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Abstract

We present asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation effi-
cient in the high field regime. A major challenge in this regime is that there may be no explicit expression
of the local equilibrium which is the main component of classical asymptotic-preserving schemes. Inspired
by [14] and [13], our idea is to penalize the stiff collision term by a ‘classical’ BGK operator – which is
not the local equilibrium in the high field limit – while treat the stiff force term implicitly by the spectral
method. These schemes, despite being implicit, can be inverted easily, with a stability independent of
the physically small parameter. We design these schemes for both nondegenerate and degenerate cases,
and show their asymptotic properties. We present several numerical examples to validate the efficiency,
accuracy and asymptotic properties of these schemes.

1 Introduction

In the semiconductor kinetic theory, the semi-classical evolution of the electron distribution function f(t, x, v),
in the parabolic band approximation, solves the kinetic equation:

∂tf + v · ∇xf −
q

me
E · ∇vf = Q(f), t > 0, x ∈ Rdx , v ∈ Rdv , (1.1)

where q and me are positive elementary charge and effective mass of electrons, E(t, x) is the electric field.
The collision operator Q can be decomposed into three parts

Q = Qel +Qinel +Qee, (1.2)

where Qel and Qinel describe the interactions between the electrons and the lattice imperfections, with the
first one caused by ionized impurities and elastic part of the phonon collisions (or called crystal vibrations)
and the second one by inelastic part of the phonon collisions. Qee characterizes the correlations between
electrons themselves. For low electron densities, the general form of Q is [24]

Q(f) =

∫
Rdv

(
s(v′, v)f(t, x, v′)− s(v, v′)f(t, x, v)

)
dv′, (1.3)

where s is the transition probability depending on the specific scattering mechanism described above, and
satisfies the principle of detailed balance

s(v′, v)M(v′) = s(v, v′)M(v), (1.4)

where

M(v) =

(
2πKBT

me

)− dv2
e
− v2

2v2
th (1.5)
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is the Maxwellian, vth is the thermal velocity related to the lattice temperature T through v2th = KBT
me

and
KB is the Boltzmann constant. The null space of Q in (1.3) is spaned by the Maxwellian (1.5).

When the electron density is high, one should take Pauli’s exclusion principle into account, and the collision
operator Q becomes

Qdeg(f) =

∫
RNv

(
s(v′, v)f ′(1− f)− s(v, v′)f(1− f ′)

)
dv′, (1.6)

which is referred to as the degenerate case. Here f and f ′ are shorthanded notations for f(t, x, v) and
f(t, x, v′) respectively.

In principle, the electric field is produced self-consistently by the electrons moving in a fixed ion background
with doping profile h(x) through

∇x(ε(x)∇xΦ) = ρ(x)− h(x), E = −∇xΦ, (1.7)

where ρ(x) is the electron density, Φ is the electrostatic potential and ε(x) is the permittivity of the material.

The numerical computation of electron transport in semiconductors through the Boltzmann equation (BE)
(1.1) is usually too costly for practical purposes since it involves the resolution of a problem rested on 7-
dimensional time and space. Several macroscopic models based on the diffusion approximation were derived.
The classical drift-diffusion (DD) [32] model was introduced, with the assumption that all the scatterings inQ
are strong and that the electron temperature relaxes to the lattice temperature at the microscopic time scale.
The connection between the BE and DD models has been well understood physically and mathematically
[17, 27]. The case of the Fermi-Dirac statistics was investigated in [17] as well. However, in most situations,
the momentum relaxation occurs much faster than temperature relaxation, thus results in an intermediate
state at which the electrons have reached a local equilibrium with a different temperature other than the
lattice temperature. The time evolution of this state is described by the Energy-Transport (ET) model,
which is a system of diffusion equations for the electron density and energy. This model can be viewed as an
augmented drift-diffusion model, and is derived asymptotically under the scaling that both the elasticQel and
electron-electron Qee collisions are dominant [4]. Another model is the Spherical Harmonic Expansion (SHE)
model which is obtained based on the observation that in some cases the electron-electron collision cannot
constitute one of the dominant scattering mechanisms [29, 30]. This model, the only dominant collision
mechanism of which is Qel, can be considered as a diffusion equation in the extended space: position and
energy. In fact, the ET model was usually derived through the SHE model by taking the limit on the scaled
electron-electron collision mean free path [10]. See also [11] for the new and simpler derivation of the ET
model directly through the Boltzmann equation. [3] outlines a hierarchy between various macroscopic models
as well as shows the macroscopic limit that links the two successive steps within the hierarchy.

However, due to the rapid progress in miniaturization of semiconductor devices, the standard drift diffusion
models break down in some regime of hot electron transport. This regime concerns the physical situations
where both the electric effects and collisions are dominant, which is called the high field regime. After
rescaling of the variables, equation (1.1) can be written as

