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 A B S T R A C T

We study the large-time asymptotic behavior of solutions to the one-dimensional damped pressureless Euler–
Poisson system with variable background states, subject to a neutrality condition. In the case where the 
background density converges asymptotically to a positive constant, we establish the convergence of global 
classical solutions toward the corresponding equilibrium state. The proof combines phase plane analysis with 
hypocoercivity-type estimates. As an application, we analyze the damped pressureless Euler–Poisson system 
arising in cold plasma ion dynamics, where the electron density is modeled by a Maxwell–Boltzmann relation. 
We show that solutions converge exponentially to the steady state under suitable a priori bounds on the 
density and velocity fields. Our results provide a rigorous characterization of asymptotic stability for damped 
Euler–Poisson systems with nontrivial background structures.
1. Introduction

In this paper, we consider the damped pressureless Euler–Poisson 
(EP) system with background states in one spatial dimension and 
analyze the large-time behavior of its classical solutions. Specifically, 
we study the global-in-time dynamics of solutions to the following 
system posed on the one-dimensional periodic domain T = [− 1

2 ,
1
2 ): 

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑢) = 0,
𝜕𝑡𝑢 + 𝑢𝜕𝑥𝑢 = −𝜈𝑢 − 𝑘𝜕𝑥𝜙,
−𝜕2𝑥𝜙 = 𝜌 − 𝑐,

(1.1)

subject to initial data 
(𝜌, 𝑢)(0, 𝑥) = (𝜌0, 𝑢0)(𝑥), 𝑥 ∈ T. (1.2)

Here, 𝜌 = 𝜌(𝑡, 𝑥) and 𝑢 = 𝑢(𝑡, 𝑥) denote the density and velocity fields, 
respectively, and 𝜕𝑥𝜙 = 𝜕𝑥𝜙(𝑡, 𝑥) represents the induced force. The 
parameter 𝜈 > 0 is the strength of damping, and the parameter 𝑘 on 
the right of (1.1)2 is a physical constant which characterizes the forcing 
of the system — either an attractive or repulsive forcing depending on 
whether 𝑘 < 0 or, respectively, 𝑘 > 0.
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The Poisson equation (1.1)3 involves a prescribed positive back-
ground state, 𝑐 = 𝑐(𝑡, 𝑥), which is assumed to be uniformly bounded 
away from vacuum: 

0 < 𝑐− ⩽ 𝑐(𝑡, 𝑥) ⩽ 𝑐+, ∀ (𝑡, 𝑥) ∈ R+ × T, (1.3)

where 𝑐− and 𝑐+ are positive constants. We further impose the neutrality 
condition: 

∫T
𝜌(𝑡, 𝑥) − 𝑐(𝑡, 𝑥)d𝑥 = 0, ∀ 𝑡 ⩾ 0, (1.4)

which ensures that the total deviation of the density from the back-
ground is zero at each time.

Throughout the paper, a triple (𝜌, 𝑢, 𝜙) is called a global classical 
solution to the system (1.1)–(1.4) if it satisfies the system pointwise 
for all 𝑡 > 0, subject to the initial condition (1.2) and the neutrality 
condition (1.4).

The EP system serves as a fundamental model in various physical 
contexts, including plasma physics, semiconductor theory, and self-
gravitating fluids. In particular, the damped EP system with variable 
background states arises naturally in the modeling of carrier transport 
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in semiconductors [1,2]. In such contexts, the background profile 𝑐(𝑡, 𝑥)
is referred to as the doping profile, representing the distribution of 
fixed charges inside the material. The damping term models relaxation 
effects such as scattering with the lattice. The interplay between the 
carrier density 𝜌 and the doping profile 𝑐, mediated through the Poisson 
equation, governs the electric potential 𝜙 and thereby the carrier dy-
namics. From both modeling and analytical perspectives, understanding 
the large-time behavior of solutions to damped EP systems with back-
ground states provides valuable insights into equilibration mechanisms 
and long-time stability.

The mathematical analysis of EP systems has been concerned with 
several important directions, notably the study of global existence ver-
sus finite-time singularity formation and the investigation of the large-
time asymptotic behavior of global solutions. In particular, the notion 
of critical thresholds was introduced in [3] for the one-dimensional 
pressureless EP system, providing sharp conditions for global smooth 
solutions versus finite-time breakdown. This approach relied on a de-
tailed analysis of characteristic flows and has been further developed 
primarily in the one-dimensional setting. Some restricted extensions to 
multidimensional cases were achieved under symmetry assumptions [4,
5].

