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Abstract. We are interested in the development of a numerical method for solving optimal control
problems governed by hyperbolic systems of conservation laws. The main difficulty of computing the
derivative in the case of shock waves is resolved in the presented scheme. Our approach is based on a
combination of a relaxation approach in combination with a numerical scheme to resolve the evolution
of the tangent vectors. Numerical results for optimal control problems are presented.
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1. Introduction We are concerned with a numerical approach to optimization
problems governed by systems of hyperbolic partial differential equations in a single
spatial dimension. As a prototype, we consider a tracking type problem for a terminal
state yd prescribed at some given time t=T and the control acts as initial condition u0.
A mathematical formulation of this optimal control problem is reduced to minimizing
a functional, and, for instance, it can be stated as follows:

min
u0

J(y,yd), (1.1)

where J is the given cost functional and y∈Rn is the unique entropy solution of the
nonlinear conservation law

yt+f(y)x= 0, x∈R, t>0,

y(0,x) =u0(x), x∈R.
(1.2)

There has been tremendous progress in both analytical and numerical studies of
problems of type (1.1), (1.2), see, e.g., [1, 2, 3, 7, 27, 12, 8, 13, 19, 24, 29, 28, 20, 18, 22].
Its solution relies on the property of the evolution operator St :u0(·)→y(·,t) =Stu0(·)
for (1.2). It is known that the semi-group St generated by a nonlinear hyperbolic
conservation law is generically nondifferentiable in L1 even in the scalar one-dimensional
(1-D) case (see, e.g., [12, Example 1]). A calculus for the first-order variations of Stu0

with respect to u0 has been established in [12, Theorems 2.2 and 2.3] for general 1-D
systems of conservation laws with a piecewise Lipschitz continuous u0 that contains
finitely many discontinuities. Therein, the concept of generalized first order tangent
vectors has been introduced to characterize the evolution of variations with respect to
u0, see [12, equations (2.16)–(2.18)]. It has been further extended in [11] to establish
continuous dependence of St on the initial data u0. This result has been extended to
BV initial data in [7, 3] and lead to the introduction of a differential structure for
u0→Stu0, called shift-differentiability, see e.g. [3, Definition 5.1]. Further extensions
have also been discussed for example [17]. Related to that equations for the generalized
cotangent vectors have been introduced for 1-D systems in [9, Proposition 4]. These
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2 Numerical resolution of tangent vectors

equations (also called adjoint equations) consist of a nonconservative transport equation
[9, equation (4.2)] and an ordinary differential equation [9, equations (4.3)–(4.5)] for
the tangent vector and shift in the positions of possible shocks in y(x,t), respectively.
Necessary conditions for a general optimal control problem have been established in [9,
Theorem 1]. However, this result was obtained using strong assumptions on u0 (see
[9, Remark 4] and [3, Example 5.5]), which in the 1-D scalar case can be relaxed as
shown for example in [29, 13]. We note that the nonconservative transport part of
the adjoint equation has been intensively studied also independently from the optimal
control context. In the scalar case we refer to [29, 5, 6, 26] for a notion of solutions
and properties of solutions to those equations. Analytical results for optimal control
problems in the case of a scalar hyperbolic conservation law with a convex flux have also
been developed using a different approach in [29]. The relation to the weak formulation
has been discussed in [2] in the case of Burgers’ equation.

Numerical methods for the optimal control problems have been discussed in [1, 20].
In [19], the adjoint equation has been discretized using a Lax-Friedrichs-type scheme,
obtained by including conditions along shocks and modifying the Lax-Friedrichs numer-
ical viscosity. Convergence of the modified Lax-Friedrichs scheme has been rigorously
proved in the case of a smooth convex flux function. Convergence results have also been
obtained in [29] for the class of schemes satisfying the one-sided Lipschitz condition
(OSLC) and in [1] for implicit-explicit finite-volume methods. Other examples of finite
volume methods and Lagrangian methods are given in [14, 23].

In [13], analytical and numerical results for the optimal control problem (1.1) cou-
pled with the 1-D inviscid Burgers’ equation have been presented in the particular case
of a least-square cost functional J . Therein, existence of a minimizer u0 was proven,
however, uniqueness could not be obtained for discontinuous functions y. This result
was also extended to the discretized optimization problem provided that the numerical
schemes satisfy either the OSLC or discrete Oleinik’s entropy condition. Furthermore,
convergence of numerical schemes was investigated in the case of convex flux functions
and with a–priori known shock positions, and numerical resolution of the adjoint equa-
tions in both the smooth and non–smooth cases was studied. In [21] perturbations of
initial data are studied using an additional spatial dimension. Numerical results as well
as a formalism to derive the linearized equations have been presented therein. In the
scalar case of a production model coupled to ordinary differential equations has been
studied in [16]. Therein, convergence of the wave–front tracking approximation to the
tangent vector equation is proven.

We contribute to the discussion by introducing a novel scheme which allows to
include the arising discontinuities in an optimization framework and without an a–priori
assumption on the location of the discontinuities. This is possible and computationally
efficient under three basic assumptions: first, we only compute derivatives with respect
to piecewise constant controls u0; second, the system (1.2) is not solved directly, but
an ε−relaxation approximation (2.2) is solved instead and last, we compute the exact
derivative for the ε−approximation of the system (2.2) using tangent vectors. The
number of discontinuities in u0 may herein be as large as 1

∆x , where ∆x is the spatial
width of the numerical grid. The overall algorithm requires the solution of two additional
hyperbolic partial differential equations. The motivation and theoretical investigations
are presented in section 2 and numerical results in section 3. The results presented
are on the relaxation formulation of the Burgers’ equation as well as linear hyperbolic
systems. Nevertheless, the approach also applies to nonlinear hyperbolic systems. In
this case the current approach leads to higher diffusion due to the requirement of a single
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characteristic speed bounding all characteristic speed as seen in the implementation for
example in equation (2.25).

2. Motivation and theoretical results
In order to derive a numerical scheme we consider a relaxation approximation [25]

to (1.2). For simplicity we consider only the Jin–Xin relaxation in the case n= 1 and
on the full real line x∈R. Then, the hyperbolic relaxation for

y
(1)
t +f(y(1))x= 0, y(1)(0,x) =u0(x), (2.1)

is given by

yt+

(
0 1
a2 0

)
yx=

(
0

1
ε (f(y(1))−y(2))

)
(2.2)

and by the initial data

y(1)(0,x) =u0(x), y(2)(0,x) =f(u0(x)). (2.3)

We assume that the value a2 fulfills the sub characteristic condition

a2−f ′(y(1))2≥0∀y(1). (2.4)

For positive ε it is known that a solution y yields an approximation to (1.2) in the
following sense. For ε sufficiently small we have up to second order in ε

y
(1)
t +f(y(1))x= ε

((
a2−f ′(y(1))2

)
y(1)
x

)
x
.

Formally we obtain the original conservation law for y(1) in the limit ε= 0. We refer to
[4] for a detailed analysis. For ε>0 the method is known as a relaxing scheme. The
main advantage of (2.2) over (1.2) is the linear transport which greatly simplifies the
computation of associated tangent vectors (in particular the numerical resolution of the
shock variations will turn out trivial for (2.2)).

In the following we will therefore discuss the optimization problem (1.1) with respect
to (2.2). Still, the numerical computation of tangent vectors in general poses severe
challenges addressed below. Therefore, we further simplify by only considering piecewise
constant controls u0. In the following TV (·) denotes the total variation.

