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Abstract. Numerical methods were first put into use as an effective tool for
solving partial differential equations (PDEs) by John von Neumann in the mid-
1940s. In a 1949 letter von Neumann wrote “the entire computing machine is
merely one component of a greater whole, namely, of the unity formed by the
computing machine, the mathematical problems that go with it, and the type
of planning which is called by both.” The “greater whole” is viewed today as

scientific computation: over the past sixty years, scientific computation has
emerged as the most versatile tool to complement theory and experiments,
and numerical methods for solving PDEs are at the heart of many of today’s
advanced scientific computations. Numerical solutions found their way from
financial models on Wall Street to traffic models on Main Street. Here we
provide a bird’s eye view on the development of these numerical methods with
a particular emphasis on nonlinear PDEs.
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1. Introduction

Partial differential equations (PDEs) provide a quantitative description for many
central models in physical, biological, and social sciences. The description is fur-
nished in terms of unknown functions of two or more independent variables, and the
relation between partial derivatives with respect to those variables. A PDE is said
to be nonlinear if the relations between the unknown functions and their partial
derivatives involved in the equation are nonlinear. Despite the apparent simplic-
ity of the underlying differential relations, nonlinear PDEs govern a vast array of
complex phenomena of motion, reaction, diffusion, equilibrium, conservation, and
more. Due to their pivotal role in science and engineering, PDEs are studied exten-
sively by specialists and practitioners. Indeed, these studies found their way into
many entries throughout the scientific literature. They reflect a rich development
of mathematical theories and analytical techniques to solve PDEs and illuminate
the phenomena they govern. Yet, analytical theories provide only a limited account
for the array of complex phenomena governed by nonlinear PDEs.

Over the past sixty years, scientific computation has emerged as the most ver-
satile tool to complement theory and experiments. Modern numerical methods,
in particular those for solving nonlinear PDEs, are at the heart of many of these
advanced scientific computations. Indeed, numerical computations have not only
joined experiment and theory as one of the fundamental tools of investigation, but
they have also altered the kind of experiments performed and have expanded the
scope of theory. This interplay between computation, theory, and experiments was
envisioned by John von Neumann, who in 1949 wrote “the entire computing ma-
chine is merely one component of a greater whole, namely, of the unity formed by
the computing machine, the mathematical problems that go with it, and the type
of planning which is called by both” [156, p. 77]. Numerical solutions of nonlin-
ear PDEs were first put into use in practical problems, by von Neumann himself,
in the mid-1940s as part of the war effort. Since then, the advent of powerful
computers combined with the development of sophisticated numerical algorithms
has revolutionized science and technology, much like the revolutions that followed
the introduction of the microscope and telescope in the seventeenth century. Pow-
ered by modern numerical methods for solving for nonlinear PDEs, a whole new
discipline of numerical weather prediction was formed. Simulations of nuclear ex-
plosions replaced ground experiments. Numerical methods replaced wind tunnels
in the design of new airplanes. Insight into chaotic dynamics and fractal behavior
was gained only by repeating “computational experiments”. Numerical solutions
of nonlinear PDEs found their way from financial models on Wall Street to traffic
models on Main Street.

In this review we provide a bird’s eye view on the development of these numer-
ical methods, with a particular emphasis on nonlinear PDEs. We begin in section
2 with a brief discussion of a few canonical examples of nonlinear PDEs, where
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we make the usual distinction between two main classes of boundary-value prob-
lems and time-dependent problems. These examples serve as a concrete “platform”
for our discussion on the construction, analysis and implementation of numerical
methods for the approximate solution of nonlinear PDEs. In section 3 we demon-
strate the construction and implementation of numerical methods in the context
of the canonical PDEs mentioned above. Here, we focus attention on the four
main classes of numerical methods: finite-difference methods, finite-element meth-
ods, finite-volume methods, and spectral methods. The limited scope of this review
requires us to make a selection of topics; we chose to emphasize certain aspects of
numerical methods pertaining to the nonlinear character of the underlying PDEs.
In section 4 we discuss the basic concepts involved in the analysis of numerical
methods: consistency, stability, and convergence. The numerical analysis of these
concepts is fairly well understood in the linear setup. Again, we chose to highlight
here the analysis of numerical methods in the nonlinear setup. Much like the theory
of nonlinear PDEs, the numerical analysis of their approximate solutions is still a
“work in progress”.

We close this introduction with a brief glossary.

Variables, functions and vector functions. We use boldface letters to denote vec-
tors, e.g., w(x) : Rd �→ R is a real-valued function of the d-vector variables
x = (x1, . . . , xd) ∈ Rd, and w(x) : Rd �→ Rp is a p-vector function in x. Similarly,
wj denotes a gridfunction defined at Cartesian gridpoints, xj = (j1Δx1, . . . , jdΔxd),
where Δx = (Δx1, . . . ,Δxd) is the mesh size and j = (j1, . . . , jd) ∈ Zd denotes a
d-vector of indices of size |j| =

∑
jk. The Euclidean �2-product and norm are de-

noted by 〈w,v〉 =
∑

j ujvj and |w|2 = 〈w,w〉, respectively. We let ŵ(k) denote

the Fourier coefficients of w(x).

