 1.
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The previous calculation can be extended to the case where |V (x)| ≤
C log |x|. Consider only those initial configurations (X0, P 0) which are not
in CN,ε. This excludes an initial set of measure less than N2 εd and we may
now assume that

H0
N ≤ C (R + | log ε|).

Following one trajectory, denote by t̄ the first time when (X,P ) ∈ CN,ε. Until
t̄, |Xi −Xj| ≥ ε for all i 6= j and therefore by (2.4)

|Pi|2 ≤ N (H0
N + C | log ε|) ≤ C N (R + | log ε|).

Denote tn = n ε/(C N (R + | log ε|)1/2 and choose n s.t. tn ≤ t̄ < tn+1. Then
at tn, (X,P ) has to be in CN,2 ε and therefore

{(X0, P 0) ∈ K | ∃t ∈ Q ∩ [0, 1] (X,P )|t ∈ CN,ε}

⊂
⋃
n

{(X,P )|tn ∈ CN,2 ε, |P (tn)| ≤ (C N (R + | log ε|)1/2}.

The conclusion is that

{(X0, P 0) ∈ K | ∃t ∈ Q ∩ [0, 1] (X,P )|t ∈ CN,ε}
≤ C N3+dN/2 (R + | log ε|)1+dN/2 εd−1,

which still converges to 0, thus proving the well posedness. Consequently
one has

Theorem 2. Assume that F = −∇V , that F satisfies (1.11) and that
|V (x)| ≤ C (1 + | log x|). Then for a.e. Z0 ∈ Πd × Rd, there exists a unique
solution to (1.3).

A similar result can be obtained if Ω = Rd, provided some appropriate
growth conditions at ∞ on V or F are assumed.

Let us observe that in the previous argument a polynomial blow-up of the
potential V would not work. Given Assumption 1.11, it would be natural to
assume in the attractive case that V ∼ −|x|1−α. However one then obtains
in the previous estimate a factor

(R + |ε|1−α)1+dN/2 εd−1

which blows up as ε → 0 whenever 1 − α < 0 just by choosing N large
enough.
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In particular while it applies to gravitational interaction in dimension
d = 2, the previous argument fails if d ≥ 3. It is rather surprising that a
global well posedness for almost all initial data is up to now only available for
N ≤ 4, see [141, 142], in the oldest and most classical example: Gravitational,
Newtonian interactions in dimension 3.

The discussion in that case resolves around the notion of collisional and
non collisional singularities. A singularity corresponds to our definition here:
At some t0 the distance between two particles vanishes, lim inft→t0 |Xi(t) −
Xj(t)| = 0 for some i 6= j. The singularity is called collisional if limt→t0 Xi(t)
exists for every i. As one can readily imagine, it is a simpler case to deal
with and it has been proved, see again [141], that collisional singularity occur
only for negligible sets of initial data.

The difficult lies in the non collisional singularities which are proved to
exist, see [159], and where at least one particle oscillates wildly, diverges to
∞ or both as t→ t0, .

2.5 Renormalized solutions

The theory of renormalized solutions is now the main tool to study trans-
port equations or dynamical systems with singular force terms. A thorough
presentation would carry us far from the main scope of those notes though.
In our specific case, it also turns out that renormalized solution are not nec-
essary because of Assumption (1.11) which explicitly identifies the set where
the interaction is singular. This simple (from a geometric point of view)
set of singular configurations enabled us to do most of the analysis of well
posedness in an elementary fashion.

However renormalized solutions allow to study the well posedness for more
complicated (geometrically) and hence more general interactions. Renormal-
ized solution are concerned with the Liouville equation (2.5)-(2.6). More
precisely a solution in the sense of distributions, fN ∈ L1 ∩ L∞, to (2.5) or
(2.6) (provided divF = 0) is renormalized iff for any smooth and bounded
β, β(fN) is also a solution in the sense of distributions to (2.5) or (2.6).

If all L1 ∩ L∞ solutions are renormalized then the equation itself is said
to have the renormalization property. This in particular implies that there
exists a unique solution in the sense of distributions for every initial data f 0

N .
The renormalization property implies the well posedness of the flow which

is a parameterized family X(t, Z0), P (t, Z0), where as before we denote Z0 =
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(X0
1 , P

0
1 , . . . , X

0
N , V

0
N), solving (1.3) in the sense that for any t and for a.e. Z0

Xi(t, Z
0) = X0

i +

∫ t

0

v(Pi(s, Z
0)) ds,

Pi(t, Z
0) = P 0

i +

∫ t

0

1

N

∑
j 6=i

F (Xi(t, Z
0)−Xj(t, Z

0)) ds.
(2.9)

However the well posedness of the flow does not imply the existence or unique-
ness for (1.3) in the sense that we used before. In other words, for any t
there exists a set ωt s.t. |ωt|c = 0 and the equality in (2.9) is satisfied for
any Z0 ∈ ωt. But the set ωt depends on t in general while in the previous
subsections we had a set ω with |ω|c = 0 and s.t. for any Z0 ∈ ω, (2.9) is
satisfied for all t.

Renormalized solution were introduced in [58] for force terms which are of
bounded divergence, in W 1,1

loc and globally in some Lp. This was extended to
the BVloc case in [26] for second order systems like (1.3), and later in [2] for
the general case. It is also possible to obtain well posedness directly on the
flow as in [46]. We finally refer to [3] and [50] for a more precise presentation
of this subject.

For our purpose those results are very useful for (1.7) guaranteeing well
posedness for a large range of interaction kernels F : F ∈ Lp ∩ BVloc with
divF = 0. They do not work so well for (1.3) however because the interaction
term contains v(P ) which does not belong to any Lp.

One of the best results so far for (1.3) or (2.5) is [83]: It requires F ∈
BVloc(Rd \ {0}), F ∈ L1

loc with a Hamiltonian structure F = −∇V and a
lower bound V ≥ −C (1+|x|2). Because of the lower bound on V , it still does
not apply to Newtonian gravitational interactions but it can handle kernels
F with complex singularities, provided they are at least in BVloc.

2.6 Conclusion on the well posedness of (1.3) and the
mean field limit

The existence results discussed before cannot handle some of the most in-
teresting kernels we wish to consider. The usual solution is to consider a
truncation of the form (1.12). For any fixed N , existence to (1.3) or (1.7) is
then ensured.

This is satisfactory as long as the mean field limit or propagation of chaos
can be obtained without any restriction on m, that is no matter how large
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m is chosen.
As a matter of fact well posedness for (1.3) can sometimes be deduced

from results of propagation of chaos by using this approach and letting m→
∞, see for instance [87].

Finally (2.2) is the only quantitative estimate independent of N obtained
so far and which can hence be used for mean field limits. It requires F ∈
W 1,∞
loc .

Another quantitative estimate, uniform in N but working for singular
kernels F , was obtained in [10]. Unfortunately it requires that the initial law
f 0
N be chosen equal to the Gibbs equilibrium (1.15) and thus is of no use for

mean field limits.

3 The main tools

We review in this section the main objects used to compare (1.3) with (1.13):
The empirical measure and the marginals. Because those objects are natu-
rally measures, we then present the classical weak distances on measures used
in this setting: The W−1,1 norm and the Monge-Kantorovich-Wasserstein (or
MKW) distances.

As a first example of application, we use those concepts to compare the
initial conditions of (1.13) and (1.3) in the framework of Def. 2 or Def. 3.
We conclude the section with a short summary of the ways to quantify how
close a distribution of particles is of being chaotic in the spirit of [126]-[88].

3.1 The empirical measure

Given particles’ positions and momenta (Xi, Pi) the empirical measure is
defined as

µN(t, x, p) =
1

N

N∑
i=1

δ(x−Xi(t)) δ(p− Pi(t)). (3.1)

Also defined as the counting measure (without the 1/N factor usually then),
it is a probability measure counting the proportion of particles in a domain
O ⊂ ΩN × RdN

#{i | (Xi(t), Pi(t)) ∈ O} = N

∫
O

µN(t, dx, dp).
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The empirical measure can similarly defined for first order systems like (1.7)

µN(t, x) =
1

N

N∑
i=1

δ(x−Xi(t)). (3.2)

The only important difference is the case of 2d incompressible Euler and
(1.10) where for convenience one usually defines

µN(t, x) =
1

N

N∑
i=1

ωi δ(x−Xi(t)). (3.3)

In that case the empirical measure is a signed and not a probability measure,
but solves exactly (1.14).

From (3.1), one can recover the full vector (Xi, Pi)i=1...N from µN up to
a permutation in the indices. Since the particles are here indistinguishable,
the empirical measure thus contains all the information on the system.

Some early definition and use of the empirical measure can be found in
[149] for instance. Its usefulness for the Boltzmann-Grad limit is restricted.

However in the mean field scaling, it enjoys a remarkable property.

Proposition 2. Assume that F satisfies (1.11) and define F (0) = 0. Then
(Xi, Pi)i=1...N solve (1.3) iff µN defined by (3.1) solves (1.13) in the sense
of distribution. Similarly the (Xi)i=1...N solve (1.7) iff µN defined by (3.2)
solves (1.14) in the sense of distribution

In particular Prop. 2 implies that the well posedness theory for (1.13)-
(1.14) for initial data which are a sum of Dirac masses is exactly the same
as the well posedness for (1.3)-(1.7) described in the previous section.

The empirical measure allows us to precisely define the notion of mean
field limit as introduced in Subsection 1.5

Definition 4. Consider a particular sequence of initial data Z0,N or equiva-
lently of initial empirical measure µ0

N s.t. µ0
N −→ µ0 in the sense of distribu-

tion or equivalently for the weak-* topology of measures. The mean field limit
holds iff the empirical measure µN(t) converges in the sense of distribution
to a probability measure µ which solves (1.13) or (1.14) with initial data µ0.