Given some C>0, we consider problem (1.1) subject to (2.2) and (2.3) for controls
u0∈U .
Definition 2.1. We indicate by U :={u :R→R :u measurable ,TV (u)≤C,
u piecewise constant } the set of admissible controls. For every u∈U we indicate by
xk =xk(u),k= 1,. ..,N(u) the points of discontinuity of u.

For yd∈L1(R), some T >0 and a bounded interval I⊂R we consider as a prototype
example an unregularized cost functional of tracking type

J(y,yd;T,I) =

∫
χI(x)

(
y(1)(T,x)−yd(x)

)2

dx. (2.5)

The dependence of J on terminal time T and the interval I will be dropped from now
on. We assume that both are fixed and will not change throughout the manuscript.

We now introduce the notion of tangent vectors, see [12] and [11]. In (2.2) we assume
ε>0 fixed, f ∈C4(R) and a2 fulfills the subcharacteristic condition. For a function u∈U



4 Numerical resolution of tangent vectors

Fig. 2.1. Construction of a tangent vector (ξi,v) to uδ having a discontinuity at xi.

a generalized tangent vector consists of two components (v,ξ) where v∈L1(R) describes
the L1 infinitesimal displacement and ξ∈RN(u) describes the infinitesimal displacement
of N(u) discontinuities. A norm on the space of tangent vectors Tu :=L1(R;Rn)×RN(u)

is given by

‖(v,ξ)‖ :=‖v‖L1 +

N(u)∑
i=1

|∆iu| |ξi| (2.6)

where ∆iu=u(xi+)−u(xi−) denotes the jump in u. The norm depends on u through the
number of points of discontinuity. Tangent vectors may be used to describe variations
of u as exemplified in Figure 2.1. For δ>0 an infinitesimal displacement uδ of u is given
by

uδ =u+δv−
N(u)∑
i:ξi>0

∆iuχ[xi,xi+δξi] +

N(u)∑
i:ξi<0

∆iuχ[xi+δξi,xi]. (2.7)

uδ is obtained from u by shifting the function values by δv and the ith discontinuity by
δξi. For δ sufficiently small uδ has the same number of discontinuities as u. Note that if
ξ 6= 0 then the function δ→uδ is not differentiable in L1 as the ratio uδ+h−uδ

h does not
converge to any limit in L1 for h→0. However, the previous limit remains meaningful
if interpreted as a weak limit in a space of measures with a singular point mass located
at xi and having magnitude |∆iu|ξi. Therefore, in [12] a class of variations δ→uδ is
described up to first order by (generalized) tangent vectors (v,ξ).

In general, the norm (2.6) depends on the number of discontinuities N(u) and
therefore on u. As a numerical method we will restrict ourselves to piecewise constant
controls u0. We are going study the number N(u0) equal to the number of grid cells in
the spatial domain. This number is known a priori.

We introduce some notation and definitions (see [12, 11]) already in view of the
special system (2.2). Let u∈L1(R;Rn) be a piecewise Lipschitz continous function
with N =N(u) jumps. Consider Σu the family of all continuous paths γ : [0,δ0]→L1

loc
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with γ(0) =u with δ0 possibly depending on γ. We recall the following definition [12,
Definition 1,3].
Definition 2.2. The space of generalized tangent vectors to a piecewise Lipschitz func-
tion u with jumps at the points x1<x2 ·· ·<xN is Tu :=L1(R;Rn)×RN . A continuous
path γ∈Σu generates a tangent vector (v,ξ)∈Tu if

lim
δ→0

1

δ
‖γ(δ)− γ̄(δ)‖L1 = 0

for

γ̄ :=u+δv−
∑
i:ξi>0

∆iuχ[xi,xi+δξi] +
∑
i:ξi<0

∆iuχ[xi+δξi,xi].

Let u be a piecewise Lipschitz function with simple discontinuities [12, Definition 2].
Then, a path γ∈Σu is a regular variation for u if additionally all function γ(δ) =uδ are
piecewise Lipschitz with simple discontinuities and the jumps xδi depend continuously on
δ. A regular variation γ for u generates a tangent vector (v,ξ) by

ξi= lim
δ→0

xδi −xi
δ

, lim
δ→0

∫ b

a

‖u
δ(xδi +y)−u(xi+y)

δ
−v(xi+y)−ξiux(xi+y)‖dy= 0 (2.8)

whenever [xi+a,xi+b] does not contain any other point of discontinuity of u except
xi. Further, the length of a regular path γ can be computed by (2.6). We now consider
the initial data u0 and a regular variation generating the tangent vector (v,ξ)∈Tu.
Under suitable regularity assumptions [12, Theorem 2.2] regular variations are locally
preserved by the system (2.2) and linearized equations for the time evolution of the
tangent vector (v(t,·),ξ(·)) can be derived. We have the following result [12, Theorem
2.2].
Lemma 2.1. Let y(·,·) be a piecewise Lipschitz continuous solution to (2.2) and initial
data (2.3) y(0, ·) = ȳ piecewise Lipschitz with N simple discontinuities. Let (v̄, ξ̄)∈Tȳ
be a tangent vector to ȳ generated by the regular variation γ with γ(δ) = ȳδ. Let yδ(t,x)
be the solution to (2.2) and initial data (2.3) yδ(0,x) = ȳδ(·). Then, there exists a time
t0>0 such that for all t∈ [0,t0] the path γ̄ with γ̄(δ) =yδ(t,·) is a regular variation of
y(t, ·) generating the tangent vector (v(t),ξ(t))∈Ty(t,·). Further, (v,ξ) is the unique
broad solution to

v(0, ·) = v̄(·), vt+

(
0 1
a2 0

)
vx=

1

ε

(
0

f ′(y(1))v(1)−v(2)

)
, (2.9)

where v= (v(1),v(2)) and outside of the discontinuities of y. For i= 1,. ..,N we have

ξi(t) = ξ̄i and lj ·(∆iv+∆iyx ξi) = 0 j 6=ki. (2.10)

along each line of discontinuity xi(t) where y has a discontinuity in the kith characteris-
tic family. Here, ∆iv=v(xi(t)+,t)−v(xi(t)−,t) and lj denotes the jth left eigenvector

of the matrix

(
0 1
a2 0

)
. The proof of Lemma 2.1 follows from Theorem 2.2[8] which has

been repeated in the Appendix 5 for convenience. We observe that the system (2.2)
fulfills the hypothesis (H1) to (H3) due to its linearity in the flux and since f ∈C4. The
hypothesis are also detailed in the appendix 5. Due to the linearity of the hyperbolic
flux the eigenvectors and eigenvalues are independent of y. Therefore, the shock sensi-
tivities ξi are constant in time leading to equation (2.10). The evolution equation for v
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strongly simplifies, too, leading to equation (2.9). According to [12, Definition 2] ū∈U
and ȳ= (ū,f(ū)) are piecewise Lipschitz with simple discontinuities. The equations
(2.9) and (2.10) are particularly simple due to the linear transport in the hyperbolic
relaxation. In particular, the equation for ξi is solved without any effort, since ξi is
constant in time. Further, if we diagonalize (2.2) first and then apply the tangent vec-
tor calculus, the second equation (2.10) simplifies. We come back to this point later in
the numerical scheme. It is important to note that in the previous result it is assumed
that all variations uδ (resp. yδ) posses the same number of discontinuities which in the
case of problem (1.1) is unknown a priori. An interpretation of the second condition
of equation (2.10) may be as follows: given a discontinuity in family i the condition
prevents a discontinuity at the same position in another family j 6= i.

