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ABSTRACT. We present a preliminary study of a new phenom-
ena associated with the Euler-Poisson equations — the so called
critical threshold phenomena, where the answer to questions of
global smoothness vs. finite time breakdown depends on whether
the initial configuration crosses an intrinsic, O(1) critical thresh-
old.

We investigate a class of Euler-Poisson equations, ranging from
one-dimensional problems with or without various forcing mech-
anisms to multi-dimensional isotropic models with geometrical
symmetry. These models are shown to admit a critical thresh-
old which is reminiscent of the conditional breakdown of waves
on the beach; only waves above certain initial critical threshold
experience finite-time breakdown, but otherwise they propagate
smoothly. At the same time, the asymptotic long time behavior
of the solutions remains the same, independent of crossing these
initial thresholds.

A case in point is the simple one-dimensional problem where
the unforced inviscid Burgers’ solution always forms a shock dis-
continuity, except for the non-generic case of increasing initial
profile, u′0 ≥ 0. In contrast, we show that the corresponding one-
dimensional Euler-Poisson equation with zero background has
global smooth solutions as long as its initial (ρ0, u0)-configuration
satisfies u′0 ≥ −

√
2kρ0 – see (2.11) below, allowing a finite, crit-

ical negative velocity gradient. As is typical for such nonlinear
convection problems, one is led to a Ricatti equation which is
balanced here by a forcing acting as a ’nonlinear resonance’, and
which in turn is responsible for this critical threshold phenom-
ena.
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1. INTRODUCTION

The Euler-Poisson equations

ρt +∇ · (ρu) = 0, x ∈ Rn, t ∈ R+,(1.1)

(ρu)t +∇ · (ρu⊗u) = kρ∇ϕ + viscosity+ relaxation,(1.2) ∆ϕ = ρ + background, x ∈ Rn,(1.3)

are the usual statements of the conservation of mass, Newton’s second law, and the
Poisson equation defining, say, the electric field in terms of the charge. Here k is
a given physical constant, which signifies the property of the underlying forcing,
repulsive if k > 0 and attractive if k < 0. The unknowns are the local density
ρ = ρ(x, t), the velocity field u = u(x, t), and the potential ϕ =ϕ(x, t).

This hyperbolic-elliptic coupled system (1.1)-(1.3) describes the dynamic be-
havior of many important physical flows including charge transport [20], plasma
with collision [12], cosmological waves [2], and the expansion of the cold ions
[11]. Systems (1.1)-(1.3) also describe the evolution of a star regarded as an ideal
gas with self-gravitation (k < 0) [16]. The case of repulsive forces (k > 0) [22]
is relevant for plasma physics. These equations may be obtained from the Vlasov-
Poisson-Boltzmann model by setting the mean free path to zero [3]. We would like
to point out that the Euler-Poisson equation is closely related to the Schrödinger-
Poisson equation via the semi-classical limit and the Vlasov-Poisson equation as
well as the Wigner equation. Such relation has been the subject of a consider-
able number of papers in recent years; we refer to [9, 6] and references therein for
further details.
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There is a considerable amount of literature available on the global behav-
ior of Euler-Poisson and related problems, from local existence in the small Hs-
neighborhood of a steady state [16, 21, 8] to global existence of weak solutions
with geometrical symmetry [5], for the two-carrier types in one dimension [26],
the relaxation limit for the weak entropy solution, consult [19] for isentropic case,
and [14] for isothermal case.

For the question of global behavior of strong solutions, however, the choice
of the initial data and/or damping forces is decisive. The non-existence results in
the case of attractive forces have been obtained by Makino-Perthame [18], and
for repulsive forces by Perthame [22]. For the study on the singularity formation
in the model with diffusion and relaxation, see [27]. In all these cases, the finite
life span is due to a global condition of large enough initial (generalized) energy,
staying outside a critical threshold ball. Using characteristic-based methods, En-
gelberg [7] gave local conditions for the finite-time loss of smoothness of solutions
in Euler-Poisson equations. Global existence due to damping relaxation and with
non-zero background can be found in [24, 25, 15]. For the model without damp-
ing relaxation, the global existence was obtained by Guo [10] assuming the flow
is irrotational. His result applies to an H2-small neighborhood of a constant state.
Finally we mention the steady solution of non-isentropic Euler-Poisson model an-
alyzed for a collisionless plasma in [17] and for the hydro-dynamic semiconductor
in [1] — their approaches are based on the phase plane analysis.

In this paper we present a preliminary study on a new phenomena associated
with the Euler-Poisson equations — the so called critical threshold phenomena,
where the answer to the question of global vs local existence depends on whether
the initial configuration crosses an intrinsic, O(1) critical threshold. Little or no
attention has been paid to this remarkable phenomena, and our goal is to bridge
the gap between previous studies on the behavior of solutions of the Euler-Poisson
equations in the small and in the large. To this end we focus our attention on the
n-dimensional isotropic model,


rνnt + (nurν)r = 0, r > 0,

ρ(ut +uur) = kρϕr + viscosity+ relaxation,

(rνϕr )r = nrν + background, ν = n− 1.
(1.4)

It is well known that finite time breakdown is a generic phenomena for nonlinear
hyperbolic convection equations, which is realized by the formation of shock dis-
continuities. In the context of Euler-Poisson equation, however, there is a delicate
balance between the forcing mechanism (governed by Poisson equation), and the
nonlinear focusing (governed by Newton’s second law), which supports a critical
threshold phenomena. In this paper we show how the persistence of the global
features of the solutions hinges on a delicate balance between the nonlinear con-
vection and the forcing mechanism dictated by the Poisson equation as well as
other additional forcing mechanism on the right of (1.4).
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In particular, the persistence of the global features of solutions does not fall
into any particular category (global smooth solution, finite time breakdown, etc.),
but instead, these features depend on crossing a critical threshold associated with
the initial configuration of underlying problems, very much like the conditional
breakdown of waves on the beach; only waves above a certain critical threshold
form crests and break down, otherwise they propagate smoothly. See for example
[23] for ion-acoustic waves with such critical threshold phenomena.

At present, no rigorous results exist on the question just raised concerning
the critical threshold phenomena in equations of Euler-Poisson type. In this pa-
per we provide a detailed account of critical threshold phenomena for a class of
Euler-Poisson equations without pressure forcing. We use these systems to demon-
strate the ubiquity of critical thresholds in the solutions of some of the equations of
mathematical physics. At the same time, we show that the asymptotic long time
behavior of the solutions remains the same, independent of whether the initial
data has crossed the critical threshold or not.

We note in passing that in this paper we restrict ourselves to the pressureless
isotropic Euler-Poisson equations. The existence of the pressure allows for addi-
tional balance, and we hope to explore the critical threshold phenomena for the
general, possibly non-isotropic model with additional pressure forces in the future
work.

A simple example of an equation with a critical threshold is the 1D unforced
Burgers’ equation, ut +uux = 0. This equation describes the movement of par-
ticles that are not being acted on by any forces. The variable u(x, t) represents
the velocity of the particle located at position x at time t. The global existence is
ensured if and only if u′0 ≥ 0. Thus, the Burgers’ solution forms a shock discon-
tinuity unless its initial profile is monotonically non-decreasing. In this case the
finite time breakdown of the Burgers’ solution is a generic phenomena. In con-
trast we show below that the corresponding 1D Euler-Poisson equation with zero
background has global smooth solutions if and only if u′0 > −

√
2kρ0 (see (2.11)

below), allowing a finite negative velocity gradient. This is the critical thresh-
old phenomena we are referring to. As is typical for such nonlinear convection
problems, one is led to a general Ricatti equation which is complemented by a
particular inhomogeneous forcing dictated by the Poisson equation. It is the deli-
cate balance of the latter, acting as a nonlinear resonance, which is responsible for
this critical threshold phenomena.

This paper is organized as follows. In Section 2, we consider the 1D Euler-
Poisson equations with zero background, and show that the solutions of the cor-
responding Cauchy problem blow up in finite time if and only if certain local
“threshold” conditions on the initial data are met. In this case the density and the
velocity gradient are shown to decay at some algebraic rates. For this simple model
we utilize both the Eulerian and the Lagrangian description of the flows to investi-
gate the critical threshold phenomena. We also discuss how the solution behavior
depends on the initial data as well as on the coupling parameter k. The behavior
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of the velocity gradient is outlined for various cases classified by the relative size of
the initial data.

In Section 3, we present the critical thresholds for the 1D model with nonzero
constant background and the effects of the damping relaxation. In this case the
solution oscillates. The oscillatory behavior of the solution is induced by the
presence of nonzero background, and the oscillations can be prevented only by
strong damping relaxation. The zero limit of the background is shown to be a
kind of “singular limit”, which coincides with (close to) the zero background case
studied in Section 2. We also justify a rather remarkable phenomena, namely,
that the non-zero background is able to balance both the nonlinear convective
focusing effects and the attractive forces, to form a global smooth solution subject
to a critical threshold in the attractive case k < 0. Moreover, in this case the
density converges to the vacuum exponentially fast in time.

In Section 4 we continue the discussion for the 1D model with viscosity,
which is similar (though not identical) to the one found in the Navier-Stokes
equations. We obtain an upper threshold for the existence of global smooth so-
lution and an lower threshold for the finite time breakdown, and consequently,
these imply the existence of a critical threshold. If the initial data happens to be
below the lower threshold, the solution must breakdown in finite time. We see
that the presence of a self-induced electric field as well as additional viscosity are
not necessarily enough to stop the formation of singularities.

In Section 5 we consider the Euler-Poisson equations governing the ν + 1-
dimensional isotropic ion expansion in the electrostatic fluid approximation for
cold ions. We show that for each model with given integer ν > 0, there exists a
critical threshold condition. Several issues which are also clarified in this section
include:

1. Expansion rate of the flow path (consult the recent work [6] of Dolbeault
and Rein in this context).

2. The large time behavior of the velocity.
3. The decay rate of the density as well as the velocity gradient.
4. Sharp estimate of blow up time when the initial data exceed the critical

threshold.
More precisely we provide the explicit form of the critical threshold for the

planar case and 4-dimensional case. For other cases (including the cylindrical and
the spherical case) we confirm the critical threshold phenomena by establishing
both the upper threshold for the existence of the global smooth solution and the
lower threshold for the finite time breakdown. A key step in the proof is to intro-
duce the proper weighted electric field, which is shown to be constant along the
particle path. This fact combined with the momentum equation gives the decou-
pled equation for the flow map, and a nonlinear resonance is responsible for the
critical threshold phenomena.

2. CRITICAL THRESHOLDS: 1D MODEL WITH ZERO BACKGROUND
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We consider the 1D Euler-Poisson equation of the form

ρt + (ρu)x = 0,(2.1)

ut +uux = −kϕx = kE,(2.2)

Ex = −ϕxx = ρ.(2.3)

Here k is a given physical constant, which signifies that the underlying forcing kE
is repulsive if k > 0 and attractive if k < 0. The unknowns are the density of
negatively charged matter ρ = ρ(x, t), the velocity field u = u(x, t), the electric
field E = E(x, t), and the potential ϕ = ϕ(x, t). Equation (2.1) is a statement
of the conservation of mass, equation (2.2) is a statement of Newton’s second law,
and equation (2.3) defines the electric field in terms of the charge.