Geometry. We use Ω as a generic notation for a connected domain in Rd with a
smooth boundary ∂Ω, and we let 1Ω denote its characteristic function

1Ω(x) =

{
1 x ∈ Ω,
0 x /∈ Ω.

We let ΩΔ denote different discretizations of Ω, which are identified by one or
more small discretization parameters, Δ. For example, a Cartesian grid, {xj | xj ∈
Ω} with small cells of length Δ :=

∑
j Δxj , a triangulation of a two-dimensional

domain, Ω =
⋃

j Tj of small size Δ := maxj diamTj , etc., ∂ΩΔ denotes the discrete
boundary, i.e., the elements of ΩΔ that are not fully enclosed inside the interior of
Ω.

Differential and difference operators. We abbreviate ∂j := ∂j1
x1
∂j2
x2

· · · ∂jd
xd

, to denote
a partial differentiation of order |j|. Lp denotes the usual Lebesgue spaces and
Wm(Lp) denotes the Sobolev space, {w |

∑
|j|≤m ‖∂jw‖Lp < ∞} for m = 1, 2, . . . ,

and is defined by duality for m = −1,−2, . . . , with the necessary modifications for
p = 1,∞. The important special case p = 2 is often encountered with its own special
notation of Sobolev space Hm and its zero trace subspace Hm

0 [150, 1]. The gradient
of w(x) is the d-vector of its first derivatives, ∇w := (∂1w, . . . , ∂dw); in particular,
∂nw = ∇w · n denotes differentiation in a normal direction n, and d

dxw(x) ≡ w′(x)

denotes univariate differentiation. The Hessian, D2w, is the d×d matrix consisting
of the second derivatives, D2w := {∂jkw}dj,k=1, and its trace is the Laplacian, Δw =∑d

j=1 ∂
2
jw. We use UPPERCASE letters to identify numerical approximations of
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(vector) functions, which are denoted by the corresponding lowercase letters, e.g.,
W(x), Cj, . . . are viewed as approximations of w(x), c(xj), . . . , etc. We let D±xj

denote the divided difference operator

D±xk
Wj = ±Wj1,...,jk±1,...,jd −Wj

Δxk
.

Finally, X ≈ Y indicates that X − Y → 0 as the small discretization parameter
Δ ↓ 0, and we use X <∼ Y to denote the estimate X ≤ CY , where C is a constant
which may depend on w(·),W(·), and their derivatives, divided differences, etc.,
but is independent of Δ.

2. Examples of nonlinear PDEs

We consider nonlinear PDEs, which take the form

(2.1) A
(
∂sw, ∂s−1w, . . . , ∂w,w,x

)
= g(x).

Here, w := (w1(x), . . . , wp(x)) : Ω �→ Rp is the vector of p unknown functions of
the independent variables, x := (x1, . . . , xd) ∈ Ω ⊂ Rd

x, and g : Ω �→ Rp is given. If
time is involved as one of the independent variables, it is customary to identify it as
the zeroth variable, x0 = t. The highest derivative involved, s = |s|, determines the
order of the equation. The equation is nonlinear if A is nonlinear in w or any of its
s partial derivatives. Often, nonlinear PDEs involve one or more small parameters,
which dictate the multiscale character of the nonlinear problem. Below, we identify
such parameters with typical notations of �, ε, ν, λ, κ, etc. A few examples are in
order.

2.1. Examples of boundary-value PDEs. We begin with a canonical example
of the first-order Eikonal equation,

(2.2) |∇xw| = g(x), w : Ω �→ R, Ω ⊂ R2
x.

Equation (2.2) arises in several different contexts, notably in geometrical optics,
optimal control, and computer vision [74, 76, 183, 171]. It is the forerunner for
the large class of nonlinear Hamilton–Jacobi equations whose solution, properly
interpreted [57], is uniquely determined by the prescribed boundary values, w(x) =
b(x), x ∈ ∂Ω.

We continue with a prototype nonlinear PDE which arises in geometry,

(2.3a) ∇x ·
( ∇xw√

1 + |∇xw|2
)

= g(x), w : Ω �→ R, Ω ⊂ R2
x.

Here, we seek a solution w ≡ w(x) defined over a domain Ω (which for simplicity is
assumed to be convex), whose graph has the given mean curvature, g : Ω �→ R, and
is subject to Dirichlet boundary conditions, w(x) = b(x), x ∈ ∂Ω. When g = 0,
(2.3a) is the minimal surface equation [70, 170, 34, 76], whose solution is identified
as the minimizer of the surface area

(2.3b) w = arg min
u

{∫
Ω

√
1 + |∇xu|2 dx

∣∣∣ u|∂Ω = b
}
.

The minimal surface equation is an example of a nonlinear second-order PDE of
elliptic type [88, 30, 99].
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Another example of a nonlinear system of PDEs encountered in the context of
image processing is the degenerate elliptic equation [165, 2, 178],

(2.4) w − λ∇x ·
(

∇xw

|∇xw|

)
= g(x), w : Ω ⊂ R2

x �→ R3.