Tangent vectors and their property (2.8) can be used to compute the variations of
the cost functional (2.5).

Lemma 2.3. Assume the assertions of Lemma 2.1 hold true. Assume that t0>T. Let
J be given by (2.5) and assume I is sufficiently large. Then, the variation of J with
respect to a tangent vector (v,ξ) for initial data y(0,x) = (u0(x),f(u0(x)) is given by

∆(v,ξ)J(y,yd) = 2

∫
χI(x)

(
y(1)(T,x)−yd(x)

)
v(1)(T,x)dx+

N(u0)∑
i=1

((
y(1)(T,xi+)−yd(xi+)

)
+
(
y(1)(T,xi−)−yd(xi−)

))
∆iy

(1)(T, ·)ξi(T ).

(2.11)

In other words, calling γ(δ) a curve generating the tangent vector (v,ξ) and yδ the
solution for initial datum γ(δ), we have:

J(yδ,yd) =J(y,yd)+δ ∆(v,ξ)J(y,yd)+o(δ). (2.12)

Note that the summation is on the discontinuities of y(1) at terminal time T related
by Lemma 2.1 to the number of discontinuities of u0 (resp. y0) reflecting the original
problem. The proof is similar to [16, Proposition 1] and omitted.

Lemma 2.3 and equation (2.7) already suggest a numerical method for solving (1.1)
with cost functional (2.5). Given some control u0 and a stepsize ρ>0 we obtain a
new control ũ0 corresponding to smaller value of the cost functional J by the following
variation

ũ0(x) =u0(x)−

ρv(0,x)−
N(u0)∑
i:ξi(0)>0

∆iu0 χ[xi,xi+ρξi(0)] +

N(u0)∑
i:ξi(0)<0

∆iu0 χ[xi+ρξi(0),xi]

,
(2.13)

and ỹ0 = (ũ0,f(ũ0)). Further, v(0,x) is the solution at time t= 0 to (2.9) for terminal
data

v(1)(T,x) =
(
yd(x)−y(1)(T,x)

)
, v(2)(T,x) = 0, (2.14)

and ξi(0) the solution to (2.10) with terminal data

ξi(T ) =
((
yd(xi+)−y(1)(T,xi+)

)
+
(
yd(xi−)−y(1)(T,xi−)

))
∆iy

(1)(T ). (2.15)
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Now, the given choice for (v(T,x),ξ(T )) yields:

∆(v,ξ)J(y,yd) =−2

∫
χI(x)

(
y(1)(T,x)−yd(x)

)2

dx

−
N(u0)∑
i=1

((
y(1)(T,xi+)−yd(xi+)

)
+
(
y(1)(T,xi−)−yd(xi−)

))2(
∆iy

(1)(T, ·)
)2

.

Denote by ỹ the solution to equation (2.2) with initial data ỹ0 = (ũ0,f(ũ0)). The
solution to initial data (u0,f(u0)) is denoted by y. Then, according to (2.12) we obtain

J(ỹ,yd)<J(y,yd) (2.16)

for ρ sufficiently small.
Note that this requires to solve (2.9) backwards in time and to fulfill (2.10). The

previous computations motivate a numerical scheme for approximately solving (1.1),
(2.2) and (2.5).

Before stating the full discrete algorithm we reformulate and comment on some
parts of the method. The system (2.2) is diagonalisable with eigenvalues λ1,2 =±a and
characteristic variables

η(1) =y(2) +ay(1) and η(2) =y(2)−ay(1). (2.17)

Also, in view of condition (2.10) it is numerically advantageous to consider the mini-
mization problem for J in characteristic variables η= (η(1),η(2)). Furthermore, in view
of (2.13) equation (2.9) will be solved backwards in time for given terminal data v(T,x).
We obtain for ṽ(t,x) =v(T − t,x) the system

ṽ(0, ·) =v(T, ·), ṽt−
(

0 1
a2 0

)
ṽx=

1

ε

(
0

ṽ(2)−f ′(y(1)(T − t,·))ṽ(1)

)
. (2.18)

and eigenvalues λ1,2 =∓a and corresponding characteristic variables

ϕ(1) = ṽ(2) +aṽ(1) and ϕ(2) = ṽ(2)−aṽ(1).

Let I= [0,1], T >0, yd and ε>0 be given. The cost functional J is given by equation
(2.5). We discuss the numerical discretization of problem (2.19) using a first-order finite
volume scheme with periodic boundary conditions. Note that we leave (for the moment)
both components of the initial data y0 subject to optimization.

min
y0=(y

(1)
0 ,y

(2)
0 )

J sbj to (2.2), y(0,x) =y0(x), y(t,1) =y(t,0), x∈ I, t≥0. (2.19)

Fix a2 such that the subcharacteristic condition (2.4) is fulfilled. Introduce an equidis-
tant spatial grid {xi}Nxi=0 on I with ∆x=xi+1−xi. We choose ∆t such that the CFL
condition holds, i.e., ∆t|a|= ∆x, and denote by tn= ∆tn for n= 0,. ..,Nt. We write
xi+ 1

2
=xi+

∆x
2 and for simplicity assume xNx = 1 and tNt =T. Also for notational con-

venience we denote by x− 1
2

=xNx− 1
2

and xNx+ 1
2

=x 1
2
. Let T −1∈R2×2 be the transfor-

mation to characteristic variables (2.17) , i.e.,

T −1

(
0 1
a2 0

)
T =

(
a 0
0 −a

)
and η=T −1y.



8 Numerical resolution of tangent vectors

On a time-interval [tn,tn+1] we may introduce an operator splitting [25] to discretize
source and transport term. In characteristic variables the splitting for t∈ [tn,tn+1] reads

∂tη
(1) +a∂xη

(1) = 0, ∂tη
(2) = 0,

∂tη
(1) =S(η(1),η(2)), ∂tη

(2) =S(η(1),η(2)),

∂tη
(2)−a∂xη(2) = 0, ∂tη

(1) = 0.

where S(η(1),η(2)) = 1
ε

(
f((T η)(1))−(T η)(2)

)
. A discontinuity at time tn in any com-

ponent of η0 therefore moves with speed a and −a, respectively. Clearly, we can also
express the objective function J in characteristic variables. The corresponding equations
are given in the appendix 6.

The cell average on [xi− 1
2
,xi+ 1

2
] at time tn for any function u(t,x) is denoted by

uni = 1
∆x

∫ x
i+1

2
x
i− 1

2

u(tn,x)dx. A first–order Upwind discretization of equation (2.2) using the

reformulation in characteristic variables and an exact integration of the source term is
given by (2.20) for i= 0,. ..,Nx and n= 1,. ..,Nt.

y0
i = (y0)i (2.20a)

η
(1)
i = (T −1yn−1

i−1 )(1), η
(1)
0 = (T −1yn−1

Nx
)(1), η

(2)
i = (T −1yn−1

i )(2), (2.20b)

ỹ
(1)
i = (T ηi)(1), ỹ

(2)
i = exp(−∆t

ε
)(T ηi)(2) +(1−exp(−∆t

ε
))f(ỹ

(1)
i ), (2.20c)

η
(2)
i = (T −1ỹi+1)(2), η

(2)
Nx

= (T −1ỹ0)(2), η
(1)
i = (T −1ỹi)

(1), (2.20d)

yni =T ηi. (2.20e)

The discretization (2.20) uses a different splitting compared to [25] which leads to more
complicated update formulas above but will be advantageous later on. In the current
splitting we first transport in the first characteristic variable, then apply the source
term and finally transport the second characteristic variable. The transformation to
characteristic variables η and the CFL condition allows to resolve the transport exactly.
Due to the particular CFL chosen, after one time step any discontinuity located at a
cell interface reaches after ∆t again a cell interfaces xi+ 1

2
.