The influence of damping, background profiles, and pressure has 
also been extensively studied. Convergence to equilibrium under suit-
able subcritical conditions has been shown in [6–9], while sharp critical 
thresholds in the pressureless case with variable background states 
have been identified using phase plane analysis [10,11]. The global-
in-time regularity of one-dimensional solutions has been established 
in [12]. In higher dimensions, global existence and stability results for 
irrotational flows with constant background were obtained in [13–16]. 
Nonlocal variants such as the damped pressureless Euler–Riesz system 
were analyzed in [17], where algebraic and exponential decay rates 
were obtained using hypocoercivity arguments. Global convergence to 
equilibrium for ion dynamics with Maxwell–Boltzmann-type electron 
density was studied in [18] through refined energy estimates. We also 
refer to [11,19,20] for blow-up results in cold plasma ion models, and 
to [9] for the critical thresholds estimates in the pressured case.

In our earlier work [11], motivated by [21], we provided a sys-
tematic study of the critical threshold phenomena for pressureless 
EP systems with variable background states under the neutrality con-
dition (1.4). We established local-in-time well-posedness in function 
spaces involving negative Sobolev regularity, necessitated by the infi-
nite mass structure induced by neutrality. A key observation was that 
the presence of damping (𝜈 > 0) plays a crucial role in obtaining 
global regularity for the repulsive case (𝑘 > 0), leading to subcritical 
conditions guaranteeing global existence.

In contrast, for the attractive case (𝑘 < 0), we showed that the 
neutrality condition severely restricts the class of admissible back-
grounds, effectively reducing to the constant background case in order 
to maintain global regularity (see [11, Theorem 1.5]). In this reduced 
setting, global-in-time solutions converge exponentially to equilibrium 
by direct arguments.

Motivated by these observations, the present paper focuses on the 
repulsive case (𝑘 > 0), and for simplicity, we normalize 𝑘 = 1. Our main 
objective is to characterize the precise large-time asymptotic behavior 
of global classical solutions under this setting.

1.1. Exponential convergence for solutions with asymptotically constant 
backgrounds

For the case of constant background 𝑐 ≡ 𝑐, it is known that an 
explicit representation formula for solutions to (1.1) can be obtained 
via the method of characteristics (see [3]). This explicit formula pro-
vides sharp exponential decay rates of global classical solutions toward 
equilibrium as 𝑡 → ∞.

When the background 𝑐 = 𝑐(𝑡, 𝑥) varies in time and space, but 
converges asymptotically to a constant state, it is natural to expect a 
2 
similar convergence behavior for the solutions. In particular, we assume 
that 

𝑐(𝑡, 𝑥) → 𝑐 as 𝑡 → ∞ (1.5)

for some 𝑐 > 0 in a suitable sense, and we investigate the large-time 
behavior of global classical solutions to (1.1).

A key novelty of our result lies in the fact that no smallness con-
dition on the initial data or on the perturbation from equilibrium is 
required. In contrast to earlier works that establish global existence 
and exponential convergence for small perturbations around constant 
steady states (e.g., via energy methods or linearization techniques), 
our analysis handles general (large) global classical solutions satisfying 
uniform-in-time bounds (1.6). This robustness is achieved by combining 
phase plane analysis with hypocoercivity-type estimates, which allow 
us to control time-dependent perturbations introduced by the varying 
background state.

We now state our first main theorem:

Theorem 1.1.  Let (𝜌, 𝑢) be a global classical solution of (1.1) satisfying 

0 < 𝜌− ⩽ 𝜌(𝑡, 𝑥) ⩽ 𝜌+ < +∞, ‖𝜕𝑥𝑢‖𝐿∞(T×R+) ⩽ 𝑀 < +∞ (1.6)

for some 𝜌−, 𝜌+,𝑀 > 0.

(1) If 𝑐(𝑡, 𝑥) satisfies 

lim
𝑡→∞

‖𝑐(𝑡, ⋅) − 𝑐‖𝐿∞(T) = 0, (1.7)

then we have

lim
𝑡→∞

‖(𝜌 − 𝑐 , 𝑢, 𝜕𝑥𝑢, 𝜕𝑥𝜙, 𝜕
2
𝑥𝜙)‖𝐿∞(T) = 0.

(2) If we further assume that 

‖𝑐(𝑡, ⋅) − 𝑐‖𝐿∞(T) ⩽ 𝐶1𝑒
−𝑟1𝑡, (1.8)

for some constants 𝑟1 > 0 and 𝐶1 > 0, then we have

‖(𝜌 − 𝑐 , 𝑢, 𝜕𝑥𝑢 , 𝜕𝑥𝜙, 𝜕
2
𝑥𝜙)‖𝐿∞(T) ⩽ 𝐶2𝑒

−𝑟2𝑡

for some 𝐶2 = 𝐶2(𝐶1, 𝜌±,𝑀, 𝑐±, ‖𝑢0‖𝐿1(T)) > 0 and 𝑟2 = 𝑟2(𝑟1, 𝜈, 𝑐) >
0.