This system of equations governs a 3-vector, w ≡ w(x), which measures the in-
tensity of red, green, and blue pixels in a colored image. Given a noisy image,
g ≡ g(x) : Ω �→ R3, the purpose is to find its denoised version, w(x), by diffusing
the noise in directions parallel to the image edges. Here, λ > 0 is a diffusive scaling
parameter which may depend on |∇xw|. Similarly to the minimal surface equation,
(2.4) can be derived from an appropriate variational principle. It is augmented with
a Neumann-type boundary condition, ∂nw|∂Ω = 0.

An example of a fully nonlinear elliptic PDE is encountered in optimal transport
problems, which are governed by the Monge–Ampère equation [29, 218],

(2.5) DetD2w = Q
(
x, w,∇xw

)
, w : Ω �→ R, Ω ⊂ Rd

x.

Here, w ≡ w(x) is the convex potential whose gradient, ∇xw, maps the optimal
transportation path and is subject to Dirichlet-type boundary conditions, w(x) =
b(x), x ∈ ∂Ω.

2.2. Examples of time-dependent PDEs. Atomic physics is dominated by the
Schrödinger equation

(2.6) i�∂tw +
�2

2m
Δw − V (w)w = 0, w : Rt≥t0 × Rd

x �→ C.

The equation governs a complex-valued wavefunction, w ≡ w(t,x), associated with
a particle of mass m and driven by a potential V (w). Starting with a given initial
state, w(t0,x) = f(x), a solution w(t,x) is sought for t > t0. The equation is
semilinear in the sense that its nonlinearity involves only w but no higher deriva-
tives. It depends on a quantum scale, dictated by the small Planck’s constant
� ∼ 10−34. As another example of a semilinear PDEs with a pivotal role in math-
ematical physics, we mention the Boltzmann equation [67, 35], which provides a
microscopic description of the dynamics of many particles in dilute gases.

Turning to models on the “human scale”, we consider as a prototype the one-
dimensional system of convection-diffusion equations,

(2.7a) ∂tw + ∂xF(w) − ν∂xQ
(
∂xw

)
= g(t, x), w : Rt≥t0 × Ω �→ Rp,

defined over an interval Ω ⊂ Rx. It is complemented by prescribed initial values,
w(t0, x) = f(x), and appropriate boundary conditions along Rt≥t0 × ∂Ω. Many
models in fluid dynamics and elasticity theory are governed by convection-diffusion
equations which involve a p-vector of conserved quantities, w ≡ w(t, x), such as
density, momentum, total energy, etc. Their convection is governed by the non-
linear flux, F(w) := (F1(w), . . . , Fp(w)), and Q(∂xw) := (Q1(∂xw), . . . , Qp(∂xw))
represents various diffusive mechanisms such as viscosity, heat conductivity, etc.
Often, diffusion enters the problem with a small amplitude, ν ≈ 0. The p-vector
functions g ≡ g(t, x), models different source terms. When ν = 0, (2.7a) is reduced
to

(2.7b) ∂tw + ∂xF(w) = g(t, x), w : Rt≥t0 × Ω �→ Rp, Ω ⊂ Rx.

This is a first-order system of balance laws of hyperbolic type, assuming that the
eigenvalues of the Jacobian matrix, Fw(w), are real; in the particular case g = 0,
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it is a system of conservation laws [182, 59, 131]. When diffusion is added, ν > 0,
the second-order system (2.7a) is of parabolic type, assuming the diffusion matrix
is positive, Qw(w) > 0 [81, 187, 125]. In either case, (2.7a), (2.7b) are examples of
quasilinear PDEs, in the sense that they depend linearly on the highest derivative
appearing in the equation, whether ν > 0 or ν = 0.

The compressible Navier–Stokes equations [56, 140] provide a macroscopic de-
scription of gases; the incompressible Navier–Stokes equations [51, 139, 144, 124]
govern a macroscopic dynamics of liquids. These are the most important examples
for multidimensional convection-diffusion equations, with a vast literature on their
numerical solution. When viscosity effects are neglected, one obtains the Euler
equations. As an example, we record here the rotational shallow-water equations
[163, 145]. Expressed in terms of the 3-vector, w = (h,v), where v = (v1, v2) are
the velocity components in the x = (x1, x2)-coordinates, x ∈ Ω ⊂ R2

x, and h is
the total height of the flow (which is assumed shallow relative to the horizontal x
scales), the systems of equations read

(2.8a) ∂tw+ (v · ∇x)w+

⎡⎣ h∇x · v
ghx1

ghx2

⎤⎦+ f

⎡⎣ 0
−v2
v1

⎤⎦ = 0, w : Rt≥t0 ×Ω �→ R3.

Here g is the acceleration gravity and f is the Coriolis parameter which signifies
the rotation frequency. If we neglect the variations in h, then by taking the curl
of (2.8a) we find that w := ∂x1

v2 − ∂x2
v1 satisfies the vorticity equation associated

with the inviscid Euler equations,

(2.8b) ∂tw + v · ∇xw = 0.

The divergence-free velocity field, v(x) = (−∂x2
, ∂x1

)Δ−1w(x), reflects the incom-
pressibility of the flow.

Our next example of a multidimensional convection-diffusion equation is drawn
from the biological literature: the chemotaxis model [119, 106, 78, 104] is given by,

(2.9a) ∂tw + κ∇x ·
(
w∇xc

)
− Δxw = 0, w : Rt≥t0 × Ω �→ R, Ω ⊂ R2

x.