As explained above, instead of equation (2.9) we discretize equation (2.18) to solve
for the variations ṽ. Similarly to (2.20), we transform (2.18) to characteristic variables
ϕ and resolve the linear transport exactly. If the discretized initial data is denoted by
ṽ0
i , then we obtain for i= 0,. ..,Nx and n= 1,. ..,Nt

ϕ
(2)
i = (T −1ṽn−1

i−1 )(2), ϕ
(2)
0 = (T −1ṽn−1

Nx
)(2), ϕ

(1)
i = (T −1ṽn−1

i )(1) (2.21a)

v̄
(1)
i = (T ϕi)(1), v̄

(2)
i = exp(−∆t

ε
)(T ϕi)(2) +(1−exp(−∆t

ε
)f ′(y

(1),Nt−n
i )v̄

(1)
i (2.21b)

ϕ
(1)
i = (T −1v̄i+1)(1), ϕ

(1)
Nx

= (T −1v̄0)(1), ϕ
(2)
i = (T −1v̄i)

(2), (2.21c)

ṽni =T ϕi. (2.21d)

Next we turn to the discretization of equation (2.10). Within a first–order finite
volume scheme a piecewise constant approximation is used to reconstruct the solution,
i.e.,

y(t,x)≈
Nx∑
i=0

χ[tn,tn+1]×[x
i− 1

2
,x
i+1

2
](t,x)yni , (2.22)
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and similarly for the initial data. Therefore, numerically solving problem (2.19) natu-
rally leads to consider piecewise constant controls y0∈U having discontinuities at pos-
sibly each cell boundary xi+ 1

2
. Therefore, a shift in the position of the discontinuity ξi

may occur at each boundary xi+ 1
2
. As long as the spatial resolution is not modified the

number of discontinuities is however fixed being a crucial assumption in Theorem 2.1.
Since the conservative y and characteristic variables η are equivalent upon the linear
transformation T we optimize in (2.19) for η0 =T −1y0 instead of y0.

For fixed Nx the set of all admissible controls Uad⊂U consists of all piecewise
constant functions η0(x) given by

η
(j)
0 (x) =

Nx∑
i=0

χ[x
i− 1

2
,x
i+1

2
](x)η

(j)
0,i , j= 1,2, (2.23)

which additionally fulfill (2.24), i.e.,

(η
(1)
0 )2i= (η

(1)
0 )2i+1, (η

(2)
0 )2i−1 = (η

(2)
0 )2i, i= 0,. ..,

Nx
2
. (2.24)

Note that for Nx sufficiently large the condition (2.24) still allows to approximate any
piecewise constant function. The condition (2.24) allows as admissible controls piecewise

constant η
(i)
0 ∈U for i= 1,2 having each only Nx

2 points of discontinuity which are of

the following type: the first component η
(1)
0 may have a discontinuity only at xi+ 1

2
for

some odd value i and the second component η
(2)
0 may only have a discontinuity at xi+ 1

2

for some even value i. The construction (2.23) and (2.24) allows that for any given
discretization cell i, either the first or second component has a discontinuity across the
cell boundary i+ 1

2 . The other component is constant across the cell boundary. This
ensures that the second part of condition (2.10) is fulfilled. Further, the jump is parallel
to the eigenvectors and does not split under advection. This structure is preserved in
the splitting scheme below and therefore condition (2.10) is automatically fulfilled after
transport and application of the source term.

When computing the tangent vector to η0 we now obtain the L1−variations ϕ0

and the variation in the position of the discontinuities ξi. We denote by ξi, i= 0,. ..,Nx
the variation of the discontinuity at position xi+ 1

2
. Hence, ξi for i odd (even) is the

variation of the discontinuity in the first (second) component of η0. In original variables
the equation for ξi is given by equation (2.15). Transformation in characteristic variables
lead to equation (6.2c) repeated here for convenience:

ξj(T ) =
1

2

((
∆i(j)η

(1),Nt−∆i(j)η
(2),Nt−∆i(j)yd

))(
∆̂i(j)η

(1),Nt−∆̂i(j)η
(2),Nt

)
,

where ∆wk = 1
2a (wk+1 +wk) and ∆̂wk =wk+1−wk. Here, i(j) denotes the index of the

location xi+ 1
2

of the jth discontinuity in the initial data, i.e., for given j we determine
i such that xi+ 1

2
=xj+ 1

2
+aT. The equations for ϕ0 are obtained from the equations

(2.18) for ṽ and are given in detail in equation (6.2).
For the evolution of ξi it is important that no new discontinuities are generated

during the computation of transport and source term. This is guaranteed within each
timestep ∆t using the scheme (2.20). To be more precise, the splitting does not intro-
duce additional discontinuities due the action of the source term S(η(1),η(2)) provided
that η0 fulfills (2.24). Note that the same holds true for ϕ provided that ϕ0

i =T −1ṽ0
i

fulfills (2.24).
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The evaluation of ξj requires to compute the actual shock positions. Under assump-
tion (2.24) the position of discontinuities in the first component and second component
of η at time tn are given by

x2i−1(tn) =x2i−1(0)+a tn, x2i(t
n) =x2i(0)−a tn, i= 0,. ..,Nx. (2.25)

Here, xj(0) =xj+ 1
2

and we assume that discontinuities exiting at x= 1 (or x= 0) enter

again at x= 0 (x= 1).
We turn to the discussion of the condition (2.10). In characteristic variables `j is

the jth unit vector. In the following we show that the second part of equation (2.10)
is always fulfilled. Let i be odd and η be computed by the previous splitting. Then,

we observe ∆iη
(2)
x = 0 since η(2) is constant across the position of the discontinuity in

the first family x2i−1(tn). Provided we discretize J such that ϕ0
j :=T −1ṽ0

j , j= 0,. ..,Nx
in (2.21) also fulfills (2.24), then, we have ∆iϕ

(2) = 0. The same is true for i even and,
therefore, the second part of equation (2.10) is fulfilled trivially within the proposed
scheme. No additional modification of the scheme is required.

Finally, we consider J(η,yd) =J(T y,yd) and obtain the gradient of J in terms of the
characteristic variables η and its associated tangent vectors (φ,ξ). The detailed equation
for ∆v,ξJ(η,yd) is given in (6.1) with associated discretization given by equation (6.2).