Remark 1.2.  When the spatial domain is the real line R instead of 
the periodic torus T, similar decay estimates can be established for the 
quantities

𝜌 − 𝑐, 𝜕𝑥𝑢, 𝜕
2
𝑥𝜙

by relying on the method of characteristics. The proof in this setting 
does not rely on the boundedness of the domain. However, the con-
vergence of additional quantities such as 𝑢 and 𝜕𝑥𝜙 crucially uses the 
boundedness of the domain and the associated Poincaré inequality. 
In particular, the ‖𝑢0‖𝐿1(T) dependence in 𝐶2 is only needed for the 
convergence of zeroth order term ‖𝑢‖𝐿∞(T).

Remark 1.3.  A related exponential decay result to Theorem  1.1 was 
established in [22], which studied the large-time behavior of solutions 
to a damped pressureless Euler–Poisson system coupled with an incom-
pressible Navier–Stokes system on the torus T𝑑 for 𝑑 ⩾ 2, under the 
assumption of constant background states. In comparison, our result 
applies to time-dependent background profiles and requires weaker 
regularity assumptions on the density: while [22] assumes 𝜌 ∈ 𝑊 1,∞, 
we only require 𝜌 ∈ 𝐿∞. Moreover, our result provides exponential 
convergence of all relevant quantities in the 𝐿∞ norm, whereas [22] 
establishes convergence in the 𝐿2 framework.
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1.2. Application to cold plasma ion dynamics

In many physically relevant settings, Euler–Poisson systems are 
studied under the assumption that the background density asymptot-
ically approaches a constant state, as formulated in (1.5). Motivated by 
this, we investigate the large-time behavior of solutions to a specific 
damped pressureless Euler–Poisson system arising in cold plasma ion 
dynamics: 
⎧

⎪

⎨

⎪

⎩

𝜌𝑡 + 𝜕𝑥(𝜌𝑢) = 0,
𝑢𝑡 + 𝑢𝜕𝑥𝑢 = −𝜈𝑢 − 𝜕𝑥𝜙,
−𝜕𝑥𝑥𝜙 = 𝜌 − 𝑒𝜙,

(𝑡, 𝑥) ∈ R+ × T, (1.9)

where 𝜌 and 𝑢 represent the density and velocity of ions, respectively.
This model describes a plasma composed of massless electrons and 

ions with constant temperatures (one for electrons, zero for ions). Here, 
the electron density is given by the Maxwell–Boltzmann relation 𝑒𝜙, with 
𝜙 = 𝜙(𝑡, 𝑥) denoting the electric potential generated by the overall 
charge distribution (see [23]). The equation (1.9)3 is often referred to 
as the Poisson–Boltzmann equation.

It is clear that the Poisson–Boltzmann equation satisfies a neutrality 
condition:

∫T
𝜌 − 𝑒𝜙 d𝑥 = 0.

For simplicity, we assume that the initial ion density 𝜌 has unit mass, 
so that 

∫T
𝑒𝜙 − 1d𝑥 = 0. (1.10)

This model can be interpreted as a special case of the general system 
(1.1) with (𝑘, 𝑐) = (1, 𝑒𝜙). In order to apply Theorem  1.1 to this system, 
it is necessary to show that the background density 𝑐(𝑡, 𝑥) = 𝑒𝜙(𝑡,𝑥)

converges to a constant state as 𝑡 → ∞ in a suitable sense. The analysis 
of this asymptotic behavior forms the core of our second main result.

Importantly, the following theorem demonstrates that the exponen-
tial convergence to equilibrium holds without any smallness assump-
tion on the initial perturbation. This goes beyond the scope of previous 
results on plasma models, which typically assume that the initial data 
is close to equilibrium in a strong norm. 

Theorem 1.4.  Let (𝜌, 𝑢) be a global classical solution of (1.9) satisfying 

0 < 𝜌− ⩽ 𝜌(𝑡, 𝑥) ⩽ 𝜌+ < +∞, ‖𝜕𝑥𝑢‖𝐿∞(T×R+) ⩽ 𝑀 < +∞ (1.11)

for some 𝜌−, 𝜌+,𝑀 > 0. Then, we have

‖(𝜌 − 1 , 𝑢 , 𝜕𝑥𝑢 , 𝜕𝑥𝜙, 𝜕2𝑥𝜙, 𝑒
𝜙 − 1)‖𝐿∞(T) ⩽ 𝐶𝑒−𝑟𝑡

for some 𝐶, 𝑟 > 0 depending only on 𝜈, 𝜌±,𝑀, (0).