Note that the definition in particular implies that one has to be capable
of giving a meaning to µ solving the limit equation. For singular F that
typically means being able to prove that µ ∈ Lp for p large enough.
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The fact that µN solves the same equation (1.13) as the conjectured limit
suggests one ideal way of attacking the mean field problem: Just obtain
well posedness (with quantitative stability estimates if possible) for (1.13)
for measure valued solutions.

Until now though, the only such well posedness result requires F to be
Lipschitz. In the realistic cases where F is singular, well posedness for any
measure valued solution seems completely out of reach, much harder than
proving the mean field limit and may even be false. Let us emphasize here
that solving (1.13) for any measure is very different and much more general
than solving it only for sums of Dirac masses. For instance it requires some
sort of uniform control as two Dirac masses merge into 1; this exactly corre-
sponds to a collision of two particles which no one knows how to handle for
(1.3) unless F is smooth.

3.2 The BBGKY hierarchy and the marginals

The marginals fNk were very useful in the discussion for random initial data
and the definition of chaos. They remain important to understand the mean
field limit.

We recall that they can be defined from the N particle distribution fN
by

fN,k(t, z1, . . . , zk) =

∫
ΩN−k×Rd(N−k)

fN(t, z1, . . . , zN) dzk+1...dzN . (3.4)

From Eqs (2.5)-(2.6) on fN , it is possible to deduce equations on each fN,k.
Using the fact that particles are indistinguishable and the appropriate per-
mutation, one obtains

∂tfN,k +
k∑
i=1

v(pi) · ∇xifN,k +
1

N

k∑
i=1

∑
j=i...k, j 6=i

F (xi − xj) · ∇pifN,k

+
N − k
N

k∑
i=1

∫
Ω×Rd

F (xi − y) · ∇pi fN,k+1(t, x1, p1, . . . , xk, pk, y, q) dy dq = 0,

(3.5)
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for (1.3) and

∂tfN,k +
1

N

k∑
i=1

∑
j=i...k, j 6=i

divxi (F (xi − xj) fN,k)

+
N − k
N

k∑
i=1

∫
Ω

divxi (F (xi − y) fN,k+1(t, x1, . . . , xk, y)) dy = 0,

(3.6)

for (1.7).
Those equations are not closed: The equation on fN,k involves the next

marginal fN,k+1. The BBGKY hierarchy, (3.5) or (3.6), was derived in a
series of articles by Yvon [161], Bogolubiov [19, 20], Born and Green [25] and
Kirkwood [109, 110].

Contrary to fN which is defined on a space depending onN , each marginal
fN,k is defined on a fixed space, depending only on k. Therefore one may
consider the limit of fN,k as N →∞ but for a fixed k. Formally one obtains
from (3.7), the Vlasov hierarchy for the limits f∞,k

∂tf∞,k +
k∑
i=1

v(pi) · ∇xif∞,k

+
k∑
i=1

∫
Ω×Rd

F (xi − y) · ∇pi f∞,k+1(t, x1, p1, . . . , xk, pk, y, q) dy dq = 0,

(3.7)

and from (3.6)

∂tf∞,k +
k∑
i=1

∫
Ω

divxi (F (xi − y) f∞,k+1(t, x1, . . . , xk, y)) dy = 0. (3.8)

The limit f∞,k correspond to the joint law of any k particles and therefore
one can use the marginals to precisely define the notion of propagation of
chaos

Definition 5. Consider initial data which are chaotic as per Def. 2 or f 0-
chaotic per (3). Propagation of chaos holds for (1.3) or (1.7) on the time
interval [0, T ] iff the limit f∞,k(t) of each marginal in the sense of distribution
(or for the weak-* topology of measures) is chaotic

f∞,k(t) = Πk
i=1f(t, zk),

and f(t) solves (1.13) or (1.14) with initial data f 0.

30



Just as for Def. 3, it is enough to show that f∞,2 = f(t, z1) f(t, z2) as
this implies the equality for all others f∞,k. A natural approach to show
propagation of chaos would be to use the BBGKY hierarchy by

• Proving rigorously that the limit f∞,k solve (3.7) or (3.7), typically
by passing to the limit in (3.5) or (3.6). For singular F , this requires
additional estimates on the f∞,k, even though the hierachy is a linear
system, to make sense of F f∞,k.

• Showing uniqueness of solutions to the limiting hierarchies (3.7)-(3.8),
likely by requiring additional regularity estimates.

The key to this approach is that Prop. 1 guarantees the existence of a
strong solution f to (1.13) or ρ to (1.14). Therefore we know one solution
to the hierarchy (3.7) which is simply Πk

i=1f(t, zk). Consequently if the f∞,k
solve (3.7) per the first step and the solution is unique per the second then
f∞,k = Πk

i=1f(t, zk) which is our goal.
This strategy was successfully implemented for the Boltzmann-Grad limit

but it has yielded disappointing results for the mean field scaling. The prob-
lem is the lack of good estimates for (3.5) or (3.7). For instance most well
posedness results for (3.7) require F analytic. The best result so far requires
F ∈ W 1,∞, see [147] for instance (and the nice presentation in [73]), and
actually uses the system of particles (1.3) and (2.2) at the heart of the proof.

Many successful mean field or propagation of chaos approaches first work
on the empirical measure or the ODE system (1.3) or (1.7). Because of
their conceptual importance, one can then use and interpret the results and
estimates in terms of the marginals.

It should be pointed out that it is simple to recover the marginals from
the expectation of moments of the empirical measure. Denote by E the
expectation with respect to the joint law fN of the particles. For example
for k = 2 and any test function Φ(x1, p1, x2, p2)

E
∫

Ω2×R2d

Φ(x1, p1, x2, p2)µN(t, dx1, dp1)µN(t, dx2, dp2)

=
1

N2

N∑
i=1

∑
j 6=i

Φ(Xi(t), Pi(t), Xj(t), Pj(t))

+
1

N2

N∑
i=1

Φ(Xi(t), Pi(t), Xi(t), Pi(t)).
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Using the fact that particles are indistinguishable, one deduces

E
∫

Ω2×R2d

Φ(x1, p1, x2, p2)µN(t, dx1, dp1)µN(t, dx2, dp2)

=
N − 1

N

∫
Ω2×R2d

Φ(x1, p1, x2, p2) fN,2(t, dx1, dp1, dx2, dp2) +O

(
1

N

)
.

The calculation can be generalized for any k and leads to what is called
Grunbaum lemma (see for instance [149] or [148])

fN,k(t, z1, . . . , zk) = E⊗ki=1 µN(t, zi) +O

(
1

N

)
. (3.9)

Finally even though we only consider chaotic initial data, at least at the
limit f 0

∞,k = ⊗ki=1f
0, there is some generality in those initial conditions. Any

initial hierarchy f 0
∞,k of initial data can be represented as a superposition of

chaotic initial data, that is for some measure m on the space of probability
measure P(Ω× Rd)

f 0
∞,k =

∫
P(Ω×Rd)

⊗ki=1f
0m(df 0), (3.10)

as was famously proved in [91].

3.3 Distances on measures, the MKW distances

The empirical measure cannot be in any smoother space than probability
measures (it is a sum of Dirac masses), even though its limit may be. The
marginals may be smoother but as laws are still naturally probability mea-
sures. This has for consequence that the topology of the spaces of probability
measures, denoted here by P(Ω × Rd) for instance, and the various quanti-
tative distances that metrize it are crucial for the mean field limit.

Recall that a sequence νN of probability measures converges for the
weak − ∗ topology of measures to ν iff for any φ continuous with compact
support ∫

φ νN(dz) −→
∫
φ ν(dz).

This can be easily extended if a time variable is present, as is the case for
the empirical measure µN here. Then a sequence νN ∈ L∞([0, T ], P(E)),
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where E is in general a space of the form Ωk × Rk d, converges weak-* to ν,
iff for any φ ∈ L1([0, T ], Cc(E))∫ T

0

∫
E

φ(t, z) νN(t, dz) dt −→
∫ T

0

∫
R

φ(t, z) ν(t, dz) dt.

For a sequence of probability measures (or any sequence of measures with
uniformly bounded total mass) the weak−∗ topology is equivalent to conver-
gence in the sense of distribution. This convergence does not imply that the
limit ν is a probability measure (some mass could have been lost); instead
this requires an additional tightness condition like

sup
N

∫
|z|>R

νN(dz) −→ 0, as R→∞, (3.11)

which is usually provided by control on moments

sup
N

∫
E

|z|k νN(dz) <∞. (3.12)

One commonly used norm on P(E) is the W−1,1 norm which can be defined
as

‖ν‖W−1,1(E) = sup
‖φ‖W1,∞≤1

∫
E

φ(z) ν(dz). (3.13)

The W−1,1 norm metrizes the tight convergence of measures, i.e. for νN
a sequence of probability measures, ‖νN − ν‖W−1,1 → 0 iff νN → ν in the
weak − ∗ topology and νN is tight as per (3.11).

The Monge-Kantorovich-Wasserstein distances are also widely used. We
only summarize the main definitions and properties here and refer to [154]
for example for more explanations. We first need the notion of transference
plane

Definition 6. Given two probability measures µ and ν on P(E), a transfer-
ence plane π is a probability measure on E × E s.t.∫

E

π(z, dw) = µ(z),

∫
E

π(dz, w) = ν(w).

We denote Π(µ, ν) the set of such transference planes.

The various MKW distances can then be defined
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Definition 7. The p MKW distance, denoted by Wp(µ, ν), between two prob-
ability measures µ and ν is

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
E×E

(d(z, w))p π(dz, dw).

W∞(µ, ν) is simply defined as

W∞(µ, ν) = inf
π∈Π(µ,ν)

π − esssup d(z, w).

The distance d(z, w) is the natural distance on the space E, so d(z, w) =
|z − w| in general. But if Ω = Πd, the d-dimensional torus, then the appro-
priate distance should be used, and similarly if it is a Riemannian manifold
or other more complex spaces.

There is a strict hierarchy in the MKW distances: Since π is a probability
measure, by Hölder estimates for p ≤ q∫

E×E
(d(z, w))p π(dz, dw) ≤

(∫
E×E

(d(z, w))q π(dz, dw)

)p/q
.