To solve the problem on the half plane (x, t) ∈ R × R+ we prescribe initial
data as

ρ(x,0) = ρ0(x) > 0, ρ0 ∈ C1(R),(2.4)

u(x,0) = u0(x), u0 ∈ C1(R),(2.5)

and we show that the solutions of (2.1)-(2.3) with the above initial data break
down in finite-time if and only if certain local “threshold” conditions on the
initial-data are met.

Set d := ux(x, t), then ∂x(2.2) together with (2.1) yield by differentiation
along the characteristics,

d′ + d2 = kρ,
ρ′ + ρd = 0, ′ := ∂t +u∂x.

Multiply the first equation by ρ, the second equation by d and take the difference.
This gives (

d
ρ

)′
= ρd

′ − dρ′
ρ2 = k,

and upon integration one gets

d
ρ
= β(t), with β(t) := kt +u′0/ρ0.

The decoupled equations for d and ρ now read

d′ + d2 = k
β(t)

d,(2.6)

ρ′ + β(t)ρ2 = 0.(2.7)
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From these equations we can obtain the explicit solution formula for d = ux and
ρ, respectively. We want to point out that it is this time-dependent factor β(t)
balancing the nonlinear quadratic term that is responsible for the critical threshold
phenomena. Indeed, with k/β(t) ≡ 0 one has the usual blow up, d(t) = d0/(1+
d0t), associated with the unforced Ricatti equation d′ + d2 = 0. The presence
of a forcing of similar strength on the right of (2.6), k/(kt + u′0/ρ0)d, leads to
‘nonlinear resonance’, which, as we shall see below, prevents blow up at least above
a critical threshold, such that −√2kρ0 < u′0 < 0. To highlight this fact we present
the following general lemma.

Lemma 2.1. Consider the ODE

wt = a(t)w + b(t)w2, w(t = 0) = w0.

It admits a global solution

w(t) = w0e
∫ t

0a(τ)dτ

1−w0

∫ t
0
B(τ)dτ

, B(t) := b(t)e
∫ t

0a(τ)dτ ,

provided the initial data, w0, is prescribed so that

w0

∫ t
0
B(τ)dτ < 1 for all t > 0.

Proof. Set

v(t) = w(t)e−
∫ t

0a(τ)dτ .

Substitution into the above ODE leads to

vt = B(t)v2.

Note that v0 = w0. Then the solution can be written explicitly as

v = w0

(
1−w0

∫ t
0
B(τ)dτ

)−1
,

from which the lemma immediately follows. ❐

As an immediate application of this lemma we check the conditions for d0 and
ρ0 so that the global existence of ux and ρ is ensured. Lemma 2.1 applies to the
above equation for d, (2.6), with b(t) ≡ −1, a(t) = k/β(t), and w0 = d0 = u′0.
It follows that if u′0 > −

√
2kρ0 then global regularity for d is ensured, for

1−w0

∫ t
0
B(τ)dτ = 1+u′0

∫ t
0
e
∫ τ

0 k/β(s)ds dτ dτ = 1+u′0t +
k
2
ρ0t2 > 0.
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Similarly, for the ρ equation (2.7) we have a ≡ 0, b = −β, and w0 = ρ0, and
hence

1−w0

∫ t
0
B(τ)dτ = 1+ ρ0

∫ t
0
β(τ)dτ = 1+u′0t +

k
2
ρ0t2 > 0,

provided the initial velocity gradient u′0 remains above the same critical threshold
−
√

2kρ0.
We now turn to an alternative derivation of this critical threshold. This

Lagrangian-like approach will prove to be useful for more general cases. We start
by appealing to “physical” considerations. As the system being described has no
external forces acting on it, momentum ought to be conserved. In fact, multiply-
ing (2.2) by ρ, multiplying (2.1) by u, and adding the resulting equations, one
finds the momentum equation in its standard conservative form

(ρu)t + (ρu2)x = kρE =
(
kE2

2

)
x
, ρ = Ex.

It follows that the momentum is conserved,
∫∞
−∞ ρu(·, t)dx = const, provided

the boundary terms vanish, i.e., ρu2 → 0 as x → ±∞, and in particular, E2(∞)−
E2(−∞) = 0. It is reasonable to require that the total charge, E(∞), be finite, and
since Ex = ρ ≥ 0, this implies that E(∞) = −E(−∞), for otherwise, ρ ≡ 0. Thus
the electric field is given by

E(x, t) = 1
2

(∫ x
−∞
ρ(ξ, t)dξ −

∫∞
x
ρ(ξ, t)dξ

)
.

Equipped with this expression of E in terms of the density ρ, we can obtain
the explicit solution along the characteristic curves, x(α, t), parameterized with
respect to the initial positions, x(α,0) = α,

d
dt
x(α, t) = u(x(α, t)), x(α,0) = α.(2.8)

The momentum equation (2.2) tells us that

d
dt
u(x(α, t), t) = kE(x(α, t), t),(2.9)
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and hence the electric field remains constant along x(α, t),

2
d
dt
E(x(α, t), t) = 2

d
dt
(x(α, t)) · ρ(x(α, t), t)+

∫ x(α,t)
−∞

ρt(ξ, t)dξ

−
∫∞
x(α,t)

ρt(ξ, t)dξ

= 2u(x(α, t), t)ρ(x(α, t), t)−
∫ x(α,t)
−∞

(ρ(ξ, t)u(ξ, t))x dξ

+
∫∞
x(α,t)

(ρ(ξ, t)u(ξ, t))x dξ

= 0.

Physically, the constancy of the electric field along characteristics is clear: as no
charge can cross trajectories, the amount of charge to the right and to the left of
any given trajectory is constant. And since the electric field along a trajectory is
half of the difference of these numbers, the electric field on any trajectory must be
constant as well. With

E(α,0) =: E0, u(α,0) =: u0, ρ(α,0) =: ρ0,

we find from (2.9) that

u(x(α, t)) = u0 + kE0t.

This together with (2.8) yield

x(α, t) = α+u0t + kE0t2

2
.(2.10)

In the inviscid Burgers’ equation (corresponding to the case k = 0) the straight
characteristics must intersect in finite time, leading to finite time breakdown. Here
the straight characteristic curves are replaced by the characteristic parabolas, which
explain the critical threshold phenomena. Indeed, since u = u0 + kE0t and
E0α = ρ0, we conclude

ux(x(α, t), t) =
u′0 + kρ0t
∂x(α, t)
∂α

= u′0 + kρ0t

1+u′0t +
kρ0t2

2

, u′0 := ∂u0(α)
∂α

.

Integrating the ρ-equation, (2.1), which we rewrite as (d/dt)ρ(x(α, t), t) =
−uxρ, we find that

ρ(x(α, t), t) = ρ0Γ(α, t) , Γ(α, t) := 1+u′0t +
kρ0t2

2
.
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Clearly, the positivity of the so called “indicator” function,

Γ(α, t) := ∂x(α, t)
∂α

,

is a necessary and sufficient condition for the existence of global smooth solution,
|ux|, ρ ≤ Const., and consequently, higher derivatives are bounded. Thus the
solution remains smooth for all time if and only if −u′0 <

√
2kρ0. Conversely, if

there are points at which this condition is not fulfilled, then ρ and ux will blow
up at finite-time.

To sum up, we state the following theorem.

Theorem 2.2. The system of Euler-Poisson equations (2.1)-(2.3) admits a global
smooth solution if and only if

u′0(α) > −
√

2kρ0(α), ∀α ∈ R.(2.11)

In this case the solution of (2.1)-(2.3) is given by

ρ(x(α, t), t) = ρ0Γ(α, t) , ux(x(α, t), t) =
u′0 + kρ0tΓ(α, t) ,

Γ(α, t) := 1+u′0t +
kρ0t2

2
,

so that ρ ∼ t−2 and ux ∼ t−1 as long as ρ0 6= 0. If condition (2.11) fails, then the
solution breaks down at the finite time, tc , where Γ(α, tc) = 0.

To gain further insight into the behavior of the solution, we now turn to
discuss the dependence of the solution on the relative size of d0 = u′0 and ρ0 as
well as the parameter k.

To be specific, we consider only the behavior of d ≡ ux for the repulsive forces
k > 0, since the solution always breaks down in the attractive case k < 0. We first
look at the dependence on d0 = u′0. Figures 1-3 describe the three different
scenarios for the evolution of ux, depending on the relative size of d0 and ρ0.

d0 > 0 (see Figure 1)
There are two such cases:

(i) if d0 >
√
kρ0, then d is decreasing and satisfies 0 < d ≤ d0, d ∼ 2/t.

(ii) if 0 < d0 <
√
kρ0, then we have

0 < d ≤ dmax, dmax =
kρ0√

2kρ0 − d2
0

,

where dmax denotes its local maximum taken at t+e . At this time d′ = 0,
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therefore te satisfies

k2ρ2
0

2
t2
e + kρ0d0 + d2

0 − kρ0 = 0, dmax = d(t+e ).

t
t+e

dmax

d

d0

d0
(κρ0)1/2

Figure 1: 0 < d0, k > 0

−
√

2kρ0 < d0 < 0 (see Figure 2)
There are also two cases:

(i) if −√kρ0 < d0 < 0, then d starts to increase and becomes zero at t0 =
−d0/(kρ0), and then attains its maximum at

t+e =
√

2kρ0 − d2
0 − d0

kρ0
> t0.

In this case we have

d0 ≤ d ≤ dmax = kρ0√
2kρ0 − d2

0

, d ∼ 2
t
.

(ii) −
√

2kρ0 < d0 < −
√
kρ0. In this case we have dmin ≤ d ≤ dmax, d ∼ 2/t,

where

dmin = d(x, t−e ) =
−kρ0√

2kρ0 − d2
0

,

dmax = d(x, t+e ) =
kρ0√

2kρ0 − d2
0

,
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and

t±e =
±
√

2kρ0 − d2
0 − d0

kρ0
.

d
dmax

d0

d0

t+e
t

t−e

−(κρ0)1/2

Figure 2: −
√

2kρ0 < d0 < 0, k > 0

d0 < −
√

2kρ0 (see Figure 3)

−(2κρ0)1/2

d0

d

t

t−c

Figure 3: d0 < −
√

2kρ0, k > 0
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In this case the solution must break down at time t = t−c . The blow up time
tc can be obtained via Γ(α, t±c ) = 0, that is,

t±c =
−d0 ±

√
d2

0 − 2kρ0

kρ0
.

Next we look at the solution’s behavior as the parameter k changes. Figures
4-7 display such changes for various choices of k. Again there are three possible
scenarios:

k > d2
0/ρ0 (see Figure 4)

There are two cases:

(i) if d0 > 0, then

0 < d ≤ kρ0√
2kρ0 − d2

0

;

(ii) if d0 < 0, then

d0 ≤
kρ0√

2kρ0 − d2
0

.

