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hypocoercivity-type estimates. As an application, we analyze the damped pressureless Euler—Poisson system

Keywords:

Damped pressureless Euler-Poisson system
Variable background states

Large-time behavior

Equilibrium states

Asymptotic stability

arising in cold plasma ion dynamics, where the electron density is modeled by a Maxwell-Boltzmann relation.
We show that solutions converge exponentially to the steady state under suitable a priori bounds on the
density and velocity fields. Our results provide a rigorous characterization of asymptotic stability for damped
Euler—Poisson systems with nontrivial background structures.

1. Introduction

In this paper, we consider the damped pressureless Euler—Poisson
(EP) system with background states in one spatial dimension and
analyze the large-time behavior of its classical solutions. Specifically,
we study the global-in-time dynamics of solutions to the following
system posed on the one-dimensional periodic domain T = [—%, %):

o,p + 9, (pu) =0,
Ou+udu =—vu — ko, ¢, 1.1
24 —
—dp=p—c,
subject to initial data

(0.)(0.x) = (pgup)(x), x €T. 1.2)

Here, p = p(t,x) and u = u(t, x) denote the density and velocity fields,
respectively, and 0,¢ = 09,¢(t,x) represents the induced force. The
parameter v > 0 is the strength of damping, and the parameter k on
the right of (1.1), is a physical constant which characterizes the forcing
of the system — either an attractive or repulsive forcing depending on
whether k < 0 or, respectively, k > 0.

The Poisson equation (1.1); involves a prescribed positive back-
ground state, ¢ = c¢(t,x), which is assumed to be uniformly bounded
away from vacuum:

O<c_<ct,x)<c,, V(t,x)eR, xT, (1.3)

where ¢_ and ¢, are positive constants. We further impose the neutrality
condition:

/ p(t,x)—c(t,x)dx =0, Vt=0, 1.4
T

which ensures that the total deviation of the density from the back-
ground is zero at each time.

Throughout the paper, a triple (p,u, ¢) is called a global classical
solution to the system (1.1)-(1.4) if it satisfies the system pointwise
for all + > 0, subject to the initial condition (1.2) and the neutrality
condition (1.4).

The EP system serves as a fundamental model in various physical
contexts, including plasma physics, semiconductor theory, and self-
gravitating fluids. In particular, the damped EP system with variable
background states arises naturally in the modeling of carrier transport
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in semiconductors [1,2]. In such contexts, the background profile c(z, x)
is referred to as the doping profile, representing the distribution of
fixed charges inside the material. The damping term models relaxation
effects such as scattering with the lattice. The interplay between the
carrier density p and the doping profile ¢, mediated through the Poisson
equation, governs the electric potential ¢ and thereby the carrier dy-
namics. From both modeling and analytical perspectives, understanding
the large-time behavior of solutions to damped EP systems with back-
ground states provides valuable insights into equilibration mechanisms
and long-time stability.

The mathematical analysis of EP systems has been concerned with
several important directions, notably the study of global existence ver-
sus finite-time singularity formation and the investigation of the large-
time asymptotic behavior of global solutions. In particular, the notion
of critical thresholds was introduced in [3] for the one-dimensional
pressureless EP system, providing sharp conditions for global smooth
solutions versus finite-time breakdown. This approach relied on a de-
tailed analysis of characteristic flows and has been further developed
primarily in the one-dimensional setting. Some restricted extensions to
multidimensional cases were achieved under symmetry assumptions [4,
51.

The influence of damping, background profiles, and pressure has
also been extensively studied. Convergence to equilibrium under suit-
able subcritical conditions has been shown in [6-9], while sharp critical
thresholds in the pressureless case with variable background states
have been identified using phase plane analysis [10,11]. The global-
in-time regularity of one-dimensional solutions has been established
in [12]. In higher dimensions, global existence and stability results for
irrotational flows with constant background were obtained in [13-16].
Nonlocal variants such as the damped pressureless Euler-Riesz system
were analyzed in [17], where algebraic and exponential decay rates
were obtained using hypocoercivity arguments. Global convergence to
equilibrium for ion dynamics with Maxwell-Boltzmann-type electron
density was studied in [18] through refined energy estimates. We also
refer to [11,19,20] for blow-up results in cold plasma ion models, and
to [9] for the critical thresholds estimates in the pressured case.

In our earlier work [11], motivated by [21], we provided a sys-
tematic study of the critical threshold phenomena for pressureless
EP systems with variable background states under the neutrality con-
dition (1.4). We established local-in-time well-posedness in function
spaces involving negative Sobolev regularity, necessitated by the infi-
nite mass structure induced by neutrality. A key observation was that
the presence of damping (v > 0) plays a crucial role in obtaining
global regularity for the repulsive case (k > 0), leading to subcritical
conditions guaranteeing global existence.

