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We study the stabilizing effect of rotational forcing in the nonlinear setting
of two-dimensional shallow-water equations. The pressureless version of these

equations admit global smooth solutions for a large set of sub-critical initial
configurations. But what happens with more realistic models, in the presence

of pressure? It is shown that when rotational forcing dominates the pressure, it
prolongs the life-span of such sub-critical solutions, for a time period ln(1/δ) �
1 dictated by the ratio δ =Rossby number/squared Froude number. Our study
reveals a “nearby” periodic-in-time approximate solution in the small δ regime,

upon which hinges the long time existence of the exact smooth solution. These
results are in agreement with the close-to-periodic dynamics observed in the

“near inertial oscillation” (NIO) regime which follows oceanic storms.
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1. Introduction and statement of the main results

We investigate smooth solutions of two-dimensional systems of nonlinear
Eulerian equations driven by pressure and rotational forces. It is well known
that in the absence of rotation, these equations admit finite-time break-
down12 : for generic smooth initial conditions, the corresponding solutions
lose C1-smoothness in a finite time due to shock formation. The presence of
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rotational forces, however, has a stabilizing effect13 : the pressureless ver-
sion of these equations admit global smooth solutions for a large set of
so-called sub-critical initial configurations. It is therefore a natural exten-
sion to study the balance between the regularizing effects of rotation vs.
destabilizing mechanisms such as nonlinear advection and pressure. In this
paper we prove the long-time existence of rapidly rotating flows governed by
the shallow-water and more general Eulerian equations. We show that the
solution for such equations are characterized by the existence of “near-by”
periodic flows for long time periods. Thus, rotation prolongs the life-span
of smooth solutions over increasingly long time periods, which grows longer
as the rotation forces become more dominant over pressure. Our novel ap-
proach4 employs iterative approximations and nonlinear analysis of fast
manifold of the flow.

Our model problem is the Rotational Shallow Water (RSW) equations.
This system of equations models large scale geophysical motions in a thin
layer of fluid under the influence of the Coriolis rotational forcing, e.g. [14,
§3.3], [7, §2.1],

∂th + ∇ · (hu) = 0 (1.1a)

∂tu + u·∇u + g∇h − fu⊥ = 0. (1.1b)

It governs the unknown velocity field u :=
(
u(1)(t, x, y), u(2)(t, x, y)

)
and

height h := h(t, x, y), where g and f stand for the gravitational constant
and the Coriolis frequency. Recall that equation (1.1a) observes the conser-
vation of mass and equations (1.1b) describe balance of momentum by the
pressure gradient, g∇h, and rotational forcing, fu⊥ := f

(
u(2),−u(1)

)
. For

convenience, we rewrite the system (1.1) in terms of rescaled, nondimen-
sional variables,

∂th + u · ∇h +
(

1
σ

+ h

)
∇ · u = 0. (1.2a)

∂tu + u · ∇u +
1
σ
∇h −

1
τ

Ju = 0, . (1.2b)

Here σ and τ are respectively the Froude number measuring the inverse
pressure forcing and the Rossby number measuring the inverse rotational
forcing. Here and below, we use J to denote the 2 × 2 rotation matrix

J :=
(

0 1
−1 0

)
.

To trace the behavior of its solutions, we approximate (1.2a), (1.2b)
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with the successive iterations,

∂thj + uj−1·∇hj +
(

1
σ

+ hj

)
∇ · uj−1 = 0, j = 2, 3, . . . (1.3a)

∂tuj + uj ·∇uj +
1
σ
∇hj −

1
τ

Juj = 0, j = 1, 2, . . . , (1.3b)

subject to initial conditions, hj(0, ·) = h0(·) and uj(0, ·) = u0(·). This ap-
proximation simplifies the original coupled mass and momentum equations.
That is, given j, (1.3) are only weakly coupled through the dependence of uj

on hj . Moreover, for σ � τ , the momentum equations (1.2b) are “approx-
imately decoupled” from the mass equation (1.2a) since rotational forcing
is substantially dominant over pressure forcing. Therefore a first approxi-
mation of constant height function will enforce this decoupling, serving as
the starting point of the above iterative scheme,

h1 ≡ constant. (1.4a)

This together with j = 1 in (1.3b) leads to the first approximate velocity
field, u1, as the solution of the pressureless equations,