∂tf + v · ∇xf −
1

ε
E · ∇vf =

1

ε
Q(f), t > 0, x ∈ Rdx , v ∈ Rdv , (1.8)

where ε is the ratio between the mean free path and the typical length scale. It was first studied by Frosali
et.al [16, 15], and later by Poupaud [28] for the nondegenerate case, where the limiting equation is a linear
convection equation for the mass density with the convection proportional to the electric field. It also
gives a necessary condition for the limit equation to embrace a unique solution, while if such a condition
is not satisfied, a traveling wave solution will exist which is the so-called runaway phenomenon. When
the electrostatic potential is obtained through the Poisson equation, [7] derives the high field limit for the
BGK-type collision, and also reveals the boundary layer behavior when bounded domain is considered. The
high field asymptotic for the degenerate case was carried out in [1], where the limit equation is a nonlinear
convection equation for the macroscopic density which has a local in time regular solution. It was revisited
in [2] where the convergence to entropy solutions and existence of shock profiles for the limit nonlinear
conservation law were considered.
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Considerable literature has been devoted to the design of efficient and accurate numerical methods for
(1.1), such as [19, 5, 6, 8], to name just a few. These schemes become inefficient in the high field regime. Only
recently, schemes efficient in the high field regime started to emerge [23, 9], in the framework of Asymptotic
Preserving (AP) schemes. The AP schemes are efficient in the asymptotic regime since the scheme preserves
a discrete analog of the asymptotic limit, so one does not need to numerically resolve the small scale of ε. It
is often equipped with suitable time integrators in order to efficiently handle the numerical stiffness of the
problem [20]. See a recent review on AP schemes [21].

In this paper, we are interested in designing AP schemes for Boltzmann equation of the type (1.8) with
the high field scaling. So far the only AP schemes for the high field regime were those developed in [23, 9] in
which Q(f) is the Fokker-Planck operator. In this case one can combine the forcing term and the collision
term into a divergence form which cannot be done for other nonlocal collision operators to be studied in this
paper.

As one can see, when ε is small, two terms of equation (1.8) become stiff and explicit schemes are subject
to severe stability constraints. Implicit schemes allow larger time steps and mesh sizes, but it is usually
expensive due to the prohibitive computational cost required by inverting a large algebraic system, even in
the non-degenerate case where the collision operator is linear. Another remarkable difficulty is that there is
no specific form of the local equilibrium Mh in the high field regime, which makes the modern asymptotic
preserving methods such as [9, 12, 33] – all need the specific form of the local equilibrium – very hard to
implement. To overcome the first difficulty, we follow the idea in [14] by penalizing the non-symmetric
stiff term by a BGK operator which is much easier to treat implicitly. To overcome the second difficulty,
inspired by the observation in [13] that one needs not to use the exact local equilibrium as a penalization
but rather a “good” approximation of it might be enough, we only penalize the collision term by a ‘classical’
BGK operator with the Maxwellian defined in (1.5) instead of the real local equilibrium for the high field
limit–which may not be available, and leave the stiff force term alone implicitly.

The rest of the paper is organized as follows. In the next section we give a brief review of the scalings in the
high field regime and the corresponding macroscopic limit. Section 3 is devoted to the new schemes, as well as
the study of their asymptotic properties. We consider three different cases: the nondegenerate isotropic case,
the nondegenerate anisotropic case, and the degenerate case. Then we present several numerical examples to
test the efficiency, accuracy and asymptotic properties of the schemes in section 4. At last, some concluding
remarks are given in section 5.

2 Scalings and the high field limit

Since the transition probability in (1.3) satisfies the detailed balance principle, it is convenient to introduce
a new function

φ(v, v′) =
s(v′, v)

M(v)
, so that φ(v, v′) = φ(v′, v). (2.1)

Then the collision Q reads

Q(f) =

∫
Rdv

φ(v, v′)
(
M(v)f(t, x, v′)−M(v′)f(t, x, v)

)
dv′. (2.2)

Following [28], and also Chapter 2 in [24], introduce the rescaled variables:

x̃ =
x

L
, t̃ =

t

T
, ṽ =

v

vth
,

where L and T are reference length and time. By the dimension argument, the collision term should be
proportional to the reciprocal of a characteristic time, thus we define an average relaxation time τ and the
rescaled collision Q̃

1

τ
=

∫
Rdv

φ(v, v′)M(v)M(v′)dvdv′, Q̃ = τQ.
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Note here that for the degenerate case the definition of τ is a bit different but similar. The mean free path
now can be defined as l = τvth. Next define the thermal voltage Uth and the rescaled electric field Ẽ as

Uth =
mev

2
th

q
, Ẽ =

E

E0
,

where E0 is a reference field. Then the Boltzmann equation (1.1) takes the form

τ

T
∂t̃f +

τvth
L

ṽ · ∇x̃f −
τvth
Uth

E0 Ẽ · ∇ṽf = Q̃. (2.3)

Now introduce the dimensionless parameter ε = l
L and consider the high field scalings

E0 =
Uth
l
, T =

τ

ε
,

(2.3) becomes

∂tf + v · ∇xf −
1

ε
E · ∇vf =

1

ε
Q(f), (2.4)

where we have dropped the tilde for convenience.

2.1 The high field limit: the nondegenerate case

In (2.4), when ε vanishes, the limiting equation is a linear convection equation for the macroscopic particle
density with a convection proportional to the scaled electric field. That is,

f(t, x, v)→ ρ(t, x)FE(t,x)(v), (2.5)

where FE(t,x)(v) is the solution to∫
Rdv

FE(v)dv = 1, E · ∇vFE +Q(FE) = 0, FE ≥ 0; (2.6)

while the equation for the macroscopic density ρ is obtained by integrating (2.4) w.r.t. v

∂tρ(t, x) +

∫
Rdv

v · ∇xf = 0, (2.7)

and then passing to the limit to get

∂tρ(t, x) +∇x · (ρ(t, x)σ(E(t, x))) = 0, σ(E) =

∫
Rdv

vFE(v)dv. (2.8)

Not all Q gives a unique solution of (2.6). Poupaud [28] gave a criteria for the transition probability s in the
following theorem.

