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Abstract. In this work we consider a convolution model for nonlinear conservation laws. Due to
the delicate balance between the nonlinear convection and the nonlocal forcing, this model allows for
narrower shock layers than those in the viscous Burgers’ equation and yet exhibits the conditional
finite time breakdown as in the damped Burgers’ equation. We show the critical threshold phe-
nomenon by presenting a lower threshold for the breakdown of the solutions and an upper threshold
for the global existence of the smooth solution. The threshold condition depends only on the relative
size of the minimum slope of the initial velocity and its maximal variation. We show the exact
blow-up rate when the slope of the initial profile is below the lower threshold. We further prove the
L1 stability of the smooth shock profile, provided the slope of the initial profile is above the critical
threshold.
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1. Introduction. Consider the scalar equation of the form

ut + uux = Q ∗ u− u,(1.1)

where Q is a regular symmetric kernel, monotonically decreasing on R
+, subject to

initial data

u(0, x) = u0(x), u0 ∈ C1
b (R).(1.2)

We are concerned with the critical threshold phenomenon supported by the balance
between the nonlinear convection and the nonlocal source term in (1.1).

For the kernel Q, we make the following assumption:
(H1) Q ∈ C1(R), Q(−r) = Q(r) ≥ 0,

∫
Q(y)dy = 1,

∫
Q(y)|y|dy < ∞, and

Q′(x) ≤ 0 for x ≥ 0.
To clarify the effect of the nonlocal term on the right-hand side of (1.1), we make

a hyperbolic scaling

(t, x) →
(
t

ε
,
x

ε

)
, ε > 0,

which leads to

ut + uux =
1

ε
[Qε ∗ u− u],(1.3)

where Qε :=
1
εQ(xε ) and is converging to a delta function δ(x) as the scaled parameter

ε tends to zero.
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A typical example of the kernel Q is 1
2e

−|x|; with this specific kernel, (1.3) can be
written as

ut + uux = F−1

[ −εξ2
1 + ε2ξ2

û(t, ξ)

]
= εF−1

[
1

1 + ε2ξ2
û(t, ξ)

]
xx

,(1.4)

which is called an R-C-E model after Rosenau’s regularized version of the Chapman–
Enskog expansion for hydrodynamics [17]. The operator on the right-hand side of
(1.4) looks like the usual viscosity term εuxx at low wave-number ξ, while for higher
wave numbers it is intended to model a bounded approximation of a linearized collision
operator, thereby avoiding the artificial instabilities that occur when the Chapman–
Enskog expansion is truncated after a finite number of terms [17]. This idea has
been greatly advanced recently by Slemrod and his collaborators. A renormalization
procedure was introduced in [19] to eliminate the truncation instability and to produce
the desired dissipation; the corresponding applications can be found in [20, 21, 22].
The regularization of the Burnett equations via relaxation was investigated by Jin
and Slemrod [5, 6]. The rigorous analysis of the model (1.4), including the existence
of the shock profiles, the smoothness, as well as the upper-Lipschitz continuity, has
been studied by Schochet and Tadmor [23]. We remark that, as observed in [23], the
solution sequence {uε} of (1.4) does not satisfy the Kružkov entropy inequality. The
convergence of the solution uε of (1.4) to the entropy solution of the inviscid Burgers’
equation was proved in [23] via the L1 contraction argument.

(1.3) with Q = 1
2e

−|x| can also be written as a hyperbolic-elliptic system

ut + uux = φx, x ∈ R, t > 0,(1.5)

ε2φxx − φ+ εux = 0.(1.6)

It is easy to see that (1.6) enables one to express φ in terms of u formally as

φ = (1− ε2∂2
x)

−1εux = εQε ∗ ux,

which in turn gives the right-hand side of (1.3),

φx = εQε ∗ uxx =
1

ε
[Qε ∗ u− u].

The system of equations (1.5)–(1.6) is derived as the third-order approximation of
the full system describing the motion of radiating gas in therm-nonequilibrium, while
the second-order approximation gives the viscous Burgers’ equation ut + uux = εuxx,
and the first-order approximation gives the inviscid Burgers’ equation ut + uux = 0.
Hamer [4] studied these equations in the physical respect, especially for the steady
progressive shock wave solutions. Noting that if ε in (1.6) is small, one has φ ∼ εux,
which leads to the usual viscous Burgers’ equation. The viscous Burgers’ equation
admits smooth shock wave profiles but does not allow the finite time breakdown. On
the other hand, if the parameter ε is large, one finds from (1.6) that εφxx + ux ∼ 0,
which when combined with (1.5) gives the damped Burgers’ equation ut+uux = −u/ε.
This damped equation reflects the conditional breakdown in finite time but does not
support monotone traveling waves (shock profiles).