∂tu1 + u1·∇u1 −
1
τ
Ju1 = 0, u1(0, ·) = u0(·). (1.4b)

Here we note by passing that (1.4b) is a genuinely nonlinear system that
accommodates possibly singular parameter 1

τ � 1. Liu and Tadmor13 have
shown that there is a large generic set of so-called sub-critical initial configu-
rations, u0, for which the pressureless equations (1.4b) admit global smooth
solutions. Moreover, the pressureless velocity u1(t, ·) is in fact 2πτ -periodic
in time. In Section 2, we complete Liu and Tadmor’s regularity result with
a new argument on the time-periodicity of u1 outlined in Ref. 4.

Having the pressureless solution, (h1,u1) in (1.4) as a first approxi-
mation for the RSW solution (h,u), we used it to construct an improved
approximation of the RSW equations, (h2,u2), which solves an “adapted”
version of the second iteration (j = 2) of (1.3). The regularity and period-
icity of (h2,u2) hinges on an important lemma presented in Section 3; it
states that any conservative scalar φ advected by the pressureless field u1,

∂tφ + ∇·(u1φ) = 0, (1.5)

is time-periodic and hence globally smooth. In particular, setting j = 2 in

(1.3a) implies that φ =
1
σ

+ h2 is 2πτ -time periodic and consequently, we
show that the linearized solution, u2, subject to sub-critical initial data u0

retains the same time periodicity. It follows that the approximate solution
(h2,u2) is globally smooth.
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Next, in Section 4 we turn to estimate the deviation between the solution
(h2,u2) of the linearized RSW system and the solution (h,u) of the full
RSW system. To this end, we introduce a new non-dimensional parameter

δ :=
τ

σ2
,

measuring the relative strength of rotation vs. the pressure forcing. We
assume that rotation is the dominant forcing in the sense that δ � 1. Using
the standard energy method8 we show in Theorem 4.1 and its corollary that,
starting with Hm initial data, the RSW solution

(
h(t, ·),u(t, ·)

)
remains

sufficiently close to
(
h2(t, ·),u2(t, ·)

)
in the sense that,

‖h(t, ·)− h2(t, ·)‖Hm−3 + ‖u(t, ·)− u2(t, ·)‖Hm−3 <∼ δ
eC0t

(1 − eC0tδ)2
,

where constant C0 = Ĉ0(m, |∇u0|∞, |h0|∞) · ‖u0, h0‖m. In particular, we
conclude that for a large set of sub-critical initial data, the RSW equations
(1.2) admit smooth, “approximate periodic” solutions for large time, t <∼
1 + ln(δ−1), in the rotationally dominant regime δ � 1. Therefore, strong
rotation stabilizes the flow by imposing approximate periodicity to the flow,
which in turn postpones finite time breakdown of classical solutions to long
time.

A physically relevant example consistent with our results is found in the
so-called “near-inertial oscillation” (NIO) regime, which is observed during
the days that follow oceanic storms; see, e.g., Ref. 17. These NIOs are
triggered when storms pass by and only a thin layer of the oceans is reactive,
corresponding to δ � 1. Specifically, upon using the multilayer model ( [14,
§6.16]) with Rossby number τ ∼ O(0.1) and Froude number σ ∼ O(1) we
find δ ∼ 0.1, which yields the existence of a smooth, “approximate periodic”
solution for t ∼ 2 days. We note that the counterclockwise rotation of
cyclonic storms on the Northern Hemisphere produce negative vorticity,
which is a preferred scenario of the subcritical condition (2.2).

Several other related results are mentioned in the last Section 5. We
make generalization to Euler systems describing the isentropic gasdynamics
and ideal gasdynamics in Ref. 4. Then we give a brief discussion on the
complementary large δ � 1 regime that will be the main focus in the
upcoming papers2,3 .