Theorem 1. [28] Assume that the collision cross-section φ(v, v′) > 0 satisfies φ(v, v′) ∈ W 1,∞(R2dv ), then
the collision frequency

ν(v) =

∫
Rdv

s(v, v′)dv′ =

∫
Rdv

φ(v, v′)M(v′)dv′ (2.9)

is bounded and positive. If it further satisfies∫ ∞
0

ν(v + ηE)dη = +∞, a.e., (2.10)

and the initial data f(0, x, v) = f0(x, v) solves E · ∇vf0(x, v) − Q(f0)(x, v) = 0 a.e., then the solution to
(2.4) converges to ρFE in the following sense: ∃ a positive constant CT that depends on the initial data such
that for any time t ≤ T , the following inequality

‖ f(t, ·, ·)− ρ(t, ·)FE(t,·)(·) ‖L1(Rdx×Rdv )≤ CT ε

holds.
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Remark 2. Equation (2.8) together with (2.6) can be regarded as the first order approximation of (2.4)
which resembles the hydrodynamic approximation of the Boltzmann equation by the Euler equations. (2.8)
that rules out all the diffusion effect, is nothing but Ohm’s law. If one goes further to the second order
approximation, a new drift diffusion equation can be derived, which again resembles the Navier-Stokes
approximation of the Boltzmann equation.

Remark 3. The above result is obtained for the case where electrical field is given. The analytical result for
the case when the electrical field is self-consistent through the Poisson equation is only derived by Cercignani,
Gamba and Levermore in [7] for the BGK collision operator, while for general collision it is still open.

2.2 The high field limit: the degenerate case

Similar to the nondegenerate case, the transition probability s(v, v′) in (1.6) also satisfies the principle of
detailed balance [26], so it can be reformulated in the same way as (2.2),

Qdeg(f)(t, x, v) =

∫
Rdv

φ(v′, v)
(
M(v)f(t, x, v′)

(
1−f(t, x, v)

)
−M(v′)f(t, x, v)

(
1−f(t, x, v′)

))
dv′, (2.11)

where M(v) and φ(v′, v) are defined the same as before in (1.5) and (2.1). The null space of Qdeg(f)(t, x, v)
is spaned by the Fermi-Dirac distribution

MFD =
1

1 + e
mev2

2KBT
− µ
KBT

, (2.12)

where T is the lattice temperature and µ is the electron Fermi energy. The dimensionless form of the
degenerate case is the same as (2.4), except that the collision Q is replaced by Qdeg.

Assume B is either the Brillouin zone or the whole space Rdv . When sending ε to 0, f can no longer
be decoupled into two functions with one depending on x and t and the other on v separately because of
the nonlinearity of the collision operator, instead one has, under the hypothesis that φ ∈ W 2,∞(B2) and
φ0 ≤ φ(v, v′) ≤ φ1 for some positive constant φ0 and φ1,

f → F (ρ(t, x), E(t, x))(v)

where F (ρ,E)(v) is the unique solution in space DE = {F ∈ L1(B); E ·∇vF ∈ L1(B)} such that 0 ≤ F ≤ 1
and

E · ∇vF −Qdeg(F ) = 0,

∫
Rdv

F (t, x, v)dv = ρ(t, x). (2.13)

Moreover, the mapping

(ρ,E) 7→ F (ρ,E) (2.14)

from R+ × Rdx to L1(B) is C2 differentiable. Then the macroscopic density ρ solves

∂tρ(t, x) +∇x
(
j(ρ(t, x);E(t, x))

)
= 0, ρ(0, x) =

∫
Rdv

f0(x, v)dv, (2.15)

where j(ρ;E) =
∫
Rdv vF (ρ,E)(v)dv. This result was proved in [1] for a given E(x) ∈ Rdx on the time

intervals such that the limit solution is regular.

Remark 4. Although there is no such condition (2.10) to insure the existence of the limit solution, the
hypothesis that φ(v, v′) should be uniformly bounded from below and above already implies it.

Remark 5. Due to the nonlinearity of the flux function in (2.15), only the existence and uniqueness of a
local in time regular solutions were available and shock might be generated later [2]. This is different from
the nondegenerate case, where the limit equation (2.8) is linear in ρ, thus a unique global in time solution
exists.
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3 A numerical scheme for the semiconductor Boltzmann equation

To design an asymptotic preserving method, one usually needs to treat the two stiff terms – the force term
and the collision term implicitly. However, this would bring new difficulties to invert the algebraic system
originated by the non-symmetric difference operator and the collision operator. In [23] and [9] when the
collision is of the Fokker-Planck type, these two terms were combined and rewrote into one symmetric oper-
ator in velocity space. But unfortunately, this strategy cannot be implemented here because no symmetric
combination of the two is available. Another remarkable difficulty is that one cannot write down the local
equilibrium Mh in the high filed limit explicitly, thus we cannot use the existent asymptotic preserving
method for kinetic equation in the hydrodynamic regime [9], nor can we use the even-odd decomposition
[22] due to the fact that one cannot derive a “non-stiff” force term. Here we adopt the penalization idea
introduced by Filbet and Jin [14]. In addition, inspired by the fact that functions that share the same
conserved quantities with the exact local equilibrium can be used as candidates for penalty [13], we will only
penalize the collision term by a BGK operator which conserves mass, and treat the stiff force term implicitly
by the spectral method. To better illustrate our idea, we begin with the simplest case which is the so-called
“time relaxation model”.