In contrast, for the attractive case (k < 0), we showed that the
neutrality condition severely restricts the class of admissible back-
grounds, effectively reducing to the constant background case in order
to maintain global regularity (see [11, Theorem 1.5]). In this reduced
setting, global-in-time solutions converge exponentially to equilibrium
by direct arguments.

Motivated by these observations, the present paper focuses on the
repulsive case (k > 0), and for simplicity, we normalize k = 1. Our main
objective is to characterize the precise large-time asymptotic behavior
of global classical solutions under this setting.

1.1. Exponential convergence for solutions with asymptotically constant
backgrounds

For the case of constant background ¢ = ¢, it is known that an
explicit representation formula for solutions to (1.1) can be obtained
via the method of characteristics (see [3]). This explicit formula pro-
vides sharp exponential decay rates of global classical solutions toward
equilibrium as t - 0.

When the background ¢ = c¢(#,x) varies in time and space, but
converges asymptotically to a constant state, it is natural to expect a
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similar convergence behavior for the solutions. In particular, we assume
that

c(t,x) > ¢ as t — oo (1.5)

for some ¢ > 0 in a suitable sense, and we investigate the large-time
behavior of global classical solutions to (1.1).

A key novelty of our result lies in the fact that no smallness con-
dition on the initial data or on the perturbation from equilibrium is
required. In contrast to earlier works that establish global existence
and exponential convergence for small perturbations around constant
steady states (e.g., via energy methods or linearization techniques),
our analysis handles general (large) global classical solutions satisfying
uniform-in-time bounds (1.6). This robustness is achieved by combining
phase plane analysis with hypocoercivity-type estimates, which allow
us to control time-dependent perturbations introduced by the varying
background state.

We now state our first main theorem:

Theorem 1.1. Let (p,u) be a global classical solution of (1.1) satisfying

0<p_<pt,x)<py <+oo, ||axu||Loo(’]I‘XR+) <M<+ (1.6)
for some p_,p,, M > 0.
(1) If c(t, x) satisfies
lim [le, ) = €ll peocT) = O, 1.7
then we have
Tim [|(p = &, u, Oy, 0, 3P| ooy = 0.
(2) If we further assume that
lle, ) = €ll poomry < Cre™", (1.8)

for some constants r; > 0 and C, > 0, then we have
o =2, u, du, 0., 2P| Loorr) < Cre™"'

for some C; = C,(Cy,p,, M, ¢y, llugll L1¢ry) > O and ry = ry(ry,v,¢) >
0.

Remark 1.2. When the spatial domain is the real line R instead of
the periodic torus T, similar decay estimates can be established for the
quantities

p—¢, O, 0>

by relying on the method of characteristics. The proof in this setting
does not rely on the boundedness of the domain. However, the con-
vergence of additional quantities such as u and d,¢ crucially uses the
boundedness of the domain and the associated Poincaré inequality.
In particular, the |||l 1, dependence in C, is only needed for the
convergence of zeroth order term |[ul| Lo )

Remark 1.3. A related exponential decay result to Theorem 1.1 was
established in [22], which studied the large-time behavior of solutions
to a damped pressureless Euler-Poisson system coupled with an incom-
pressible Navier-Stokes system on the torus T¢ for d > 2, under the
assumption of constant background states. In comparison, our result
applies to time-dependent background profiles and requires weaker
regularity assumptions on the density: while [22] assumes p € W1,
we only require p € L®. Moreover, our result provides exponential
convergence of all relevant quantities in the L* norm, whereas [22]
establishes convergence in the L? framework.
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1.2. Application to cold plasma ion dynamics

In many physically relevant settings, Euler—Poisson systems are
studied under the assumption that the background density asymptot-
ically approaches a constant state, as formulated in (1.5). Motivated by
this, we investigate the large-time behavior of solutions to a specific
damped pressureless Euler-Poisson system arising in cold plasma ion
dynamics:

P+ 0, (pu) =0,
U, +udu = —vu— 0.,

=0 p=p—e?,

where p and u represent the density and velocity of ions, respectively.

(t.x) €R, XT, 1.9)

This model describes a plasma composed of massless electrons and
ions with constant temperatures (one for electrons, zero for ions). Here,
the electron density is given by the Maxwell-Boltzmann relation e?, with
¢ = ¢(1,x) denoting the electric potential generated by the overall
charge distribution (see [23]). The equation (1.9); is often referred to
as the Poisson—Boltzmann equation.