The optimal plane for Wp may be different from the one for Wq but still by
taking the infimum on the right-hand side

Wp(µ, ν) ≤ Wq(µ, ν). (3.14)

While it is not completely obvious at first glance, the Wp are indeed
quasi-distances and satisfy the usual triangle inequality. Note as well that
the infimum in the definition is realized on at least one transference plane
but that this optimal plane is not unique in general.

Since Wp(µ, ν) is not necessarily finite, it is not a distance in the strict
sense. In order to guarantee finiteness, one usually demands that the p
moment of each measure be finite. We hence denote by Pp(E) the set of
probability measures ν with ∫

E

|z|p ν(dz) <∞.

If p = ∞ then P∞(E) is the set of probability measures with compact sup-
port.

It is sometimes easier to understand and handle the Wp distance in terms
of transport maps
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Definition 8. Given two probability measures µ and ν on P(E), a transport
map T is a measurable function E → E s.t. T#µ = ν where we recall that

T#µ(O) = µ(T−1(O)), for any measurable set O.

If T is a transport map then (Id, T )#µ is a transference plane but obvi-
ously most transference planes cannot be represented in terms of transport
maps. However if µ is absolutely continuous with respect to the Lebesgue
measure then the MKW distance is realized on transport maps

Proposition 3. Assume that µ is absolutely continuous with respect to the
Lebesgue measure. Then one optimal transference plane can be represented
by a transport map, i.e. there exists T : E → E with T#µ = ν s.t.

W p
p (µ, ν) =

∫
E

(d(z, T z))p µ(dz).

If p =∞ then
W∞(µ, ν) = µ− esssup d(z − T z).

We again refer to [154] for the case p < ∞. The W∞ distance is more
complex and was less extensively studied; the corresponding result was only
obtained recently in [41].

The most commonly used distances are the W1, W2 and more recently for
systems of particles the W∞ MKW distances. The W2 distance is important
in cases where the additional pseudo-Riemannian structure is useful, such as
models with diffusion or gradient flow. In a deterministic setting like (1.3),
it does not seem (for the moment!) to help much.

The W1 distance is usually called the Kantorovich-Rubinstein distance
and is comparable to W−1,1 norm on compact sets; their behaviors at ∞ are
different as W1 includes a first moment. As a matter of fact, one has the
duality formula for the Kantorovich-Rubinstein distance

W1(µ, ν) = sup
‖∇φ‖L∞≤1

∫
E

φ (µ(dz)− ν(dz)). (3.15)

Comparing (3.13) to (3.15), one sees that the only difference is that the W 1,∞

norm of φ is replaced by the L∞ norm of ∇φ.
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One of the reasons why the MKW distances are so useful for systems of
particles is that they generalize in some sense the p distances on ΩN ×RdN .
They can be used to compare two empirical measures with different number
of particles for instance. When the number of particles is the same in both
empirical measures and the positions, momenta are close enough then the
MKW distance is exactly the p distance:

Proposition 4. Consider µN and νN two empirical measures built with (3.1)
from two distributions of particles (Xi, Pi) and (Yi, Qi). Denote

δ1 = inf
i 6=j

(|Xi −Xj|+ |Pi − Pj|) , δ2 = inf
i 6=j

(|Yi − Yj|+ |Qi −Qj|) .

Assume that there exists a permutation σ̄ ∈ SN s.t. for each i, |Xi− Yσ̄(i)|+
|Pi −Qσ̄(i)| < inf(δ1, δ2). Then one has

Wp(µN , νN) = inf
σ∈SN

‖(Xi − Yσ(i), Pi −Qσ(i))‖p = ‖(Xi − Yσ̄(i), Pi −Qσ̄(i))‖p.

Proof. For simplicity, let us assume that σ̄ = Id (otherwise one can just
relabel the indices on (Yi, Qi)). We may define a transport map simply by
taking T (Xi, Pi) = (Yi, Qi) for any i. We have not proved yet that this map
is optimal but this already provides

Wp(µN , νN) ≤ inf
σ∈SN

‖(Xi − Yσ(i), Pi −Qσ(i))‖p. (3.16)

Consider any transference plane π for µN and νN Now because of the defini-
tion of transference plane, we may decompose

π(x, p, y, q) =
1

N2

∑
i,j

πij δ(x−Xi) δ(p− Pi) δ(y − Yi) δ(q −Qi),

The transference plane corresponding to the transport map T is simply given
by π̄ij = δj=σ̄(i) = δij.

Note that∫
E×E

(|x− y|+ |p− q|)p π(dx, dp, dy, dq) =
1

N2

∑
i,j

πij (|Xi−Yj|+ |Pi−Qj|)p.

But now by the assumption in the proposition

(|Xi − Yj|+ |Pi −Qj|)p ≥ (|Xi − Yi|+ |Pi −Qi|)p,

with strict inequality if j 6= i. Therefore the optimal plane is π̄.
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It should be pointed out that the inequality (3.16) always holds without
any assumption on the distributions of particles. The exact equality is not
true in general though without such additional assumptions as in Prop. 4.

The W∞ distance was first used in [122] and has started to be used ex-
tensively for mean field limit (see [37] or [87] for example). The W1 distance
corresponds to the 1 norm and therefore measures a sort of averaged distance
between all the particles. But the W∞, which is close to the ∞ norm, offers
a more precise, and pointwise, control on the particles. It also automatically
ensures that the empirical measures have compact support.

3.4 The distance between µ0
N and f 0

Define the discrete scale εN of the problem by

for System (1.3), εN = N−1/2d ; for System (1.7), εN = N−1/d. (3.17)

This scale is the minimum distance between an empirical measure and a
smooth f 0

Proposition 5. Let f 0 ∈ P(E) with E = Ω × Rd or E = Ω be a smooth
function in C(E). There exists a constant Cf0 s.t. for any empirical measure
defined through (3.1) or (3.2) and any p

Wp(f
0, µN) ≥ εN

Cf0
.

Proof. Since f 0 6= 0 then one can find a ball B(z0, r) and a constant C s.t.
f 0 ≥ 1/C on B(z0, r). Now for any choice of particles positions, there exist
N disjoint balls B(zi, cd r εN) ⊂ B(z0, r) where there are no particle. The
position zi of the ball depends on the choice of the positions but not its radius
(the constant cd only depends on the dimension).

Choose for instance the test function φ vanishing out of
⋃
iB(zi, cd r εN)

and with value cd r εN − |z − zi| inside. By (3.15)

W1(f 0, µN) ≥
∑
i

∫
B(xi,cd r εN )

f φ ≥ N
(cd r εN)δ+1

C 2δ+1
≥ εN/C̃f0 ,

where δ = d for (1.7) and δ = 2d for (1.3).
This shows the proposition for the W1 distance. However by (3.14), all

the other distances are bounded from below by W1.
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Of course if one can choose the initial distribution of particles, then it is
always possible to do so in order to have W1(f 0, µN) ∼ εN . Because of Prop.
5 it is not possible to have better. Note nevertheless that by using weaker
norms or distances then it is possible to have higher order approximation. In
general it is possible to choose the (X0

i , P
0
i ) so that

‖f 0 − µ0
N‖W−k,1 ≤ C εkN .

However those weaker distances do not work well with systems of particles.
The question is more complex when the initial data is not chosen but

determined randomly through Def. 2 or Def. 3. In the first case εN is still
the right scale.

Assume that the initial distribution of particles is given by a chaotic law
as per Def. 2. It was already pointed out in [152] that µ0

N converges to f 0 as
N → ∞ but quantitative estimates are now available. One has for instance
from [59] that in dimension d ≥ 2 provided f 0 is supported in a ball of radius
R there exists a constant Cd depending only on the dimension s.t.

E(W1(µ0
N , f

0)) ≤ CdRεN . (3.18)

This estimate was refined in [21, 22] where the deviation to the expectation
is bounded: Under the same assumptions on f 0

N and f 0, for a constant Cd,
one has that

P
(
W1(µ0

N , f
0) ≥ E(W1(µ0

N , f
0)) + η

)
≤ exp(−CdN η2). (3.19)

Unfortunately when the initial distribution is given by the more general Def.
3 then no such estimates are available. In that respect Def. 3 is not very
satisfactory and it is not specific enough to say much about µ0

N .

3.5 Some additional comments on the discrete scale εN

The scale εN is also manifested through the study of smoothing of µ0
N .

Choosing a smooth positive kernel φ with compact support and total mass
1, we may define as usual, for any parameter ε, the convolution kernel
φε = ε−δ φ(./ε) with δ = d for (1.7) and δ = 2d for (1.3).

As a further illustration of the Wasserstein distances, we recall a propo-
sition from [87] which shows that ε is then the order of the distance between
µ0
N and its smoothed version
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Proposition 6. For any function φ : R2d → R radial with compact support
in B2d(0, 1) and total mass one we have for any µ0

N = 1
N

∑N
i=1 δ(X0

i ,P
0
i )

W∞(φε ? µ
0
N , µ

0
N) = cφε,

where cφ is the smallest c for which Suppφ ⊂ B2d(0, c).

A natural question is up to which scale ε, φε?µ
0
N may still be smooth. We

will limit ourselves to the analysis of ‖φε ? µ0
N‖L∞ and wish to know which

is the smallest, critical ε for which this norm is still of order 1.
Let us start by the trivial bound from below: There exists a constant Cφ

s.t. for any µ0
N defined through (3.1) or (3.2)

‖φε ? µ0
N‖L∞ ≥ Cφ

εδN
εδ
. (3.20)

The proof of (3.20) is straightforward: Just evaluate φε ? µ
0
N at a point

(Xi, Pi) or Xi to find

φε ? µ
0
N(X0

i , P
0
i ) ≥ ε−δ

N
φ(0).