In the following we describe an algorithm using tangent vectors to solve the op-
timization problem (2.19). In our description we may switch between characteristic
(η,φ) and original variables (y,v) by the linear and time–independent transformation
T defined in equation (2.17). Further, ṽ and v are related by ṽ(t,x) =v(T − t,x) and φ
and ϕ are also related by ϕ(t,x) =φ(T − t,x). We solve problem (2.19) by an iterative
scheme starting with an initial guess for the control u0∈Uad. Herein, Uad is such that
T −1(u0,f(u0)) =η0 fulfills equation (2.24). Due to the discretization we have Nx dis-
continuities in η0 located at the cell interfaces xi+ 1

2
for all i. With each discontinuity

we have an associated shift ξi (independent of time due to equation (2.10)). Further,
we have a (discrete) solution y (resp. η) associated with the control η0. η0 might not
be optimal and should improved. The key to improve the control is equation (2.16) in
original variables (see equation (6.1) for a formulation of the relevant term in charac-
teristic variables). In order to fulfill the descent condition (2.16) we choose (v,ξ) (resp.
(ϕ,ξ)) such that

∆(v,ξ)J(y,yd)≡∆(ϕ,ξ)J(y,yd)<0. (2.26)

This choice in original variables is given by equation (2.14) and (2.15). In characteristic
variables it is given by equation (6.2) and (6.2c). Note that in the formulation of
∆(v,ξ)J(y,yd) we prescribe terminal data t=T for the L1−variation v and the the shock
shifts ξ. However, our control u0, resp. η0, is prescribed at initial time t= 0. Therefore,
we need to transport the particular choice of v(T ), resp. φ(T ), such that (2.26) holds
backwards in time using the (discrete) dynamics (2.18), resp. (2.21). For simplicity
the backwards in time dynamics is transformed into a forward in time dynamics for the
variables ṽ, resp. ϕ. In case of ξi(T ) the transport backwards in time is trivial, since ξi is
constant in time. Now, we obtain a new control u0, resp. η0 by applying formula (2.13).
In the numerical scheme we update the characteristic variable η0(x) by updating the cell
average η0,i of each component at every spatial point i= 0,. ..,Nx. We proceed in two

steps. First, we add componentwise the cell average of the L1−part ϕNti =φ0
i in each

cell i. Second, we need to take into account the variation ξj(0) for each discontinuity
j. In characteristic variables the location of the discontinuity j is computed according
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to equation (2.25) and it corresponds to the cell index i(j). According to equation
(2.23) the solution is piecewise constant on each cell [xi− 1

2
,xi+ 1

2
]. Further, it has only

discontinuities at every second cell interfaces in each component. In order to avoid
interacting shock shifts we restrict ρ in equation (2.13) such that |ξi|≤2∆x. Then, we
reconstruct η0 according to (2.23) and apply the shifts by adding

N(u0)∑
i:ξi(0)>0

∆iu0 χ[xi(0),xi(0)+ρξi(0)] +

N(u0)∑
i:ξi(0)<0

∆iu0 χ[xi(0)+ρξi(0),xi(0)]

as in equation (2.13). In fact, we add the corresponding term in characteristic variables.
We further have to ensure that the new obtained η0 still fulfills (2.24). Therefore, we
need to compute cell averages on [xi− 1

2
,xi+ 1

2
] of the updated control η0 such that (2.24)

holds. Since η0 was piecewise linear before the new cell averages are computed exactly.
In the following we present the update formula in characteristic variables. Denote

the volume averaged shifted control in cell j by Ξkj ∆x for the kth component. Then,
we obtain

Ξ1
j−1 = Ξ1

j = min{(−ξj)+,∆x}η(1),0
j+1 +max{ξ+

j−2−∆x,0}η(1),0
j−1 + (2.27a)

(∆x−min{(−ξj)+,∆x}−max{ξ+

j−2−∆x,0})η(1),0
j ,

Ξ2
k−1 = Ξ2

k = min{(−ξk)+,∆x}η(2),0
k+1 +max{ξ+

k−2−∆x,0}η(2),0
k−1 + (2.27b)

(∆x−min{(−ξk)+,∆x}−max{ξ+

k−2−∆x,0})η(2),0
k ,

η̃
(1),0
i =

Ξ1
i

∆x
−ϕ(1),Nt

i , (2.27c)

η̃
(2),0
i =

Ξ2
i

∆x
−ϕ(2),Nt

i . (2.27d)

Herein, the current cell average of the control is denoted by η0
i and the update is denoted

by η̃0
i . The index j∈{0,. ..,Nx} is odd, and k∈{0,. ..,Nx} is even. Further, we denote

by x+ = max{x,0} and by ξi=P(−ξi) where P is the projection on [−2∆x,2∆x], i.e.,

P(z) =

−2∆x z≤−2∆x
z −2∆x<z<2∆x

2∆x z≥2∆x

.
Those computations are exemplified in Remark 2.2. Summarizing, in (2.27) a piecewise
constant reconstruction of η̃ is computed where for example in the case of the first
component the discontinuity at xi+ 1

2
is moved by ξi and at xi− 3

2
by ξi−2. Since ϕ

fulfills (2.24) this holds true for η̃.
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The previous computation leads to an iterative algorithm for numerically solving
(2.19) or equivalently

min
η0∈U

J(T η,yd) sbj to y=T η,(2.2),η(0,x) =η0(x), η(t,0) =η(t,1) and (2.24).

Algorithm
1. Set terminal time T >0, a2≥max

y(1)
(f ′(y(1))2 and choose an equidistant spa-

tial discretization with Nx gridpoints. Choose ∆t= ∆x
a and k= 0. Let ηk0,i=(

(η
(1)
0,i )

k,(η
(2)
0,i )

k
)

for i= 0,. ..,Nx, be an arbitrary initial control such that ηk0

fulfills (2.24). Let (yd)i be a discretization of the given function yd(·).

2. Solve equations (2.20) with initial data (y0)i :=T ηk0,i to obtain ηNti =T −1yNti .

3. Set initial data ϕ0
i and shock variations ξi given by equation (6.2). Therein,

xi(t
Nt) are given by equation (2.25).

4. Solve equations (2.21) for initial data ṽ0
i :=T ϕ0

i to obtain ϕNti =T −1ṽNti .

5. Obtain the new iterate ηk+1
0,i := η̃0

i where η̃0
i is given by equation (2.27). To

evaluate equation (2.27) use the old iterate as η0
i :=ηk0,i, the solution ϕNti and

the shifts ξi.

6. Provided that J(T η,yd) is sufficiently small we terminate. Otherwise set k→
k+1 and continue with step (2).

Remark 2.2. Note that ηk0,i is a vector of two components. The algorithm computes a

sequence
(

(ηk0,i)
Nx
i=0

)∞
k=0

of approximations

yk(0,x) =

Nx∑
i=0

χ[
x
i− 1

2
,x
i+1

2

]T ηk0,i
to the optimal control y∗(0,x) of problem (2.19). During the iteration on k the data
ϕ0
i and ξi are chosen in every step such that the gradient of the objective function

is non–positive, see equation (6.1) and equation (6.2). The derivative of the objective
functional is computed at terminal time T using the solution η at time T. The update for
the control η0,i has to be at initial time. Therefore, in step 4, the algorithm propagates
the information backwards using the equations (2.21). At initial time the variations in
L1 and for the shock position are added towards the old control ηk0,i in order to obtain
an improved control for the next iteration k+1. Using this new control the equation
(2.20) will be solved. If the mismatch in the objective functional is still large enough the
procedure is repeated.