Here for the sake of simplicity, we will explain our idea in the one dimensional case. The generalization to
the multidimensional case can be done in a straightforward manner simply using the dimension-by-dimension
discretization. Denote f(xl, vm, t

n) by fnlm, where 0 ≤ l ≤ Nx and 0 ≤ m ≤ Nv, and Nx and Nv are the
numbers of mesh points in x and v directions respectively.

3.1 The nondegenerate isotropic case

In the low density approximation, if one only considers the collisions with background impurities, the collision
opeator can be approximated by a linear relaxation time operator [7, 24]:

Q =

∫
Mf ′ −M ′fdv′ = Mρ− f, (3.1)

which is the simplest case with φ(v′, v) = 1 in (2.2). This is usually called the “time-relaxation” model. In
this model, one can directly treat both stiff terms implicitly. The first order scheme reads

fn+1 − fn

4t
+ v · ∇xfn −

1

ε
E · ∇vfn+1 =

1

ε
(Mρn+1 − fn+1), (3.2)

and we use the spectral discretization for the stiff force term. The scheme can be implemented as follows

• Step 1. Integrate (3.2) over v, note that the two stiff terms vanish, and one ends up with an explicit
semidiscrete scheme for ρn+1:

ρn+1 − ρn

4t
+∇x ·

∫
Rdv
vfndv = 0;

– Step 1.1. If the electrical field is given by (1.7), then solve it by any Poisson solver such as the
spectral method to get En+1.

• Step 2. Approximate the transport term v · ∇xfn in (3.2) by a non-oscillatory high resolution shock-
capturing method.

• Step 3. Use the spectral discretization for the stiff force term, i.e., (3.2) can be reformulated into[
1 +
4t
ε
− 4t

ε
E · ∇v

]
fn+1 = fn −4tv · ∇xfn +

4t
ε
Mρn+1,

then take discrete Fourier Transform w.r.t. v on both sides, one has[
1 +
4t
ε
− i4t

ε
E · k

]
f̂n+1 = F

(
fn −4tv · ∇xfn +

4t
ε
Mρn+1

)
, (3.3)

where f̂ and F (f) denote the discrete Fourier Transform of f w.r.t. v.
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• Step 4. Use the inverse Fourier transform on f̂n+1 to get fn+1.

Remark 6. Although the force term E
ε ·∇vf contains a derivative, which looks “more stiff” than the collision

term, just treating it implicitly and leaving the collision explicit will not have the desired stability property.
This can be seen from the simple Fourier analysis on the toy model

ft +
E

ε
fv = −1

ε
f, (3.4)

with the discretization

fn+1 − fn

4t
+
E

ε
∂vf

n+1 = −1

ε
fn,

where fn(v) denotes f(tn, v). Applying the Fourier Transform on fn(v) w.r.t. v to get f̂n(k), then one has

∣∣∣f̂n+1(k)
∣∣∣2 =

(
1− 4tε

)2
1 +

(4t
ε E · k

)2 ∣∣∣f̂n(k)
∣∣∣2 ,

note that for stability the coefficient on the right hand side needs to be less than one for all values of k, that
is 4tε < 2, thus 4t must be dependent of ε.

The scheme has the following AP property.

Proposition 7. Assume all functions are smooth. Let

‖ fn(x, ·) ‖L2(Rdv )=

√∫
Rdv

f(tn, x, v)2dv, (3.5)

then in the regime 4t� ε we have

‖fn −Mn
h ‖L2(Rdv ) ≤ αn‖f0 −M0

h‖L2(Rdv ) +O(ε) with α < 1 uniformly in ε, (3.6)

where Mn
h = ρnFE is the local equilibrium in the high field regime, with FE being the solution to the limit

equation (2.6) with Q = ρM − f .

Proof. Since Mn+1
h satisfies −E ·∇vMn+1

h = Q(Mn+1
h ) = ρn+1M −Mn+1

h , a simple manipulation of scheme
(3.2) gives(

1 +
4t
ε
− 4t

ε
E · ∇v

)
(fn+1 −Mn+1

h ) = (fn −Mn
h )− (Mn+1

h −Mn
h )−4tv · ∇xfn. (3.7)

Now take the Fourier Transform w.r.t. v on both sides, (3.7) reformulates to

f̂n+1 − M̂n+1
h

= G
[
(f̂n − M̂n

h )− (M̂n+1
h − M̂n

h )−4tF (v· ∇xfn)
]
, (3.8)

where

G =
1

1 + 4t
ε − i

4t
ε E · k

. (3.9)

Take the L2 norm on both sides, one has, by the Minkowski inequality

‖ f̂n+1 − M̂n+1
h ‖L2

≤ ‖ G(f̂n − M̂n
h ) ‖L2 +

∣∣∣∣∣∣G((M̂n+1
h − M̂n

h ) +4tF (v · ∇xfn)
) ∣∣∣∣∣∣

L2
. (3.10)
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By smoothness assumption
∣∣∣M̂n+1

h −M̂n
h

∣∣∣ ≤ C1 4 tM̂h and
∣∣∣∣G4 t

∣∣∣∣
L∞ ≤ C2ε for 4t� ε, where C1 and C2

are two constants independent of 4t and ε. Then (3.10) becomes

‖ f̂n+1 − M̂n+1
h ‖L2≤ ‖ G(f̂n − M̂n

h ) ‖L2 +Cε. (3.11)

Since ‖ G ‖L∞≤ α < 1 uniformly in ε for 4t� ε, applying Parseval’s identity, one has

‖fn+1 −Mn+1
h ‖L2(Rdv ) ≤ α‖fn −Mn

h ‖L2(Rdv ) +O(ε). (3.12)

This leads to (3.6).