This bound from below strongly suggests that εN is again the critical scale.
If the initial positions and momenta are freely chosen, then this is easy to
check. For instance if the (X0

i , P
0
i ) are taken on a mesh of size r εN then

‖φr εN ? µ0
N‖L∞ = 1. (3.21)

But as before the case of random initial data is more complex. If they are
given through the weaker Def. 3 then nothing is known. If instead they are
obtained from Def. 2, the following result was proved in [87] (Prop. 8 of that
article, see also [67], [24] for similar estimates)

Proposition 7. Assume that f 0 ∈ P(R2d) is bounded and with support in
B2d(0, R). Assume that φ is bounded with support in B(0, L). Assume finally
that the (X0

i , P
0
i )i=1...N are distributed according to f⊗N . Consider for some

γ < 1, ε = N−
γ
2d then with cφ = (4L)2d ‖φ‖∞ and c = (2R + 2)2d(2L)−n

∀λ > 1, P
(
‖φε ? µ0

N‖∞ ≥ λ cφ ‖f‖∞
)
≤ c0N

γ e−(λ lnλ−λ+1) (4L)2d ‖f‖∞N1−γ
.
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Prop. 7 does not exactly give εN as the critical scale. It shows that the
desired inequality holds for any ε = εγN with γ < 1 but maybe not for ε = εN
and γ = 1.

We conclude with some comments on the connection between εN and the
minimal distance between the particles at the initial time

d0
N = min

i 6=j
|X0

i −X0
j |+ |P 0

i − P 0
j |.

If the particles are chosen on a mesh, then d0
N ∼ εN . However if they are

random, through Def. 2 for instance, then εN >> d0
N in general. In fact it is

straightforward to see that if ηN >> ε2
N then the probability that d0

N ≥ η is
0 asymptotically in N .

In this random case d0
N is naturally of the order ε2

N as the opposite in-
equality from [84] shows

P(d0
N ≥ r ε2

N) ≥ e−C ‖f
0‖ rd . (3.22)

3.6 Quantifying chaos

The result referred to here were obtained in [88], [126], [127]. The main
difficulty and novelty in these articles is not however to prove estimates (as
are presented below) on the initial data but to propagate them. We also refer
to the nice summary in [125].

As we saw before the definition 3, initially due to Kac, is rather weak and
does not allow a very precise control on the initial data. For this reason, it
can be useful to consider stronger notions of chaos.

First of all coming back to Def. 3, it was observed that it is enough to
check the convergence on f 0

N,2 as it was implying the convergence to a chaotic
limit of all the other marginals. It is possible to quantify this (Theorem 2.1
in [125])

Theorem 3. There exist constants a, b ∈ (0, 1) s.t. for any k, l ≥ 2, any
initial f 0

N ∈ P(EN) with finite second moment and any f 0 ∈ P(E)

W1(f 0
N,k,⊗ki=1f

0) ≤ C
(
W1(f 0

N,l,⊗li=1f
0)a +N−b

)
,

where C only depends on the second moments of f 0
N,1 and f 0.
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Note that one does not need k ≤ l or anything of the kind. But the
assumption l ≥ 2 is crucial: Chaos can be controlled by marginals after the
second but not by the first.

There are two important physical quantities that can also help quantifying
chaos: The entropy and the Fisher information. The entropy is defined as

HN(f 0
N) =

1

N

∫
EN

f 0
N log f 0

N dz1 . . . dzN , (3.23)

with E = Ω × Rd for (1.3) and E = Ω for (1.7) as before. The Fisher
information is

IN(f 0
N) =

1

N

∫
EN

|∇f 0
N |2

f 0
N

dz1 . . . dzN , (3.24)

Note that both quantity are normalized so that for f 0 ∈ P(E)

HN(⊗Ni=1f
0) = H1(f 0), IN(⊗Ni=1f

0) = I1(f 0).

The entropy and Fisher information play a crucial role in collisional models
and for many other dissipative systems. They do not seem to have such a
special role with respect to the Gibbs Eq. (1.15); the entropy is connected to
the Gibbs equilibrium and the long time behavior for (1.15). It is propagated
by the equation but so are all the quantities based on the level sets of fN .
The Fisher information is not propagated in general by (1.15) and bounding
it requires additional assumption on F .

The use of those quantities leads to alternative and stronger definitions
of a f 0 − chaotic sequence

Definition 9. Consider the three notions

i. f 0
N is f 0-Fisher chaotic in the sense that IN(f 0

N)→ I1(f 0) and I1(f 0) <
∞.

ii. IN(f 0
N) is uniformly bounded in N and f 0

N is f 0 − chaotic as per Def.
3.

iii. f 0
N is f 0-entropy chaotic in the sense that HN(f 0

N) → H1(f 0) and
H1(f 0) <∞.

There is a strict hierarchy between these notions as per (this is for instance
Theorem 2.2 in [125])
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Theorem 4. Consider any initial f 0
N ∈ P(EN) with uniformly bounded k-th

moment for some k > 2 and any f 0 ∈ P(E) s.t. f 0
N,1 → f 0 as N → ∞.

Then i. in Def. 9 implies ii. which implies iii which in turn implies that f 0
N

is f 0 − chaotic as in Def. 3.

To further emphasize the difficulty in Theorem (4), we emphasize that
for instance HN(f 0

N) does not control H1(f 0
N,1) in general. There are many

examples, one of them is

f 0
N = I[0, 1]d +

N∑
i

gN(zi),

with gN(z) = 1/4ηδN for |z| ≤ ηN , gN = −1/2 on some fixed (independent of
N) subset of [0, 1]d so that

∫
E
gN = 0. Note that f 0

N,1 = 1 + g(z1), hence

H1(f 0
N,1) ∼ | log ηN |.

However

HN(f 0
N) ≤ C

(
1 +
| log ηN |+ logN

N

)
.

Choosing ηN → 0 so that | log ηN | ≤ N concludes.
In particular one could have a uniform bound on HN(f 0

N) but neverthe-
less have that H1(f 0) = ∞. This is unfortunate as otherwise, since HN is
preserved by Gibbs, we would obtain a “free” bound on H1(f∞,1(t) at any
later time t.

4 Some of the main results on mean field lim-

its

4.1 The case F Lipschitz

The case F Lipschitz is critical in many respects. We saw with (2.2) that it is
the only known case where we can have stability estimates on (1.3) which are
independent of the number of particles. It is, in large part for this reason, the
case where the classical results of mean field limits and propagation of chaos
were obtained in [29] and then in [60], [131]. And for second order systems
like (1.3), it is the only case for which mean field limits and propagation of
chaos can be said to be more or less fully understood.
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The key is that if F is Lipschitz then one has a well posedness theory
for (1.13) in the space of probability measures. We present here the main
estimate from [60]

Theorem 5. Let f, g ∈ P(Ω × Rd) be two solutions to (1.13) in the sense
of distributions. Then

W1(f(t), g(t)) ≤ W1(f 0, g0) exp(t (1 + 2 ‖∇F‖L∞)).

The same result is available for (1.14) on P(Ω); the exponential is just
exp(t ‖∇F‖L∞ in that case.

Note also that for F continuous (and a fortiori Lipschitz), measure valued
solutions are straightforward to define for (1.13) or (1.14). Indeed the force
term F ?x

∫
fdv is continuous and f F ?x

∫
fdv is then well defined.

Proof. The result can be seen as an extension of (2.2), MKW distances having
replaced p norms. It can be proved either by using the characteristics or
equivalently a duality method, and the formulation (3.15) of the W1 distance.

Consider now any 1-Lipschitz φ̄(x, p) and any time t0. Define φ(t, x, p)
the solution to

∂tφ(t, x, p) + v(p) · ∇xφ+ Ef (t, x) · ∇pφ = 0, φ(t = t0) = φ̄, (4.1)

with Ef = F ?x
∫
f dv. Note that the equation on φ is exactly the dual of

(1.13) once the force term Ef is “frozen”.
If F is Lipschitz then Ef and Eg are both also Lipschitz with constant less

than ‖∇F‖L∞ as both f and g have total mass 1. In particular, differentiating
(4.1)

∂t∇xφ(t, x, p) + v(p) · ∇x∇xφ+ Ef (t, x) · ∇p∇xφ = −∇xEf · ∇pφ,

∂t∇pφ(t, x, p) + v(p) · ∇x∇pφ+ Ef (t, x) · ∇p∇pφ = −∇pv(p) · ∇xφ.

Therefore
d

dt
‖∇φ(t, ., .)‖L∞ ≤ (1 + ‖∇F‖L∞) ‖∇φ‖L∞ ,

implying that

‖∇φ(t = 0)‖L∞ ≤ exp (t (1 + ‖∇F‖L∞)) . (4.2)
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Using (4.1) and the Lipschitz regularity of φ, one obtains∫
φ̄ (f(t0, dx, dp)− g(t0, dx, dp)) =

∫
φ(0, x, p) (f 0(dx, dp)− g0(dx, dp))

+

∫ t0

0

∫
(Ef − Eg) · ∇pφ g(t, dx, dp).

Of course by (4.2) and (3.15)∫
φ(0, x, p) (f 0(dx, dp)− g0(dx, dp)) ≤ W1(f 0, g0) exp (t (1 + ‖∇F‖L∞)) .

For any fixed t, x

Ef (t, x)− Eg(t, x) =

∫
F (x− y) (f(t, dy, dp)− g(t0, dy, dp))

≤ ‖∇F‖L∞W1(f(t, ., .), g(t, ., .)),

by (3.15) using F/‖∇F‖L∞ as the test function.
Combining the last two inequalities, one finds∫
φ̄ (f(t0, dx, dp)− g(t0, dx, dp)) ≤W1(f 0, g0) exp (t (1 + ‖∇F‖L∞))

+ ‖∇F‖L∞
∫ t0

0

W1(f(t, ., .), g(t, ., .)) dt,

which gives the desired result by a last application of Gronwall’s lemma.