Here, w ≡ w(t,x) represents the scalar density of bacteria or amoebae cells that
have drifted due to a chemo-attractant with concentration c ≡ c(t,x). The drift or
convection is modeled by the flux, F(w) = w∇xc, where concentration is coupled
to the density through the Poisson’s equation,

(2.9b) Δxc = −w, c : Rt≥t0 × Ω �→ R.

Equation (2.9) is augmented with initial conditions, w(t0,x) = f(x), and Neumann-
type boundary conditions, ∂nu(t,x) = ∂nc(t,x) = 0, x ∈ ∂Ω. The parameter κ > 0
quantifies the sensitivity by measuring the nonlinearity in the system.

We conclude with an example from topology. The Ricci flow, introduced by
Hamilton [98] and used by Perelman [164, 153] to solve the Poincaré conjecture,
takes the form

(2.10) ∂twαβ = 2 Ricαβ(t,x), w : Rt≥0 ×M �→ R3×3.

Here the unknown w ≡ wαβ(t,x) is a 3× 3 time-dependent array of a Riemannian
metric on a manifold M, and Ric = Ricαβ is the Ricci curvature tensor associated
with M.
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2.3. Well-posed problems. Nonlinear PDEs such as the equations mentioned
above are to be augmented with boundary conditions, where the values of the
unknown w(·) and/or of its derivatives are prescribed along the boundary of the
domain Ω. In particular, time-dependent problems are augmented with initial
values prescribed at the initial time, t = t0. Additional auxiliary conditions, such
as closure relations, entropy conditions, regional invariance, etc., are often required
to complement the full statement of nonlinear PDEs. The combination of one or
more nonlinear PDEs, augmented with prescribed initial and boundary conditions
together with necessary auxiliary conditions, form the typical “problem” we are
interested in. It is assumed that the problem is well posed, in the sense of satisfying
the following three conditions:

(i) It admits a solution.
(ii) This solution is unique; thus, there exists a well-defined solution operator,

which maps the boundary data b(·), the inhomogeneous data g(·), and, in
the time-dependent problem, the initial data w0(·), to the solution w(·):{

g(·),b(·)
}
�→ w(·) or

{
w0(·),g(t, ·),b(t, ·)

}
�→ w(t, ·).

(iii) The solution operator depends continuously on the prescribed initial,
boundary, and inhomogeneous data.

This notion of well-posedness requires a proper notion of solution and a proper
metric to quantify its continuous dependence on the data. We shall not discuss
these issues here except for noting that the theory of nonlinear PDEs is still very
much a “work in progress”. We refer to [57, 30, 207, 76, 139, 140, 182, 59, 204]
and the references therein for examples of such recent work.1 Indeed, two out of
the remaining six open problems offered as the “Millennium Problems” by the Clay
Institute [46] have their roots in nonlinear PDEs—the Navier–Stokes equations
and the Yang–Mills theory. A seventh Clay problem of the Poincaré conjecture
was proved by PDE tools; consult [203]. Numerical methods provide a quantitative
and qualitative insight for problems governed by nonlinear PDEs, a complementary
avenue to the theoretical studies of such problems.

3. Numerical methods

There is a variety of different numerical methods for the approximate solution
of nonlinear PDEs. These methods are classified according to their representation
of approximate solutions. We shall mention the four main ones, beginning with the
oldest [55].

3.1. Finite-difference methods. Finite-difference methods consist of a discrete
grid, ΩΔ := {xj}, and a gridfunction, WΔ := {Wj}. The grid ΩΔ is a graph of
discrete gridpoints xj ∈ Ω ⊂ Rd

x and a certain set of their neighbors, xjk , jk ∈
N (j). The vectors {xj − xjk}jk∈N (j) form the stencil associated with xj. Here, Δ
abbreviates one or more discretization parameters of the underlying grid, ΩΔ, which
measure the clustering of these neighbors: the smaller Δ is, the closer xjk are to xj.
Divided differences along appropriate discrete stencils are used to approximate the
partial derivatives of the PDE (2.1). The resulting relations between the divided
differences form a finite-difference scheme. Its solution, {Wj}, is sought as an

1Our bibliography does not intend to be comprehensive but to provide a mixture of classic and
modern references.
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approximation to the pointvalues of the exact solution of the PDE (2.1), {w(xj)}, as
we refine the grid by letting Δ ↓ 0. Finite-difference methods provide a versatile tool
for the numerical solution of PDEs: their derivation in terms of divided differences
is straightforward, they are easy to implement, and they appeal to the full spectrum
of linear and nonlinear PDEs.

The typical framework of finite-difference methods is based on Cartesian grids
of equispaced gridpoints. As a concrete example, we will consider two-dimensional
spatial variables, which are conveniently relabeled as (x, y) ∈ Ω ⊂ Rx × Ry. The
domain Ω is covered with a Cartesian grid, ΩΔ = {(xj , yk) := (jΔx, kΔy) ∈ Ω}.
A gridfunction, {Wjk, (xj , yk) ∈ ΩΔ}, is sought as an approximation for the
corresponding pointvalues of an exact solution, wjk := w(xj , yk), as Δ := |Δx| +
|Δy| tends to zero. The gridfunction {Wjk} is obtained as the solution of an
appropriate finite-difference scheme. The construction of such schemes proceeds
by replacing partial derivatives with approximate divided differences. For example,
one may use

D+xWjk :=
Wj+1,k −Wjk

Δx
, D−yWjk :=

Wjk −Wj,k−1

Δy
,

D0xWjk :=
Wj+1,k −Wj−1,k

2Δx
,

(3.1)

where D+x, D−y, D0x are standard difference operators based on forward, back-
ward, and a centered stencils, which enable us to abbreviate the lengthy formulation
of finite-difference schemes. There is a large variety of such difference operators to
approximate first- and higher-order derivatives.