(κρ0)1/2

−(κρ0)1/2

dmax

dmax

d0

d0

d

t−e
t

Figure 4: k > d2
0/ρ0

d2
0/2ρ0 < k < d2

0/ρ0 (see Figure 5)

(i) if d0 > 0, then 0 < d ≤ d0;
(ii) if d0 < 0, then
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−kρ0√
2kρ0 − d2

0

≤ d ≤ kρ0√
2kρ0 − d2

0

.

dmax

dmin

t

d

d0

d0

t+e

t−e

−(κρ0)1/2

(κρ0)1/2

Figure 5: d2
0/2ρ0 < k < d2

0/ρ0

0 < k < d2
0/2ρ0 (see Figure 6)

(i) if d0 > 0, then d is decreasing and 0 < d ≤ d0.

(ii) if d0 < 0, then d ≤ d0 and d starts to decrease and becomes unbounded at
time t−c .

t

d

d0

d0

t−c

−(2κρ0)1/2

(2κρ0)1/2

Figure 6: 0 ≤ k < d2
0/2ρ0

In closing, let us note the remaining cases of k: if k = 0, then we have the
decoupled Burgers’ equation; and if k < 0, the solution always breaks down. In
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either case, there is no critical threshold which yields global smooth solution for
an admissible set of initial data.

3. CRITICAL THRESHOLDS: 1D MODELS WITH NONZERO
BACKGROUND

3.1. The basic model with constant background. We now consider the
system

ρt + (ρu)x = 0,(3.1)

ut +uux = −kϕx = kE,(3.2)

Ex = −ϕxx = ρ − c,(3.3)

with constant “background” state c > 0. Here we require that
∫∞
−∞(ρ(ξ)−c)dξ =

0. The presence of a constant background c in the Poisson equation changes the
“physical situation”: we are now working in a universe which has a fixed back-
ground charge density of −c. There is also an equal amount of movable charge,
ρ(x). This is (an approximation of ) the situation, for example, inside a metal or
a doped semiconductor. The fixed background charge of −c corresponds to the
fixed positive charge of an element which has had an electron stripped from its
outermost shell. The movable charge corresponds to the electrons that have been
liberated from the atoms.

Using the Lagrangian-like approach, we solve the system of equations (3.1)-
(3.3). For this system, one cannot expect the total momentum of the negatively
charged particles to be conserved–they are being acted on by an outside force.
From (3.3) we find that E(x) =

∫ x
−∞(ρ(ξ) − c)dξ. As the net charge in our

universe is zero, we expect that the electric field intensity to vanish at x = ±∞,
and hence we require that ρ(±∞, t) = c. Likewise we require the particles be at
rest at far field, i.e., u(±∞, t) = 0. This says that far from the origin our system
is “properly charge balanced” and at rest.

As noted above, (3.2) says that (d/dt)u = kE, with d/dt denoting the usual
differentiation along the characteristics, (d/dt)x(α, t) = u(x(α, t), t). Using
E(x) =

∫ x
−∞(ρ(ξ) − c)dξ, and following the same basic steps as above, we find

that (d/dt)E = −cu. Combining these two results, we arrive at

d2u
dt2 = −cku, u(α,0) = u0, ut(α,0) = kE0,(3.4)

yielding, for k > 0,

u(x(α, t), t) = u0 cos(
√
ckt)+ kE0√

ck
sin(

√
ckt).
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Here, parabolas (corresponding to c = 0) are replaced by a different geometry
of characteristics, where (d/dt)x(α, t) = u(x(α, t), t) implies

x(α, t) = u0√
ck

sin(
√
ckt)+ E0

c
(1− cos(

√
ckt))+α.

Expressed in terms of the indicator function, Γ(α, t) := xα(α, t), given by

Γ(α, t) = 1+ u
′
0(α)√
ck

sin(
√
ckt)− ρ0(α)− c

c
(cos(

√
ckt)− 1),

we proceed as before to find that ux = uα/xα is given by

ux(x(α, t), t) =
u′0(α) cos(

√
ckt)+ kρ0(α)− c√

ck
sin(

√
ckt)

Γ(α, t) .(3.5)

Note that ux = Γt/Γ , we find from (3.1) that ρ′ = −ρux = −ρΓt/Γ , which in
turn leads to

ρ(x(α, t), t) = ρ0(α)Γ(α, t) .(3.6)

Clearly, there is a global smooth solution if and only if Γ(α, t) remains positive.
For this to hold, we note that there exists τ such that Γ can be rewritten as

Γ(α, t) = ρ0(α)
c

+
√
u′0(α)2

ck
+
(
ρ0(α)
c

− 1
)2

sin(t + τ),

and hence, Γ(α, t) > 0 if and only if√
u′0(α)2

ck
+
(
ρ0(α)
c

− 1
)2

<
ρ0(α)
c

.

This is equivalent to the condition that |u′0(α)| <
√
k(2ρ0(α)− c) for all α ∈ R.

We can summarize the case with repulsive force k > 0.

Theorem 3.1. Consider the system of Euler-Poisson equations (3.1)-(3.3) with
constant background charge c and the repulsive force k > 0. Then it admits a global
smooth solution if and only if

|u′0(α)| <
√
k(2ρ0(α)− c), ∀α ∈ R.(3.7)

In this case, the density oscillates around the nonzero background charge c, and the
velocity gradient does not decay in time. If condition (3.7) fails, however, the solution
breaks down at finite time.
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Remark 3.1. The above threshold is sharp, as shown in the phase plane (Γ , Γt).
Actually integration of (3.4) along characteristic curves x(α, t) yields

x′′ + ckx = kE0(α)+ ckα,(3.8)

and differentiation with respect to α, combined with E′0 = ρ0 − c, leads to

Γ ′′ + ckΓ = kρ0.

Its energy integral then becomes

1
2
Γ ′2 + ckΓ 2 − kρ0Γ = 1

2
u′20 − k(ρ0 − c),

with a trajectory which is an ellipse centered at (ρ0/c,0). Here, even if initially
u′0 > 0, then after some time Γt can still become negative, with the possible break-
down due to intersection with the Γ = 0 line. Condition (3.7) is the precise
condition which rules out such a scenario. Geometrically, as c tends to zero, the
center of the above ellipse moves to the infinity and the closed curve splits into
the parabola we met earlier with the zero background case. In this limiting case,
once u′0 > 0, the trajectory will always run away from the ‘singular’ axis Γ = 0, see
Figures 7-8.

Γ

Γt

ρ0/c

d0 > 0

Figure 7: c > 0

Γ

Γt
d0 > 0

d0 < 0

Figure 8: c = 0

Remark 3.2. Note that as c → 0, the critical threshold condition (3.7) tends
to |u′0(α)| <

√
2kρ0(α). This is almost the same condition we found when we

considered (2.1)-(2.3), the condition given in (2.11). Here, however, the part
of the condition that involves u′0(α) appears with an absolute value even in the
limit as c → 0. The absolute value appears because of the oscillatory nature of
the solutions of our equation. When the derivative of the initial condition is too
positive for some large value of t, the solution loses smoothness. One finds that
as c → 0, this time tends to infinity. The passage to the case c = 0 is, therefore, a
kind of “singular limit.”
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We now turn to the case of an attractive force, k < 0. Using the same basic
steps as before, we get the same characteristic description, (3.8) as the case k > 0.
Integration of this equation subject to initial data (x,x′)(α,0) = (α,u0(α))
yields

x(α, t) = α+ E0

c
+ 1

2

(
−E0

c
− u0√

−ck

)
e−
√
−ckt

+ 1
2

(
−E0

c
+ u0√

−ck

)
e
√
−ckt.

Therefore, using E0α = ρ0(α) − c, we find the indicator function Γ(α, t) :=
∂x(α, t)/∂α given by

(3.9) Γ(α, t) = ρ0

c
+ 1

2

(
1− ρ0

c
− u′0√

−ck

)
e−
√
−ckt

+ 1
2

(
1− ρ0

c
+ u′0√

−ck

)
e
√
−ckt.

We conclude the rather remarkable phenomena, namely that the non-zero back-
ground is able to balance both the nonlinear convective focusing effects as well as
the attractive forces, to form a global smooth solution subject to a critical thresh-
old.

Theorem 3.2. Consider the system of Euler-Poisson equations (3.1)-(3.3) with
constant background charge c > 0 and subject to an attractive force, k < 0. Then, it
admits a global smooth solution if and only if

u′0(α) ≥ −
(

1− ρ0(α)
c

)√
−ck, ∀α ∈ R.(3.10)

In this case, the density approaches the zero exponentially in time, and the velocity gra-
dient remains bounded uniformly in time. If condition (3.10) fails, then the solution
breaks down in finite time.

Proof. As argued in the proof of Theorem 3.1, we have that

ρ(x(α, t), t) = ρ0(α)Γ(α, t) , ux(x(α, t), t) = Γt(α, t)Γ(α, t) .
It is necessary and sufficient to show that the indicator function Γ(α, t) > 0 for
all t > 0 if and only if (3.10) is met. The necessity is obvious since otherwise
if (3.10) fails, then the second parenthesis on the right of (3.9) is negative, and
hence Γ(α, t) would become negative for t large.
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For the sufficiency, there are two cases: eitheru′0(α) = −(1−ρ0(α)/c)
√
−ck,

in which case

Γ(α, t) = ρ0

c
+
(

1− ρ0

c

)
e−
√
−ckt,

and obviously, Γ(α, t) remains positive for all time t > 0. For the other case, where
u′0 > −(1− ρ0(α)/c)

√
−ck, the possible zeros t∗ of Γ(α, t) are determined by

e
√
−ckt∗ =

−ρ0

c
+
√√√2ρ0

c
− 1+ u

′
0

2

−ck
1− ρ0

c
+ u′0√

−ck

.(3.11)

A simple check shows that the quantity on the right is less than 1, that is, either
t∗ < 0 or no such real t∗ exists. Therefore Γ(α, t) > 0 for all time t > 0. ❐

Remark 3.3. Let us, again, note that with the zero background model, the
repulsive force, k > 0, is necessary for the global existence of the smooth solution.
When the nonzero background is being taken into account, we could still have
the global existence, even when the force is attractive, k < 0. The balancing effect
of k and c can be observed clearly from the above results. However, in both cases,
we find that there is a local “ critical threshold” condition on the initial data such
that the solution remains smooth for all time if and only if this condition is met.

3.2. A constant background model with relaxation. We consider a further
modification of our problem (3.1), (3.3), where (3.2) is now augmented by a
relaxation term

ut +uux = −kϕx − uε = kE −
u
ε
, ε > 0.(3.12)

We still require that
∫∞
−∞(ρ(ξ)− c)dξ = 0.

We are now working in a universe which has a fixed background charge den-
sity of −c. There is also an equal amount of movable charge, ρ(x). This is (an
approximation of ) the situation inside a metal or a doped semiconductor. The
term −u/ε is a “friction term”, which, as we shall see, causes solutions to decay.

As before, we cannot expect the total momentum of the negatively charged
particles to be conserved; after all, they are being acted on by an outside force.
As the net charge in our universe is zero, we expect that the electric field inten-
sity at x = ±∞ will be zero. Consequently we require that ρ(±∞, t) = c and
u(±∞, t) = 0 so that E(x) =

∫ x
−∞(ρ(ξ)− c)dξ → 0 as x →∞.

Using the same techniques that we have used previously, we find that as a
consequence of (3.12), we have

d
dt
u = kE − u

ε
,
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and proceeding as before,

d2u
dt2 = −cku−

1
ε
d
dt
u.