Remark 1.5. Theorem  1.4 is stated under an a priori assumption that 
a global classical solution satisfying the conditions in (1.11) exists. 
However, in [11], the subcritical region of initial data leading to the 
global existence and uniqueness of classical solutions was analyzed. In 
particular, initial data satisfying these subcritical conditions guarantee 
the global-in-time existence of solutions that fulfill the assumptions of 
Theorem  1.4, thereby validating the large-time behavior stated therein.

The remainder of the paper is organized as follows. In Section 2, we 
prove Theorem  1.1 by combining phase plane analysis with
hypocoercivity-type estimates, establishing exponential convergence of 
solutions under asymptotically constant backgrounds. In Section 3, we 
apply these results to the cold plasma ion dynamics model, and prove 
Theorem  1.4, demonstrating exponential convergence of solutions to 
the steady state.
3 
2. Phase plane analysis and hypocoercivity estimate

In this section, we introduce a phase plane formulation and derive 
hypocoercivity estimates to study the large-time behavior of solutions. 
To better capture the nonlinear transport effects and the influence 
of the background forcing, we introduce rescaled Lagrangian vari-
ables that transform the EP system into a more tractable ODE system 
along characteristics. Following the approach introduced by H. Liu, S. 
Engelberg and the last author in [3], we define the Lagrangian variables

𝑠 ∶= 1
𝜌
, 𝑤 ∶=

𝜕𝑥𝑢
𝜌

(2.1)

along the characteristic
𝑥′(𝑡) = 𝑢(𝑡, 𝑥(𝑡)).

For simplicity, we slightly abuse notation and denote 𝑤(𝑡) ∶= 𝑤(𝑡, 𝑥(𝑡))
and 𝑠(𝑡) ∶= 𝑠(𝑡, 𝑥(𝑡)).

Under these variables, the system (1.1) reduces to the following 
ODE system: 
{

𝑤′ = −𝜈𝑤 + 1 − 𝑐𝑠,

𝑠′ = 𝑤.
(2.2)

The global-in-time regularity of solutions is guaranteed if 𝑠(𝑡) remains 
positive for all time, thereby preventing finite-time blow-up of 𝜌(𝑡, ⋅). 
We recall from [11, Theorem 1.9] that the subcritical region – i.e. the 
set of initial data ensuring global-in-time regularity – is characterized 
therein.

To study the large-time behavior of (𝑤(𝑡), 𝑠(𝑡)), we begin with the 
following auxiliary lemma. 

Lemma 2.1.  Let (𝑤(𝑡), 𝑠(𝑡)) be a global classical solution to (2.2) satisfying
|𝑠|, |𝑤| ⩽ 𝐵 (2.3)

for some 𝐵 > 0. Assume that the background 𝑐(𝑡) satisfies
0 < 𝑐− ⩽ 𝑐(𝑡) ⩽ 𝑐+ < +∞

and 
|𝑐(𝑡) − 𝑐| ⩽ 𝑔(𝑡) (2.4)

for some nonnegative 𝑔 ∈ 𝐶([0,∞)) satisfying 𝑔(𝑡) → 0 as 𝑡 → ∞. Then 
there exist constants 𝐶0 = 𝐶0(𝜈, 𝐵, 𝑐±) > 0 and 𝑟0 = 𝑟0(𝜈, 𝑐) > 0 such that 
|

|

|

|

|

𝑠(𝑡) − 1
𝑐

|

|

|

|

|

2

+ |𝑤(𝑡)|2 ⩽ 𝐶0

(

𝑒−𝑟0𝑡 + sup
𝜏∈[𝑡∕2,𝑡]

𝑔(𝜏)

)

→ 0 as 𝑡 → ∞. (2.5)

If we further assume 
|𝑐(𝑡) − 𝑐| ⩽ 𝐶1𝑒

−𝑟1𝑡, (2.6)

for some 𝑟1 > 0, then we have 
|

|

|

|

|

𝑠(𝑡) − 1
𝑐

|

|

|

|

|

+ |𝑤(𝑡)| ⩽ 𝐶2𝑒
−𝑟2𝑡 (2.7)

for some 𝐶2 = 𝐶2(𝜈, 𝐶1, 𝐵, 𝑐±) > 0 and 𝑟2 = 𝑟2(𝑟1, 𝜈, 𝑐) > 0.