It is clear that the Poisson-Boltzmann equation satisfies a neutrality
condition:

/p—e¢dx=0,
T

For simplicity, we assume that the initial ion density p has unit mass,
so that

/e¢—1dx=0.
T

This model can be interpreted as a special case of the general system
(1.1) with (k,c) = (1,¢?). In order to apply Theorem 1.1 to this system,
it is necessary to show that the background density c(z,x) = e?"¥
converges to a constant state as r — oo in a suitable sense. The analysis
of this asymptotic behavior forms the core of our second main result.

(1.10)

Importantly, the following theorem demonstrates that the exponen-
tial convergence to equilibrium holds without any smallness assump-
tion on the initial perturbation. This goes beyond the scope of previous
results on plasma models, which typically assume that the initial data
is close to equilibrium in a strong norm.

Theorem 1.4. Let (p,u) be a global classical solution of (1.9) satisfying

0<p_<pt,x) < py <+oo, ||ax””L°°(TXR+) <M<+ (1.11)

for some p_,p,, M > 0. Then, we have
o =1, u, 0u, 0., 05, ¢ = Dl ooy < Ce™

for some C,r > 0 depending only on v, p,, M, £(0).

Remark 1.5. Theorem 1.4 is stated under an a priori assumption that
a global classical solution satisfying the conditions in (1.11) exists.
However, in [11], the subcritical region of initial data leading to the
global existence and uniqueness of classical solutions was analyzed. In
particular, initial data satisfying these subcritical conditions guarantee
the global-in-time existence of solutions that fulfill the assumptions of
Theorem 1.4, thereby validating the large-time behavior stated therein.

The remainder of the paper is organized as follows. In Section 2, we
prove Theorem 1.1 by combining phase plane analysis with
hypocoercivity-type estimates, establishing exponential convergence of
solutions under asymptotically constant backgrounds. In Section 3, we
apply these results to the cold plasma ion dynamics model, and prove
Theorem 1.4, demonstrating exponential convergence of solutions to
the steady state.
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2. Phase plane analysis and hypocoercivity estimate

In this section, we introduce a phase plane formulation and derive
hypocoercivity estimates to study the large-time behavior of solutions.
To better capture the nonlinear transport effects and the influence
of the background forcing, we introduce rescaled Lagrangian vari-
ables that transform the EP system into a more tractable ODE system
along characteristics. Following the approach introduced by H. Liu, S.
Engelberg and the last author in [3], we define the Lagrangian variables
1 . Oyu
- w:=
P P
along the characteristic

x'(t) = u(t, x(1)).

For simplicity, we slightly abuse notation and denote w(t) := w(t, x(t))
and s(?) := s(t, x(?)).

Under these variables, the system (1.1) reduces to the following
ODE system:

w =—vw+1-—cs,
s =w.

The global-in-time regularity of solutions is guaranteed if s(f) remains
positive for all time, thereby preventing finite-time blow-up of p(z,-).
We recall from [11, Theorem 1.9] that the subcritical region - i.e. the
set of initial data ensuring global-in-time regularity — is characterized
therein.

To study the large-time behavior of (w(¢), s(t)), we begin with the
following auxiliary lemma.

(2.1)

s =

(2.2)

Lemma 2.1. Let (w(?), s(t)) be a global classical solution to (2.2) satisfying

Isl, Jw|l < B (2.3
for some B > 0. Assume that the background c(t) satisfies
O<c_<c)<cy <+o0

and

le@ — ¢l < g 2.4

for some nonnegative g € C([0, o)) satisfying g(t) — 0 as t — oco. Then
there exist constants Cy = Cy(v, B, c,) > 0 and rq = ro(v, ¢) > 0 such that

2

s(t) — l_ +w®> < G (e_’U’ + sup g(r)) -0 as t—oco. (2.5)
¢ t€lt/2,1]
If we further assume
le(t) — & < Ce™™, (2.6)
for some r| > 0, then we have
s(t) = % +lw®)| < Cre™ (2.7)

for some C, = Cy(v,C, B,c,) >0 and ry = ry(ry,v,¢) > 0.

Proof. We define the energy functional
¢ 12 1,
=7 <s(t) E) + S
A direct computation using (2.2) and (2.3) yields
L' = —vw?* = (¢ — &)sw < —vw? + |c — &| B,

To reveal the hidden dissipation structure and control the coupling
between s and w, we introduce the cross term

X(@) = (s(t) - %) wo).