Theorem 5 of course implies the most general form of mean field limit

Corollary 1. Assume that F ∈ W 1,∞. For any f 0 ∈ P(Ω×Rd), consider any
sequence of initial conditions to (1.3) s.t. µ0

N → f 0 in the weak−∗ topology
of measures. Then the empirical measure µN converges to the unique solution
f to (1.13).

Similarly by, propagation of chaos holds

Corollary 2. Assume that F ∈ W 1,∞. For any f 0 ∈ P(Ω × Rd), consider
any sequence of f 0 chaotic initial conditions to (1.3) as per Def. 3. Then
the empirical measure µN converges to the unique solution f to (1.13) with
probability one.
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Because of (3.18) and (3.19), the result is even more precise. Assuming
that f 0 has compact support, with very large probability in the case of f 0

chaotic initial date or for well chosen initial µ0
N in the deterministic case, one

has that

W1(µN(t, ., .), f(t, ., .)) ∼ εN exp(t (1 + 2 ‖∇F‖L∞)). (4.3)

This estimate provided a polynomial convergence in N , εN = N−1/2d, for any
finite time. However it only guarantees that µN will remain close to f for
times of order logN . This is widely conjectured to be non optimal but for
the time being, it could only be improved in some limited cases, see [32, 33].

The bound (4.3) can also be used to deal with some singular but truncated
kernels, in the spirit of (1.12). It requires a scale of truncation which is too
high for numerical purposes as obviously for the bound to be useful, one
needs that

‖∇FN‖L∞ ≤ k logN,

meaning that the interaction must be truncated at a logN scale, and in which
case the mean field limit or propagation of chaos holds until time Cd/k. This
is the basis of the approach in [12], for the mean field limit, or [65] for the
propagation of chaos.

Note that Theorem 5 can also be used to extend the dynamics of Eq.
(1.13) to infinite dimension. More precisely, one may define a linear operator
L on P(P(E)), yielding a bounded semi-group. This operator is uniquely
determined by asking that et L δf0 is δf with f the solution to (1.13). In that
sense L generalizes (1.13) to the mixed states of [91] per Eq. (3.10); the
“pure” state corresponding to chaotic initial data given by Def. 2. We refer
to [74, 127].

The Lipschitz case also propagates the stronger notions of chaos of Def.
9, see again for instance [125]. For example, one can easily see how to obtain
strong convergence; obviously not on the empirical measure µN but on the
marginals fN,k. This relies on the following observation

Lemma 3. Assume that F ∈ W 1,∞, then for any k

‖fN,k‖W 1,1(Ωk×Rkd) ≤ ‖f 0
N‖W 1,1(ΩN×RNd) e

t (1+‖∇F‖L∞ ).

Proof. Just differentiate the Gibbs equation (1.15) to obtain

‖fN‖W 1,1(ΩN×RNd) ≤ ‖f 0
N‖W 1,1(ΩN×RNd) e

t (1+‖∇F‖L∞ ).
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Then by integrating, notice that

‖fN,k‖W 1,1(Ωk×Rkd) ≤ ‖fN‖W 1,1(ΩN×RNd).

It is now enough to notice that ‖f 0
N‖W 1,1(ΩN×RNd) is typically bounded.

For instance if the initial data is chosen according to Def. 2 then

‖f 0
N‖W 1,1(ΩN×RNd) = ‖f 0‖W 1,1(Ω×Rd).

In that case, ‖fN,k‖W 1,1(Ωk×Rkd) is uniformly bounded for any fixed k, implying
the strong convergence of all the marginals.

4.2 Some examples of the compactness method, F con-
tinuous

Before presenting more refined estimates, we show a very simple example
where the mean field limit can be obtained but without any quantitative
estimates.

Proposition 8. Assume that F ∈ C0(Ω). For any f 0 ∈ P(Ω×Rd), consider
any sequence of initial conditions to (1.3) s.t. µ0

N → f 0 in the weak − ∗
topology of measures. Then there is an extracted subsequence of the empir-
ical measure µN which converges to a solution f to (1.13) in the sense of
distribution.

Proof. It is a direct application of the compactness in M1 for bounded mea-
sures for the weak − ∗ topology of measures. Note that µN is uniformly in
L∞(R+, P(Ω×Rd)). Therefore there exists σ and f ∈ L∞(R+, M

1(Ω×Rd))
s.t.

µσ(N) −→ f, in weak − ∗ L∞(R+, M
1(Ω× Rd)).

Of course a priori f ≥ 0 but it may not be a probability measure. Nev-
ertheless recall that µσ(N) solves (1.13) in the sense of distribution and
F ∈ C0(Ω) ⊂ L∞ so that

E(t, x) ≤ ‖F‖L∞ .

Hence at any time t∫
|x|+|p|>R

µN(t, dx, dp) ≤
∫
|x|+|p|>R−‖F‖L∞t

µ0
N(dx, dp),
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and µN is tight as per (3.11). This shows that f is a probability measure.
It remains to pass to the limit in (1.13) where the only difficulty is the

non linear term

µσ(N)

∫
Ω×Rd

F (x− y)µσ(N)(t, dy, dq)

Since F ∈ C0(Ω) then the term
∫

Ω×Rd F (x − y)µσ(N)(t, dy, dq) is compact
in x in C0(Ω). Compactness in time is obtained through Aubin’s lemma
by remarking that, from (1.13), ∂tµN ∈ L∞([0, T ], W−k,1

loc ) uniformly in N .
This enables us to conclude that

∫
Ω×Rd F (x−y)µσ(N)(t, dy, dq) is compact in

C0([0, T ]×Ω) for any finite T and finally to pass to the limit in the nonlinear
term and (1.13).

As with all compactness method, the interest Prop. 8 is limited: What if
W1(µN , f) is only vanishing as 1/ logN for instance? But its main problem
is that there is no uniqueness of Eq. (1.13) with only F ∈ C0. This is the
reason why one only obtains convergence of an extracted sequence and why
Prop. 8 is useful only when coupled with some additional structure on F to
provide uniqueness on (1.13).

As seen from the proof, the key point in any compactness method is to
pass to the limit in the non linear term. F ∈ C0 is the critical regularity
in order to do that in the space of measures. When F is more singular,
additional estimates are needed, typically to control the distances between
particles.

To be more specific, assume that F satisfies (1.11) and consider a smooth-
ing Fε for any ε s.t. |Fε| ≤ C |x|−α, Fε ∈ C0(Ω) and Fε = F for |x| ≥ ε.
Then for a fixed ε, one may pass to the limit in

µσ(N)

∫
Ω×Rd

Fε(x− y)µσ(N)(t, dy, dq)

just as in the previous proof. Since F (x − y) and Fε(x − y) coincide when
|x− y| ≥ ε, to conclude one would need to show that

µσ(N)

∫
|x−y|≤ε

(Fε(x− y)− F (x− y))µσ(N)(t, dy, dq) −→ 0,

in the sense of distribution as ε → 0. Of course this convergence would be
trivially implies by a uniform in N bound on

sup
t∈[0, T ]

∫
|x−y|≤ε

1

|x− y|β
µσ(N)(t, dy, dq)µN(t, dx, dp) (4.4)
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for any β > α. This is reminiscent of the potential energy for F = −∇V
but in that case typically β = α − 1 which is not enough. Obtaining (4.4)
with β > α (or even β > α − 1) seems to be an extremely difficult problem
in general, maybe harder than the actual mean field limit.

Instead of (4.4), most compactness methods first try to prove some other
uniform estimates on the distribution of particles such as the minimal dis-
tance between particles, the maximum number of particles in a ball of small
radius (the scale εN for instance), see for instance [86].

4.3 The incompressible 2d Euler

The methods here typically apply to the more general case of (1.7) with anti-
symmetric kernels F (−x) = F (x). This specific structure only works for 1st
order model and provides additional cancellations.

The first results were obtained for grid like initial data in [76, 75, 45];
those were actually the first results obtaining the mean field limit for any
singular kernel, with practical and physical importance.

The main result of [76] compares the solution of (1.7) to the characteristics
of (1.14) defined as

Ẋ(t, x) = F ? ρ(t,X(t, x)), X(0, x) = x,

where ρ solves (1.14). From this system of characteristics, one defines the
vector Yi(t) by Yi(t) = X(t,X0

i ) and it is possible to show that the Xi and
Yi remain very close

Theorem 6. For d = 2, assume that F = C x⊥/|x|2 and that ρ0 ∈ S (the
Schwartz class). Take the X0

i on a mesh and define ωi = ρ0(X0
i ). Then for

4 < p <∞, the solution (Xi)i=1...N to System (1.10) satisfies

‖(Xi − Yi)i=1...N‖p ≤ C(t, p) ε2
N ,

where the p norm is defined by (2.1).

The estimate is remarkable as it is second order in εN , whereas any MKW
distance between ρ0 and µ0

N is at best first order. This ε2
N term of course

relies on the very specific choices of the X0
i and ωi.

The method of the proof is delicate and too long to be presented here.
Instead we later show a simplified approach, relying on the minimal distance
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between particles, which cannot reach the critical case F ∼ 1/|x|d−1 as here
but does not require the anti-symmetry of F .

The main drawback of Th. 6 (and of its various extensions) is the strong
requirement on the initial positions which does not allow to treat random
initial positions as per Def. 2 of 3. By using the anti-symmetry of F , it is
however possible to use instead Delort’s cancellation, see [54], as was done
in [144, 145] to obtain

Theorem 7. For d = 2, assume that F = C x⊥/|x|2 and that ρ0 ∈ M1.
Consider any sequence µ0

N of initial data (where the empirical measure is
defined through (3.3)) s.t. µ0

N converges in the weak−∗ topology of measures
to ρ0 and with uniformly bounded kinetic energy

sup
N

−1

4 π N2

∑
i

∑
j 6=i

log |X0
i −X0

j |ωi ωj <∞.

Then there exists an extracted subsequence of µN converging weak − ∗ to a
solution ρ to (1.14).