The parameter ε in (1.3) does not play a role in our analysis and so will be set to 1
for convenience. Equation (1.3) with ε = 1, i.e., (1.1), is a physical model that allows
for the shock wave profile and yet exhibits the finite time breakdown. For stability
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of shock profiles via energy method we refer to [11, 8]. The global weak solution to
(1.1) was studied in [23].

As is known, the typical well-posedness result asserts that either a solution of
a time-dependent PDE exists for all time (global existence of the smooth solution)
or else there is a finite time (called life span) such that some norm of the solution
becomes unbounded as the life span is approached (called finite time breakdown). The
natural question is whether there is a critical threshold for the initial data such that
the global existence of the smooth solution or the finite time breakdown depends only
on crossing such a critical threshold. This remarkable critical threshold phenomenon
was first observed and studied in [3] for a class of Euler–Poisson equations. In this
paper we confirm such a critical threshold phenomenon for (1.1)–(1.2) by giving an
upper threshold for the global existence of the smooth solution and a lower threshold
for the finite time breakdown. We also show the exact blow-up rate as the life span
is approached.

In this paper we shall use the following notation for g ∈ L∞(R) to denote the
maximal variation:

V (g) := max
x∈R

g(x)−min
x∈R

g(x).

The first result tells us the critical threshold phenomenon in (1.1).
Theorem 1.1. Consider the Cauchy problem (1.1)–(1.2) with initial data u0 ∈

C1
b (R). Let the kernel Q satisfy (H1); then we have the following:

• If V (u0) <
1

4Q(0) and

inf
x∈R

∂xu0(x) > −1

2

[
1 +

√
1− 4Q(0)V (u0)

]
,

then the smooth solution exists for all time.
• If

inf
x
∂xu0(x) < −1

2

[
1 +

√
1 + 4Q(0)V (u0)

]
,

then the solution u must break down at finite time T . Moreover,

lim
t→T

(min
x∈R

{ux(t, x)}) = −∞

and the exact blow-up rate is

lim
t→T

((T − t)min
x∈R

{ux(t, x)}) = −1.

Concerning this theorem, several remarks are in order.
Remarks. 1. The above results show that the solution behavior of (1.1)–(1.2)

depends on the relative size of the minimum slope of the initial profile and its maximal
variation. If either the maximal variation is too large or the initial velocity slope is too
negative, the solution would lose smoothness in finite time. This peculiar phenomenon
explains the result obtained in [23], in which additional constraints on the shock
strength are imposed to ensure the smoothness of the shock profiles. Further relation
between the smoothness of the shock profiles and the shock strength are given in [8].
The critical threshold phenomenon was already partially observed in previous studies;
see [23] and [9].
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2. As an example, we take uθ0(x) = exp(−x2/θ) for θ > 0. Note that

inf
x∈R

[∂xu
ε
0(x)] = −

√
2

eθ
, V (uθ0) = 1.

Therefore, choosing θ so small that

θ <
4

e(1 + 2Q(0) +
√

1 + 4Q(0))
,

we see that ∂xu
θ
0 is below the lower threshold, and thereby the corresponding solution

uθ(t, x) breaks down in finite time.
3. Note that at the blow-up time, the solution is still bounded, and the gradient of

the solution becomes unbounded from below. Such a breakdown is referred to as wave
breaking in the context of the shallow water waves. In [25] Whitham emphasized that
wave breaking phenomena are some of the most intriguing long-standing problems
of water theory. This issue was first settled recently in [15] for Whitham’s equation.
Another shallow water equation derived recently by Camassa and Holm [2] can be
written as (1.5) coupled with the following equation:

φxx − φ− u2 − 1

2
u2
x = 0.

This equation as a completely integrable system has a soliton solution and yet exhibits
finite time breakdown phenomena for a large class of initial data, which has been
observed and justified by Holm [2], Constantin and Escher [1], and McKean [14]. The
main tool used in the above papers is to trace the solution gradient along a curve on
which the minimum of the gradient is obtained. In this work we trace the dynamics
of the solution gradient along the characteristics, which are well known in the context
of the hyperbolic equations; see, e.g., [12, 7, 13]. For the global weak solution to the
above shallow water equation, we refer to [24] and references therein.