Proof.  We define the energy functional

(𝑡) ∶= 𝑐
2

(

𝑠(𝑡) − 1
𝑐

)2
+ 1

2
𝑤(𝑡)2.

A direct computation using (2.2) and (2.3) yields
′(𝑡) = −𝜈𝑤2 − (𝑐 − 𝑐)𝑠𝑤 ⩽ −𝜈𝑤2 + |𝑐 − 𝑐|𝐵2.

To reveal the hidden dissipation structure and control the coupling 
between 𝑠 and 𝑤, we introduce the cross term

(𝑡) ∶=
(

𝑠(𝑡) − 1
𝑐

)

𝑤(𝑡).

This cross term is crucial for establishing hypocoercivity estimates in 
the system.
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Its temporal derivative is computed as

 ′ =𝑤2 +
(

𝑠 − 1
𝑐

)

(−𝜈𝑤 + 1 − 𝑐𝑠)

= − 𝑐
(

𝑠 − 1
𝑐

)2
+𝑤2 − 𝜈

(

𝑠 − 1
𝑐

)

𝑤 − (𝑐 − 𝑐)𝑠
(

𝑠 − 1
𝑐

)

=∶ − 𝑐
(

𝑠 − 1
𝑐

)2
+,

where the remainder term satisfies

|| ⩽ 𝑐
2

(

𝑠 − 1
𝑐

)2
+
(

1 + 𝜈2

2𝑐

)

𝑤2 + |𝑐 − 𝑐|𝐵
(

𝐵 + 1
𝑐

)

.

Hence, we obtain the differential inequality 

(+𝜆)′ ⩽ −
(

𝜈 − 𝜆
(

1 + 𝜈2

2𝑐

))

𝑤2− 𝜆𝑐
2

(

𝑠 − 1
𝑐

)2
+|𝑐 − 𝑐|𝐵

(

𝐵 + 𝜆
(

𝐵 + 1
𝑐

))

(2.8)

for a small parameter 𝜆 > 0. Choosing 𝜆 sufficiently small so that 

𝜈 − 𝜆
(

1 + 𝜈2

2𝑐

)

⩾ 𝜆
2
, (2.9)

and setting

𝑁 ∶= 𝐵
(

𝐵 + 𝜆
(

𝐵 + 1
𝑐

))

,

then we reduce from (2.8) that 
( + 𝜆)′ ⩽ −𝜆 +𝑁|𝑐 − 𝑐|. (2.10)

To make  and +𝜆 be comparable, we observe that |(𝑡)| ⩽ 1
√

𝑐
(𝑡), 

and hence,
(

1 − 𝜆
√

𝑐

)

(𝑡) ⩽ (𝑡) + 𝜆(𝑡) ⩽

(

1 + 𝜆
√

𝑐

)

(𝑡).

In particular, if 
(

1 − 𝜆
√

𝑐

)

⩾ 1
2  and 

(

1 + 𝜆
√

𝑐

)

⩽ 2, then we get

1
2
(𝑡) ⩽ (𝑡) + 𝜆(𝑡) ⩽ 2(𝑡).

Combining this with (2.9), we finally fix

𝜆 ∶= min

{

𝜈
(

𝜈2

2𝑐
+ 3

2

)−1
,

√

𝑐
2

}

> 0.

As a consequence, it follows that
1
2
(𝑡) ⩽ ((𝑡) + 𝜆(𝑡)) =∶ 𝑦(𝑡),

and (2.10) becomes

𝑦′(𝑡) ⩽ −𝜆
2
𝑦(𝑡) +𝑁|𝑐(𝑡) − 𝑐|.

We use Grönwall’s inequality to obtain that 

𝑦(𝑡) ⩽ 𝑦(0)𝑒−
𝜆
2 𝑡 +𝑁 ∫

𝑡

0
𝑒−

𝜆
2 (𝑡−𝜏)

|𝑐(𝜏) − 𝑐|d𝜏

⩽ 𝑦(0)𝑒−
𝜆
2 𝑡 + 2𝑁

(𝑐+ − 𝑐−)
𝜆

(𝑒−𝜆𝑡∕4 − 𝑒−𝜆𝑡∕2) + 2𝑁
𝜆

sup
𝜏∈[𝑡∕2,𝑡]

𝑔(𝜏).
(2.11)

This proves (2.5) for 𝑐(𝑡) satisfying (2.4). On the other hand, if 𝑐(𝑡)
satisfies (2.6), then it follows from the first line of (2.11) that we 
obtain the exponential decay rate of convergence, leading to (2.7). This 
completes the proof. □

2.1. Proof of Theorem  1.1

For each 𝑥 ∈ T, we define the Lagrangian variables 𝑠 = 𝑠(𝑡), 𝑤 = 𝑤(𝑡)
as in (2.1). By the assumptions (1.6), we have the uniform bounds
1 ⩽ 1 ,

|

|

|

𝜕𝑥𝑢 ||
| ⩽ 𝑀
𝜌 𝜌− |

|

𝜌 |

|

𝜌−

4 
so that (2.3) holds with

𝐵 ∶=
max{1,𝑀}

𝜌−
.