We now put these ingredients into the construction of a finite-difference approx-
imation for the Eikonal equation (2.2),

(3.2a) |∇Wjk| = g(xj , yk), (xj , yk) ∈ ΩΔ,

where ∇Wjk stands for a approximate gradient,

(3.2b) ∇Wjk =
(

max{D−xWjk ,−D+xWjk , 0} , max{D−yWjk ,−D+yWjk , 0}
)
.

The reason for this judicious choice of divided differences in (3.2b) is tied to the fact
that the underlying Eikonal solution sought in (2.2) is not necessarily differentiable.

In a similar manner, we discretize the minimal surface equation (2.3a),
(3.3)

D+x

(
D−xWjk√

1 + |∇−Wjk|2

)
+ D+y

(
D−yWjk√

1 + |∇−Wjk|2

)
= g(xj , yk), (xj , yk) ∈ ΩΔ.

Here we set |∇−Wjk|2 = |D−xWjk|2 + |D−yWjk|2, using backward differences to
discretize the gradient. The finite-difference scheme (3.3) is complemented by the
prescribed boundary values, Wjk = b(xj , xk), (xj , yk) ∈ ∂ΩΔ.

A similar finite-difference discretization of the denoising model (2.4) reads

Wjk − λ

[
D−x

(
D+xWjk√

ε2 + |∇+Wjk|2

)
+ D−y

(
D+yWjk√

ε2 + |∇+Wjk|2

)]
= (xj , yk), (xj , yk) ∈ ΩΔ.

(3.4)

A small parameter, 0 < ε � Δ, was introduced to avoid the singularity of the
discrete gradient in the denominators on the left; note that this time we chose
to discretize the gradient using forward biased differencing. The finite-difference
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Figure 3.1. Five-point stencil (0− 4), seven-point stencil (0− 6),
and nine-point stencil (0 − 8).

scheme (3.4) is complemented by the prescribed normal derivatives, DnWjk, when-
ever (xj , yk) ∈ ∂ΩΔ.

The finite-difference schemes (3.2), (3.3), and (3.4) amount to nonlinear systems
of algebraic equations, A(WΔ) = GΔ, for the unknowns, WΔ = {Wjk}. The sys-
tems are sparse in the sense that each unknown, Wjk or Wjk, is connected only to
its immediate neighboring gridvalues, depicted in Figure 3.1. The solution strat-
egy for such systems is often tied to the nature of the underlying PDEs. Thus for
example, the stencil of Eikonal solver (3.2) involves at most five neighboring grid-
points. The one-sided differences in (3.2) propagate information in the “upwind”
directions, namely, from the prescribed boundary data, Wjk = b(xj , yk)|(xj ,yk)∈∂ΩΔ

,
into the interior of the computational domain, ΩΔ. The resulting algebraic equa-
tions, A(WΔ) = GΔ, can be solved efficiently by the fast marching method [183].
The stencils on the left of (3.3) and (3.4) involve seven gridpoints and are not
symmetric; to avoid the lack of symmetry, one may alternate between forward and
backward biased stencils, which ends up with a symmetric stencil based on nine
neighboring gridpoints. The solution of sparse algebraic systems that arises from
discretizations of elliptic equations such as (3.3) and (3.4) is accomplished by stan-
dard iterative solvers [92, 215, 179]. There are several major approaches that take
advantage of the intimate relation between the algebraic system and its underlying
boundary-value PDE: we mention in this context the important classes of multigrid
methods and the fast multipole methods [24, 94, 219] as the forerunners for a vast
literature. Figure 3.2 demonstrates the successive solution of (3.4) for hierarchical
decomposition of an MRI image.

Figure 3.2. Hierarchical decomposition of an MRI image [200].
Starting with the image, W0 on the left, the figure shows its suc-
cessive decompositions,

∑m
n=0 W

n,m = 3, 4, 5, 6, where Wn is the
solution of (3.4) with λ = 4m−1 · 10−3 and g �→ Wn−1.
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Figure 3.3. A finite-difference approximation based on a 17-
point stencil (3.5b). (a) A finite-difference solution (3.5a) of
the Monge–Ampère equation DetD2w(x) = 1 on Ω = the unit
square, subject to the boundary condition, w(x) = 1, x ∈ ∂Ω.
(b) A finite-difference solution of Pucci problem, 2λ−(D2w(x)) +
λ+(D2w(x)) = 0, subject to the boundary condition, w(x) =
x2
1 − x2

2, x ∈ ∂Ω.

We turn to examine a finite-difference approximation of the two-dimensional
Monge–Ampère equation (2.5), which is expressed in terms of the eigenvalues of
D2W ,

(3.5a) λ−(D2Wj)λ+(D2Wj) = Q(xj,Wj, D0xWj, D0yWj).