4. From the results above we see that if the magnitude of the initial profile is
small, both thresholds given in Theorem 1.1 are close to infx∈R ∂xu0(x) = −1, which
is exactly the critical threshold for the damped Burgers’ equation:

ut + uux = −u.
Indeed, along the particle path x(α, t) defined by

d

dt
x(α, t) = u(t, x(α, t)), x(α, 0) = α, α ∈ R,

the gradient of the solution to the damped Burgers’ equation above can be written
explicitly as

ux(t, x) = [et(1 + (∂xu0(α))
−1)− 1]−1,

which is bounded from below for all time if and only if

inf
x∈R

∂xu0(x) ≥ −1.

This remarkable critical threshold phenomenon explains why (1.1) admits nar-
rower shock layers than those in the viscous Burgers’ equation. We now turn to
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discussing the asymptotic behavior of solutions, as the initial data are above the crit-
ical threshold. We shall concentrate on the case u0(−∞) = u− > u+ = u0(+∞). As
shown in [23], (1.1) with Q = 1

2e
−|x| admits a smooth shock profile U(x−st) connect-

ing u+ to u− if and only if the strength |V (U)| = |u+ − u−| ≤
√
2. Considering the

conservative form of the equation, the natural question is whether this shock profile
is stable in L1(R).

Our stability result is summarized below.
Theorem 1.2. Let U(x − st) be a continuous shock profile of (1.1) and S(t)u0

be a solution to (1.1)–(1.2) with initial data u0 ∈ U + L1(R) and u0 ∈ [inf U, supU ].
If ∂xu0 ≥ − 1

2 [1 +
√
1− 4Q(0)V (u0)], then there exists a constant k such that

lim
t→∞ ‖S(t)u0 − U(· − st+ k)‖L1 = 0.

Remarks. 1. The Lp(1 ≤ p < ∞) stability is immediate from the above L1

stability result and the L∞ boundedness of S(t)u0. Consult [8] for the stability of
traveling waves via the energy principle.

2. We assume that the initial data are above the upper critical threshold to
ensure the regularity of the ω-limit set of the solution. This condition is expected to
be relaxed since our upper threshold is not sharp.

We now conclude this section by outlining the rest of the paper. In section 2,
we recall several properties of (1.1) and give the estimate of the nonlocal term in
(1.1), which paves the way for the next sections. The lower threshold for finite time
breakdown is given in section 3, in which we also prove the exact blow-up rate. The
upper threshold for global existence of the smooth solution is carried out in section
4. The final section is devoted to the L1 stability of the shock profiles.

2. Preliminaries. This section is devoted to some estimates which will be used
in the next two sections.

In order to formulate the problem, we denote the solution operator of (1.1) as
S(t), indexed with t ∈ [0,∞),

S(t) : L∞(R) → L∞(R), t ≥ 0,

such that the solution u(t, x) of (1.1) with initial data a can be expressed as

u(t) = S(t)a.

We recall from [23] that the solution operator S(t) satisfies the following proper-
ties:

• (translate invariance) S(t)a(x+ k) = (S(t)a)(x+ k) for any k ∈ R;
• (conservative) if a− b ∈ L1(R), then for all t > 0, S(t)a− S(t)b ∈ L1(R) and∫

(S(t)a− S(t)b) =
∫
(a− b);

• (L1 contraction) if a − b ∈ L1(R), then S(t)a − S(t)b ∈ L1(R) and ‖S(t)a −
S(t)b‖1 is nonincreasing for t > 0;

• (monotonicity) if a(x) ≥ b(x) for x ∈ R, then S(t)a ≥ S(t)b for all t > 0.
The above monotonicity immediately gives us the following maximum principle.

Lemma 2.1. Let u0 ∈ L∞(R). Then the solution u(t, ·) is also bounded with

min
x∈R

u0(x) ≤ u(t, ·) ≤ max
x∈R

u0(x).