Moreover, for any 𝑥 ∈ T, we observe that
|𝑐(𝑡, 𝑥(𝑡, 𝑥)) − 𝑐| ⩽ ‖𝑐(𝑡, ⋅) − 𝑐‖𝐿∞(T) =∶ 𝑔(𝑡),

thus, the conditions (2.4) and (2.6) hold uniformly in 𝑥 ∈ T thanks to 
(1.7) and (1.8), respectively.

To establish the convergence of 𝜌 − 𝑐, 𝜕𝑥𝑢, we note that

|𝜌 − 𝑐| =
|

|

|

|

|

𝜌 ⋅ 𝑐
(

1
𝜌
− 1

𝑐

)

|

|

|

|

|

⩽ 𝜌+𝑐
|

|

|

|

1
𝜌
− 1

𝑐
|

|

|

|

and

|𝜕𝑥𝑢| =
|

|

|

|

𝜕𝑥𝑢
𝜌

|

|

|

|

|𝜌| ⩽ 𝜌+
|

|

|

|

𝜕𝑥𝑢
𝜌

|

|

|

|

.

Hence, the decay of 𝑠(𝑡) − 1
𝑐  and 𝑤(𝑡) obtained in Lemma  2.1 directly 

implies the convergence of 𝜌 − 𝑐 and 𝜕𝑥𝑢 in 𝐿∞(T) as 𝑡 → ∞.
The decay of 𝜕2𝑥𝜙 can be easily seen as

‖𝜕2𝑥𝜙‖𝐿∞(T) = ‖𝜌 − 𝑐‖𝐿∞(T) ⩽ ‖𝜌 − 𝑐‖𝐿∞(T) + ‖𝑐 − 𝑐‖𝐿∞(T).

Since both terms decay, we deduce that ‖𝜕2𝑥𝜙(𝑡)‖𝐿∞(T) → 0 as 𝑡 → ∞.
To prove the convergence of 𝜕𝑥𝜙, we note that

∫T
𝜕𝑥𝜙d𝑥 = 0.

Thus, by Sobolev and Hölder inequalities, we find that
‖𝜕𝑥𝜙‖𝐿∞(T) ⩽ ‖𝜕2𝑥𝜙‖𝐿1(T) ⩽ ‖𝜕2𝑥𝜙‖𝐿∞(T),

which implies the decay of ‖𝜕𝑥𝜙‖𝐿∞(T).
Finally, we turn to the convergence of 𝑢. By integrating (1.1)2, we 

have
d
d𝑡 ∫T

𝑢d𝑥 = −𝜈 ∫T
𝑢d𝑥.

Setting 𝑚(𝑡) ∶= ∫T 𝑢d𝑥, we obtain the explicit formula
𝑚(𝑡) = 𝑚(0)𝑒−𝜈𝑡.

Hence, by Poincaré and Hölder inequalities, we deduce that
‖𝑢‖𝐿2(T) ⩽ ‖𝑢 − 𝑚(𝑡)‖𝐿2(T) + 𝑚(𝑡) ⩽ ‖𝜕𝑥𝑢‖𝐿2(T) + 𝑚(𝑡) ⩽ ‖𝜕𝑥𝑢‖𝐿∞(T) + 𝑚(𝑡).

To obtain the convergence of ‖𝑢‖𝐿∞(T), we note that

|𝑢(𝑥)| =
|

|

|

|

|

𝑢(𝑦) + ∫

𝑥

𝑦
𝜕𝑧𝑢(𝑧)d𝑧

|

|

|

|

|

⩽ |𝑢(𝑦)| + ‖𝜕𝑥𝑢‖𝐿∞(T)

for any 𝑥, 𝑦 ∈ T. By integrating in 𝑦 variable, we obtain

|𝑢(𝑥)| ⩽
(

∫T
|𝑢(𝑦)|2 d𝑦

)1∕2
+ ‖𝜕𝑥𝑢‖𝐿∞(T) = ‖𝑢‖𝐿2(T) + ‖𝜕𝑥𝑢‖𝐿∞(T),

proving decay estimate of 𝑢 in 𝐿∞ norm. This completes the proof.