To evaluate the eigenvalues on the left, one employs a Rayleigh–Ritz characteriza-
tion of the smallest and largest eigenvalues of D2W ,

(3.5b)

{
λ−(D2Wj)
λ+(D2Wj)

}
≈
{

mink

maxk

}
Wj+jk − 2Wj + Wj−jk

|Δxjk |2
,

where the mink and maxk scan a predetermined stencil of gridpoints such that
xj ± Δxjk ∈ ΩΔ. The resulting nonlinear algebraic equations, A(WΔ) = GΔ, can
be solved by iterations: a numerical example of [158] is provided in Figure 3.3.

Next, we turn our attention to finite-difference methods for time-dependent prob-
lems. Here we seek gridfunctions, {Wn

jk}, defined on a space-time Cartesian grid,

(tn, xj , yk) := (nΔt, jΔx, kΔy). As an example, we consider a finite-difference
approximation of the Schrödinger equation (2.6),

(3.6) Wn+1
jk = Wn

jk + i
�Δt

2m

(
D+xD−x + D+yD−y

)
Wn

jk − i
Δt

�
V
(
Wn

jk

)
Wn

jk.

One starts with prescribed initial conditions, W0
jk = f(xj , yk), and uses the dif-

ference scheme (3.6) to compute the discrete wavefunction by advancing from one
time level, Wn := {Wn

jk}, to the next, Wn+1.
Similarly, the computation of a finite-difference approximation of convection-

diffusion equations (2.7) or (2.8) advances in discrete time steps. For example, a
difference scheme for (2.7a) takes the form

Wn+1
j =Wn

j − Δt

2Δx

(
F(Wn

j+1) − F(Wn
j−1)

)
+ ν

Δt

Δx

(
Q
(
D+W

n
j

)
−Q

(
D−W

n
j

) )
+ ΔtGn

j .

(3.7)
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Figure 3.4. The time evolution of vorticity in two-dimensional
inviscid Euler equations (2.8b) using a central difference scheme
[137] computed at t = 4, 6 and t = 10.

Figure 3.4 demonstrates a finite-difference computation of the vorticity equation
(2.8b).

Often, one is interested in discretizing only the spatial variables. For example,
a finite-difference discretization of the two-dimensional chemotaxis problem (2.9)
reads
(3.8)
d

dt
Wj = −κ

(
D+x

(
WjD−xCj

)
+ D+y

(
WjD−yCj

))
+
(
D+xD−x + D+yD−y

)
Wj.

Here, Wj ≡ W(j1,j2)(t) are the approximate densities at the gridpoints xj ∈ ΩΔ. The
missing boundary values {Wj(t), xj ∈ ∂ΩΔ} are recovered from the Neumann-type
boundary conditions DnWj(t) = 0. The approximate concentrations Cj ≡ Cj1,j2(t)
are obtained as a finite-difference solution of the Poisson equation (2.9b), based on
the standard five-point stencil

interior scheme :
(
D+xD−x + D+yD−y

)
Cj(t) = −Wj(t), xj ∈ ΩΔ,

boundary conditions : DnCj = 0, xj ∈ ∂ΩΔ.

In this fashion, one ends up with a semidiscrete approximation (3.8), called the
method of lines, which amounts to a nonlinear system of ordinary differential equa-
tions (ODEs) for the unknowns {Wj(t)}. The solution of such semidiscrete systems
is obtained by standard ODE solvers [82, 96, 97, 28].

The finite-difference schemes (3.2)–(3.8) are typical examples of finite-difference
approximations of nonlinear PDEs. The general recipe for such schemes can be ex-

pressed in terms of divided difference operators of order j, Dj
Δ = Dj1

+x1
Dj2

+x2
· · ·

Djd
+xd

, which are supported on the computational grid ΩΔ. A finite-difference
approximation of the PDE (2.1) is obtained by replacing the nonlinear relations
between partial derivatives of w in (2.1) with similar relations between divided
differences of the gridfunction, WΔ,

(3.9) A(Ds
ΔWj, D

s−1
Δ Wj, . . . , DΔWj,Wj,xj) = Gj,

xj = (xj1 , xj2 , . . . , xjd) ∈ ΩΔ ⊂ Rd
x.

Here, WΔ = {Wj} is the computed gridfunction and Gj are discrete approxima-
tions of the source term, Gj ≈ g(xj). We can distinguish between two main classes
of finite-difference methods:

Eitan
Typewritten Text
(

Eitan
Typewritten Text
)
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(i) Boundary-value problems, such as (3.2), (3.3), (3.4), and (3.5), lead to
nonlinear systems of algebraic equations, which we abbreviate

(3.10a) A(WΔ) = GΔ.

The vector gridfunction GΔ accounts for the discrete source terms, {Gj},
xj ∈ ΩΔ, and the boundary data, {bj}, xj ∈ ∂ΩΔ.

(ii) Time-dependent problems, such as (3.6), (3.7), (3.8), yield finite-difference
schemes of the form

(3.10b) Wn+1
Δ = A(Wn

Δ) + ΔtGn
Δ.