This maximum principle leads to the following bounds, which will be used in
figuring out our threshold conditions.
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Lemma 2.2. Let u be the smooth solution in [0, T ]. Then it holds that

min
x∈R

u0(x) ≤ Q ∗ u(t, ·) ≤ max
x∈R

u0(x), t ∈ [0, T ],(2.1)

−Q(0)V (u0) ≤ Q ∗ ux(t, ·) ≤ Q(0)V (u0).(2.2)

Proof. The first inequality follows from the fact Q ∗ 1 = 1 and the L∞ bound
minx∈R u0(x) ≤ u(t, ·) ≤ maxx∈R u0(x). We shall prove the second inequality as
follows:

Q ∗ ux =

∫
R

Q(x− y)uy(t, y)dy

=

∫
R

Qx(x− y)u(t, y)dy

=

[∫ x

−∞
Qx(x− y)u(t, y)dy +

∫ +∞

x

Qx(x− y)u(t, y)dy

]

≤ min
x∈R

u0(x)

∫ x

−∞
Qx(x− y)dy +max

x∈R

u0(x)

∫ +∞

x

Qx(x− y)dy

≤ Q(0)

[
−min

x∈R

u0(x) + max
x∈R

u0(x)

]
= Q(0)V (u0).

The lower bound −Q(0)V (u0) is clear from the above estimate.
The existence of T is ensured by the local existence theorem stated in the following

lemma.
Lemma 2.3. Consider the Cauchy problem (1.1)–(1.2) with initial data u0 ∈

C1
b (R). Then there exists a positive constant T , depending only on ‖u0‖C1

b
(R), such

that (1.1)–(1.2) has a unique smooth solution in C1
b (R × [0, T ]).

The proof of this local existence is standard via an iteration scheme; the details are
omitted. This local existence provides a base for extending the solution or justifying
the finite time breakdown.

3. Blow-up criterion—lower threshold. This section is devoted to a general
discussion of wave breaking criteria.

Theorem 3.1. Consider the Cauchy problem (1.1)–(1.2). The maximal existence
time T is finite if and only if the gradient of the solution becomes unbounded from
below in finite time.

Proof. From the local existence in Lemma 2.3 it follows that if the gradient of
the solution becomes unbounded from below in finite time, then T <∞.

Let the life span T <∞ and assume that for some constant M > 0 we have

ux(t, x) ≥ −M, (t, x) ∈ [0, T )× R.(3.1)

On the other hand, by [23, Theorem 5.1] the solution u(t, x) satisfies the one-sided
Lipschitz condition, i.e.,

ux(t, x) ≤ 1

(maxx∈R u0x)−1 + t
≤ max

x∈R

u0x <∞.

Therefore the standard continuation argument enables us to extend the solution to
[0, T + δ) with δ > 0, and thereby one must have T = ∞. This contradiction ensures
that

lim
t→T−

(min
x∈R

ux(t, x)) = −∞.
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The lower threshold is given in the following theorem.
Theorem 3.2. Consider the Cauchy problem (1.1)–(1.2) with the initial profile

u0 ∈ C1
b (R). If u0 is bounded and its gradient is negative with

inf
x∈R

∂xu0(x) < −1

2

[
1 +

√
1 + 4Q(0)V (u0)

]
,

then the life span T must be finite. Moreover,

T ≤
[
−1

2

(
1 +

√
1 + 4Q(0)V (u0)

)− inf
x∈R

∂xu0(x)

]−1

and

lim
t→T

(min
x∈R

{ux(t, x)}) = −∞.

Proof. Differentiation of (1.1) with respect to x leads to

dt + udx + d2 = Q ∗ ux − d, t ∈ (0, T ),

where d := ux(t, x). The smoothness of u ensures that there exists a smooth curve
x(α, t) satisfying

d

dt
x(α, t) = u(t, x(α, t)), x(α, 0) = α, α ∈ R.

Evaluating the above d− equation at x(α, t) and using Q ∗ ux ≤ A := Q(0)V (u0)
stated in Lemma 2.2, we have

d′ + d2 = Q ∗ ux(t, x(α, t))− d ≤ A− d, ′ := ∂t + u∂x

for t ∈ (0, T ). That is,

d′ ≤ −(d−M1)(d−M2), t ∈ (0, T ),(3.2)

with

M1 := −1

2
[1 +

√
1 + 4A], M2 := −1

2
[1−√

1 + 4A].

For a fixed α ∈ R, if d0(α) := u′0(α) < M1, then we claim that

d(t) < d0(α), t ∈ (0, T ).(3.3)

If this would not be true, there is some t0 ∈ (0, T ) with d(t) < d0 on [0, t0) and
d(t0) = d0 by the continuity of d = ux in time. But in this case

d′ ≤ −(d0 −M1)(d0 −M2) < 0, t ∈ (0, t0).