Our results confirm the stabilization effect of rotation in the nonlinear
setting, when it interacts with the slow components of the system, which
otherwise tend to destabilize the dynamics. The study of such interaction
is essential to the understanding of rotating dynamics, primarily to geo-
physical flows. For a state-of-the-art of the mathematical theory for such
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flows, the readers are referred to the recent book of Chemin et. al.1 and
the references therein. We conclude this section by a very brief literature
review followed by comparison of our approach vs. the existing ones. Often
referred to as “fast wave analysis”, “fast wave filtering” or “separation of
fast and slow dynamics”, the theoretical foundation of previous works can
be found in papers such as Schochet15 , which can be further traced back
to the earlier works of Klainerman and Majda9 and Kreiss10 (see also16).
The key idea is to identify the limiting system as some singular parameters
(in the RSW case, τ and σ) approach zero, which filters out fast scales.
The full system is then approximated to a first order, by this slowly evolv-
ing limiting system. The novelty of our approach, on the other hand, is to
adopt the rapidly oscillating and fully nonlinear pressureless system as a
first approximation and then consider the full system as a perturbation of
this fast scale. This enables us to preserve both slow and fast dynamics,
and especially, the rotation-induced time periodicity. The approach also en-
ables us to avoid the constraint on absolute smallness of parameters, e.g.
τ ∼ σ � 1 (see Ref. 5) and to only require relative smallness of the ratio
δ = τ/σ2 � 1.

2. First approximation– the pressureless system

We consider the pressureless system

∂tu1 + u1·∇u1 −
1
τ

Ju1 = 0, (2.1)

subject to initial condition u1(0, ·) = u0(·). We begin by recalling the main
theorem in Ref. 13 regarding the global regularity of the pressureless equa-
tions (2.1).

Theorem 2.1. Consider the pressureless equations (2.1) subject to C1-
initial data u1(0, ·) = u0(·). Then, the solution u1(t, ·) stays C1 for all time
if and only if the initial data satisfy the critical threshold condition,

τω0(x) +
τ2

2
η2
0(x) < 1 for all x ∈ R2. (2.2)

Here, ω0(x) = −∇ × u0(x) = ∂yu0 − ∂xv0 is the initial vorticity and
η0(x) := λ1 − λ2 is the (possibly complex-valued) spectral gap associated
with the eigenvalues of gradient matrix ∇u0(x). Moreover, these globally
smooth solutions, u1(t, ·), are 2πτ -periodic in time.4

Liu and Tadmor13 gave two different proofs of (2.2) based on the spectral
dynamics of λj(∇u) and on the flow map associated with (2.1). We follow
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yet another proof4 which utilizes the Ricatti-type equation satisfied by the
gradient matrix M =: ∇u1,

M ′ + M2 = τ−1JM.

Here, ′ := ∂t + u1 ·∇ is the Lagrange derivative along particle trajectory
induced by u1. Starting with M0 = M (t0, x0), the solution of this Ricatti
equation along the corresponding trajectory is given by

M = etJ/τ
(
I + τ−1J

(
I − etJ/τ

)
M0

)−1

M0,

and a straightforward calculation based on the Cayley-Hamilton Theorem
(for computing the inverse of a matrix) shows that

max
t,x

|∇u1| = max
t,x

|M | = max
t,x

∣∣∣∣∣
polynomial(τ, etJ/τ ,∇u0)

(1 − τω0 − τ2

2 η2
0)+

∣∣∣∣∣ . (2.3)

The critical threshold (2.2) follows from the requirement that the deter-
minant at the denominator will not vanish: it follows that there exists a
critical Rossby number, τc := τc(∇u0), such that the pressureless solution
u1(t, ·) remains smooth for all time whenever τ ∈ (0, τc). Observe that the
critical threshold, τc need not be small, and in fact, τc = ∞ for rotational
initial data such that η2

0 < 0, ω0 <
√

−2η2
0. We shall always limit ourselves,

however, to a finite value of the critical threshold, τc.
Moreover, the periodicity of u1 follows upon integration of u1

′ = 1
τ
Ju

and x′ = u1 along particle trajectories Γ0. It turns out both x(t) and
u1(t, x(t)) are 2πτ periodic, which clearly implies that u1(t, ·) shares the
same periodicity as well.

3. Second approximation – advection by the pressureless
velocity

Once we establish the global properties of the pressureless velocity u1, it
can be used as the starting point for second iteration of (1.3). We begin
with the approximate height, h2, governed by (1.3a),

∂th2 + u1 ·∇h2 +
(

1
σ

+ h2

)
∇ · u1 = 0, h2(0, ·) = h0(·). (3.1)

The periodicity of u1, see Section 2, imposes the same periodicity on passive
scalars transported by such u1’s.