This cross term is crucial for establishing hypocoercivity estimates in
the system.
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Its temporal derivative is computed as

X’=w2+<s—%)(—vw+l—cs)

:—E(s—%>2+w2—v<s—é)w—(c—c‘)s(s—é)
=: —E(s—%>2+R,

where the remainder term satisfies

= 2 2
|R|<§(s—l_> +<1+%>w2+|c—E|B(B+ 1).
c c

c

Hence, we obtain the differential inequality

(L+AX) < — <v—/1<1 + g)) wz—g (s— %>2+IC—E|B<B+A(B+ %))

2.8
for a small parameter 4 > 0. Choosing A sufficiently small so that
v2 A

—a(1+=)>2, 2.9
y ( + 25) : 2.9)
and setting

= 1

Ni=B(B+i(B+ C_))
then we reduce from (2.8) that
(L +AXY < AL+ Nlc—¢|. (2.10)

To make £ and £+ AX be comparable, we observe that |X(1)| < #E(z),
c

and hence,

A A
l-— JLOKSLO+AXO LS| 1+ — ) LO).
(%) (+%)

In particular, if (1 - %) > % and <1 + %) < 2, then we get
c c

%C(l) S L@+ AX(@) <2L0).

Combining this with (2.9), we finally fix

2 -1 ;
l::min{v<;—5+%> , %}w.

As a consequence, it follows that
L@ < (£ + 3X0) =3 30)
and (2.10) becomes

YO < =230+ Nlew - .

We use Gronwall’s inequality to obtain that

A ro
1) < y0)e"2' + N / e 10 |e(r) — g de
. E)C _e)) N (2.11)
<y0)e 2 42N (M4 _ M2y L 2L qup g(n).
A T€(t/2,1]
This proves (2.5) for c(r) satisfying (2.4). On the other hand, if c(r)
satisfies (2.6), then it follows from the first line of (2.11) that we
obtain the exponential decay rate of convergence, leading to (2.7). This
completes the proof. []

2.1. Proof of Theorem 1.1
For each x € T, we define the Lagrangian variables s = s(7), w = w(r)

as in (2.1). By the assumptions (1.6), we have the uniform bounds

L

N s
PP

ou

P

< M

=
p_
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so that (2.3) holds with
B = max{l,M}‘
p_

Moreover, for any x € T, we observe that
le@, x(1,x)) = &| < |le(t, ) = €ll ooy =: 8(1),

thus, the conditions (2.4) and (2.6) hold uniformly in x € T thanks to
(1.7) and (1.8), respectively.
To establish the convergence of p — ¢, d,u, we note that

_ (1 1 |1
|P—C|=P'C<——:> SpC|=—<
p C p ¢
and
d.u o.u
o = |2 1o < | 22,

Hence, the decay of s(r) — % and w(¢) obtained in Lemma 2.1 directly
implies the convergence of p — ¢ and d,u in L*(T) as 1 — oo.
The decay of 9%¢ can be easily seen as

”3)2(¢||L°°('JT) = lp—cllpeoery < llp = €l ooy + lle = €ll oo (my-

Since both terms decay, we deduce that ||a§¢(t)|| Lo — 0ast— co.
To prove the convergence of d,¢, we note that

/()xq&dx =0.
T

Thus, by Sobolev and Hoélder inequalities, we find that
10,1l oo ry < 103 L1¢ry < 11026l poory»

which implies the decay of [0, @Il Leo(T)-
Finally, we turn to the convergence of u. By integrating (1.1),, we
have

d = —
a/Tudx— v/Tudx‘

Setting m(r) := /11‘ udx, we obtain the explicit formula

m(t) = m(0)e™™.

Hence, by Poincaré and Holder inequalities, we deduce that

leell 20y < Nl = mOI| 27y + m(0) < NOull 2y + m(0) < |0 ull ooy + m(D).

To obtain the convergence of ||u|| ;e T), We note that

[u(x)| = < u)| + 10xull poo(my

u(y)+/ 0,u(z)dz
y

for any x,y € T. By integrating in y variable, we obtain

1/2
lu(x)| < <A |'4(Y)|2dJ’> + 10ull pooery = Null 2y + N0xull ooy
proving decay estimate of u in L* norm. This completes the proof.
3. Application to cold ion dynamics

We now apply the general framework developed in Section 2 to
study the large-time behavior of the damped cold plasma model.