3.2 The nondegenerate anisotropic case

This section is devoted to the nondegenerate anisotropic case. Recall that the collision operator takes the
form

Q(f) =

∫
RNv

φ(v, v′)
(
M(v)f(t, x, v′)−M(v′)f(t, x, v)

)
dv′ = Q+(f)− ν(v)f. (3.13)

Although Q is linear in f , due to the non-symmetric nature of the transition probability s(v′, v), treating it
implicitly as what we did in the last section will make it difficult to invert, especially in higher dimensions.
To overcome this difficulty, we adopt the idea introduced by Filbet and Jin in [14] by penalizing the collision
term by a BGK operator, the simple structure of which makes it easy to be treated implicitly. Thus the first
order scheme reads

fn+1 − fn

4t
+ v · ∇xfn −

1

ε
E · ∇vfn+1 =

1

ε
Q(fn)− λ

ε
(ρnM − fn) +

λ

ε
(ρn+1M − fn+1), (3.14)

where M is the dimensionless form of (1.5)

M(v) =
1

(2π)
dv
2

e−
v2

2 . (3.15)

Then (3.14) has the similar implicit structure as (3.2), thus one can solve it by the same steps introduced in
section 3.1, yielding a scheme that is implicit but can be implemented explicitly.

Notice that in [14], the penalty is the local equilibrium of the collision operator, which will drive f to the
right Maxwellian if treated implicitly. However, as it has been mentioned, there is no explicit form of the
“high field equilibrium” which is the solution to E · ∇vf = Q(f), so we instead penalize the equation by the
equilibrium ρM of the collision term Q(f), and this will indeed force f to the right local equilibrium by the
following proposition. The cost of this “wrong Maxwellian” penalty is the extra 4t error in (3.16). This was
observed in [13] where the authors use the classical Maxwellian instead of the quantum one to penalize the
quantum Boltzmann collision operator, and get a similar asymptotic property.

Proposition 8. In (3.14), if Q takes the form of (3.1) and λ > 1
2 , then

‖fn −Mn
h ‖L2(Rdv ) ≤ αn‖f0 −M0

h‖L2(Rdv ) +O(ε+4t) with α < 1, (3.16)

where Mn
h = ρnFE is the local equilibrium in the high field regime, with FE being the solution to the limit

equation (2.6) with Q defined in (3.1).

The proof is very similar to the one for Proposition 11 in the next section and is omitted here.

Remark 9 (Choice of λ). For the general collision (3.13), λ should be chosen to satisfy λ > maxv µ(v),
where ν is the collision frequency defined in (2.9). One can also refer to [33] for positivity concern.

Remark 10. This method can be easily extended to case with non-parabolic energy diagram such as Kane’s
model [5, 6, 8] since the convection term is treated explicitly.
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3.3 The degenerate case

When the quantum effect is taken into account, the collision operator becomes nonlinear. Nevertheless, this
can be dealt with in the same way as in section 3.2 at the same cost. Again inspired by [13], we use the
classical Boltzmann distribution instead of the Fermi-Dirac distribution (2.12) as the penalty to avoid the
complicated nonlinear solver for the Fermi-energy in (2.12) from mass density ρ, otherwise such nonlinear
solver should be used at every time step and grid point, which is very time consuming. Since the 4t error
will be inevitable in the asymptotic property as we have seen in the last section, this change of penalty will
only introduce new error of O(4t). Similar to (3.14), the first order scheme takes the form

fn+1 − fn

4t
+ v · ∇xfn −

1

ε
E · ∇vfn+1 =

1

ε
Qdeg(fn)− λ

ε
(ρnM − fn) +

λ

ε
(ρn+1M − fn+1), (3.17)

where Qdeg is defined in (1.6) and M is the same as (3.15). In practice, similar to Remark 9, λ is chosen to
be maxv

∫
Rdv φ(v′, v)M(v′)(1− f(v′))dv′ .

Because of the nonlinearity of Qdeg, it is not easy to check the asymptotic property analytically. Instead
we check it for the case where Qdeg is replaced by the “quantum BGK” operator “MFD−f” in the following
proposition.