Let ε > 1/
√

4ck, and define µ =
√
ck− 1/(4ε2). This guarantees that the solu-

tion of the last ODE will consist of damped sinusoids and decaying exponentials,
where we find

u(x(α, t), t) = e−t/(2ε)
(
u0 cos(µt)+ kE0 −u0/(2ε)

µ
sin(µt)

)
.

We see that as long as the solution of our system is well defined, u(x, t) must
vanish as t → ∞, and since (d/dt)x(α, t) = u(x(α, t)), we conclude that the
characteristic curves have the form

x(α, t) = α+ E0

c
+ e

−t/(2ε)

c

(
−E0 cos(µt)+ 2εcu0 − E0

2εµ
sin(µt)

)
.

As we have seen already, solutions will cease to exist when the indicator functionΓ(α, t) = (∂/∂α)x(α, t) vanishes, for

ux(x(α, t), t) = ∂
∂α
u(x(α, t), t)

1Γ(α, t)
becomes unbounded. It is easy to see that this leads to a critical threshold condi-
tion, namely that the vanishing of the following indicator function

Γ(α, t) = ρ0

c
+ e

−t/(2ε)

c

(
(c − ρ0) cos(µt)+ 2εcu′0 − ρ0 + c

2εµ
sin(µt)

)
.(3.13)

To make precise the condition on the initial data to have the global solu-
tion, we need to verify the first time when the local minimum of Γ(α, t) =
(∂/∂α)x(α, t) intersect the ‘singular’ Γ = 0 axis as shown in Figure 9.

Thus, if we denote this first minimal time as t∗(α), then the global solution
exists if and only if

Γ(α, t∗) > 0.

In other words, the above expression of Γ(α, t) implies that there is a global in
time solution if and only if√√√√(c − ρ0)2 +

(
cu′0
µ
+ c − ρ0

2εµ

)2

< ρ0et
∗/(2ε),
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ρ0/c

d0 > 0

Γ

Γt

Figure 9: Phase plane graph of (Γ , Γt) for c > 0 with damping

and this is equivalent to the condition that

∣∣∣∣u′0 + c − ρ0

2εc

∣∣∣∣ <
√(

µρ0

c

)2
(et∗/ε − 1)+ µ

2

c
(2ρ0 − c), ∀α ∈ R.

Let us now compute t∗. By definition, t∗ = t1 is the smallest time such that

Γt(α, tn) = 0, Γtt(α, tn) > 0, n ∈ N,

where 0 ≤ t1 < t2 < · · · < tn →∞. From Γt(α, tn) = 0 we have

tan(µtn) =
µ × 2εcu′0 − ρ0 + c

2εµ
− 1

2ε
(c − ρ0)

(c − ρ0)µ + 1
2ε
× 2εcu′0 − ρ0 + c

2εµ

= 2εµu′0
u′0 + 2εk(c − ρ0)

, µ2 = ck− 1
4ε2 .

Substituting this tn into the expression of Γtt we find

Γtt(α, tn) = µe−t/(2ε) sin(µtn)−u′0

(u′0)2 +
(
u′0
2ε
+ k
µ
(c − ρ0)

)2
 ,
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which shows that tn is a minimum with Γtt(α, tn) > 0, provided sgn(u′0) =
− sgn(sin(µtn)). Therefore t∗ is uniquely determined by

t∗ = 1
µ

tan−1

[
2εµu′0

u′0 + 2εk(c − ρ0)

]
(3.14) 

0 < t∗ <
π
2µ
, if u′0 < min{0,2εk(ρ0 − c)},

π
2µ
< t∗ <

π
µ
, if 2εk(ρ0 − c) < u′0 < 0,

π
µ
< t∗ <

3π
2µ
, if u′0 > max{0,2εk(ρ0 − c)},

3π
2µ
< t∗ <

2π
µ
, if 0 < u′0 < 2εk(ρ0 − c).

Moreover, we can now find the asymptotic behavior of ρ(x, t) as t → ∞. Indeed,
following the same procedures as before, we find that ρ(x(α, t), t) = ρ0(α)/Γ(α, t)
with Γ(α, t) given in (3.14), and it follows that ρ(x, t) → c exponentially fast, as
one would expect. We summarize by stating the following result.

Theorem 3.3. Consider the system of Euler-Poisson equations (3.1), (3.12), (3.3)
with a constant background charge c > 0, a repulsive force k > 0, and weak relax-
ation ε > 1/(2

√
ck). Let the critical time t∗ be defined in (3.14). Then if at all

points α ∈ R,

(3.15)
∣∣∣∣u′0(α)+ c − ρ0(α)

2εc

∣∣∣∣
<

√
k− 1

4cε2

√
ρ2

0(α)
c

(et∗/ε − 1)+ 2ρ0(α)− c,

the solution of (3.1), (3.12), (3.3) is smooth for all time. In this case, u(x, t) → 0
and ρ(x, t) → c exponentially as t → ∞. Otherwise, if condition (3.15) fails, then
the solution of (3.1), (3.12), (3.3) loses smoothness in a finite time.

Remark 3.4. Note that as ε → ∞, we recover the local condition (3.10) for
the case without relaxation.

Finally, to complete our discussion of all choices of k, c as well as ε, we turn
to consider the non-oscillatory case with strong relaxation ε < 1/(2

√
kc). In this

case we have

x′′ = kE − x
′

ε
.

Note that E′ = −cu = −cx′, and hence

E = E0(α)− c(x −α).
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Combining the above two equations, one finds that

x′′ + 1
ε
x′ + ckx = k(E0 + cα),

and this equation together with the initial data, (x,x′)(α,0) = (α,u0(α)), leads
to the characteristics of the form

x(α, t) = α+ E0

c
+ e−t/(2ε)

{[(
−E0

c

)(
1
2
− 1

4εµ

)
− u0

2µ

]
e−µt

+
[(
−E0

c

)(
1
2
+ 1

4εµ

)
+ u0

2µ

]
eµt

}
.

Upon differentiation with respect to α, one finds the indicator function Γ(α, t) =
xα(α, t),

Γ(α, t) = ρ0

c
+ e−t/(2ε)

{[(
1− ρ0

c

)(
1
2
− 1

4εµ

)
− u

′
0

2µ

]
e−µt

+
[(

1− ρ0

c

)(
1
2
+ 1

4εµ

)
+ u

′
0

2µ

]
eµt

}
.

Based on this formula we claim the following result.

Theorem 3.4. Consider the system of Euler-Poisson equations (3.1), (3.12), (3.3)
with a constant background charge c > 0, a repulsive force, k > 0, and a strong relax-
ation term, ε < 1/(2

√
ck). If at all points α ∈ R

u′0(α) > min

0,−
(

1− ρ0(α)
c

)√ 1
4ε2 − ck+

1
2ε

 ,(3.16)

then the solution of (3.1), (3.12), (3.3) is smooth for all time. In this case, u(x, t)→
0 and ρ(x, t)→ c exponentially fast as t →∞.

Proof. Expressed in terms of

λ = 1
2ε
, a = 1

2

(
1− ρ0

c

)
, and b =

(
1− ρ0

c

)
1

4εν
+ u

′
0

2ν
,

with ν =
√

1
4ε2 − ck,

we have

Γ(α, t) = 1− 2a+ (a− b)e−(ν+λ)t + (a+ b)e(ν−λ)t.
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Note that Γ(α,0) = 1 and Γ(α,∞) = 1− 2a = ρ0/c > 0. It suffices to show thatΓ(α, t) > 0 for all time t > 0 under the condition (3.16). First, if a+b ≥ 0, then
since a < 1

2 it follows that

Γ = (1− 2a)+ (a+ b)e(ν−λ)t
{

1+ a− b
a+ be

−2νt
}

≥ (1− 2a)+ (a+ b)e(ν−λ)t
{

1+min
{

0,
a− b
a+ b

}}
= (1− 2a)+min{2a,a+ b}e(ν−λ)t

≥ min{1,1− 2a} > 0.

Second, if a + b < 0, then one has to rule out a possibility of a local minimum
achieved at positive time t = t∗ > 0. At such time we would have Γt(α, t∗) = 0,
which gives

t∗ = 1
2ν

log
(
(ν + λ)(a− b)
(ν − λ)(a+ b)

)
,

Γtt(α, t∗) = 2ν(a+ b)(ν − λ)e(ν−λ)t∗ > 0.

Since (ν − λ)(a+ b) > 0, it follows that if b > (λ/ν)a then

(ν + λ)(a− b)
(ν − λ)(a+ b) < 1,

and hence that t∗ is negative. Put differently, t∗ < 0 and hence Γ(α, t) > 0 for all
t > 0, if a + b < 0 and b > (λ/ν)a. In summary of these two cases, a sufficient
condition for the global existence is b > min{(λ/ν)a,−a}, which is exactly the
same as (3.16) when recalling the definition of a and b. ❐

4. CRITICAL THRESHOLDS: 1D MODEL WITH VISCOSITY

We consider the solutions of a parabolic-hyperbolic version of (2.1)-(2.3)–the
modified viscous Burgers-Poisson equations:

ρt + (ρu)x = 0,(4.1)

ut +uux = −kϕx +
(
ux
ρ

)
x
= kE +

(
ux
ρ

)
x
,(4.2)

Ex = −ϕxx = ρ,(4.3)

with repulsive force k > 0 (if the matter is treated as charged particles). We show
that despite the presence of a parabolic term on the right of (4.2), these equations
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can still lose smoothness in finite time when the critical threshold condition is
crossed.

Note that the parabolic term on the right of (4.2), (ux/ρ)x is similar to
the one, uxx/ρ, found in the Navier-Stokes equations, ut + uux = uxx/ρ,
with a difference term of −ρxux/ρ2. In this context, both types of viscosity
regularization terms admit similar behavior. As ρ → 0 then uxx/ρ, −ρxux/ρ2,
and hence (ux/ρ)x all tend to infinity. More importantly, the forcing effect in
(4.2) leads to u ↓ −∞, which in turn leads by (4.1), that ρ → ∞, and then
uxx/ρ, −ρxux/ρ2, and hence (ux/ρ)x all tend to zero. Thus viscous terms
tend to zero when they are most needed, and the solution blows up with ρ ↑ ∞.
It is this vanishing viscosity mechanism which allows the possible blow up above
the critical threshold in Euler-Poisson system (4.1)-(4.3).

Let d = ux. Differentiate (4.2) with respect to x to obtain

dt +udx = −d2 + kρ +
(
d
ρ

)
xx
.(4.4)

The difference, ρ × (4.4)− d× (4.1) yields

ρdt − dρt +uρdx −uρxd = kρ2 + ρ
(
d
ρ

)
xx
.(4.5)

Our goal as before is to estimate the ratio β := d/ρ, thus (1/ρ2)× (4.5) yields the
following parabolic equation

βt +uβx = k+ βxxρ .

We would like to show a β−bound due to a maximum principle of the form,

inf
α
β(α,0)+ kt ≤ β(x, t) ≤ sup

α
β(α,0)+ kt.(4.6)

The difficulty here is that ρ(x, t)must die at infinity if one wants the integral
of d, that is if one wants u, to be finite at ±∞ and one wants β to be bounded
away from 0. If ρ dies at infinity, then viscosity has a coefficient that blows-up at
infinity. We make use of the following theorem to show that even in such cases we
still have a maximum principle.