An integration over (0, t0) yields

d(t0) < d0,

which contradicts our assumption that d(t0) = d0 for t0 < T . This implies that (3.3)
holds.
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Combining (3.3) with (3.2), we obtain

d′ ≤ −(d−M1)
2, t ∈ (0, T ),

and integration yields

d(t) ≤M1 +

[
t− 1

M1 − d0

]−1

.

From this we find that d(t) → −∞ before t reaches 1
M1−d0

. This proves that the
solution breaks down in finite time once ∂xu0 ≥M1 fails.

The blow-up rate at the breaking time is summarized in the next theorem.
Theorem 3.3. Let T be the maximal existence time of (1.1)–(1.2). If the life

span T is finite, then

lim
t→T

(
(T − t)

(
min
x∈R

{ux(t, x)}
))

= −1.

Proof. By Theorem 3.1 one has

lim
t→T

(
min
x∈R

{ux(t, x)}
)

= −∞.

For t ∈ [0, T ) the solution u is smooth and the curve x(α, t) is well defined by

d

dt
x(α, t) = u(t, x(α, t)), x(α, 0) = α, α ∈ R.

This implies

∂

∂α
x(α, t) = exp

(∫ t

0

ux(τ, x(α, τ))dτ

)
> 0, t ∈ (0, T ),

and hence x(α, t) is a one-to-one mapping from R to R. From these facts it follows
that there exists an α ∈ R such that

min
x∈R

{ux(t, x)} = ux(t, x(α, t)).

As done previously, we consider dynamics of d = ux along the curve x(α, t), using
−A ≤ Q ∗ ux ≤ A = Q(0)V (u0) to obtain

−A− d ≤ d′ + d2 ≤ A− d, t ∈ (0, T ).

Let ε ∈ (0, 1) be suitably small. Since limt→T d(t) = −∞, there exists t0 ∈ (0, T ) such
that

d(t) < B−(ε), t ∈ [t0, T ),(3.4)

with

B−(ε) =
−2A√

1 + 4Aε(2− ε)− 1
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being the smaller root of (ε2 − 2ε)d2 − d+ A = 0. Otherwise there exists δ > 0 such
that

d(t) < B−(ε), t ∈ (t0, t0 + δ),

and for δ < T − t0

d(t0 + δ) = B−(ε).

Hence for d(t) < B−(ε) on (t0, t0 + δ),

d

dt
d(t) ≤ A− d− d2 ≤ −(1− ε)2d2 < 0, t ∈ (t0, t0 + δ).

Integration gives

d(t0 + δ) < d(t0) < B−(ε).

This contradiction shows that

d ≤ B−(ε), t ∈ [t0, T );

therefore

d′ ≤ −(1− ε)2d2, t ∈ [t0, T ).(3.5)

On the other hand, let

B+(ε) =
−2A√

1 + 4Aε(2 + ε) + 1
,

which is the bigger root of (ε2 + 2ε)d2 − d−A = 0. We find that B−(ε) < B+(ε) and

d(t) < B+(ε), t ∈ (t0, T ).

This gives (ε2 + 2ε)d2 − d−A > 0, yielding

d′ ≥ −(d2 + d+A) ≥ −(1 + ε)2d2, t ∈ (t0, T ).(3.6)

A combination of (3.5) with (3.6) gives

−(1 + ε)2d2 ≤ d′ ≤ −(1− ε)2d2, t ∈ (t0, T ).

Note that d is locally Lipschitz on (t0, T ) and so is 1/d on (t0, T ). The above inequality
leads to

(1− ε)2 ≤
(
1

d

)′
≤ (1 + ε)2, t ∈ (t0, T ).

For t ∈ (t0, T ), integrate the above over (t, T ) to obtain

−(1− ε)2(T − t) ≤ 1

d(t)
≤ −(1 + ε)2(T − t), t ∈ (t0, T ).

Optimizing the above in terms of ε, one then has

lim
t→T

(T − t)d(t) = −1.

This completes the proof.
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4. Global smoothness—upper threshold. With the breakdown criterion in
section 2, we are ready to discuss the upper threshold for the global existence of the
smooth solution to (1.1)–(1.2).