Proof. We only sketch the main steps. For simplicity assume that Ω = Πd.
The first step is to pass to the limit in µN . Because it is defined through
(3.3) it is not anymore a probability measure and one has to be more careful.
However since µ0

N converges in the weak − ∗ topology of measures, its total
mass

∑
i |ωi| is uniformly bounded. But this is also the total mass of µN(t, .)

giving
sup
N

sup
t
|µN |(t,Πd) <∞.

Therefore one may extract a subsequence, still denoted by µN for simplicity,
s.t. µN converges in the weak − ∗ topology of L∞t M

1
x to some finite mass

measure ρ.
As usual for compactness method, the difficulty is passing to the limit in

the non linear term. For any φ ∈ C1
c , using that F (−x) = F (x), one has that∫

R+×Πd
φ(x)F ? µNµN(t, dx) dt

=

∫
R+×Π2d

(∇φ(t, x)−∇φ(t, y)) · F (x− y)µN(t, dx)µN(t, dy) dt.

This is of course the way Delort uses the anti-symmetry of the equation to
get an additional cancellation.
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Note that |∇φ(t, x) − ∇φ(t, y)| ≤ ‖∇2φ‖L∞ |x − y| and therefore if F
satisfies (1.11) with α ≤ 1 then the kernel

L(t, x, y) = (∇φ(t, x)−∇φ(t, y)) · F (x− y)

is bounded in x, y. This implies that

∂tµN ∈ L∞(R+, W
−2,∞(Πd)),

uniformly in N and gives compactness in time of µN . It also shows that
ρ(t = 0) = ρ0 as a trace in the appropriate negative Sobolev space.

Now in the case where F satisfies (1.11) with α < 1, L is actually contin-
uous in x, y. Using the weak − ∗ convergence of measure coupled with the
compactness in time, it is then straightforward to deduce that∫

R+×Π2d

L(t, x, y)µN(t, dx)µN(t, dy) dt −→
∫
L(t, x, y) ρ(t, dx) ρ(t, dy) dt.

This would be enough to conclude but unfortunately here F satisfies (1.11)
with exactly α = 1. This is where the delicate additional work of Delort is
required and where the bound on the initial kinetic energy is used. To give
an idea of how one may proceed, we now assume that each ωi ≥ 0 (again the
general case is more difficult).

The measure µN is now positive. Moreover the kinetic energy is preserved
by the flow of (1.10) and this has for consequence that

sup
N

sup
t

∫
Π2d

− log |x− y|µN(t, dx)µN(t, dy) <∞. (4.5)

Consider for any ε > 0 a truncation Lε of L s.t. Lε = L if |x− y| ≥ ε and Lε
is a smooth function, uniformly bounded in ε (just like L). Then as before
for a fixed ε∫

R+×Π2d

Lε(t, x, y)µN(t, dx)µN(t, dy) dt −→
∫
Lε(t, x, y) ρ(t, dx) ρ(t, dy) dt.

On the other hand, using the uniform bounds on L and Lε, the difference
with the actual term using L is∫

R+×Π2d

|Lε − L|µN(t, dx)µN(t, dy) dt ≤ C

∫ T

0

∫
|x−y|≤ε

µN(t, dx)µN(t, dy) dt

≤ C T

− log ε
sup
t

∫
Π2d

− log |x− y|µN(t, dx)µN(t, dy).
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Using the bound (4.5), we deduce that this difference converges to 0 as ε→ 0,
uniformly in N . Combining this estimate with the previous convergence with
Lε allows to conclude.

Note that Th. 7 does not provide rate of convergence (as usual for this
type of method). Just as in the case F ∈ C0, one does not have uniqueness
of the Delort solution to (1.14) at the limit and therefore it is not possible in
general to identify the limit, to guarantee that the whole sequence converges
or to deduce propagation of chaos.

However if one assumes that ρ0 is smoother, C1 for instance, then with
probability asymptotically close to 1 any initial data chosen according to Def.
2 has a finite kinetic energy. Moreover in that case, there exists a classical
solution to (1.14) with ρ0 as initial data. The weak-strong uniqueness prin-
ciple of incompressible Euler further implies that it is unique. Therefore one
can deduce that with probability 1, µN converges to that unique solution.

This is still not strictly propagation of chaos in the more general sense,
as it is not possible to use Def. 3 because one cannot then control the initial
kinetic energy.

4.4 The control of the truncated force term

As seen for instance in the proof of Th. 5, the two crucial steps in the
derivation of the mean field limit are a control on the derivative of the force
field and on the difference between two force fields.

At the continuous level, those bounds are easy to obtain. Indeed assume
that F satisfies (1.11) with α ≤ d − 1. Then ∇F is locally a Calderon-
Zygmund operator, implying that if f ∈ Lp compactly supported inB(0, R) ⊂
Ω× Rd then ∥∥∥∥∇F ?x

∫
f(t, ., dp)

∥∥∥∥
Lp
≤ Cp ‖f‖Lp Rd. (4.6)

If α < d − 1 then it is not even necessary to use Calderon-Zygmund theory
and traditional convolution estimates are enough. For instance if f ∈ L1∩Lp
with 1/p < 1− d/(α + 1)∥∥∥∥∇F ?x

∫
f(t, ., dp)

∥∥∥∥
L∞
≤ Cp (‖f‖L1 + ‖f‖Lp). (4.7)

It is natural to wonder whether such estimates can be mimicked at the dis-
crete level.
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The answer is partially positive in the sense that those techniques can
indeed be adapted but only until the scale εN both for first and second order
system. Other approaches are required to go below that scale (with a more
precise control on the distribution of particles).

Among several possible ways, we present here a result based on the MKW
distance between µN and f , in line with the more recent contributions for
instance in [37, 84, 85, 87].

Proposition 9. For any α < d− 1, any ε > 0, any ρ(x) ∈ L1 ∩ L∞(Ω) and
any measure µ ∈ P(Ω)∥∥∥∥∫

Ω

µ(dy)

(ε+ |x− y|)α+1

∥∥∥∥
L∞
≤ Cd

(
max

(
1,

W∞(ρ, µ)

ε

))α+1

(‖ρ‖L1 + ‖ρ‖L∞).

Proof. As ρ is absolutely continuous with respect to the Lebesgue measure,
there exists an optimal map Tx from it to µ.

In particular since Tx#ρ = µ∫
Ω

1

(ε+ |x− y|)α+1
µ(dy) =

∫
Ω

1

(ε+ |x− Tx(y)|)α+1
ρ(y) dy

≤
(

max

(
1,

W∞(ρ, µ)

ε

))α+1 ∫
Ω

ρ(y) dy

(W∞(ρ, µ) + |x− Tx(y)|)α+1

≤
(

max

(
1,

W∞(ρ, µ)

ε

))α+1 ∫
Ω

ρ(y) dy

(W∞(ρ, µ)− |y − Tx(y)|+ |x− y|)α+1
.

As Tx is an optimal map then on the support of ρ(y), |y−Tx(y)| ≤ W∞(ρ, µ).
Therefore∫

Ω

1

(ε+ |x− y|)α+1
µ(dy) ≤

(
max

(
1,

W∞(ρ, µ)

ε

))α+1 ∫
Ω

ρ(y) dy

(|x− y|)α+1
,

while by the usual convolution estimates, since α + 1 < d,∥∥∥∥∫
Ω

1

(|x− y|)α+1
ρ(y) dy

∥∥∥∥
L∞
≤ Cd (‖ρ‖L1 + ‖ρ‖L∞),

which concludes.
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Prop. 9 is naturally formulated with only the space variable x but can
easily be extended to the phase space case. Indeed one obviously has

W∞

(∫
f(t, ., p) dp,

∫
µN(t, ., dp)

)
≤ W∞(f, µN). (4.8)

It is also possible to replace the L∞ norm of ρ by some Lp norm where
1/p < 1− (α+ 1)/d. But apart from those simple improvements, Prop. 9 is
rather optimal in its main limitations.

Note that by Prop. 5, one expect W∞(ρ, µ) to be typically of order εN .
Therefore the minimal scale ε for which Prop. 5 should guarantee a bound
of order 1 is ε ∼ εN . This is obviously the best that one can do: Just take µ
an empirical measure for a distribution of positions on a mesh or grid of size
εN . Then the maximum of the term 1/(ε+ |x|)α+1 ?µN is of order (εN/ε)

α+1

if ε ≤ εN by evaluating at x equal one of the particle’s position.
The question of whether the W∞ MKW distance is necessary or not is

more delicate. It cannot be replaced in general by the W1 distance. For
instance consider again an empirical measures for positions on a grid of size
εN except for M particles, with M << N , which occupy all the same position
at x = 0. Then ∫

Ω

1

(εN + |y|)α+1
µN(dy) ≥ M

N
ε−α−1
N ,

while W1(ρ, µN) is of order εN +M/N and cannot control the previous right-
hand side if α > 0. However this scaling suggests that W∞ could possibly be
replaced by some Wp with p large enough.

4.5 The mean field limit for truncated kernels F

Some results proving the mean field limit for (1.3) for truncated kernels as per
(1.12) are found in [66, 65, 157, 87], with various techniques leading in turn
to various limitations on α and the truncation εN . We give as an example a
simplified result based on Prop. 9 or similar estimates, for which the proof
can be sketched easily.

Note that the (Xi, Vi) solves (1.3) with a truncated force kernel FN or
alternatively µN solves (1.13) with FN . But the conjectured limit f solves
(1.13) with the “real” force kernel F . Because of that, we need a more precise
version of well posedness for (1.13) (and (1.14) in the next subsection) than
Prop. 1, namely

53



Proposition 10. Assume that F satisfies (1.11) with α < d−1. There exists
T > 0 s.t. for any f 0 ∈ L1 ∩ L∞(Ω × Rd) and any ρ0 ∈ L1 ∩ L∞(Ω), there
exists a constant CT for which the two solutions, f or ρ to (1.13) or (1.14)
with F , and fN or ρN to (1.13) or (1.14) with FN defined from F through
(1.12), satisfy for any t < T

W1(fN , f) ≤ CT (N−m +W1(f 0
N , f

0)), W1(ρN , ρ) ≤ CT (N−m +W1(f 0
N , f

0).