Theorem 4.1 (maximum principle). If ut+f(x, t)ux = a(x, t)uxx ,u(x, t)
≤ D(x)E(t), where D(x) is sub-linear in x and E(t) is exponential in time; u, ut,
ux , uxx ∈ C, |f(x, t)| ≤ d; and 0 ≤ a(x, t), a(x, t) ∈ C, then the solution of
the equation obeys the maximum principle:

u(x, t) ≤ sup
x
u(x,0).
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To the best of our knowledge, there seems no maximum principle of this form
available in the literature. We present a self-contained proof of this theorem in the
Appendix.

To proceed we assume at most sub-linear growth of ux/ρ at far field in space
and exponential growth of ux/ρ in time; i.e., there exists γ > 0 such that for
|x| � 1 ∣∣∣∣∣uxρ

∣∣∣∣∣� Const.eγt|x|.(4.7)

Equipped with the above maximum principle, we establish the following theorem.

Theorem 4.2. Consider the system (4.1)-(4.3) with the repulsive force k > 0.
Assume that the smooth solution is sought such that ux/ρ is sub-linear in the sense of
satisfying (4.7). Then if for any α ∈ R

sup
x

(
u′0(x)
ρ0(x)

)
< −

√
2k
ρ0(α)

,

then (u,ρ) ceases to behave nicely in finite time. If

inf
x

(
u′0(x)
ρ0(x)

)
> −

√
2k
ρ0(α)

, ∀α ∈ R ,

then (u,ρ) remains smooth for all time. In this case as t → ∞

ρ(x, t) ∼ 2
kt2 , d(x, t) ∼ 2

t
.

Proof. Theorem 4.1 on the preceding page shows that β satisfies a maximum
principle as long as u ∈ C3, |u| is bounded, ρ ∈ C2, and ux/ρ is sub-linear in
x and exponential in t. We assumed that these conditions all hold, and we make
use of the maximum principle to bound β by (4.6).

Because (4.1) says that the derivative of ρ along the curve x(α, t) is −ρd,
that is,

ρ′ = −ρd = −β(t)ρ2,

where β(t) = d/ρ satisfies the bounds stated in (4.6). By Lemma 2.1 one has

ρ(x(α, t), t) = ρ0(α)

1+ ρ0(α)
∫ t

0
β(τ)dτ

.
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This gives

ρ0(α)

ρ0(α)
(
kt2

2
+ sup

x
β(x,0)t

)
+ 1

≤ ρ(x(α, t), t) ≤ ρ0(α)

ρ0(α)
(
kt2

2
+ inf

x
β(x,0)t

)
+ 1
.

Finally, as we have bounds for β = d/ρ, we find that d must satisfy:

ρ0(α)(kt + infx β(x,0))

ρ0(α)
(
kt2

2
+ inf

x
β(x,0)t

)
+ 1

≤ d(x(α, t), t) ≤ ρ0(α)(kt + supx β(x,0))

ρ0(α)
(
kt2

2
+ sup

x
β(x,0)t

)
+ 1
,

as long as both of the numerators remain positive. Suppose that k = 1, the initial
data ρ0 = 1/(1 + x2), u0 = −2 arctan(x). (Note that the total mass is finite.)
We find that β(x,0) ≡ −2. Our maximum principle argument says that either
d → −∞ as t → 2 − √2 or (u,ρ) ceases to behave well sometime before t =
2 −
√

2. The “weakest” way in which β can cease to behave well is for β = ux/ρ
to grow faster than sub-linearly in space. As β(x,0) ≡ −2, we find the supremum
and infimum of β are equal. The above inequalities lead to equalities until the
maximum principle no longer applies. We find that (as k = 1):

ρ(x(α, t), t) = ρ0(α)

ρ0(α)
(
t2

2
− 2t

)
+ 1
.

As long as ρ(x, t) is continuous in time, this implies that up to and including
the time t1 < 2 −√2 at which β stops being sub-linear in space, ρ(x(α, t), t) is
completely known. Moreover, for large α we know that ρ(x(α,0),0) ≈ 1/α2.
(As by assumption |u(x, t)| is bounded, we know that x(α, t) does not change
quickly.) Thus if α is large enough we find that ρ(x(α, t), t) ≈ ρ0(α) ≈ 1/α2.
This is sufficient to guarantee that ρ(x, t) does not decay faster than 1/x2. In
other words, if ρ(x, t) decays like 1/x2, it cannot decay any faster at a later time.
If ux/ρ grows non sub-linearly, then ux will die at a rate that is slower than
1/(ln(x)x)— that is u will tend to infinity.
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We note that if we take initial data in which ρ0(α)(kt2/2+supx β(x,0)t)+1
is ever zero–if we ever cross this critical threshold–then the solution must either
blow up in finite-time (because the solution has an upper bound that tends to −∞
in finite-time) or the solution must cease to be nicely behaved in finite-time (so
that the maximum principle ceases to apply). In either case, we find that once the
critical threshold is crossed, the solution no longer behaves nicely for all time.

The estimates above show that as long as k > 0 and the denominators do not
ever become zero, d → 2/t and ρ → 2/(kt2). We see that the solution of the
parabolic-hyperbolic equation tends to behave like the solution of the hyperbolic
one in the long term. Similarly, we find that if k = 0 and the denominators
remain positive for all time, then c1/t ≤ d ≤ c2/t, where c1 ≤ 1 ≤ c2. This
is also the behavior that one would expect without the parabolic term (i.e., the
inviscid Burgers equation). Hence the proof is complete. ❐

We see that the presence of a self-induced electric field and of viscosity is
not necessarily enough to stop singularities from forming. This is not terribly
surprising. The viscosity used tends to zero as ρ → ∞–it is smallest when it needs
to be largest. This, of course, is a problem with the viscous term in the Navier-
Stokes equations as well. Additionally, as we are dealing with equations in one
dimension, the electric field that we are dealing with is essentially the field due to
an infinite sheet of charge. The field due to such a sheet is a constant throughout
space–forcing two such sheets to collide is easy. There is no reason that such a
force should prevent the collision of sheets. What we have succeeded in doing
is showing how the behavior of the solutions of our sets of equations reflects the
behavior of the physical systems they represent.

5. CRITICAL THRESHOLDS: MULTI-D MODEL WITH GEOMETRICAL
SYMMETRY

Let us consider the Euler-Poisson equations governing the ν + 1-dimensional
isotropic ion expansion in the electrostatic fluid approximation for cold ions

rνnt + (nurν)r = 0,(5.1)

ut +uur = −kϕr = kE,(5.2)

(rνϕr)r = −nrν,(5.3)

subject to the initial data

(n,u)(r ,0) = (n0, u0)(r), n0(r) ≥ 0.(5.4)

Here r > 0 denotes the distance from the origin, and k > 0 is a known physical
constant, which takes into account the general scaled version (5.3) of Poisson
equation (rνϕr )r = −4πqnrν . The unknowns are the local particle density
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n = n(r , t), velocity u = u(r , t), and potential ϕ = ϕ(r, t). The geometrical
factor ν takes values 0, 1, 2, for planar, cylindrical, or spherical symmetry.

Our interest is to find a critical threshold criterion for the Cauchy problem
(5.1)-(5.4). Several issues that will also be clarified along the way include:

1. Expansion rate of the flow path;
2. The large time behavior of the velocity;
3. The decay rate of the density as well as the velocity gradient;
4. Sharp estimate of blow up time when the initial data exceed the critical

threshold.

5.1. Analytic solution along the particle path. Without pressure forces, the
particles move without collisions in a self-consistent electrostatic field. The system
contains only particle-path characteristics. We shall trace the time dynamics along
these characteristics.

To this end we introduce the following weighted quantities.

e := Erν = −ϕrrν, ρ = nrν.

With these definitions, (5.1) becomes

ρt + (ρu)r = 0,(5.5)

and the Poisson equation (5.2), now reads

er = ρ.(5.6)

To avoid having a singularity at the origin we require e(0, t) = 0, hence

e =
∫ r

0
ρ(ξ, t)dξ.

In view of (5.5), this implies that e satisfies the transport equation

et +uer = 0.(5.7)

To solve this equation we define the “flow map” r(α, t) : R+ → R+

dr(α, t)
dt

= u(r(α, t), t), r(α,0) = α.(5.8)

Denoting differentiation along this characteristic curve by ′ := d/dt, the mass
equation (5.7) and the momentum equation (5.2) yield

e′ = 0,(5.9)

u′ = ke
rν
, r ′ := u(r , t).(5.10)
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We now solve the above system subject to the initial data

(r , e,u)
∣∣
t=0 = (α, e0(α),u0(α)),

with α ∈ R+ parameterizing the initial location, and with the weighted mass
e0(α) =

∫ r
0 n0(ξ)ξν dξ.

By (5.9), e remains constant along the isotropic characteristics, e = e0(α),
and (5.10) then yields

r ′′ = ke0

rν
, r(α,0) = α, r ′(α,0) = u0(α).(5.11)

This relation shows that each fluid particle, starting from position α with initial
velocity u0(α), is influenced by a central acceleration ke0/rν . Once the solution
of this equation for r(α, t) is known, the other dependent variables u, ρ can be
determined accordingly. We proceed to study the solution of (5.11). To this end,
we introduce the ‘indicator’ function

Γ(α, t) := e
∫ t
0 ur (r(α,τ),τ)dτ.

The geometrical interpretation of Γ(α, t) will be clear from the explicit solution
of the Euler-Poisson system (5.1)-(5.3), given in the following lemma which will
play an essential role in our discussion.

Lemma 5.1. Consider the Euler-Poisson equations (5.1)-(5.3), subject to the
initial data (n0, u0) ∈ C1(R+)×C1(R+). Let r(α, t) be the flow map defined in
(5.8), then

Γ(α, t) = ∂r(α, t)
∂α

.

Moreover, the solution of (5.1)-(5.4) is given by

u(r , t) = ∂r(α, t)
∂t

,(5.12)

n(r , t) = n0(α)αν

rνΓ(α, t) ,(5.13)

ur(r , t) =
Γt(α, t)Γ(α, t) .(5.14)

Proof. Along the particle path one has

d
dt
r(α, t) = u(r(α, t), t), r(α,0) = α, ∀α ∈ R+.
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Differentiating this equation with respect to α gives

d
dt

(
∂
∂α
r(α, t)

)
= ur(r(α, t), t)

∂
∂α
r(α, t),

∂
∂α
r(α,0) = 1.

Hence (∂/∂α)r(α, t) = Γ(α, t) for any t ∈ R+.
The mass equation along the particle path r(α, t) becomes

ρ′ + ρur = 0,

and integration in time leads to

ρ(r , t) = ρ0(α)Γ(α, t) .
The formula for ur follows from the definition of Γ(α, t). ❐

Using the expression of the solution, (5.12)-(5.14), we conclude with the
following corollary.