Theorem 4.1. Consider the Cauchy problem (1.1)–(1.2) with the initial profile
u0 ∈ C1

b (R). If u0 is bounded with the maximal variation V (u0) ≤ 1
4Q(0) and its

gradient is above an upper threshold, i.e.,

inf
x∈R

∂xu0(x) ≥ −1

2

[
1 +

√
1− 4Q(0)V (u0)

]
,

then the smooth solution exists for all time and satisfies

∂xu(t, x) ≥ −1

2

[
1 +

√
1− 4Q(0)V (u0)

]
.

Proof. To show the global existence of the smooth solution it suffices to establish
an a priori lower bound for the gradient of solution ux. As argued earlier, we evaluate
d := ux along the particle path x(α, t) to obtain

d′ + d2 = Q ∗ ux(t, x(α, t))− d(t).

Noting that the lower bound of Qux is −A = −V (u0)Q(0), we find that

d′ ≥ −A− d− d2 = −(d−A1)(d−A2),

where

A1 = −1

2
[1 +

√
1− 4A], A2 = −1

2
[1−√

1− 4A].

Now let q solve the following problem:

d

dt
q(t) = −(q −A1)(q −A2), q(0) = d0.

Then the comparison of the above differential relations yields

d− q ≥ (d0 − q(0)) exp

(
−
∫ t

0

(d+ q + 1)dτ

)
= 0, t > 0.

However, q can be solved explicitly as

q(t) =

[
A1 −A2

d1 −A1

d0 −A2
exp (A2 −A1)t

] [
1− d1 −A1

d0 −A2
exp (A2 −A1)t

]−1

.

Therefore for A2 > d0 ≥ A1 one has d(t) ≥ q(t) ≥ A1; for d0 ≥ A2 one has d(t) ≥
q(t) ≥ A2. The possible breakdown occurs only when d0 < A1 because

q(t∗) = −∞, t∗ =
1

A2 −A1
log

d1 −A2

d0 −A1
> 0.

The lower bound of d cannot be ensured for d0 < A1. However, d0 ≥ A1 is sufficient
to ensure the global existence of the smooth solution.
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5. L1 stability of shock profiles. Let us rewrite (1.1) as

ut + f(u)x = Q ∗ u− u, f = u2/2.(5.1)

A shock wave with speed s ∈ R is a solution of (5.1) of the form U(x − st), with
U approaching two different shock states u± at far field. The function U formally
satisfies the equation

−sU ′ + f(U)′ = Q ∗ U − U, U(±∞) = u±.

The critical threshold phenomenon revealed in the previous sections suggests that the
smooth shock profile is possibly subject to some constraints on the shock strength.

Indeed the existence of the shock profiles for (5.1) with convex flux function f has
been proved [23, Theorem 3.1], which we state below, for Q = 1

2e
−|x|, for the reader’s

convenience.
Theorem 5.1. Assume f ′′ > 0. Then the Lax shock condition

f ′(u+) < s < f ′(u−)(5.2)

and the Rankine–Hugoniot shock condition

H(u+) = 0, H(u) ≡ −s(u− u−) + f(u)− f(u−),(5.3)

are necessary conditions for the existence of a traveling wave solution

U(z ≡ x− st), lim
z→±∞U(z) = u±,

for (5.1). Conversely, if (5.2) and (5.3) hold, then a sufficient condition for the
existence of such a traveling wave is

4 sup
u+<u<u−

{−f ′′(u)H(u)} ≤ 1,

and a necessary condition is

4{−f ′′(u∗)H(u∗)} ≤ 1.

Here u∗ is defined by

f ′(u∗) = s.

Note that for the Burgers’ flux f = u2/2, the shock speed by the Rankine–
Hugoniot relation (5.3) becomes s = u++u−

2 . If the shock condition (5.2), i.e.,

u+ < u−

holds, then there exists such a traveling wave if and only if

|u+ − u−| ≤
√
2.(5.4)

This shows that the traveling wave solutions of the R-C-E equation give narrower
shock layers than those of the viscous Burgers’ equation.

Recall that the solution operator

S(t) : L∞(R) → L∞(R), t ≥ 0,
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satisfies the nice properties listed in section 2, which ensures that S(t) can be well
extended to L1(R) + L∞(R) and preserves all those properties.

To reformulate the stability problem, we introduce the following set:

A := U + L1(R),

which is a complete metric space with the metric

ρ(a1, a2) = ‖a1 − a2‖1.