The constant CT depends only on T , p , the constants in (1.11), (1.12)
and the L1 and L∞ norm of f 0. Prop. 10 can be proved for any T < ∞ in
many important physical situations; in particular in dimension 2 or 3, see for
instance [120].

Theorem 8. Under the assumptions of Prop. 10; assume moreover that F
satisfies (1.11) with α < d − 1 and that FN satisfies (1.12) with m < 1/2d,
i.e. for a truncation ε >> εN . Consider any γ < 1 with m < γ/2d, any
f 0 ∈ L1 ∩ L∞ with compact support and any sequence of initial data µ0

N s.t.

sup
N

W1(µ0
N , f

0)

εN
<∞, sup

N
‖φN−γ/2d ? µ0

N‖L∞ <∞.

Then there exists a constant CT s.t. for any t ≤ T , the empirical measure
solving (1.13) with FN satisfies

W1(µN , f) ≤ CT (N−m +W1(µ0
N , f

0)).

As before CT depends only on T , p , the constants in (1.11), (1.12) and
the L1 and L∞ norm of f 0. φ is any smooth, positive kernel with compact
support.

Proof. There are three small scales here: εN = N−1/2d, ε = N−m and the
intermediary scale η = N−γ/2d. By the choices of m and γ, εN << η << ε.

First introduce the intermediary fN as the solution to (1.13) with FN as
force kernel but f 0

N = φη ? f
0 as an initial data. fN is a strong solution to

(1.13) as it is in L∞ by the assumption of the theorem. Moreover

W1(f 0
N , f

0) ≤ W1(µ0
N , f

0) +W∞(f 0
N , µ

0
N) ≤ C εN + C η,
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by the assumptions of the theorem and by Prop. 6. By Prop. 10

W1(fN , f) ≤ CT (N−m + C εN + C η) ≤ C̃T N
−m. (4.9)

The main step is therefore to compare fN with µN in the W∞ distance. Both
solve the same equation, (1.13) with FN , which, because of the cut-off, is well
posed for measures for any fixed N . Estimating the W∞ distance is more
complicated than for the W1 (there is no known equivalent of (3.15)). One
does not try to find the optimal map at time t but instead constructs one map
(non optimal) at t based on one initial optimal map and the characteristics.

Hence define Z(t, s, x, p) = (X,P )(t, s, x, p) by

Ẋ(t, s, x, p) = v(P ), X(t = s, s, x, p) = x,

Ṗ (t, s, x, p) =

∫
Rd
FN(X − y) fN(t, y, q) dy dq, P (t = s, s, x, p) = p.

Denote by ZN the characteristics associated to (1.3), that is ZN(t, x, v) =
(Xi(t), Pi(t)) if X0

i = x and P 0
i = p. Denote by T0 one initial optimal

map, T0#f 0
N = µ0

N , which exists per Prop. 3. Define a map at time t by
Tt = ZN ◦ T0 ◦ Z(0, t, ., .).

There is no reason why Tt should be an optimal map but it satisfies
Tt#fN = µN and thus

W∞(fN(t, ., .), µN(t, ., .)) ≤ sup
Supp fN

|Tt − Id|.

Using now (1.3) and the system of characteristics for Z, one may now esti-
mate, in a manner similar to the calculation in the proof of Th. 5

d

dt
W∞(fN(t, ., .), µN(t, ., .)) ≤ (1 + ‖∇EN‖L∞ + ‖EfN‖L∞)W∞(fN , µN)

+

∥∥∥∥∫
Ω×Rd

FN(.− y) (fN(t, y, q) dy dq − µN(t, dy, dq))

∥∥∥∥
L∞

.

The interested reader can find a more detailed and precise calculation in [87]
for instance. The gradient of EfN is bounded by (4.7). For the gradient of
EN , by (1.11)

‖∇EN‖L∞ ≤
∥∥∥∥ 1

(ε+ |.|)α+1
?x

∫
Rd
µN(t, ., dq)

∥∥∥∥
L∞

,
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with ε = N−m. By Prop. 9 and (4.8),

‖∇EN‖L∞ ≤ C max

(
1,

(
W∞(fN , µN)

ε

)α+1
)
,

where the constant C depends on the L1 and L∞ norms of fN and hence f 0.
As for the last term, fixing any x and denoting Tt = (T xt , T

p
t )∫

Ω×Rd
FN(x− y) (fN(t, y, q) dy dq − µN(t, dy, dq))

=

∫
Ω×Rd

(FN(x− y)− FN(x− T xt (y))) fN(t, y, q) dy dq.

By (1.12)

|FN(x− y)− FN(x− T xt (y))| ≤
(

C |y − T xt (y)|
(ε+ |x− y|)α+1

+
C |y − T xt (y)|

(ε+ |x− T xt (y)|)α+1

)
≤ CW∞(fN , µN)

(
1

(ε+ |x− y|)α+1
+

1

(ε+ |x− T xt (y)|)α+1

)
.

Therefore∣∣∣∣∫
Ω×Rd

FN(x− y) (fN(t, y, q) dy dq − µN(t, dy, dq))

∣∣∣∣ ≤ CW∞(fN , µN)∫
Ω×Rd

(
fN(t, y, q) dy dq

(ε+ |x− y|)α+1
+

µN(t, dy, dq)

(ε+ |x− T xt (y)|)α+1

)
.

Thus again by Prop. 9 and (4.8)∣∣∣∣∫
Ω×Rd

FN(x− y) (fN(t, y, q) dy dq − µN(t, dy, dq))

∣∣∣∣
≤ C max

(
1,

(
W∞(fN , µN)

ε

)α+1
)
W∞(fN , µN).

Combining all those estimates

d

dt
W∞(fN , µN) ≤ C

(
1 +

(
W∞(fN , µN)

ε

)α+1
)
W∞(fN , µN),
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with a constant C independent of N .
By Prop. 6, initially W∞(µ0

N , f
0
N) is of order η. By the definition of

ε = N−m >> η, the previous inequality yields a bound on W∞(µN , fN) with
a blow-up (due to the super linearity) but at a time TN → ∞ as N → ∞.
Therefore given any T <∞, for N large enough then for any t ≤ T

W∞(fN , µN) ≤ CT W∞(f 0
N , µ

0
N),

where the constant CT depends on the time, the dimension, the L1 and L∞

bounds of f 0 and the various constants in (1.11) and (1.12) but does not
depend on N . Combining this inequality with (4.9) concludes.

The main drawback in Th. 8 is the limit on m which forces FN to be
truncated at too large a scale. The phase space scale εN is not very natural
from a physical point of view and one would rather have instead the physical
space scale ε2

N = N−1/d as the critical scale here. This loss occurs when one
combines (4.8) with Prop. 9.

Indeed with a “good” distribution of particles, W∞(fN , µN) could be of or-
der εN while W∞

(∫
fNdq,

∫
µN(dp)

)
would be of order ε2

N . But this strongly
depends on the precise distribution of particles which cannot be controlled
with estimates as simple as the ones presented above. The results in [66, 157]
have ε2

N as the critical scale while [87] for instance actually allow for a trun-
cation ε which could be much lower than ε2

N but have to study more precisely
the trajectories of the particles.

The only estimates in Th. 8 on the initial data are that W1(f 0, µ0
N) be of

order εN and that ‖φN−γ/2d ? µ0
N‖L∞ be of order 1 and by (3.18)-(3.19) and

by Prop. 7, these estimates are satisfied with probability asymptotically 1
for an initial data given by Def. 2. Therefore one has a “weak” propagation
of chaos, weak in the sense that Def. 2 has to be used instead of Def. 3.

Corollary 4. We put ourselves in the framework of Prop. 10. Assume that
FN satisfies (1.12) with m < 1/2d, i.e. for a truncation ε >> εN . Consider
any f 0 ∈ L1 ∩ L∞ with compact support and any sequence of initial data µ0

N

obtained from f 0 through Def. 2. Then the empirical measure µN , solving
(1.13) with FN , converges weak − ∗ to the unique solution f to (1.13) with
F and initial data f 0.

Many improvements that can be made to Th. 8 are however not compat-
ible with random initial data of this sort, as in [66, 157].
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4.6 The mean field limits for 1st order system with
control on the minimal distance

The main criticism leveled at Th. 8 vanishes for first order systems like (1.7).
Indeed in that case, the estimate (4.8) is not used, there is no phase space
scale and εN = N−1/d. Therefore the equivalent of Th. 8 for (1.7) would
only require N−m >> N−1/d or m < 1/d, obtaining the right physical scale
for the critical truncation parameter.

However in that case, it is possible to completely remove any need for a
truncation by considering the minimal distance between particles

dN(t) = min
i 6=j
|Xi(t)−Xj(t)|.

If dN(t = 0) is of order εN then it is possible to show that it remains of order
εN . The idea is simply to use the previous estimates with a truncation lower
than dN which therefore does not change the dynamics.

The fact that the minimal distance can play a crucial role for the mean
field limit has long been recognized. That is one the reasons why it is easier
to perform the limit for particles initially on a mesh or grid, as in [76, 75].
It was used to control by itself the distribution of particles in [99] and was
shown to be propagated. Its combination with Wasserstein distances was
implemented in [84].

Theorem 9. Under the assumptions of Prop. 10; assume moreover that F
satisfies (1.11) with α < d − 1. Consider any ρ0 ∈ L1 ∩ L∞ with compact
support and any sequence of initial data µ0

N s.t.

sup
N

W1(µ0
N , ρ

0)

εN
<∞, inf

N

dN(0)

εN
> 0.

Then there exists a constant CT s.t. for any t ≤ T , the empirical measure
solving (1.14) with F satisfies

W1(µN , f) ≤ CT (εN +W1(µ0
N , f

0)).