3. Application to cold ion dynamics

We now apply the general framework developed in Section 2 to 
study the large-time behavior of the damped cold plasma model.

3.1. Energy estimates

For classical solutions to (1.9), we introduce the free energy func-
tional

(𝑡) ∶= ∫T
1
2
𝜌𝑢2 + 1

2
(𝜕𝑥𝜙)2 + 𝑒𝜙(𝜙 − 1) + 1d𝑥,

which is dissipated over time due to damping. A direct computation 
yields the energy dissipation law: 
d (𝑡) = −𝜈 𝜌𝑢2 d𝑥. (3.1)
d𝑡 ∫T
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Since the linear damping term acts only on the momentum and not 
directly on the other components of (𝑡), we establish exponential 
decay of the free energy via a hypocoercivity argument.

Proposition 3.1.  Let (𝜌, 𝑢) be a global-in-time classical solution to (1.9) 
satisfying the uniform bounds (1.6) as indicated in Theorem  1.4. Then there 
exists a constant 𝑟 > 0, depending only on 𝜈, 𝜌±,𝑀 , and (0), such that
(𝑡) ⩽ 3(0)𝑒−𝑟𝑡, ∀ 𝑡 > 0.

Proof.  To obtain the hypocoercivity structure, we introduce the cross 
term

(𝑡) ∶= ∫T
𝑢𝜕𝑥𝜙d𝑥.

We then compute its temporal derivative as

′(𝑡) = −∫T
(𝑢𝜕𝑥𝑢 + 𝜈𝑢)𝜕𝑥𝜙d𝑥 − ∫T

(𝜕𝑥𝜙)2 d𝑥 + ∫T
𝑢(𝜕𝑥𝜙𝑡)d𝑥

=∶ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

We observe that 𝐼𝐼 has a favorable (negative) sign, while 𝐼 and 𝐼𝐼𝐼
require careful estimates.

For 𝐼 , we obtain

|𝐼| ⩽ (‖𝜕𝑥𝑢‖𝐿∞(R+×T) + 𝜈)∫T
|𝑢𝜕𝑥𝜙|d𝑥

⩽ (𝑀 + 𝜈)2

𝜌− ∫T
1
2
𝜌𝑢2 d𝑥 + ∫T

1
2
(𝜕𝑥𝜙)2 d𝑥.

For 𝐼𝐼𝐼 , we differentiate the Poisson–Boltzmann equation (1.9)3:
(

−𝜕𝑥𝑥 + 𝑒𝜙
)

𝜙𝑡 = 𝜌𝑡 = −𝜕𝑥(𝜌𝑢).

Testing against 𝜙𝑡 and integrating by parts and then applying Young’s 
inequality, we find

∫T
(𝜕𝑥𝜙𝑡)2 + 𝑒𝜙(𝜙𝑡)2 d𝑥 = −∫T

𝜕𝑥(𝜌𝑢)𝜙𝑡 d𝑥

= ∫T
𝜌𝑢(𝜕𝑥𝜙𝑡)d𝑥

⩽ ∫T
1
2
(𝜌𝑢)2 d𝑥 + ∫T

1
2
(𝜕𝑥𝜙𝑡)2 d𝑥.

Thus, we estimate

|𝐼𝐼𝐼| ⩽ ∫T
1
2
𝑢2 d𝑥 + ∫T

1
2
(𝜕𝑥𝜙𝑡)2 d𝑥 ⩽ ∫T

1
2
𝑢2 d𝑥 + ∫T

1
2
(𝜌𝑢)2 d𝑥

⩽
(

1
𝜌−

+ 𝜌+

)

∫T
1
2
𝜌𝑢2 d𝑥.

Defining

𝛬 ∶=
(𝑀 + 𝜈)2

𝜌−
+
(

1
𝜌−

+ 𝜌+

)

⩾ 2,

we deduce
d
d𝑡 ((𝑡) + 𝜆(𝑡)) ⩽ −(2𝜈 − 𝛬𝜆)∫T

1
2
𝜌𝑢2 d𝑥 − 𝜆∫T

1
2
(𝜕𝑥𝜙)2 d𝑥

for any 𝜆 > 0.
It remains to control the entropy term

∫T
𝑒𝜙(𝜙 − 1) + 1d𝑥.

We observe that the quantity ‖𝑒𝜙 − 1‖𝐿∞(T) can be controlled by free 
energy. Indeed, thanks to (1.10), there exists 𝑥̄ ∈ T such that 𝜙(𝑥̄) = 0. 
Thus, for any 𝑥 ∈ T, we observe that 

|𝜙(𝑥)| = |𝜙(𝑥) − 𝜙(𝑥̄)| =
|

|

|

|

|

∫

𝑥

𝑥̄
𝜕𝑦𝜙(𝑦)d𝑦

|

|

|

|

|

⩽
(

∫T
|𝜕𝑦𝜙(𝑦)|

2 d𝑦
)1∕2

⩽ (2(𝑡))1∕2.