Lemma 3.1. Let scalar function φ be governed by

∂tφ + ∇ · (u1φ) = 0 (3.2)
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where u1(t, ·) is a globally smooth, 2πτ -periodic solution of the pressureless
equations (2.1). Then φ(t, ·) is also 2πτ -periodic.

To prove lemma 3.1, observe that the very same equation (3.2) gov-
erns the dynamics of relative vorticity, ω1 := ∇ × u1 + 1

τ
. Consequently,

a straightforward calculation reveals that the ratio ω1/φ remains invariant
along particle trajectories, (∂t + u1 ·∇)(ω1/φ) = 0. It follows that since u1

and ω1 are 2πτ -periodic, then so is φ. We note in passing that the same ar-
gument applies for ratios involving the absolute height, (h2 + 1

σ
)/φ and the

local deformation det(∇u1)/φ; the invariance of the latter along particle
trajectories is classical.14

To continue with the second approximation, we turn to the approximate
momentum equation (1.3b) with j = 2.

∂tu2 + u2·∇u2 +
1
σ
∇h2 −

1
τ
u2 = 0. (3.3)

A splitting approach leads to a simplified linearization of (3.3) which is
“close” to (3.3) and still maintains the nature of our methodology in Ref.
4.

u2 := u1 +
τ

σ
J(I − etJ/τ )∇h2(t, ·). (3.4a)

A straightforward computation shows that this velocity field, u2, satisfies
the following approximate momentum equation,

∂tu2 + u1 ·∇u2 +
1
σ
∇h2 −

1
τ
u2

⊥ = R (3.4b)

where

R :=
τ

σ
J(I − etJ/τ )(∂t + u1·∇)∇h2(t, ·)

(by (3.1)) = − τ

σ
J(I − etJ/τ )

[
(∇u1)>∇h2 + ∇((

1
σ

+ h2)∇·u1)
]

.

(3.4c)

4. Approximate periodicity – error estimate by the energy
method

The C1 regularity and time-periodicity results established in Theorem 2.1,
Lemma 3.1 and equations (3.4) allow us to study Sobolev Hm regularity
of the approximate systems. In particular, it suffices to study the local
regularity of periodic solutions within one period. Once this is done, we
can proceed to use standard energy arguments (see e.g. Ref. 8,9,11) to
estimate the errors u − u2 and h − h2. We refer the reader to Ref.4 for
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detailed proofs, noting that the residual term R in equation (3.4b), (3.4c)
is of scale δ = τ/σ2.

Theorem 4.1. Consider the rotational shallow water (RSW) equations on
a fixed 2D torus,

∂th + u · ∇h +
(

1
σ

+ h

)
∇ · u = 0 (4.1a)

∂tu + u · ∇u +
1
σ
∇h − 1

τ
Ju = 0 (4.1b)

subject to initial data (h0,u0) ∈ Hm(T 2) with m > 5 and α0 := min(1 +
σh0(·)) > 0. Let

δ =
τ

σ2

denote the ratio between the Rossby number τ and the squared Froude num-
ber σ, and assume the subcritical condition τ ≤ τc so that (2.2) holds.
Assume σ ≤ 1 for substantial amount of pressure forcing in (4.1b). Then,
there exists a constant C0, depending only on m, τc, α0 and in particular
depending linearly on ‖(h0,u0)‖m, such that the RSW equations admit a
smooth, “almost periodic” solution in the sense that there exists a near-by
2πτ -periodic solution, (h2(t, ·),u2(t, ·)) such that

‖p(t, ·)− p2(t, ·)‖m−3 + ‖u(t, ·)− u2(t, ·)‖m−3
<∼ δ

eC0t

1 − eC0tδ
, (4.2)

where p is the “normalized height” such that 1 + 1
2σp =

√
1 + σh and cor-

respondingly p2 satisfies 1 + 1
2σp2 =

√
1 + σh2.

It follows that the life span of the RSW solution, t <∼ tδ := 1 + ln(δ−1)
is prolonged due to the rapid rotation δ � 1, and in particular, it tends to
infinity when δ → 0. We close this section by noting that one may recover4

the regularity of the original height h from the “normalized height” p.