3.2. Finite-element methods. Finite-element methods (FEMs) offer great flexi-
bility in modeling problems with complex geometries and, as such, they have been
widely used in science and engineering as the solvers of choice for structural, me-
chanical, heat transfer, and fluid dynamics problems [190, 43, 114, 194, 44, 110, 25].
To this end, one partitions the domain of interest, Ω ⊂ Rd

x, into a set of nonover-
lapping polyhedrons, {Tj}. The grid, ΩΔ, is a graph of such polyhedrons, Tj ∈ Ω,
and a set of their neighbors, Tjk , jk ∈ N (j), which form the stencil associated
with Tj . The grid could be structured, e.g., a structured array of triangles derived
from two-dimensional Cartesian rectangles, or it could be an unstructured grid of
triangles or quadrilaterals in dimension d = 2, tetrahedra in d = 3, or other ele-
ments adapted to the underlying geometry of the PDE (2.1). Here, Δ abbreviates
the diameter, Δ = maxj diam(Tj), such that the elements |Tj | shrink uniformly as
Δ ↓ 0. A finite-element approximation, W(x) =

∑
j Wjϕj(x), is then realized in

terms of piecewise polynomial basis functions, {ϕj}, where ϕj is a piecewise poly-
nomial supported on the local stencil, {Tk}k∈N (j), associated with Tj . Examples
of two-dimensional triangular grids are depicted in Figure 3.5.

The platform of finite-element methods appeals to a wide range of nonlinear
boundary-value PDEs, which are expressed in different formulations. We shall
mention the main four.

(i) Weak formulations. As an example we begin with the weak formulation of the
two-dimensional minimal surface equation (2.3) subject to homogeneous Dirichlet
boundary conditions, which states that a solution w is sought such that for all
ϕ ∈ H1

0 (Ω), there holds

(3.11) B(w,ϕ) =

∫
Ω

g(x)ϕ(x)dx, B(w,ϕ) :=

∫
Ω

∇xw · ∇xϕ√
1 + |∇xw|2

dx.

Figure 3.5. Structured and unstructured triangulation of two-
dimensional domains.
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To proceed with its FEM approximation, we partition Ω into a nonoverlapping
triangulation ΩΔ := {Tj}. A piecewise polynomial finite-element approximation is
sought, W (x) =

∑
k Wkφk(x), in terms of polynomial elements, ϕk(x), supported

on {T�, � ∈ N (k)}. This stencil of neighboring triangle elements emphasizes the
local character of the FEM approximant. The integral representation of the minimal
surface equation (3.11) is now tested against the subspace of all test functions,
ϕ ∈ span{ϕj},

B(W,ϕj) =

∫
Ω

g(x)ϕj(x)dx, ∀ϕj ∈ H1
0 (Ω).

The computational versatility of FEMs is realized by decomposing the global prob-
lem (3.11) into simpler building blocks, which consist of polynomials over simple,
Δ-small geometric elements. By assembling the contribution of the different trian-
gular elements, we end up with a finite-element scheme,
(3.12a)∑

k∈N (j)

Ajk(W )Wk = Gj , Gj :=
∑

k∈N (j)

∫
Tk

g(x)ϕj(x)dx, j = 1, 2, . . . ,

where {Ajk(W )} is the stiffness matrix,

(3.12b) Ajk(W ) =

∫
Tk

∇xϕk · ∇xϕj√
1 + |

∑
�∈N (k)W�∇xϕ�|2

dx.

This amounts to a nonlinear system of algebraic equations, A(WΔ) = GΔ, relating
the finite-element approximation, WΔ = {Wk}, to the data, GΔ = {Gj}. The
integrals on the right of (3.12b) are evaluated using exact quadratures. To this
end, the polynomial element, W (x)|Tj

, is realized in terms of its pointvalues, Wj� ,
at preselected sets of nodes {xj�}� scattered inside and along the boundary of Tj . By
sharing common values of Wj� ’s across boundaries of neighboring elements, FEMs
enforce a minimal smoothness of their approximants while keeping the local nature
of differentiation. The finite-element framework enables one to assemble, discretize,
and derive an approximate FEM solution by solving the resulting large yet sparse
systems of nonlinear algebraic equations (3.12) for the WΔ’s. The solution of such
systems can be achieved by a host of direct of iterative methods. As we noted
before in the context of finite-difference approximations, the solution strategy is
often tied to the specific nature of the underlying PDEs; we mention in particular
preconditioning techniques, conjugate gradient and multi-level methods [24, 92,
215, 216, 220, 179].

(ii) Variational formulations. Instead of a weak formulation one may appeal to
a Dirichlet principle, a variational formulation where the solution of the (2.1) is
sought as a minimizer of an appropriate “energy” functional [83, 76, 73, 191],

(3.13) w = arg min
u∈W

I[ ∂ru, ∂r−1u, . . . ,u,x ].