We present more details on the motivation of equation (2.27) where the values Ξj
are introduced. Those values describe the effect of the shift in the discontinuity on the
values of η0

i and are used in step 5 of the algorithm. We consider the first component

only with the other being similar. Due to the construction of the discretized control η
(1),0
i

we have a discontinuity only at indices i when i is odd. More precisely, the discontinuity
is located at position xi+ 1

2
for i odd. From step 4 we obtain the shift ξi in the shock

position. We revert the sign of ξi in order to obtain a descent in the objective function
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(see equation for ξ̄i below). Since we require equation (2.24) to hold we first project
the shift ξi onto the interval [−2∆x,2∆x] and denote the projection by ξ̄i=P(−ξi).
Assume now −∆x< ξ̄i<0. Then, in order to have a piecewise constant control on the
spatial intervals [xi− 1

2
,xi+ 1

2
] we need to shift the current control at point xi+ 1

2
by ξi and

average again the shifted control on [xi− 1
2
,xi+ 1

2
]. This way we obtain η

(1)
0,i . Assume no

other shift has happened. Then, the volume average of the shifted control in cell i is
given by

η
(1)
0,i =

1

∆x

(
(−ξ̄i)η(1)

0,i+1 +(∆x−(−ξ̄)η(1)
0.i )
)

=
Ξ1
i

∆x

The formula equation (2.27) is obtained when taking into account shifts in positive and
negative direction as well as shifts of the neighboring cells.

Note that in the case ξi≡0 for all i, we obtain
Ξ1
i

∆x =η
(1),0
i

Compared with the general case given by equation (2.13) we presented the algorithm
for ρ≡1. In the numerical results we observed convergence even in this case. However,
it is only minor modification to include 0<ρ<1 in step 5. Note that including a ρ>0
requires also to introduce a stepsize control mechanism as for example Armijo’s rule.

3. Numerical results We present numerical results using the previous calculus
for two cases. The simplest possible application is the optimal control of a linear system
(2.2) without source term. Second, we present results on the optimal control for the
relaxation system (2.2) for Burgers’ flux f(w) = 1

2w
2. All spatial grids are equidistant on

I= [0,1] and the temporal discretization is such that the CFL condition [15] is satisfied.
We use periodic boundary conditions in all cases. The cost functional J is discretized
using the trapezoidal rule. All initial controls are constant with η0(x) = ( 1

2 ,
1
4 ). Numerical

tests not reported here show first-order convergence of the scheme. We observe that the
applied modifications to the IMEX scheme do not alter the properties of the original
scheme proposed in [25].

The minimization problem (1.1) does not have necessarily a unique solution. This is
for example the case if the desired state is generated by a strong discontinuity. Therefore,
the initial value for the optimization might have a strong influence on the local minimizer
found. The non uniqueness of the minimization problem has been discussed in recent
literature as for example [1]. Our purpose of studying problem (1.1) is to exemplify
the numerical application of the tangent vector calculus. Therefore, we do not focus on
possible non uniqueness of the solution to (1.1).

3.1. Optimal control of a linear system We consider problem (3.1) with
periodic boundary conditions on the domain x∈ I, T = 0.35 and a2 = 5

4 .

min
u0

∫ 1

0

(
y(1)(T,x)−y(1)

d (x)
)
dx sbj to yt+

(
0 1
a2 0

)
yx= 0, y(0,x) = (u0(x),f(u0)).

(3.1)

In the example we initialize the control similar to (2.3) and f(w) = 1
2w

2. The de-
sired state yd is depicted in Figure 3.1 (along with the obtained optimized state).
The pointwise error in terminal state are depicted in Figure 3.2. The corresponding
initial data y(0,x) = (u0(x),f(u0)) corresponding to the desired state yd is given by

u0(x) =

 1 0.30≤x≤0.45
0.1 0.5≤x≤0.65
0 else

 .
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Fig. 3.1. Desired state (red cross) and optimized state (blue circles) for the linear system with
Nx= 200 grid points in space for both components (y(1),y(2)) in the left part of the figure. The pointwise
difference of optimized and desired state is given in Figure 3.2. Iteration history in log−scale for the
cost. The spatial resolution of the scheme is ∆x= 5×10−3 and log10(∆x)≈−2.3.

Fig. 3.2. Pointwise difference of desired state and optimized state in logarithmic scale for the
linear system with Nx= 200 grid points in space for both components (y(1),y(2)). The corresponding
profiles are depicted in Figure 3.1.

The algorithm is started with constant control η0 and stopped after at most 2000
steps of iteration. The iteration history is depicted in the right part of Figure 3.1. With
the proposed method we observe convergence until the grid resolution is reached. The
dependence on the spatial grid is given in Table 3.1. As expected we observe first-order
convergence.

We compare the obtained results also with the case when the shock variations ξi
are not taken into account. Hence, we consider the same example as before and run
the same algorithm but setting ξi≡0 for j= 1,2 in equation (2.27). The dependence
on the spatial grid in this situation is depicted in Table 3.2. Comparing with Table
3.1 we observe a deterioration in the convergence rate from ≈1 when including the
shock variations to ≈ 1

2 for the cost functional and ≈ 3
4 for state when neglecting this

contribution.
Note that the error in the second component is smaller compared with the scheme

neglecting the shock sensitivities. In the first component and the functional we observe
the opposite behavior. However the overall resolution is always below the numerical
resolution of the grid and, therefore, a comparison of those values is difficult.
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Nx J Rate ‖y(1)
0 −y

(1)
∗ (t= 0,·)‖2 Rate ‖y(2)

0 −y
(2)
∗ (t= 0,·)‖2 Rate

50 4.6936e−03 (0.00) 5.5364e−03 (0.00) 6.9206e−03 (0.00)
100 2.5878e−03 (0.91) 2.8922e−03 (0.96) 3.6152e−03 (0.96)
200 1.3510e−03 (0.96) 1.4739e−03 (0.98) 1.8424e−03 (0.98)
400 9.9964e−04 (0.68) 8.2176e−04 (0.90) 1.2031e−03 (0.77)

Nx ‖y(1)
d −y

(1)
∗ (t=T, ·)‖2 Rate ‖y(2)

d −y
(2)
∗ (t=T, ·)‖2 Rate

50 5.5364e−03 (0.00) 6.9206e−03 (0.00)
100 2.8922e−03 (0.96) 3.6152e−03 (0.96)
200 1.4739e−03 (0.98) 1.8424e−03 (0.98)
400 7.5945e−04 (0.97) 1.2666e−03 (0.73)

Table 3.1. Convergence history for different spatial grids with Nx equidistant grid points. Re-
ported are the value of the cost functional J after optimization, the L2−norm difference of both com-
ponents (y(1),y(2)) for the initial data y0 =y(0,x) and the desired state yd. The optimized solution is
denoted by y∗(t,x).

Nx J Rate ‖y(1)
0 −y

(1)
∗ (t= 0,·)‖2 Rate ‖y(2)

0 −y
(2)
∗ (t= 0,·)‖2 Rate

50 9.8550e−04 (0.00) 1.9823e−03 (0.00) 3.6662e−03 (0.00)
100 9.8310e−04 (0.50) 1.3402e−03 (0.74) 2.6691e−03 (0.69)
200 9.9839e−04 (0.49) 9.5812e−04 (0.70) 1.8837e−03 (0.71)
400 9.9986e−04 (0.50) 6.7520e−04 (0.71) 1.3360e−03 (0.70)

Nx ‖y(1)
d −y

(1)
∗ (t=T, ·)‖2 Rate ‖y(2)

d −y
(2)
∗ (t=T, ·)‖2 Rate

50 1.6294e−03 (0.00) 3.9955e−03 (0.00)
100 1.0328e−03 (0.79) 2.8747e−03 (0.69)
200 7.3280e−04 (0.70) 2.0440e−03 (0.70)
400 4.9368e−04 (0.74) 1.4578e−03 (0.70)

Table 3.2. Convergence history for different spatial grids with Nx equidistant grid points neglect-
ing the effect of the shock variations ξi on the optimal control. As in Table 3.1 we report the value
of the cost functional J after optimization, the L2−norm difference of both components (y(1),y(2)) for
the initial data y0 =y(0,x) and the desired state yd. The optimized solution is denoted by y∗(t,x).
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3.2. Optimal control of the relaxation approximation to Burgers’ Equa-
tion

We consider problem (3.1) with T = 0.35, ε= 10−4, Nx= 400 and a= 5
4 . The desired

state yd is the solution at time T to (2.2) and (2.3) for u0(x) = cos(2πx). The algorithm
is started with constant control η0 and stopped after the value of the cost functional
is below 10−4. We depict desired and optimized state in the original variables y(T, ·)
in Figure 3.3. The obtained optimized control ηk0 and the function u0 are depicted in
Figure 3.3 and the iteration history in Figure 3.4.