Corollary 5.2. The smooth solution to the Euler-Poisson equations (5.1)-
(5.4) blows up in finite time, t = tc , if and only if one of the following equivalent
conditions is met.
(1)

∫ tc
0 ur(r(α, τ), τ)dτ = −∞;

(2) Γ(α, tc) = 0;
(3) There exists an α ∈ R such that (∂r/∂α)(α, tc) = 0.

To ensure the existence of the global regular solution, therefore it suffices to
start with the set of prescribed initial data for which (recall (∂r/∂α)(α,0) = 1),

∂r
∂α
(α, t) > 0 ∀t ∈ R+.

5.2. The isotropic flow map. Equipped with the above relations we are in a
position to study the isotropic flow map r(α, t), and the zeros of rα(α, t) which
characterize the formation of the singularity.

We begin with the solution of the isotropic flow map r(α, t) governed by
(5.11). We summarize its behavior in the following lemma.

Lemma 5.3. The solution of d-dimensional problem, r ′′ = ke0(α)r−ν ,
with initial data (r , r ′)(α,0) = (α,u0(α) > 0) is as follows. (We classify the
different cases by the value of ν := d− 1.)

ν = 0 The flow map is given by

r(α, t) = α+u0(α)t +
ke0(α)

2
t2,(5.15)
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and the velocity is

u(r , t) = u0(α)+ ke0(α)t.(5.16)

ν = 1 The flow map is

r(r , t) = α exp
(
ke0

2
τ2 +u0τ

)
,(5.17)

with the parameter τ given implicitly by the temporal relation

t = α
∫ τ

0
exp

(
ke0

2
ξ2 +u0τ

)
dξ.

In this case we have√
α2 + 2αu0t + ke0t2 ≤ r(α, t) ≤ α+u0t +O(t ln t).(5.18)

The corresponding velocity is given by

u(r , t) = h(α, t),(5.19)

with h(α, t) ∼ u0 +O(t ln t) determined implicitly by the identity

t ≡
∫ h(α,t)
u0(α)

exp

(
ξ2 −u2

0

2ke0

)
dξ.

ν = 2 r = r(α, t) is given implicitly by

2Q(α)
R

t = cosh−1
(

2r
R
− 1

)
− cosh−1

(
u2

0

ke0

)
+ 2
R

√
r 2 − Rr − u0√

ke0
,(5.20)

with

Q(α) :=
√
u2

0 +
2ke0

α
, R(α) := 2ke0

u2
0 +

2ke0

α

.(5.21)

In this case we have[
α3 + 3α2u0t +

3
2
ke0t2

]1/3
≤ r(α, t) ≤ α+

√
u2

0 +
2ke0

α
t,(5.22)

the velocity is uniformly bounded in time, and

lim
t→∞

u(r , t) = Q(α).(5.23)
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Proof. We start with ν = 0. A straightforward integration of r ′′ = ke0(α),
combined with the initial position α and the initial velocity u0(α), gives the same
formula for r that we met earlier, (2.10), in the one-dimensional case.

We then turn to the 2-dimensional case, ν = 1, where the flow map equation
(5.11) reads

r ′′ = ke0(α)r−1.(5.24)

Starting at the location α with velocity u0, then the energy integral is

1
2
(r ′)2 − 1

2
u2

0 = ke0(ln r − lnα),(5.25)

implying

r ′ =
√
u2

0 + 2ke0 ln
r
α
, u0 > 0.(5.26)

Let τ(α, t) be a dimensionless parameter such that for constant α

dτ = dt
r
= dr

r
√
u2

0 + 2ke0 ln(r/α)
= 1
ke0
d
[√
u2

0 + 2ke0 ln(r/α)
]
,

r (τ = 0) = α.

Then the parametric solution of (5.26) is given by (5.17), i.e.,

r = α exp
(
ke0

2
τ2 +u0τ

)
.

Here, the parameter τ is determined by t

dt = r dτ = α exp
(
ke0

2
τ2 +u0τ

)
dτ,

which gives

t = α
∫ τ

0
exp

(
ke0

2
ξ2 +u0ξ

)
dξ.

We want to show that r ∼ O(t) for large t, with the tight bound given by (5.18).
To show the lower bound, we rewrite the equation (5.24) as

(rr ′)′ = ke0 + r ′2 ≥ ke0,
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and integration twice gives the bound on the left of (5.18). Combining this lower
bound with r ′′ = ke0r−1 yields

r ′′ ≤ ke0[α2 + 2αu0t + ke0t2]−1/2,

and integration twice gives the upper bound shown on the right of (5.18).
Finally we turn to the 3-dimensional case ν = 2, where the flow map equation

reads

r ′′ = ke0(α)r−2.(5.27)

Starting at location α with velocity u0, the energy integral is

1
2
r ′2 − 1

2
u2

0 = ke0

(
1
α
− 1
r

)
,(5.28)

which gives

r ′ = Q(α)
(

1− R
r

)1/2
for u0 ≥ 0,

with Q and R given in (5.21). Integration in time once gives the implicit formula
of the flow map (5.22), where the dependence of r on α will play essential roles
(i.e., rα = 0) in our later analysis. We conclude with the large time estimate
(5.22). The upper-bound follows from the fact r ′ ≤ Q(α). From the flow map
equation (5.27) follows that(

r 3

3

)′′
= 2r(r ′)2 + ke0 ≥ ke0,

and integration twice yields the bound on the left of (5.22). ❐

Remark 5.1. The above formula reveals a quite different geometry of the
isotropic flow path. In the case ν ≥ 1, the energy integral ensures the lower
positive bound for r . In fact recalling (5.25) and (5.28),

(r ′)2 = u2
0 + 2ke0 ln

r
α
, ν = 1,(5.29)

(r ′)2 = u2
0 +

2ke0

ν − 1
(α1−ν − r 1−ν), ν > 1,(5.30)

one finds

r(α, t) ≥ αe−u2
0/(2ke0), ν = 1,(5.31)

r(α, t) ≥
[
ν − 1
2ke0

u2
0 +α1−ν

]−1/(ν−1)
, ν > 1.(5.32)
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Moreover, following the same procedure as for ν = 2 we obtain the expansion rate
of the flow path for the general situation ν ≥ 2,

(5.33)
[
αν+1 + (ν + 1)ανu0t + ν + 1

2
ke0t2

]1/(ν+1)

≤ r(α, t) ≤ α+
√
u2

0 +
2ke0

(ν − 1)αν−1 t.

In the 1D case, ν = 0, we saw that if the initial velocity is negative, then particles
can reach the r = 0 line in a finite time due to the quadratic form (5.15). In
contrast, for ν ≥ 1, these positive lower bounds imply that if the velocity is initially
negative, the particle path r may decrease only for a finite time and then increase
due to the positive acceleration. To avoid the technical discussions here and in
what follows, we restrict ourselves to the case u0 > 0.

Remark 5.2. The above results show that for the cases ν = 0, 1 the velocity
grows linearly. But for the case ν = 2, the velocity is uniformly bounded and
converges to a positive constant as time becomes large.

To study the critical threshold phenomena one may utilize the ‘indicator’
function Γ = rα. This study is carried out in the next subsection.

5.3. Critical thresholds. Using the above flow map we provide precise con-
ditions on the initial data such that either the solution remains globally smooth or
it breaks down in a finite time.

We start by revisiting the one-dimensional case.

Theorem 5.4. (Global existence of smooth solutions for the planar case ν =
0) The smooth solutions of (5.1)-(5.4) with ν = 0 exist if and only if

u′0(α) > −
√

2kn0(α), ∀α ∈ R+.(5.34)

In this case the solution is given by

n(r(α, t), t) = n0(α)

1+u′0t +
k
2
n0(α)t2

,

ur (r(α, t), t) =
u′0 + kn0t

1+u′0t +
k
2
n0(α)t2

.

Proof. Differentiating the flow map equation r = ke0 with respect to α we
find that

Γ ′′ = kn0(α),



144 SHLOMO ENGELBERG, HAILIANG LIU & EITAN TADMOR

for e0α = ρ0 = n0. The definition of Γ gives (Γ ′, Γ)(t = 0) = (u′0,1). Thus the
corresponding energy integral is

[Γ ′]2 − 2kn0Γ = [u′0]2 − 2kn0.

The geometry of the trajectory implies that, to ensure the positivity of Γ , the initial
data should satisfy either u′0 ≥ 0 or [u′0]2 − 2kn0 < 0 for the case u′0 < 0, which
yields (5.34). ❐

The above formula immediately yields the following result.

Corollary 5.5 (Breakdown of smooth solutions for the planar case (ν = 0)).
The smooth solution to the Euler-Poisson equations (5.1)-(5.3) blows up in finite
time if and only if the condition, u′0(α) > −

√
2kn0(α), fails, i.e., if

∃α ∈ R+ s.t. u′0(α) ≤ −
√

2kn0(α).

In this case, the density n(r , t) and ur(r , t) become infinite as t ↑ T , where the
blow-up time t = tc , is given explicitly by

tc := 2

sup{−u′0 +
√
(u′0)2 − 2kn0}

.

Remark 5.3. Consider the 1D equation with nonzero background and addi-
tional relaxation term, where the equation (5.2) is replaced by

ut +uur = kE −
u
ε
, with Er = (n− c).

Hence the equation for r reads

r ′′ = kE − r
′

ε
.

Note that E′ = −cu = −cr ′, thereby E = E0(α) − c(r − α). These equations
lead to an ‘indicator’ function Γ = rα, satisfying

Γ ′′ + Γ ′
ε
+ kcΓ = kρ0.

Using the phase plane analysis one recovers, for the 1D half space problem, α ∈
R+, the same results obtained for the 1-D Cauchy problem, α ∈ R, consult Sec-
tions 2-3.
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The rest of this section is devoted to the multi-D case, ν ≥ 1, where we
confirm the remarkable persistence of the critical threshold phenomena in the
multidimensional problem. But precisely determining sharp critical thresholds is
far from trivial. Even in the isotropic case, the implicit solution formula makes
the final conditions on initial data rather cumbersome. Thus, for example, differ-
entiating (5.11) with respect to α yields

Γ ′′ = kρ0r−ν − kνe0r−(ν+1)Γ ,
which is coupled with the flow map equation r ′′ = ke0r−ν . It is difficult to find
an explicit sharp threshold for the initial data that distinguishes between cases for
which Γ remains nonzero and cases for which it does not. Though some further
tedious calculations may enable us to obtain a complex criterion for the cylindrical
case (ν = 1) as well as the spherical case (ν = 2), we do not perform these cal-
culations. Instead we give sufficient conditions for upper thresholds on the initial
data for the existence of global smooth solution, as well as the lower thresholds for
the finite time breakdown. These confirm the existence of an intermediate critical
threshold — which is the focus of our interest in this work.

We start with the 2D case.

Theorem 5.6. (Global existence of smooth solutions for the cylindrical case
ν = 1) A global smooth solution of Euler-Poisson equations (5.1)-(5.3) with ν = 1
exists provided the initial data (u0, n0) with E0 = α−1

∫α
0 n0(ξ)ξ dξ satisfy

u′0 > −
k
u0
[αn0h(α)− E0], ∀α ∈ R+,(5.35)

where h(α) is determined by

kα2n0u0

∫ h(α)
0

h(α)− η
[u2

0 + 2kE0αη]3/2
eη dη ≡ 1, ∀α ∈ R+.(5.36)

Proof. Recall the energy integral (5.26)

r ′ =
√
u2

0 + 2ke0 ln
r
α
,

from which it follows that∫ r(α,t)
α

dξ√
u2

0 + 2ke0 ln(ξ/α)
= t.