Proof. The proof mostly follows the one of Th. 8. One defines δN =
inft≤T dN(t)/2 and FN as FN = F for |x| ≥ δN and FN satisfies the esti-
mates of (1.12) at that scale δN with the convention FN(0) = 0. Because of
this choice, the particles Xi solve the system (1.7) with either F or FN .
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One uses again ρ0
N = φεN ? ρ0 and ρN the solution to (1.14) with FN .

Using Prop. 10, one deduces that

W1(ρN , ρ) ≤ CT εN . (4.10)

With the same calculations as in the proof of Th. 8, one may show that

d

dt
W∞(ρN , µN) ≤ W∞(ρN , µN)

∥∥∥∥∫
Ω

ρN(t, y) dy + µN(t, dy)

(δN + |x− y|)α+1

∥∥∥∥
L∞

.

Since the Xi solve (1.7) with FN , one also deduces that

d

dt
dN(t) ≥ −dN(t) ‖∇EN‖L∞ ≥ −C dN(t)

∥∥∥∥∫
Ω

µN(t, dy)

(δN + |x− y|)α+1

∥∥∥∥
L∞

.

The assumption that dN(0) ≥ εN/C automatically guarantees that ‖ρ0
N‖L∞ ≤

C. Prop. 1 implies that this L∞ bound is propagated in time thus yielding
a bound on ∥∥∥∥∫

Ω

ρN(t, y) dy

(δN + |x− y|)α+1

∥∥∥∥
L∞

.

As for the other term, note that for β > α

(δN + |x− y|)α+1 ≥ 1

C

(
δ

(α+1)/(β+1)
N + |x− y|

)β+1

.

Therefore choosing β > α but β < d−1 and denoting ν = (α+1)/(β+1) < 1,
one has by Prop. 9∥∥∥∥∫

Ω

µN(t, dy)

(δN + |x− y|)α+1

∥∥∥∥
L∞
≤ CT

(
1 +

W∞(ρN , µN)

δνN

)β+1

.

Let us finally normalize the W∞ distance and dN , δN so as to work with
quantities of order 1

W̃∞(t) =
W∞(ρN , µN)

εN
, d̃N(t) =

dN(t)

εN
, δ̃N =

δN
εN
.

Combining all the estimates together we obtain the differential inequalities

d

dt
W̃∞ ≤ C̃T W̃∞

(
1 + ε1−ν

N

W̃∞

δ̃νN

)β+1

,

d

dt
d̃N ≥ −C̃T d̃N

(
1 + ε1−ν

N

W̃∞

δ̃νN

)β+1

,
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where we recall that δ̃N = inft≤T d̃N(t). The system is hence super linear and
by the Gronwall lemma may blow up at a time TN . Nevertheless one has that
TN →∞ thanks to the term ε1−ν

N which vanishes as N →∞ because ν < 1.
The theorem then follows by combining those bounds with (4.10).

The one drawback of this approach is the requirement that dN(0) ∼
εN . As noted before this is not compatible with random initial data chosen
according to Defs. 2 or 3 and therefore it is not possible to deduce any
propagation of chaos from Th. 9.

The reason why the proof succeeds is that two very close particles cannot
get much closer: If they are close then their velocities Ẋi and Ẋj are close as
well provided some regularity is proved on the force field EN . This regularity
on EN precisely relies on the control on the distance between particles.

4.7 Mean field limit and propagation of chaos for (1.3)
with weakly singular force terms

The previous approach cannot be carried over to second order models: Even
if two particles are very close in the physical space, |Xi − Xj| small, they
can get closer because their relative velocity, v(Pi)− v(Pj), has no reason to
be small. As a matter of fact, collisions are possible in (1.3) even for free
transport, F = 0.

The d = 1 case is well understood, being somewhat simpler as the force
F (x) = sign(x) for the Poisson kernel is “only” discontinuous. The first
mean field limit in that case, and propagation of chaos as a corollary, was
obtained in [151], and re-discovered as a particular case of semi-geostrophic
equations in [49]; see also a simpler proof in [85] using a weak-strong stability
inequality.

In higher dimensions, the only results available so far for (1.3) for singular
kernels F without truncation are [86, 87]. The main result from [87] is for
instance

Theorem 10. Assume that Ω = Rd, v(p) = p, d ≥ 2 and that the interaction
force F satisfies (1.11) for α < 1. Choose any 0 < γ < 1.

Assume that f 0 ∈ L∞(R2d) is non-negative, and has compact support and
total mass one, and denote by f the unique non-negative, global, bounded, and
compactly supported solution f of the Vlasov equation (1.13), as per Prop. 1.
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Assume that the initial conditions (X0
i , P

0
i )i=1...N are such that for each

N , there exists a global solution to the N particle system (1.3), and that the
initial empirical distributions µ0

N of the particles satisfy

i) For a constant C∞ independent of N ,

sup
z∈R2d

Nγµ0
N

(
B2d

(
z,N−

γ
2d

))
≤ C∞, and ‖f0‖∞ ≤ C∞;

ii) For some R0 > 0, ∀N ∈ N, suppµ0
N ⊂ B2d(0, R0);

iii) for some r ∈ (0, r∗) where r∗ := d−1
1+α

,

inf
i 6=j
|(X0

i , V
0
i )− (X0

j , V
0
j )| ≥ N−γ(1+r)/2d.

Then for any T > 0 given by Prop. 1, there exist constants C0(R0, C∞, F, T )
and C1(R0, C∞, F, γ, r, T ) such that for N ≥ C1, the following estimate holds

∀ t ∈ [0, T ], W1(µN(t), f(t)) ≤ eC0t
(
W1(µ0

N , f
0) + 2N−

γ
2d

)
. (4.11)

From the discussion in the third section and in particular (3.18)-(3.19)
and Prop. 7, one can check that the assumptions [i]−−[iii] are generic for
chaotic initial data and it is possible to deduce a weak propagation of chaos

Corollary 5. Assume that d ≥ 3 and that F satisfies (1.11) with α < 1.
There exist a positive real number γ∗ ∈ (0, 1) depending only on (d, α) and a
function s∗ : γ ∈ (γ∗, 1)→ s∗γ ∈ (0,∞) s.t.:

- For any non negative initial data f 0 ∈ L∞(R2d) with compact support
and total mass one, denoting by f the unique global, non-negative bounded,
and compactly supported solution f to the Vlasov equation (1.13), see Prop. 1;

- For each N ∈ N∗, denoting by µN the empirical measure corresponding
to the solution to (1.3) with initial positions (X0

i , V
0
i )i≤N chosen randomly

according to the probability (f 0)⊗N per Def. 2;
Then, for all T > 0, any

γ∗ < γ < 1 and 0 < s < s∗γ,

there exists three positive constants C0(T, f, F ), C1(γ, s, T, f, F ) and C2(f 0, γ)
such that for N ≥ C1

P
(
∃ t ∈ [0, T ], W1(µN(t), f(t)) ≥ 3 eC0tN−

γ
2d

)
≤ C2

N s
. (4.12)

The constants C1 and C2 blow up when γ or s approach their maximum value.
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The main limitation for Th. 10 and Corollary 5 is the condition α < 1.
The kernel F is then sometimes called weakly singular since, if F = −∇V ,
then the potential V is continuous. It is unfortunately fair to say that the
mean field limit for α ≥ 1 is mostly not understood at all.

The proof of Th. 10 is intricate and we do not try to present it here.
Instead we attempt to explain where and why the condition α < 1 is useful.
From Prop. 9, it is used at the discrete level of the problem, i.e. when two
particles are very close |Xi −Xj| ≤ εN .

At this scale, one does not try to compare anymore the discrete and
continuous forces as in the proof of Ths 8 and 9. Instead the goal is only to
show that the contribution from such close pairs of particles is small. The
first difficulty is that one may have collisions (or near collisions) and the force
term is hence not even bounded pointwise in time. This difficulty is solved
by averaging the force over a small time interval [t, t+ ε] with ε >> εN well
chosen.

Consider now two close particles j 6= i at t, and neglect the variation of
velocities on [t, t+ ε]. Because of (1.11), with α < 1, we have∫ t+ε

t

|F (Xi(s)−Xj(s))| ds ∼
∫ t+ε

t

ds

|δ + (s− s0)(Vi − Vj)|α
.

ε1−α

|Vi − Vj|−α

where δ is the minimal distance between the two particles on the time interval
[t, t+ ε], which is reached at time denoted s0.

Obviously this estimate is only possible if the integral in time is bounded,
independently how small δ may be; thus the requirement α < 1. The full
contribution is then obtained after a careful summation on all the particles
j of the domain, using the W∞ distance.

Let us add that this condition α < 1 also appears in the classical calcula-
tion of the angle deviation between two particles undergoing a near collision.
If α < 1, the deviation in velocity due to a collision (another particle com-
ing very close) with a sufficiently large relative velocity cannot be too large:
for instance, two particles with sufficiently large relative velocity will never
bounce back even if they exactly collides at some time. So one does not
expect any fast variation in the velocities of the particles (the difficulty is
of course to prove this rigorously). The only “bad events” are the collisions
with very small relative velocities, which are controlled by a lower bound on
the distance in R2d between particles.

In contrast when α > 1, a particle coming very close to another one
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can change its velocity over a very short time interval (even if their relative
velocity remains of order 1): For instance the two particles can bounce back.
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[4] H. Andréasson, M. Kunze, and G. Rein. Global existence for the spher-
ically symmetric Einstein-Vlasov system with outgoing matter. Comm.
Partial Differential Equations, 33(4-6):656–668, 2008.

[5] A. A. Arsen′ev. Existence in the large of a weak solution of Vlasov’s
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[101] W. Jäger and S. Luckhaus. On explosions of solutions to a system
of partial differential equations modelling chemotaxis. Trans. Amer.
Math. Soc., 329(2):819–824, 1992.

[102] J. H. Jeans. On the theory of star-streaming and the structure of the
universe. Monthly Notices of the Royal Astronomical Society, 76:70–84,
1915.
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