Fig. 3.3. Desired state (red cross) and optimized state (blue circles) for the linear system with
Nx= 400 grid points in space for the variable y(1)(T,x) in the left part of the figure and for y(1)(0,x)
in the right part.

Fig. 3.4. Iteration history for the example of Figure 3.3 in log−scale for the value of the cost
functional J. The stopping criteria is J≤10−4 which is comparable with the spatial resolution of the
scheme, ∆x= 2.5×10−3.

We observe a good agreement in the recovered desired state yd. The difference in
the obtained control is due to the fact that the solution to equation (2.19) is not unique.

In Figure 3.5 and Figure 3.6 we present a similar example but with desired state
yd obtained as solution to (2.2) and (2.3) for u0(x) =χ[0.3,0.45](x). All other parameters
are as before. Similarly to the previous results we observe that there is no uniqueness
in the control u0 leading to yd.

4. Summary
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Fig. 3.5. Desired state (red cross) and optimized state (blue circles) for the linear system with
Nx= 400 grid points in space for the variable y(1)(T,x) in the left part of the figure and for y(1)(0,x)
in the right part.

Fig. 3.6. Iteration history for the example of Figure 3.3 in log−scale for the value of the cost
functional J. The stopping criteria is J≤10−4 which is comparable with the spatial resolution of the
scheme is ∆x= 2.5×10−3.

We present a numerical method for solving optimal control problems subject to the
relaxation approximation to hyperbolic conservation laws. Equations for the evolution
of the corresponding tangent vector of the relaxation system are derived and a numer-
ical discretization has been introduced. The tangent vector has been used to compute
the analytical gradient of the reduced cost also in the presence of traveling discontinu-
ities. A numerical discretization of the gradient has been implemented to solve some
examples of linear and nonlinear optimal control problems. The computation of the
finite dimensional part of the tangent vector allows to obtain the expected order of
convergence.

We comment on Table 3.1 and Table 3.2. Compared with the method ignoring the
shifts in the tangent vectors we observed an improved numerical performance. However,
the improvement yields only higher convergence rates, but not necessarily smaller resid-
uals (up to the chosen tolerance). This is not contradictory to the theoretical result.
Therein, we only to expect residuals as low as the numerical discretization error. The it-
erative procedure using shifts does not yield the same iterates and includes a projection
towards the piecewise constant control. This introduces an error of the order of the grid
which may explain the higher residuals. In the linear example where the exact solution
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is known, this solution can be obtained using either the shifts or suitable updates of the
cell averages and ignoring the shifts. This is due to the linear structure of the problem.
But, neglecting shifts yields a different approximation to the optimization problem. In
particular, this is not the theoretical correct one. Nevertheless, it yields smaller numeri-
cal residuals. A possible reason might be that when ignoring the shifts we update on Nx
cells cell averages. The true solution however requires only two correct shock positions.
Therefore, there are more degrees of freedom leading possibly to smaller residuals.

Acknowledgments. This work has been supported by DFG Cluster of Excellence
EXC128, RWTH Seedfund project, the BMBF KinOpt Project and NSF KI-Net.

5. Appendix on definitions and supplementary lemmas
In this section we collect definition and statements from the reference [8, 10]. They

are given for sake of completeness.
Definition 5.1 (Continuous path). A mapping γ : [a,b]→L1(Rn) is called a con-

tinuous path, if γ is continuous on the interval [a,b] with respect to L1−norm, i.e.,

∀x∈ [a,b] : lim
ε→0
‖γ(x+ε)−γ(x)‖L1 = 0.

Definition 5.2 (Broad solution). Consider the quasi–linear partial differential
equation

ut(t,x)+A(t,x)ux(t,x) =h(t,x,u), (5.1)

where A∈Rn×n is strictly hyperbolic, Lipschitz and h is measurable w.r.t. (t,x) and
Lipschitz continuous w.r.t. u. Assume an initial condition u(0,x) =u0(x) with u0∈
L1(R;Rn). Denote by `i,ri the ith left and right eigenvectors of A. Denote by λi the ith
eigenvalues of A. We denote by t→yi(t;τ,ξ) the solution to the Cauchy problem

d

dt
y(t) =λi(t,y(t)), y(τ) = ξ.

Denote by <,> the scalar product on Rn and by

gi :=<`i,h>+<∂t`i+λi∂x`i,u>, u=
∑

uiri.

We define a broad solution u=
∑
uiri to equation (5.1) as a locally integrable function

fulfilling

d

dt
ui(t,yi(t;τ,ξ)) =gi (t,yi(t;τ,ξ),u(t,yi(t;τ,ξ))

in the sense that for a.e. (τ,ξ) and all i= 1,. ..,n the following holds

ui(τ,ξ) =u0
i (yi(0;τ,ξ))+

∫ τ

0

gi (s,yi(s;τ,ξ),u(s,yi(s;τ,ξ))ds.

The main result used in this work is [8, Theorem 2.2]. We recall the statement for
convenience.

Consider the equation

∂tu+∂xF (u) =h(t,x,u). (5.2)

supplemented with initial data u(0,x) =u0(x) and the assumptions
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(H1) The vector field F : Ω→Rn is C2 where Ω⊂Rn is closed and bounded. For each
u∈Ω the matrix A(u) =DF (u) has n real distinct eigenvalues. Its eigenvalues
λi and its left and right eigenvectors `i and ri, respectively, are normalized such
that <`i,rj>= δij . Denote by

A(u,v) =

∫ 1

0

A(θu+(1−θ)v)dθ

with corresponding eigenvectors `i(u,v), ri(u,v) and eigenvalues λi(u,v). Sup-
pose that `i(u,v),ri(u,v) and λi(u,v) are uniformly bounded for all u,v∈Ω.

(H2) Denote by λ̂ the uniform bound on λi(i,v) for all i. Then, solutions to (5.2) are
considered in the domain

D :={(t,x) : 0≤ t≤T,x∈ [a+ λ̂t,b− λ̂t]}

Assume further that the function h :D×Ω→Rn is bounded and continuously
differentiable.