Differentiating the above equality with respect to α, one has

Γ(α, t)√
u2

0 + 2ke0 ln(r/α)
= A(α, t),
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where

A(α, t) :=
∫ r(α,t)
α

u0u′0 + kρ0 ln(ξ/α)− ke0α−1

[u2
0 + 2ke0 ln(ξ/α)]3/2

dξ + 1
u0
.

Noting that e0 = αE0, we introduce M := [kE0 − u0u′0]/(kαn0) and rewrite A
in terms of η := ln(ξ/α), as

A(α, t) = kα2n0

∫ ln(r/α)

0

η−M
[u2

0 + 2kE0αη]3/2
eη dη+ 1

u0
.

We shall show that A, and therefore Γ , remain positive for all t > 0 provided
(5.35) holds. We consider the caseM > 0, since the complementary caseM ≤ 0 is
trivial. Note that e0α = ρ0 = n0α. A simple computation involving (5.26) gives

dA
dt
= kαn0

ln(r/α)−M
u2

0 + 2kE0α ln(r/α)
.

In view of the monotonicity of r in time (dr/dt > 0), we see that A may achieve
its unique minimum at t∗, where At(t∗) = 0, i.e., r(α, t∗) = αeM , and this
minimum is positive provided (5.35) holds, for

A(α, t∗) = kα2n0

∫M
0

η−M
[u2

0 + 2kE0αη]3/2
eηdη+ 1

u0

> kα2n0

∫ h(α)
0

η− h(α)
[u2

0 + 2kE0αη]3/2
eηdη+ 1

u0
= 0,

if M < h(α), which is equivalent to (5.35). Therefore the indicator functionΓ(α, t) = A(α, t)
√
u2

0 + 2ke0 ln(r/α) remains positive because A(α, t) ≥
A(α, t∗) > 0 for all t > 0. ❐

Condition (5.35) could be viewed as an upper threshold in the sense of pro-
viding a sufficient condition leading to global smooth solutions, though the per-
missible class of the initial data for global smooth solutions is clearly larger. How-
ever, the existence of the critical threshold can be ensured by combining this upper
threshold with the following lower threshold for the finite time breakdown.

Theorem 5.7 (Breakdown of smooth solutions for the cylindrical case ν = 1).
The smooth solution to the Euler-Poisson equations (5.1)-(5.3) with ν = 1 breaks
down in finite time if the condition, u′0(α) > −

√
2kn0(α), fails, i.e., if

∃α ∈ R+ s.t. u′0(α) ≤ −
√

2kn0(α).(5.37)
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Proof. Using the parametric form of the flow map given in (5.17) we evaluate
the ‘indicator’ function Γ via

Γ(α, t) = rα − rτtτ tα.
From (5.17) we see that

rα =
(

1+α
(
k
2
ρ0τ2 +u′0τ

))
exp

[
ke0

2
τ2 +u0τ

]
,

rτ = α(ke0τ +u0) exp
[
ke0

2
τ2 +u0τ

]
,

tα =
∫ τ

0

(
1+α

(
k
2
ρ0ξ2 +u′0ξ

))
exp

[
ke0

2
ξ2 +u0ξ

]
dξ,

tτ = α exp
(
ke0

2
τ2 +u0τ

)
= r .

Expressed in terms of

b(τ) := 1+αu′0τ +
k
2
αρ0τ2(5.38)

and r = r(τ) = α exp[(ke0)/2τ2 +u0τ], the ‘indicator’ function can be rewrit-
ten as

Γ = r
α

b(τ)− (u0 + ke0τ)

∫ τ
0
r(ξ)b(ξ)dξ

r(τ)

 .
Note that b(0) = 1. The quadratic form of (5.38) implies that there must exist
a parameter τ∗ such that b(τ∗) = 0, provided (5.37) holds. At this time Γ
becomes negative because the nonlocal term

∫ τ∗
0 r(ξ)b(ξ)dξ stays positive. This

combined with the fact Γ(0) = 1 ensures that there must be a finite time t = t∗
such that Γ(α, t∗) < 0. Hence Γ must vanish at finite time t = tc < t∗. This
completes the proof. ❐

We conclude with the 3-dimensional case, stating the lower threshold for fi-
nite time breakdown.

Theorem 5.8 (Breakdown of smooth solutions for the spherical case ν = 2).
The solution of Euler-Poisson equations (5.1)-(5.3) for ν = 2 blows up in finite time
if the condition, u′0 ≥ −(k/u0)[αn0 − E0], fails, i.e.,

∃α ∈ R+ s.t. u′0 < −
k
u0
[αn0 − E0].(5.39)
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Proof. Instead of using the implicit formula of the flow map r in (5.20), we
introduce a dimensionless parameter τ such that r may be rewritten in terms of
the parameter τ ∈ R+,

r = R
2
[1+ cosh(τ + τ0(α))],

t = R
2Q
[τ + sinh(τ + τ0(α))− sinh(τ0(α))],

where Q and R are given in (5.21), and τ0 is determined uniquely by

cosh(τ0(α)) =
2α
R
− 1 = u2

0

ke0
.

Thus the ‘indicator’ function Γ is determined by

Γ(α, t) = rα − rτtτ tα,
with

rα = Rα2 [1+ cosh(τ + τ0(α))]+ R2 sinh(τ + τ0(α))τ0α,

rτ =
R
2

sinh(τ + τ0(α)),

tτ = R
2Q
[1+ cosh(τ + τ0(α))],

tα =
(
R

2Q

)
α
[τ + sinh(τ + τ0(α))− sinh(τ0(α))]

+ R
2Q
[cosh(τ + τ0(α))− cosh(τ0(α))]τ0α.

Expressed in terms of

A(τ) := sinh(τ + τ0)
1+ cosh(τ + τ0)

,

we have

Γ(α, t) = 1+ cosh(τ + τ0)
2

×
{
Rα + RA(τ)τ0α −QA(τ)

[(
R
Q

)
α

(
τ − sinh(τ0)

1+ cosh(τ + τ0)
+A(τ)

)

+R
Q

(
1− 1+ cosh(τ0)

1+ cosh(τ + τ0)

)
τ0α

]}
.
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To show the breakdown of solutions, it suffices to show that as τ becomes large Γ
becomes negative since Γ(α,0) = 1 > 0. Note that as τ → ∞ one has A(τ) → 1,
and therefore the limit of the sum in the bracket {· · · } combined with e0 = E0α2

and e′0 = ρ0 = n0α2 becomes

R
Q
Qα = R

Q2 [u0u′0 + k(αn0 − E0)].

Hence the ‘indicator’ function Γ would become negative for large time whenever
the condition (5.39) is satisfied. Therefore there must be a finite τc , also a finite
time tc , such that Γ(α, tc) vanishes. At this time, tc , the solution breaks down. ❐

Remark 5.4. The above lower threshold for breakdown, ν = 2, can also be
verified in an alternative way, as a particular case of the more general situation
ν ≥ 2. Indeed, the new feature for ν ≥ 2 is that the velocity tends to a constant
for large time t’s, which is evident from the energy integral (5.30),

u2 = (r ′)2 = u2
0 +

2ke0

ν − 1
(α1−ν − r 1−ν),

while noting that, say by (5.33), r 1−ν → 0 as t → ∞. Hence, the velocity ap-
proaches the constant value

u(t) ∼ Q(α), Q(α) =
√
u2

0 +
2ke0

ν − 1
α1−ν ,

which in turn implies that

r ∼ Q(α)t.

Consequently, if the following critical condition fails,

u′0 ≥ −
k
u0

[
n0α
ν − 1

− E0

]
,

i.e., if there exists an α ∈ R+ such that Qα < 0, or explicitly, that

∃α ∈ R+ s.t. u′0 < −
k
u0

[
n0α
ν − 1

− E0

]
,(5.40)

then two particle paths must collide at large time. Observe that this critical con-
dition for ν = 2 coincides with (5.39).

We conclude with the general ν ≥ 2 case, discussing the upper threshold for
the existence of global smooth solutions.
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Theorem 5.9 (Global existence of smooth solutions for general ν ≥ 2 cases).
A global smooth solution of the Euler-Poisson equations (5.1)-(5.3) with ν ≥ 2 exists
provided the initial data (u0, n0) with E0 = α−ν

∫α
0 n0(ξ)ξν dξ is prescribed such

that for all α ∈ R+

u′0 > −
k
u0

[
n0ανhν
ν − 1

− E0

]
.(5.41)

Here, hν is determined by

ku0n0α
(ν − 1)2

∫ hν
0

hν(α)− η[
u2

0 +
2ke0

ν − 1
η
]3/2 (α

1−ν − η)ν/(1−ν) dη ≡ 1.(5.42)

Remark 5.5. Since, as we shall see below, hν < α1−ν , we conclude that the
lower threshold (5.40) is indeed smaller than the upper threshold in (5.41).

Proof. Recalling the energy identity (5.30),

(r ′)2 = u2 = u2
0 +

2ke0

ν − 1
(α1−ν − r 1−ν),

we have for u0 > 0

dr√
u2

0 +
2ke0

ν − 1
(α1−ν − r 1−ν)

= dt.

Integration yields ∫ r(α,t)
α

dξ√
u2

0 +
2ke0

ν − 1
(α1−ν − ξ1−ν)

= t.

Differentiating the above equality with respect to α leads to

Γ(α, t)√
u2

0 +
2ke0

ν − 1
(α1−ν − r 1−ν)

= B(r , t)

where

B(α, t) :=
∫ r
α

u0u′0 +
k

ν − 1
ρ0α1−ν − ke0α−ν − k

ν − 1
ρ0ξ1−ν

[
u2

0 +
2ke0

ν − 1
(α1−ν − ξ1−ν)

]3/2 dξ + 1
u0
,
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which can be rewritten in terms of Mν := (ν − 1)(kE0 − u0u′0)/(kn0αν) and
η := α1−ν − ξ1−ν as

B(α, t) = kn0α
(ν − 1)2

∫ α1−ν−r 1−ν

0

η−Mν[
u2

0 +
2ke0

ν − 1
η
]3/2 (α

1−ν − η)ν/(1−ν) dη+ 1
u0
.

It remains to show the positivity of B for all t > 0, provided (5.41) holds. If
Mν ≤ 0, then it is easy to see that B > 0 for all t > 0. We now consider the
case Mν > 0 by checking the positivity of the possible minimum of B. Note that
e0α = ρ0 = n0αν and e0 = E0αν . A straightforward calculation involving (5.30)
gives

dB
dt
= kn0α
ν − 1

α1−ν − r 1−ν −Mν
u2

0 +
2ke0

ν − 1
(α1−ν − r 1−ν)

.