3.1. Energy estimates

For classical solutions to (1.9), we introduce the free energy func-
tional

E@) = / 1pu2 + l(axqb)z +e®(p—1)+1dx,
T2 2

which is dissipated over time due to damping. A direct computation
yields the energy dissipation law:

do 2
dtg(t)_ V/eru dx. 3.1)
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Since the linear damping term acts only on the momentum and not
directly on the other components of £(f), we establish exponential
decay of the free energy via a hypocoercivity argument.

Proposition 3.1. Let (p,u) be a global-in-time classical solution to (1.9)
satisfying the uniform bounds (1.6) as indicated in Theorem 1.4. Then there

exists a constant r > 0, depending only on v, p,, M, and £(0), such that
E(N) <3E0)™, Vi>0.

Proof. To obtain the hypocoercivity structure, we introduce the cross
term

Cc@) = / ud, ¢ dx.
T
We then compute its temporal derivative as
') =- /(udxu + vu)d, pdx — /(()xq&)2 dx + / u(0,¢,;) dx
T T T
= I+I1I+1I1I.

We observe that 17 has a favorable (negative) sign, while I and 111
require careful estimates.
For I, we obtain

11 < 10l e + ) /T U0, bl dx

2
gw'/lpfdx_,_/l(axqgfdx.
P T2 T 2

For 111, we differentiate the Poisson-Boltzmann equation (1.9)5:
(=0yx +?) @, = p, = =0, (pu).

Testing against ¢, and integrating by parts and then applying Young’s
inequality, we find

/ (Ox)* + e?(¢p)? dx = — / 0, (pu), dx
T T

=/pu(dx¢,)dx
T

L2 1 2
S/Ez(pu) dx+Az(6x¢,) dx.

Thus, we estimate
|III|</%u2dx+/%(6x¢,)2dx</%u2dx+/%(pu)zdx
T T T T

1 1 5
< —+0» >/—pu dx.
<P— ) Jr2

Defining

M 2
A::([);‘/)+<L+p+>>2,

we deduce
4 (EM + AC(1) < —(2v — AX) / 1 pu? dx — A / l(aqu)z dx
dr T2 T2

for any 4 > 0.
It remains to control the entropy term

/e¢(¢—1)+1dx.
T

We observe that the quantity ||e? — 1|| w1, can be controlled by free
energy. Indeed, thanks to (1.10), there exists x € T such that ¢(x) = 0.
Thus, for any x € T, we observe that

1/2
< < / |ay¢<y)|2dy> < QEM).
T

3.2)

B0l = 16(0) — S| =' / 2,60 dy

In particular, combining (3.2) with the energy dissipation estimate
(3.1), we have

¢l ooy < REOD'/? =2 A (3.3)
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We then interpret s := e?, and apply Taylor’s expansion for s +—
slogs — s+ 1 to estimate the entropy term as

/e‘/’(qb— D+1dx<e? /(e"’ —1)%dx.
T T
Due to the neutrality [} ¢? —1dx = 0 and Poincaré inequality, we have

/ (@ - 1?drg - / (0" dx < o / (0,)* dx.
T 4 T 4 T

This shows that the entropy term can be controlled by electric energy.
Hence, we deduce

% (E@ + AC1) < —2v — AX) /T % pu? dx — % /T %(0x¢)2 dx — 2734

X /e¢(¢—1)+1dx.
T

To choose 1 > 0, we estimate the size of crossing term

1 [1 5 1 5
< — — = X
/Tuaxqﬁdx . /T e dx+/T 2(0x¢) dx

Since 0 < p_ < 1, we obtain

ICO)I =

(1 - pi> EMSEM+AC(H) < <1 + pi> E(@).

We now take

A :=min{%,%} >0,
then we have
% (EM+ACM) < —kED) < —Z?K(f(l) + AC(1)),
where
K :=min {v, 274} = 2734 > 0.
Thus, we conclude that
2%

E(1) < 2(E@M) + AC(H)) < 2(E(0) + /IC(O))e_%' <3&0)e 3.

This completes the proof. []
3.2. Proof of Theorem 1.4

We first observe from (3.3) that
TREON? (10  QCEON gy ) e R, X T,

confirming (1.3). On the other hand, by applying the mean value
theorem and employing (3.2), we obtain

le? = Tl ey < =D bl oy < CLEO,
where C, = 21/2¢C¢0)'”* 5 (. We then apply Proposition 3.1 to obtain
lle? = 1]l < Ce™

for some C; = C{(£(0)) > 0 and r| = r (v, p,, M, E(0)) > 0. This verifies
(1.8). Combined with uniform bounds (1.11), we apply Theorem 1.1 to
obtain the decay estimates of the terms

o =1, u. Ogu, 9, 07| Loy
thereby concluding the proof.
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