(3.2)

In particular, combining (3.2) with the energy dissipation estimate 
(3.1), we have 
‖𝜙‖ ⩽ (2(0))1∕2 =∶ 𝐴. (3.3)
𝐿∞(T)

5 
We then interpret 𝑠 ∶= 𝑒𝜙, and apply Taylor’s expansion for 𝑠 ↦
𝑠 log 𝑠 − 𝑠 + 1 to estimate the entropy term as

∫T
𝑒𝜙(𝜙 − 1) + 1d𝑥 ⩽ 𝑒𝐴 ∫T

(𝑒𝜙 − 1)2 d𝑥.

Due to the neutrality ∫T 𝑒𝜙 −1d𝑥 = 0 and Poincaré inequality, we have

∫T
(𝑒𝜙 − 1)2 d𝑥 ⩽ 1

4 ∫T
(𝜕𝑥(𝑒𝜙))2 d𝑥 ⩽ 𝑒2𝐴

4 ∫T
(𝜕𝑥𝜙)2 d𝑥.

This shows that the entropy term can be controlled by electric energy. 
Hence, we deduce
d
d𝑡 ((𝑡) + 𝜆(𝑡)) ⩽ −(2𝜈 − 𝛬𝜆)∫T

1
2
𝜌𝑢2 d𝑥 − 𝜆

2 ∫T
1
2
(𝜕𝑥𝜙)2 d𝑥 − 𝜆𝑒−3𝐴

× ∫T
𝑒𝜙(𝜙 − 1) + 1d𝑥.

To choose 𝜆 > 0, we estimate the size of crossing term

|(𝑡)| =
|

|

|

|

|

∫T
𝑢𝜕𝑥𝜙d𝑥

|

|

|

|

|

⩽ 1
𝜌− ∫T

1
2
𝜌𝑢2 d𝑥 + ∫T

1
2
(𝜕𝑥𝜙)2 d𝑥.

Since 0 < 𝜌− ⩽ 1, we obtain
(

1 − 𝜆
𝜌−

)

(𝑡) ⩽ (𝑡) + 𝜆(𝑡) ⩽
(

1 + 𝜆
𝜌−

)

(𝑡).

We now take
𝜆 ∶= min

{ 𝜈
𝛬
,
𝜌−
2

}

> 0,

then we have
d
d𝑡 ((𝑡) + 𝜆(𝑡)) ⩽ −𝜅(𝑡) ⩽ −2𝜅

3
((𝑡) + 𝜆(𝑡)),

where

𝜅 ∶= min
{

𝜈, 𝜆𝑒−3𝐴
}

= 𝜆𝑒−3𝐴 > 0.

Thus, we conclude that
(𝑡) ⩽ 2((𝑡) + 𝜆(𝑡)) ⩽ 2((0) + 𝜆(0))𝑒−

2𝜅
3 𝑡 ⩽ 3(0)𝑒−

2𝜅
3 𝑡.

This completes the proof. □

3.2. Proof of Theorem  1.4

We first observe from (3.3) that
𝑒−(2(0))

1∕2 ⩽ 𝑒𝜙(𝑡,𝑥) ⩽ 𝑒(2(0))
1∕2

∀(𝑡, 𝑥) ∈ R+ × T,

confirming (1.3). On the other hand, by applying the mean value 
theorem and employing (3.2), we obtain
‖𝑒𝜙 − 1‖𝐿∞(T) ⩽ 𝑒‖𝜙‖𝐿∞(T)

‖𝜙‖𝐿∞(T) ⩽ 𝐶∗(𝑡)1∕2,

where 𝐶∗ = 21∕2𝑒(2(0))1∕2 > 0. We then apply Proposition  3.1 to obtain
‖𝑒𝜙 − 1‖𝐿∞ ⩽ 𝐶1𝑒

−𝑟1𝑡

for some 𝐶1 = 𝐶1((0)) > 0 and 𝑟1 = 𝑟1(𝜈, 𝜌±,𝑀, (0)) > 0. This verifies 
(1.8). Combined with uniform bounds (1.11), we apply Theorem  1.1 to 
obtain the decay estimates of the terms
‖(𝜌 − 1 , 𝑢, 𝜕𝑥𝑢 , 𝜕𝑥𝜙, 𝜕2𝑥𝜙)‖𝐿∞(T),

thereby concluding the proof.
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