From the monotonicity of the flow map dr/dt > 0, it follows that there exists a
time t∗ such that

dB
dt

∣∣∣∣
t=t∗

= 0,
dB
dt
(t − t∗) > 0 for t 6= t∗,

and at this time r(α, t∗)1−ν = α1−ν −Mν . Therefore we have

B(α, t) ≥ B(α, t∗)

= kn0α
(ν − 1)2

∫Mν
0

η−Mν[
u2

0 +
2ke0

ν − 1
η
]3/2 (α

1−ν − η)ν/(1−ν) dη+ 1
u0

>
kn0α
(ν − 1)2

∫ hν
0

η− hν(α)[
u2

0 +
2ke0

ν − 1
η
]3/2 (α

1−ν − η)ν/(1−ν) dη+ 1
u0
= 0,

provided for all α ∈ R+, Mν(α) < hν(α) < α1−ν , i.e., (5.41), with hν defined in
(5.42). Hence Γ(α, t) remains positive for all t > 0 once the initial data remain
above the upper threshold (5.41). ❐

The above upper and lower thresholds for the cases ν ≥ 1 confirm the exis-
tence of an intermediate critical threshold, though we do not provide the explicit
form of the critical threshold. One case in which we can precisely compute the
critical threshold is the 4-dimensional (ν = 3) isotropic case, which is given in the
following theorem.
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Theorem 5.10 (Critical threshold for 4-dimensional model (ν = 3)). The
global smooth solution of Euler-Poisson equations (5.1)-(5.3) with ν = 3 exists if
and only if

(αu′0 −u0)2 < 4α
(
n0α

2
− E0

)
, ∀α > 0 and u′0(0) ≥ 0.(5.43)

In this case the velocity is given by

u(r , t) = αu0 + [u2
0 + kαE0]t√

α2 + 2αu0t + [u2
0 + kαE0]t2

→
√
u2

0 + kαE0 as t ↑ ∞,(5.44)

and the density is given by

n(r(α, t), t) = n0(α)α3

[α2 + 2αu0t + (u2
0 + kE0α)t2]

(5.45)

× 1
[α+ (u0 +αu′0)t + (u0u′0 − kE0 + 1

2kn0α)t2]
.

Proof. As argued before, it is sufficient and necessary to show that the thresh-
old condition (5.43) ensures the positivity of the indicator function Γ for all t > 0.
Let us first solve the flow map equation (5.11) with ν = 3, i.e.,

r ′′ = ke0r−3, r (0) = α, r ′(0) = u0.

Its energy integral is

[r ′]2 = u2
0 + ke0α−2 − ke0r−2

= u2
0 + ke0α−2 − rr ′′,

where r ′′ = ke0r−3 has been used in the last equalities. Rewriting this relation
leads to

1
2
[r 2]′′ = [r ′]2 + rr ′′ = u2

0 + ke0α−2,

and integration twice gives

r 2 = α2 + 2αu0t + [u2
0 + ke0α−2]t2.

Hence

r =
√
α2 + 2αu0t + [u2

0 + ke0α−2]t2,(5.46)
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which as u = dr/dt and e0 = E0α3 gives the velocity (5.44). The corresponding
‘indicator’ function is

Γ(α, t) = ∂r
∂α
= α+ [αu0]′t + 1

2[u
2
0 + kαE0]′t2√

α2 + 2αu0t + [u2
0 + kαE0]t2

= α+ [u0 +αu′0]t + [u0u′0 − kE0 + 1
2kn0α]t2√

α2 + 2αu0t + [u2
0 + kαE0]t2

.

Note that at the origin α = 0, Γ(0, t) = 1+u′0(0)t. These explicit formulas imply
that Γ(α, t) remains positive for all t > 0, once

[u0 +αu′0]2 < 4α
(
u0u′0 − kE0 + kn0α

2

)
, ∀α > 0, and u′0(0) ≥ 0.

This is equivalent to (5.43). The solution (5.45) follows from the above explicit
expression of Γ(α, t) when recalling the general formula (5.13). ❐

The above critical threshold result enables us to claim the following result.

Corollary 5.11 (Breakdown of smooth solutions for the case ν = 3). A solu-
tion of the Euler-Poisson equations (5.1)-(5.3) with ν = 3 blows up in finite time
if and only if condition (5.43) fails, i.e.,

∃α ∈ R+ s.t. (αu′0 −u0)2 ≥ 4kα
(
n0α

2
− E0

)
.

In this case, n(r , t) and ur(r , t) become infinite as t ↑ T , where the blow-up
time is given explicitly by

tc := 2

sup

{
−u′0 −

u0

α
+ 1
α

√
(αu′0 −u0)2 − 4kα

(
n0α

2
− E0

)} .

6. APPENDIX

Proof of the maximum principle. To show thatut+f(x, t)ux = a(x, t)uxx
satisfies a maximum principle, we find a function that satisfies:

F ′′(x) = F(x)
2b(x)

,

where b(x) > a(x, t), and b(x) ≥ cx2 + 1. We then consider the function
z(x, t) = et(F(x)+ d) and following [13] we prove the maximum principle.
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We make use of general results about the solutions of F ′′(x) = F(x)/(2b(x))
in the proof. Because b(x) ≥ cx2+1, c > 0, it is easy to show [4, p. 106, question
35] that the solution of the ODE must look like a solution of F ′′(x) = 0 for large
enough x; i.e., F(x) looks like r±x + s±. It is easy to see that if we let F(x0) = 1
and F ′(x0) = 0, then the solution of the ODE will be concave up near x0. As
F ′′(x) is positive at x0, we find that to the left of x0, the function F(x) must
be positive and its derivative must be negative. Similarly, to the right of x0 F(x)
must be positive and its derivative must be positive. Thus F(x) ≥ 1 for all x.
Thus, F ′′(x) is also positive everywhere. That implies that F ′(x) increases from
some negative value to some positive one. Since asymptotically F(x) is linear, we
find that F ′(x) must tend to some constant value as x tends to ±∞. In what
follows, we shall point out F(x)’s dependence on x0 by using the notation Fx0 to
denote the solution of our ODE with initial data given at x0.

We note that if we define Gx0,d = Fx0(x)+d, then for all positive d, Gx0,d sat-
isfies the inequality G′′x0,d(x) ≤ Gx0,d/(2b(x)). As F ′x0

is bounded, as d increases
|G′x0,d/Gx0,d| tends to zero uniformly in d.

Consider the function z(x, t) = Gx0,d(x)et . We find that zt = z and zxx =
G′′x0,d(x)e

t . Thus,

zt + f(x, t)zx = Gx0,d(x)e
t + f(x, t)G′x0,d(x)e

t

= et
(Gx0,d(x)

2
+ b(x)G′′x0,d(x)+ f(x, t)G′x0,d(x)

)
≥ a(x, t)zxx + et

(Gx0,d(x)
2

+ f(x, t)G′x0,d(x)
)
.

If we make d large enough, we can make G as much larger than G′ as we please.
Thus, we find that for sufficiently large d, zt + zxf(x, t) > a(x, t)zxx . More-
over, z(x,0) tends to infinity linearly in x and exponentially in t.

We note that we can use ect rather than et by letting F solve the equation
F ′′(x) = cF(x)/(2b(x)). This is what allows us to state that E(t) may be expo-
nential and need not be sub-exponential.

Now we modify one of the standard proofs of the maximum principle for the
heat equation [13, pp. 216-218]. We consider w(x, t) = u(x, t) − εz(x, t),
where ε > 0. Clearly, w satisfies wt + f(x, t)wx < a(x, t)wxx. If we con-
sider this equation on a finite interval, [x1, x2], then w satisfies the maximum
principle:

w(x, t) ≤ max(w(x1, t),w(x2, t), max
x∈(x1,x2)

w(x,0)).

As z(x, t) > 0, we find that maxx∈(x1,x2) w(x,0) < supx u(x,0). Also, as
z(x, t) increases linearly in space and exponentially in time (with any desired
exponent) and, by assumption, u(x, t) increases more slowly, it is clear that for
any x0, for any x of sufficiently large magnitude, w(x, t) < supx u(x,0). In
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fact it is not necessary that u(x, t) be strictly sub-linear. It is sufficient that it
be sub-linear on an infinite sequence of points for which ±∞ are limit points. If
|u(x, t)| < D(x)eαt for all t and an infinite sequence of values, {xi}, that has as
limit points ±∞, then we will be able to find an infinite sequence of points, x̃i,
for which w(x, t) < supx u(x,0).

Putting all of this together, we find that for any ε if the magnitude of x1 and
x2 is sufficiently large and x1 and x2 belong to the sequence of points on which
u(x, t) is sublinear, thenw(x1, t),w(x2, t) < supx u(x,0). Finally we note that
as ε → 0,w(x0, t)→ u(x0, t). Thus, we find thatu(x0, t) ≤ supu(x,0). As our
argument in no way depends on x0, we find that supx u(x, t) ≤ supx u(x,0).
A simple corollary of this is that if all the hypotheses above are met, then if ut +
f(x, t)ux = c + a(x, t)uxx , then s(x, t) = u(x, t)− ct satisfies the maximum
principle. Thus, u(x, t) ≤ supx u(x,0)+ ct. Finally, by also considering −u we
find that infx u(x,0)+ ct ≤ u(x, t) ≤ supx u(x,0)+ ct.

Remark 6.1. We see that if it is known that |u(x, t)| ≤ D(x)eαt for all t and
for an infinite sequence of x’s that run to ±∞, then u(x, t) satisfies a maximum
principle. If one knows that the growth of u(x, t) in time is only exponential,
then in order for u to fail to satisfy a maximum principle, it is necessary that
u(x, t) has growth in x that is faster than any sub-linear function. In particular,
u(x, t) > Mx/ ln(x) for all sufficiently large x.

Remark 6.2. We show that having some condition on f(x, t) is necessary.
Consider the equation ut = b(x)uxx . If we let v = ux , then we find that vt =
(b(x)vx)x We have already shown that if b(x) > x2+ε + 1, then the equation
F ′′b(x) = F has a solution that grows linearly at ±∞ and whose derivative, F ′(x)
increases from some value at −∞ to some value at ∞. Let H(x) = F ′(x). We
find that (b(x)H′(x)) = H(x). Thus, etH(x) is a solution of the equation for
v. This is a bounded solution of the equation that satisfies neither a maximum
nor a minimum principle. Of course, we can rewrite the PDE for v in the form
vt −b′(x)vx = b(x)vxx . Thus we see that it is imperative that some conditions
be placed on f(x, t). Clearly this “hyperbolic term” can destabilize the parabolic
PDE.

If one specializes to b(x) which are even, then it is easy to say more. For such
b(x) it is easy to see that the solution of b(x)F ′′ = F with initial data F(0) = 0,
F ′(0) = a, a 6= 0 is odd, linear at infinity, and F ′(x) is even and tends to a
nonzero constant, k, at ±∞. F ′(x) will always be greater than or equal to a. If
b(x) = cosh(x), then (using more results on the asymptotic behavior of ODEs)
we also find that F(x)→ kx + ` exponentially fast at ±∞. Consider the function
etF(x)−kx−`. It is initially bounded (it even tends to 0 at ±∞), it is a solution
of u(x, t) = b(x)uxx , and it does not satisfy a maximum principle. We note
that a function that solves the heat equation cannot blow up in this fashion. The
bounds on the solution and the fact that the solution was initially bounded would
be enough to guarantee that the solution remained bounded.
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