Proposition 11. Assume the solutions are smooth. If λ > 1
2 , then the scheme (3.17) with Qdeg replaced by

“MFD − f” has the asymptotic property

‖fn −Mn
qh‖L2(Rdv ) ≤ αn‖f0 −M0

qh‖L2(Rdv ) +O(ε+4t) (3.18)

with 0 < α < 1, where Mqh is the solution to the high field limit equation

−E · ∇vMqh = MFD −Mqh,

∫
Rdv

Mqhdv =

∫
Rdv

fdv =

∫
Rdv

MFDdv = ρ. (3.19)

Proof. Since Mqh satisfies −E · ∇vMn+1
qh = Mn+1

FD −M
n+1
qh , the scheme (3.17) becomes(

1 +
λ4 t

ε
− 4t

ε
E · ∇v

)
(fn+1 −Mn+1

qh )

=

(
1 +

(λ− 1)4 t

ε

)
(fn −Mn

qh)−
(

1 +
(λ− 1)4 t

ε

)
(Mn+1

qh −Mn
qh)

+
λ4 t

ε
(ρn+1 − ρn)M − 4t

ε
(Mn+1

FD −M
n
FD)−4tv · ∇xfn. (3.20)

After taking the Fourier Transform w.r.t. v on both sides, it reformulates to

f̂n+1 − M̂n+1
qh

=
1 + (λ−1)4t

ε

1 + λ4t
ε − i

4t
ε E · k

(
f̂n−M̂n

qh

)
−

1 + (λ−1)4t
ε

1 + λ4t
ε − i

4t
ε E · k

(
M̂n+1
qh −M̂

n
qh

)
+

λ4t
ε

1 + λ4t
ε −i

4t
ε E · k

(ρn+1−ρn)M̂

−
4t
ε

1 + λ4t
ε − i

4t
ε E · k

(
M̂n+1
FD − M̂

n
FD

)
− 4t

1 + λ4t
ε − i

4t
ε E · k

F
(
v · ∇xfn

)
. (3.21)

Let

G1 =
1 + (λ−1)4t

ε

1 + λ4t
ε − i

4t
ε E · k

, (3.22)

take the L2 norm for (3.21), and apply the same procedure as in Proposition 7, we have

‖ f̂n+1 − M̂n+1
qh ‖L2≤ ‖G1 ‖L∞‖ f̂n − M̂n

qh ‖L2 +O(4t+ ε), (3.23)

where the O(4t) terms come from the second, third and forth terms in (3.21) and form major difference
compared to (3.8). If λ > 1

2 , ‖G1 ‖L∞≤ α < 1, the result (3.18) then follows.
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Remark 12. To get better asymptotic property than (3.16) and (3.18), we would like to extend the scheme
to second order. Follow the idea in [18], using backward difference formula in time and MUSCL scheme [31]
in space, we have

3fn+1 − 4fn + fn−1

24 t
+ 2v · ∂xfn − v · ∂xfn−1 +

1

ε
En+1 · ∂vfn+1

=
2

ε
Q(fn)− 1

ε
Q(fn−1)− 2λ

ε
(ρnM−fn) +

λ

ε
(ρn−1M−fn−1) +

λ

ε
(ρn+1M−fn+1). (3.24)

However, since the stiff terms contain a first derivative, it poses a very restrictive bound on λ for stability(
here one condition we derived is |∇vQ(f)| ≤ λ ≤ min(3, 52 + ε

4t )|∇vQ(f)|
)

which might not be applicable
in general cases. A better second order discretization in time is planed in a future work.

4 Numerical examples

In this section, we perform several numerical tests for the semiconductor Boltzmann equations with different
collisions and in different asymptotic regimes. In the one dimensional examples, we use the following settings
unless otherwise specified. The computational domain for x and v is [0, Lx]× [−Lv, Lv] = [0, 1]× [−8, 8] with
Nx = 128 and Nv = 32. The time step is chosen to be 4t = 4x

10 to satisfy the CFL condition 4t ≤ 4x
maxj |vj |

in the transport part. Periodic boundary conditions in x will be used to avoid any difficulties that might be
generated by the boundary. The “M” is the absolute Maxwellian

M(v) =
1√
2π
e−

v2

2 . (4.1)

The permittivity ε(x) in the Poisson equation (1.7) is taken to be ε(x) ≡ 1.

4.1 The time relaxation model

We first test the numerical method presented in section 3.1 for the simplest time relaxation model (2.4) with
(3.1). The initial condition is taken as

ρ0(x) =

√
2π

2
(2 + cos(2πx)) , and f0(x, v) = ρ0(x)M(v), (4.2)

which is not at the local equilibrium. The electric field E(t, x) satisfies the Poisson equation (1.7) with the
doping profile

h(x) =

∫ Lx
0

ρ(x)dx

1.2611
ecos(2πx). (4.3)

We show the time evolution of the asymptotic error defined as

errorAPn =
∑
l,m

|El · ∇vfnl +Mρnl − fnlm| 4 x4 v, (4.4)

where the derivative w.r.t. v is calculated by the spectral method. Figure 1 gives the error with ε decreasing
by 1

10 each time, which shows that the asymptotic error is of order ε, thus verifies the results in Proposition
7.

4.2 The nondegenerate anisotropic case

In this section, we consider the nondegenerate anisotropic case with collision cross-section defined as

φ(v, v′) = 1 + e−(v−v
′)2 , (4.5)

and the initial condition is chosen the same as (4.2).
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Figure 1: The time relaxation model coupled with the Poisson equation for the electric field. The time
evolution of asymptotic error (4.4) for different ε with nonequilibrium initial data using the first order
scheme in section 3.1.
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comparison (right).
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• Asymptotic property

Consider fixed E = 0.2 at the moment. Figure 2 gives the relations between ε and the asymptotic error
defined as

errorAPn =
∑
l,m

∣∣El · ∇vfnl +Q(f)nl,m
∣∣4 x4 v, (4.6)

where the derivative w.r.t. v is again calculated by the spectral method. The initial data is away from the
equilibrium. It can be seen in Figure 2 that when ε is relatively large, the error is dominated by ε. However,
when ε is small enough, the time step 4t = 3.9063e − 4 will play a role so that the error will not decrease
with ε. The first order scheme is better performed asymptotically than we expected in Proposition 8 as the
error observed in Figure 2 is smaller than O(4t).