We also set two subspaces of A,

A1 := {U(·+ k), k ∈ R}
and

A2 = {a ∈ A : lim
t→∞S(t)a exists and lim

t→∞S(t)a ∈ A1}.

Equipped with the above notations, we see that proving the stability result in
Theorem 1.2 reduces to proving the relation

A ∩ [u+, u−] ⊂ A2,(5.5)

provided S(t)a is smooth.
We introduce the ω-limit set of a as

ω(a) = ∩s≥0∪t≥s{S(t)a}.
This ω-limit set is invariant for S(t). In fact, the definition implies that b ∈ ω(a) if
and only if there is a sequence {tk} → ∞ such that

ρ(S(tk)a, b) → 0.

The following lemma plays a critical role in proving (5.5).
Lemma 5.2. If a, b ∈ A ∩ [u+, u−] and a− b does not keep same sign on R, then

‖S(t)a− S(t)b‖1 < ‖a− b‖1, t > 0.

Proof. By Kružkov’s argument [10] we have

∫ T

0

∫
R

{|u− v|φt + sgn(u− v)[f(u)− f(v)]φx}dxdt

≥
∫ T

0

∫
R

{|u− v| − sgn(u− v)G ∗ (u− v)}φdxdt,

where φ is an arbitrary nonnegative test function. Thus, by taking φ(x, t) = χ(t)ψ(x, t),
letting ψ = 1 − gε(|x − x0| −M(T − t)) with M = sup|f ′| tend to the function that
is identically one, and letting χ(t) approximate the indicator function of the interval
[0, t], we conclude

(5.6)

‖a− b‖1 − ‖S(t)a− S(t)b‖1 ≥
∫

R

|S(t)a− S(t)b| − sgn(a− b)G ∗ (S(t)a− S(t)b)dx.
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Using the monotonicity of S(t) we see that if a − b changes sign on R, then so does
S(t)a− S(t)b. Note that since ‖Q‖1 = 1, we find that∫

R

|u| − sign(u)Q ∗ udx = 0

if and only if u does not change sign or u ≡ 0. This shows that the right-hand side of
(5.6) is positive if a− b changes sign on R.

Armed with the above lemma we proceed to complete the stability proof via the
following steps, which have become standard since the work by Osher and Ralston
[16] and Serre [18].

First we restrict our stability proof to the initial data in

N(U, k1, k2) := {a ∈ A, U(x+ k1) ≤ a(x) ≤ U(x+ k2), for some k1, k2 ∈ R},
and we can later extend our argument to a larger class using the following dense
lemmas.

Step 1 (dense argument). We first show that both A1 and A2 are complete
subspaces of A.

Lemma 5.3. Let U be the monotone shock profile; then Ai, i = 1, 2, are close in
A.

Proof. We first show the closeness of A1. It is easy to see that for any k ∈ R,
U(x+ k) ∈ A since

‖U(·+ k)− U(·)‖1 = |k(u+ − u−)| <∞.

We assume U(x+ kn) converges in A; then it is a Cauchy sequence. Note that

‖U(·+ kn)− U(·+ km)‖L1 = |(kn − km)(u+ − u−)|
implies kn is also a Cauchy sequence in R. Let its limit be k; then by letting m→ ∞
in the above equation, one finds that the limit of U(x+ kn) is U(x+ k) ∈ A1.

We now turn to showing the closeness of A2. Let ak ∈ A2 be a Cauchy sequence
with its limit being a ∈ A. We need to show a ∈ A2. Note that for each ak ∈ A2

we have that limt→∞ S(t)ak = ãk ∈ A1 exists. Hence ãk is a Cauchy sequence in the
complete metric space A1, for

‖ãk − ãl‖1 = lim
t→∞ ‖S(t)ak − S(t)al‖1 ≤ ‖ak − al‖1.

We denote the limit of ãk by ã as k → ∞, which, when combined with the closeness
of A1, implies that ã ∈ A1. Therefore a ∈ A2 since

‖S(t)a− ã‖1 ≤ ‖S(t)a− S(t)ak‖1 + ‖S(t)ak − ãk‖1 + ‖ãk − ã‖1 → 0

as k → ∞ and t→ ∞.
Lemma 5.4. For any given k1, k2 ∈ R, the set N(U, k1, k2) is dense in A ∩

[u+, u−].
The proof can be done as in [16]; the details are omitted.
Step 2 (compact criteria).
Lemma 5.5. For any k1, k2 ∈ R, the ω-limit set ω(N(U, k1, k2)) is not empty.
Proof. It suffices to show that ∪t≥0{S(t)a} is precompact for any a ∈ N(U, k1, k2).