5. Related works

We extend Theorem 4.1 to rotational two-dimensional Euler equations for
isentropic gas and, more generally, full Euler equations for ideal gasdynam-
ics. The same methodology applies and leads the existence of a near-by
approximate solution for a time period ∼ ln(1/δ), where

δ =
τ

σ2
� 1
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involves the usual Rossby number τ but σ now stands for the Mach number,
replacing the Froude number in Theorem 4.1. This generalization reflects
the fact that the RSW equations are a special case of general 2D Euler
equations.

Another extension of Theorem 4.1 deals with δ � 1, where rotational
forcing become mild or even weak, relative to pressure forcing. In such
regimes, the new parameter δ still plays a central role in determining the
dynamics of the flow. More precisely, in Ref. 2,3, we prove that

Theorem 5.1. Consider the same equations and assumptions as in The-
orem 4.1 except setting the domain as the whole R2 space. Let κ :=
max{δ−1, σ} <∼ 1. Then there exists an incompressible flow uinc such that
for some finite time T ′ and some m′ < m, p > 2, q > 2, α′ > 0,

||u− uinc||Lp([0,T ′];Wm′ ,q)
<∼ κα′

(5.1)

The idea is to employ fast wave analysis for nonlinear hyperbolic PDEs with
Strichartz type estimates to reveal an approximate incompressible flow. Our
argument is highlighted with an invariant-based analysis on the nonlinear
interactions of fast waves. This enables us to consider the two fast scales
associated with σ and τ and therefore to generalize previous results that
rely on only one fast scale.6

References

1. J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical Geo-
physocs, Oxford Lecture Ser. , v. 32, 2006.

2. B. Cheng, Effects of scales on 2D rotational compressible Euler equations.
Proceedings of the 12th International Conference on Hyperbolic Problems.
(2008) (preprint)

3. B. Cheng, An invariant-based fast wave analysis and its application to mul-
tiscale Euler dynamics. (in preparation)

4. B. Cheng, E. Tadmor, Long time existence of smooth solutions for the rapidly
rotating shallow-water and Euler equations. SIAM J. Math. Anal. 39(5)
(2008) 1668-1685.

5. P. Embid and A. Majda, Averaging over fast gravity waves for geophysical
flows with arbitrary potential vorticity. Comm. Partial Differential Equations
21 (1996), no. 3-4, 619–658.

6. P. Embid and A. Majda, A low Froude number limiting dynamics for stably
stratified flow with small or finite Rossby numbers, Geophys. Astrophys. Fluid
Dyn. 87 (1998), 1–50.

7. M. Ghil, and S. Childress, Topics in geophysical fluid dynamics: atmospheric
dynamics, dynamo theory, and climate dynamics. Applied Mathematical Sci-
ences, 60. Springer-Verlag, New York, 1987.



August 22, 2008 11:31 WSPC - Proceedings Trim Size: 9in x 6in Cheng˙Tadmor˙CBMS˙RSW

10

8. T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,
Arch. Rat. Mech. Anal. 58 (1975), no. 3, 181–205.

9. S. Klainerman and A. Majda, Compressible and incompressible fluids Comm.
Pure Appl. Math. 35 (1982), no. 5, 629–651.

10. H.-O. Kreiss, Problems with different time scales for partial differential equa-
tions. Comm. Pure Appl. Math. 33 (1980), no. 3, 399–439.

11. H.-O. Kreiss and J. Lorenz Initial-boundary value problems and the Navier-
Stokes equations. Reprint of the 1989 edition. Classics in Applied Mathemat-
ics, 47. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2004.

12. P. D. Lax. Hyperbolic systems of conservation laws and the mathematical the-
ory of shock waves. Society for Industrial and Applied Mathematics, Philadel-
phia, Pa. (1973), Conference Board of the Mathematical Sciences Regional
Conference Series in Applied Mathematics, No. 11.

13. H. Liu and E. Tadmor Rotation prevents finite-time breakdown. Phys. D 188
(2004), no. 3-4, 262–276.

14. J. Pedlosky Geophysical Fluid Dynamics. Springer Verlag, Berlin, 1992.
15. S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations

114 (1994), no. 2, 476–512.
16. E. Tadmor, Hyperbolic systems with different time scales, Comm. Pure and

Appl. Math. 35 (1982), 839-866.
17. W.R. Young, M. Ben Jelloul Propagation of near-inertial oscillations through

a geostrophic flow.Journal of Marine Research 55 (1997), No. 4, 735–766.