To show that our scheme does not push f to the wrong Maxwellian, in Figure 2 we also plot the following
two errors. One is defined as

errorPenn =
∑
l,m

|El · ∇vfnl + λ(ρM − f)| 4 x4 v (4.7)

to show that our penalization will not affect the asymptotic property. The other is the distance between f
and the Maxwellian of the collision

errorMn =
∑
l,m

∣∣fnl,m − ρnl M ∣∣4 x4 v, (4.8)

which is to show that our implicit treatment of the stiff force term necessarily accounts for the right asymp-
totic limit. It is shown that both errors stay large when ε is small, which means f will not be driven to
either cases above when sending ε to 0.

• A piecewise constant initial data

Consider a piecewise constant initial data to test the efficiency of the method:
(ρl, hl) = (1/8, 1/2), 0 ≤ x < 1/4; (4.9a)

(ρm, hm) = (1/2, 1/8), 1/4 ≤ x < 3/4; (4.9b)

(ρr, hr) = (1/8, 1/2), 3/4 ≤ x ≤ 1. (4.9c)

Initially f0(x, v) = ρ√
2π
e−

v2

2 and let E be the solution of −∇xE = ρ−h. Again periodic boundary condition

in x direction is applied. ε is fixed to be 10−3. For reference solution, we use the explicit second order
Runge-Kutta discretization in time and MUSCL scheme for space discretization, with Nx = 1024, Nv = 64
and 4t = min(4x/10, ε4 v)/4 = 2.4414e− 05.

Define the flux and energy as the first and second moments of f :

flux =

∫ Lv

−Lv
fvdv, energy =

∫ Lv

−Lv
fv2dv. (4.10)

From Figure 3, one sees a good match between our solution and the reference solution.

4.3 The degenerate case

In this section, we consider the degenerate case where the collision Qdeg is defined as (1.6).

• Asymptotic property
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Figure 3: The plot of density, flux and energy at time t = 0.2 of the anisotropic nondegenerate case with
(4.5) with E obtained from the Poisson equation. The initial data is given in (4.9).

The initial condition is taken as

ρ0(x) =

√
2π

4
(2 + cos(2πx)), and f0(x, v) = ρ0(x)M(v) (4.11)

to satisfy 0 ≤ f ≤ 1. The electrical field E is obtained through the Poisson equation −∇xE = ρ− h with h
given by (4.3). Again we compare the asymptotic error (4.6) with Q replaced by Qdeg for different orders
of ε. As in the non-degenerate anisotropic case, the error is first dominated by ε and then by 4tβ when
ε is small enough, which is the same as was shown in section 3.3 (in section 3.3, β is shown to be 1, but
numerically we get better results with β > 1), see Figure 4 where 4t = 3.9063e− 4.

• Mixing scales

To test the ability of our scheme for mixing scales, consider ε taking the following form:

ε(x) =

{
ε0 + 1

2 (tanh(5− 10x) + tanh(5 + 10x)) x ≤ 0.3;
ε0 x > 0.3,

(4.12)

where ε0 = 0.001 so that it contains both the kinetic and high field regimes, see Figure 5. The initial
condition is taken to be

f0(x) =
1

6
(2 + sin(πx))e−

1
2 v

2

. (4.13)

Consider the anisotropic scattering where φ(v, v′) is taken the same form as in (4.5). E is calculated through
the Poisson equation (1.7) with h given by (4.3). We use the second order Runge-Kutta time discretization
with the MUSCL scheme on a refined mesh to get the reference solution. Good agreements of these two
solutions can be observed in Figure 6.

4.4 The electron-phonon interaction model

In this section, we consider a physically more realistic model, the electron-phonon interaction model, where
the transition probability is

s(v, v′) = K0δ

(
v′

2

2
− v2

2

)
+K

[
(nq + 1)δ

(
v′

2

2
− v2

2
+~ωp

)
+ nqδ

(
v′

2

2
− v2

2
− ~ωp

)]
, (4.14)
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and nq given by nq = 1

e
~ωp
KBTL −1

is the occupation number of phonons. Here ~ is the planck constant, KB is

the Boltzmann constant, ωp is the constant phonon frequency, TL is the lattice temperature, K and K0 are
two constants for the material.

The singular nature of s(v, v′) makes the collision hard to compute numerically, but the cylindrical sym-
metry of s makes it possible to use polar coordinates so that the singularity in the delta function can be
removed and the dimension of integral can be decreased by one [5, 6, 8]. However, this trick is not easy to be
implemented here since we treat the stiff force term implicitly, and changing to polar coordinates will make
it harder to invert. Instead, we use the spectral method [25] which can also remove the singularity.