Indeed, due to a− U ∈ L1 and the L1 contraction of S(t) we have

‖S(t)a− U‖1 = ‖S(t)a− S(t)U‖1 ≤ ‖a− U‖1 <∞, t ≥ 0.
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The L1 equicontinuity follows from the fact that

‖S(t)a(x+ h)− S(t)a(x)‖1 ≤ ‖a(x+ h)− a(x)‖1 → 0

uniformly in time as h goes to zero. Using the semigroup property of S(t), we have

U(x+ k1) ≤ S(t)a ≤ U(x+ k2), t ≥ 0.

Hence

||S(t)a−U(x)||L1(|x|>M)≤ max{‖U(·+k1)−U‖L1(|x|>M), ‖U(·+k2)−U‖L1(|x|>M)}→0

uniformly in t as M goes to ∞.
When recalling the Frechet–Kolmogorov–Riesz compactness theorem, the above

facts yield that ∪t≥0{S(t)a} is precompact.
Step 3 (time-invariance).
Lemma 5.6. Let b ∈ ω(N(U, k1, k2)). Then for any given k ∈ R

‖b− U(·+ k)‖1 = ‖S(t)b− U(·+ k)‖1.

Proof. Since b ∈ ω(N(U, k1, k2)), we see that there exists a ∈ N(U, k1, k2) and a
sequence {tn} such that tn → ∞ as n→ ∞ and

lim
n→∞ ‖S(tn)a− b‖1 = 0.

Given any k ∈ R, by contraction of S(t) we know that

‖S(t)a− U(x+ k)‖1 = ‖S(t)a− S(t)U(x+ k)‖1

is decreasing in time and thus admits a limit ck ≥ 0 as t→ ∞, i.e.,

lim
t→∞ ‖S(t)a− U(x+ k)‖1 = ck ≥ 0.

Letting t = tn in the above equation and passing to the limit, we have

‖b− U(·+ k)‖1 = ck.

Note that if b ∈ ω(a), then S(t)b ∈ ω(a) (ω is invariant under the flow); thereby

‖S(t)b− U(·+ k)‖1 = ck.

Therefore

‖S(t)b− U(·+ k)‖1 = ‖b− U(·+ k)‖1 ∀t > 0, k ∈ R.

We are now ready to prove (5.5). We first prove

N(U, k1, k2) ⊂ A2.

By Lemma 5.5 we know that ω(N(U, k1, k2)) is not empty. For a ∈ N(U, k1, k2)
and b ∈ ω(a), we need to show that there exists a k ∈ R such that

b = U(x+ k).
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Lemma 5.6 shows that

‖b− U(·+ k)‖1 = ‖S(t)b− U(·+ k)‖1 = ck.

Noting that U(x+ k) is the fixed point of S(t), Lemma 5.2 shows that b− U(x+ k)
must stay with one sign.

Therefore, choosing

k =

∫
R

(a− U)dx/(u+ − u−)

gives

ck =

∫
R

[b− U(·+ k)] =

∫
R

[a− U(·+ k)] = 0.

On the other hand, since the initial data a are assumed to be above the critical
threshold, ∂x(S(t)a) is uniformly bounded with respect to t, and hence b is Lipschitz
continuous. This regularity combined with the above fact yields

b = U(x+ k).

We now conclude the proof of (5.5). Let a ∈ A ∩ [u+, u−]. We need to show
a ∈ A2.

Using Lemma 5.4 shows that there exists an ∈ N(U, k1, k2) ∈ A such that ‖an −
a‖1 → 0 as n→ ∞. By the above proved fact we see that there exists kn such that

lim
t→∞ ‖S(t)an − U(·+ kn)‖1 = 0.

This tells us that an ∈ A2. Due to the closeness of A2, the limit a also belongs to A2.
Therefore there exists a k such that

lim
t→∞ ‖S(t)a− U(·+ k)‖1 = 0;

as argued above, the constant k as the limit of
∫

R
(an − U)dx/(u+ − u−) is

∫
R

(a− U)dx/(u+ − u−)

since | ∫ (an − a)dx| ≤ ‖an − a‖ → 0 as n→ ∞. This completes the proof of (5.5) and
thereby of Theorem 1.2.
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