(H3) Whenever u+∈Ω and u−∈Ω are connected by a shock or a contact disconti-
nuity, say of the kth characteristic family, the linear system

0 = Φi(u
+,u−,w+,w−) =

n∑
j=1

<D`i(u
+,u−) ·(w+

j r
+
j ,w

−
j r
−
j ),u+−u−>+

n∑
j=1

<`i(u
+,u−),w+

j r
+
j −w

−
j r
−
j >, ∀i 6=k

can be uniquely solved in terms of the outgoing variables w±j± j±∈{j− : j <

k}∪{j+ : j >k}=:O. Assume that the function Wj defined by

w±j =Wj±(u+,u−)((wj)j± 6∈O), j 6=k,j±∈O

satisfies a bound of the form

‖Wj±(u+,u−)((wj)j± 6∈O)‖≤C‖(wj)j± 6∈O‖

Here, r±j = rj(u
±). For a definition of the class of functions which are piecewise Lipschitz

with simple discontinuities we refer to [8].
Theorem 5.3. Let the assumptions (H1)−(H3) hold true. Let u be a piece-
wise Lipschitz continuous solution to equation (5.2) with u0 in the class PLSD. Let
(v0,ξ0)∈L1×RN be a tangent vector to u0 generated by a regular variation γ : δ→u0

δ ,
Let uδ be the solution of equation (5.2) with initial condition u0

δ . Then, there exists τ0>0
such that for all t∈ [0,τ0] the path γ̄ : δ→uδ is a regular variation for uδ(t,·) generating
the tangent vector (v(t),ξ(t))∈L1×RN . The vector is the unique broad solution of the
initial boundary value problem

ξ(0) = ξ0,v(0,x) =v0(x),

vt+A(u)vx+(DA(u)v)ux=hu(t,x,u)v,

outside the discontinuities of u while for α= 1,. ..,N

<D`i(u
+,u−) ·(v+ +ξαu

+
x ,v
−+ξαu

−
x ),u+−u−>=

+<`i(u
+,u−),v+ +ξαu

+
x −v−−ξαu−x >,i 6=kα,

d

dt
ξα=Dλkα(u+,u−)(v+ +ξαu

+
x ,v
−+ξαu

−
x )
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along each line x=xα(t) where u suffers a discontinuity in the kα characteristic direc-
tion.

The technical details are given in [8]. We motivate the result by the following ex-
planation. The equation for v is independent of the equation for ξα and can therefore be
solved separately. The equation is formally derived by differentiation of the conservation
law (5.2) with respect to u in direction v. It describes the sensitivity of the L1−part of
the solution. The equation is linear in v, but not in conservative form and with possi-
bly discontinuous coefficient due to discontinuities in u. Along those discontinuities the
equations for ξα and the algebraic condition needs to hold true.

Assume u is discontinuous across (t,xα(t)). Then, for u to be a weak solution the
Rankine–Hugoniot condition needs to be fulfilled. The condition is s[u] = [F (u)]. Denot-
ing the left and right sided limits u(t,xα(t)±) by u±, respectively, the previous equation
may be rewritten as

λ(u+,u−)(u+−u−) =A(u+,u−)(u+−u−)

using the average matrix A(u+,u−) introduced in (H1) and using that the shock speed
s is equal to an eigenvalue λ(u+,u−) of the matrix A(u+,u−). If xα is a discontinuity
in the kα family then the previous equation can be reduced to

d

dt
xα(t) =λkα(u+,u−), <`i(u

+,u−),u+−u−>= 0∀i 6=kα.

According to the notion of derivatives we need to consider a variation not only in the
L1 part, but also in the shock position. Formally, this corresponds to considering the
O(ε) perturbation of u±=u(t,xα(t)) as

u±ε =u(t,xα(t)±εξα(t))+εv(t,xα(t)).

Assuming the perturbation xα(t)+εξα(t) also fulfills the previous set of equations we
may compute the formal limit for ε→0. Hence, we obtain up to O(ε2)

d

dt
ξα(t) =Dλkα(u+,u−)(u+

x ξα+v+,u−x ξα+v−)

and similarly for the second algebraic equation. The second algebraic condition is
interpreted as follows: a shift variation in the kα family leads to a modified function
which only suffers discontinuities in the same kα family, but not in any other family
i 6=kα.

6. Appendix on the expression of objective and tangent vectors in char-
acteristic variables

The gradient of the objective functional J in terms of characteristic variables η and
the associated tangent vector (φ,ξ) is given by
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∆(φ,ξ)J(η,yd) =
1

2

∫
χI(x)

(
η(1)(T,x)−η(2)(T,x)

2a
−yd(x)

)
φ(1)(T,x)dx+ (6.1)

− 1

2

∫
χI(x)

(
η(1)(T,x)−η(2)(T,x)

2a
−yd(x)

)
φ(2)(T,x)dx+

1

2

N(u0)∑
j=1

{(η(1)(T,xj(T )+)−η(2)(T,xj(T )+)

2a
−yd(xj(T )+)

)
+

(
η(1)(T,xj(T )−)−η(2)(T,xj(T )−)

2a
−yd(xj(T )−)

)}
×ξj(T )×(

∆jη
(1)(T, ·)−∆jη

(2)(T, ·)
)
,

where ∆jw(·) =w(xj(T )+)−w(xj(T )−). Note that in the last terms the evaluation of η
at time T is at point xj(T ). This point is the terminal point of the jth discontinuity in
the initial data η0 propagated forward to terminal time T. The value of xj is computed
by moving the jth discontinuity with speed ±a depending on whether it is a jump in
the first or second component, see equation (2.25). For example, in equation (6.1) we
have xj =xj(0)−aT for all even indices j.

Since ϕ(t,x) =φ(T − t,x) we have ϕ(0,x) =φ(T,x). Then, similarly to (2.13) we
may use (6.1) to determine a descent direction for J by the following discretization for
i= 0,. ..,Nx, and with ϕ0

i as discretization of ϕ(0,xi).

ϕ
(1),0
2i =φ

(1),Nt
2i =

η
(1),Nt
2i −η(2),Nt

2i

2a
−(yd)2i, ϕ

(1),0
2i+1 =ϕ

(1),0
2i , (6.2a)

ϕ
(2),0
2i−1 =φ

(2),Nt
2i−1 =−

(
η

(1),Nt
2i−1 −η

(2),Nt
2i−1

2a
−(yd)2i−1

)
, ϕ

(2),0
2i =ϕ

(2),0
2i−1. (6.2b)

In the present case we have N(u0) =N(η0) =Nx since at each cell interface there is
a discontinuity in the initial data η0. Recall, that we have discontinuities in the first
family only at odd indices and in the second family at even indices. We prescribe
ξj(T ) for the jth discontinuity at terminal time and propagate backwards in time
by equation (2.10), i.e., ξj(T ) = ξj(0) for all discontinuities j= 0,. ..,Nx. Denote by
∆jw(·) =w(xj+1)−w(xj) and by ∆jw(·) = 1

2 (w(xj+1)+w(xj)). Due to the choice of

∆t= ∆x
a and T =Nt∆t, we have that a shock j located initially at the cell interface

xj(0) =xj+ 1
2

and moving at speed a is located at time T at xj(T ) being again a cell

interface located at xi+ 1
2

=xj+ 1
2

+aT for some i∈{0,. ..,Nx}. We denote by i(j) this lo-

cation. Note that for j odd (even) the speed of the discontinuity is −a (a) as in equation
(2.25). The jth discontinuity is by convention located initially at xj(0) =xj+ 1

2
.

ξj = ξj(T ) =
1

2

((
∆i(j)η

(1),Nt−∆i(j)η
(2),Nt−∆i(j)yd

))
× (6.2c)(

∆̂i(j)η
(1),Nt−∆̂i(j)η

(2),Nt
)
.

where ∆wk = 1
2a (wk+1 +wk) and ∆̂wk =wk+1−wk. Note that the formula simplifies if

this term is evaluated in original variables y instead of η. However, in order to show the
relation to equation (6.1) we write here the technical formulation.
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