In this numerical example, assume dx = 1 and dv = 2. Recall that the collision (1.3) can be written as

Q = Q+(f)(t, x, v)− ν(v)f(t, x, v). (4.15)

Similar to [25], we restrict f on the domain Dv = [−Lv, Lv]2 and extend it periodically to the whole domain.
Lv is chosen such that the support of f is supp(f) ⊂ B(0, R) = BR and Lv = 2R. Approximate f by
truncated Fourier serious

f(v) ≈
Nv/2∑

k=−Nv/2+1

f̂ke
i πLv k·v, f̂k =

1

(2Lv)2

∫
Dv

f(v)e−i
π
Lv
k·vdv, (4.16)

then Q+(f) is computed as follows

Q+(f) =

∫
BR

S(v′, v)f(t, x, v′)dv′

=

Nv/2∑
k=−Nv/2+1

f̂k

∫
BR

ei
π
Lv
k·v′

[
(nq + 1)Kδ

(
1

2
v2 − 1

2
v′2 + ~wp

)

+nqKδ

(
1

2
v2 − 1

2
v′2 − ~wp

)
+K0δ

(
1

2
v2 − 1

2
v′2
)]

dv′. (4.17)

Let ξ′ = 1
2v
′2, then change of variable v′ =

√
2ξ′(cos θ′, sin θ′) leads to

Q+(f) =

Nv/2∑
k=−Nv/2+1

f̂k

[
(nq + 1)K

∫ 2π

0

ei|k|
√

2(ξ+~wp) cos θ′ πLv dθ′χξ+~wp≤ 1
2R

2

+ nqK

∫ 2π

0

ei|k|
√

2(ξ−~wp) cos θ′ πLv dθ′χ0≤ξ−~wp≤ 1
2R

2

+ K0

∫ 2π

0

ei|k|
√
2ξ cos θ′ πLv dθ′χξ≤ 1

2R
2

]

=

Nv/2∑
k=−Nv/2+1

f̂kB(|k|, |v|), (4.18)

with

B(|k|, |v|) = 2π

[
(nq + 1)KJ0

(√
2(ξ + ~wp)|k|

π

Lv

)
χξ+~wp≤ 1

2R
2

+ KnqJ0

(√
2(ξ − ~wp)|k|

π

Lv

)
χ0≤ξ−~wp≤ 1

2R
2 +K0J0

(√
2ξ|k| π

Lv

)
χξ≤ 1

2R
2

]
, (4.19)

where J0 is the Bessel function of order 0

J0(α) =
1

2π

∫ 2π

0

eiα cos θdθ.
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Figure 7: The macroscopic quantities for the electron-phonon interaction model with smooth initial data
(4.2) and ε = 10−3: mass density (ρ), fluxes in v1 (flux1) and v2 (flux2) directions, and energy at time
T = 0.2. ε = 10−3. Solid line: explicit method with Nx = 1024, Nv = 32. Dots: second order scheme (3.24)
with Nx = 128, Nv = 32.

In the same way, the collision frequency ν(v) can be computed as

ν(v) =

∫
B(0,Lv)

s(v, v′)dv

= 2π
[
K(nq + 1)χ0≤ξ−~wp≤ 1

2R
2 +Knqχξ+~wp≤ 1

2R
2 +K0χξ≤ 1

2R
2

]
. (4.20)

Now let Lv = 8, x ∈ [0, 1], KBTL = 1
2 , ~wp = 1, K = 0, and K0 = 1/5π. Then the 2D Maxwellian

is M = 1(√
π

2KBTL

)2 e
− v2

2KBTL = 1
π e
−v2 . We test two situations. One is for the pure high field regime with

fixed ε = 10−3 and the initial data taking the form of (4.2) with M replaced by 1
π e
−v2 . The macroscopic

quantities at time t = 0.2 are given in Figure 7. The other is for mixing regimes problem, as ε defined the
same as (4.12) but on the space interval [0, 1] and initial condition taken (4.13). To get better accuracy, we
use (3.24) and choose λ = maxv ν(v) in this case which does not violate the stability constraint. See Figure
8 for the time evolution of the macroscopic quantities. The reference solution is calculated by the forward
Euler method with second order slope limiter method for space discretization on a much finer mesh.

It can be checked that the collision frequency (4.20) meets the condition (2.10), but φ(v, v′) = s(v,v′)
M(v′)

does not belong to W 1,∞(R4) as assumed in Theorem 1. To the authors’ knowledge, no result is available
numerically or analytically for the existence of the high field limit in this situation. From our numerical
experiment, it seems to indicate that in this case, the solution does exist since our schemes capture it well in
Figure 8. This is the first attempt to treat this problem in the high field regime, and we would like to put the
designing of a fast efficient scheme in the future as well as the approximation of the runaway phenomenon
that might be generated in this case.

5 Conclusion

Asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high
field regime have been introduced in this paper. One main difficulty in this problem is that there is no explicit
form for the local equilibrium, which is the basic component of the classical asymptotic preserving methods.
Our main idea is to penalize the collision term by a BGK operator – which is not the local equilibrium of the
high field limit – and treat the stiff force term implicitly by the spectral method. The schemes are designed
for both the nondegenerate (isotropic and anisotropic cases) and the degenerate case. We show that these
methods have the desired asymptotic properties, and can be efficiently implemented with a uniform (in the
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Figure 8: The time evolution of macroscopic quantities in electron-phonon interaction model in mix regimes
(4.12) with initial data (4.13): mass density, electric field, flux in v1 direction, and energy. Solid line: an
explicit method with Nx = 1024, Nv = 32. Dots: the second order scheme (3.24) with Nx = 128, Nv = 32.

small parameter) stability. Numerical experiments also demonstrate the accuracy and the correct asymptotic
behavior of these schemes.
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