Here, W is a properly defined class of functions adapted to the boundary (and
other side) conditions attached to our problem, so that the PDE (2.1) is realized
as the Euler–Lagrange equation associated with this energy functional. A discrete
solution is now sought as the minimizer of (3.13) over the finite-element space,
WΔ := span{ϕj}j ⊂ W , which in turn leads to a minimization algorithm for the
unknowns, WΔ = {Wj}. This is the Rayleigh–Ritz principle which was the original
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framework for the mathematical framework of FEMs [54]. Once again, the versatil-
ity of FEMs is realized here by decomposing the global problem (3.13) into simpler
building blocks of polynomials supported over simple, Δ-small geometric elements.
As an example, the variational formulation of the minimal surface equation, (2.3b),
realized over a two-dimensional triangulation {Tj} of a domain Ω, yields [115, 43]

WΔ = arg min
{Wk}

{∑
j

∫
Tj

√
1 +
∣∣ ∑
k∈N (j)

Wk∇xϕk

∣∣2dx ∣∣∣ ∑
j

Wjϕj(x)

≈ b(x), x ∈ ∂ΩΔ

}
.

The minimizers sought above can be found by standard iterative algorithms, such
as conjugate gradient and Krylov-based methods [92].

(iii) Saddle-point formulations. As an example, we reformulate the minimal
surface equation (2.3) as a first-order system for w = (u, w), such that for all
ψ,∇x ·ψ, ϕ ∈ L2(Ω), there holds⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Ω

(
√

1 + |∇xw|2 u ·ψdx + b(w,ψ) = 0,

b(ϕ,u) =

∫
Ω

g(x)ϕ(x)dx,

b(p,ψ) :=

∫
Ω

p∇x ·ψdx.

Many problems encountered in applications can be decomposed into pairs, w =
(u, p) such that the solution w is sought a saddle-point of an appropriate functional
I[u, p]. A canonical example is the pairing of stress and displacement in elasticity
equations, e.g. [4, 27, 110]. The resulting saddle-point problems are solved using
mixed finite-element methods [26, 9, 58, 4, 27], in which the basis functions ψj ∈
ΨΔ and ϕj ∈ ΦΔ are drawn from different but compatible discrete function spaces,
ΨΔ and ΦΔ. After the assembly of the finite-elements, one ends with a nonlinear
sparse system of algebraic equations, A(WΔ) = GΔ. The solution of such systems
requires that we be careful: the saddle-point formulation renders a null block on
the diagonal of A [4, 27]. As another example, we mention that the Monge–Ampère
equation (2.5) can be reformulated as a saddle-point problem and its finite-element
solution is sought using the least squares method [64, 23].

(iv) Boundary-element methods. Here one appeals to the integral formulation
of elliptic problems. Nonlinear boundary-value PDEs which contain linear elliptic
differential operators could be inverted in terms of Green’s functions. One ends up
with nonlinear singular integral formulation along the boundary of the domain. The
works [113, 193] motivated a finite-element discretization of these Fredholm-type
integral equations, which in turn led to the boundary-element method (BEM),
[18, 17, 176, 62]. As before, one ends up with a nonlinear algebraic system of
equations for the unknown boundary elements, {Wj}|xj∈∂ΩΔ

. The global nature of
the underlying integral equations renders a full system which is expensive to solve;
the efficiency of the BEM is realized for problems where there is a small surface
to volume ratio. Alternatively, one can accelerate the convergence by dedicated
solvers, such as the fast multipole method [94], which yields a considerable speed-
up in the solution of these full matrix equations.

We turn our attention to FEMs for time-dependent problems. A weak formula-
tion of the one-dimensional convection-diffusion equation (2.7a) states that for all
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C1
0 (R)-test functions, ϕ,

d

dt

∫
w(t, x)ϕ(x)dx =

∫
F(w(t, x))ϕ′(x)dx

− ν

∫
Q(∂xw(t, x))ϕ′(x)dx +

∫
g(t, x)ϕ(x)dx.

(3.14)

We partition a given interval Ω⊂R into a set of consecutive cells ΩΔ=
⋃

k[xk, xk+1),
and we seek a piecewise linear FEM approximation, W(t, x) =

∑
k Wk(t)ϕk(x),

expressed in terms of the standard basis of piecewise linear “hat” functions,

ϕk(x) =
x− xk−1

xk − xk−1
1[xk−1,xk)(x) +

xk+1 − x

xk+1 − xk
1[xk,xk+1)(x), xk−1 ≤ x ≤ xk+1.

The stencil associated with xk occupies the neighboring gridpoints, x�, � ∈ N (k) :=
{k − 1, k, k + 1}. The discretization of the weak formulation (3.14) is now realized
for the subspace of piecewise linear test functions, which is spanned by the ϕj ’s;
setting ϕ(x) = ϕj(x) in (3.14) yields∑

k∈N (j)

[∫ (
ϕk(x), ϕj(x)

)
dx

]
d

dt
Wk(t)

=

∫
F
( ∑
k∈N (j)

Wk(t)ϕk(x)
)
ϕ′
j(x)dx

− ν

∫
Q
( ∑
k∈N (j)

Wk(t)ϕ
′
k(x)

)
ϕ′
j(x)dx +

∫
g(t, x)ϕj(x)dx.

Thus, the unknowns {Wk} are governed by the nonlinear system of ODEs
(3.15a)∑
k∈N (j)

Mkj
d

dt
Wk(t) = −

(
Fj+1/2−Fj−1/2

)
+ν
(
Q(D+Wj)−Q(D−Wj)

)
+Gj(t).

On the left we have a tridiagonal invertible mass matrix,

Mkj :=

∫
ϕj(x)ϕk(x)dx ≈ Δxjδjk, Δxj :=

xj+1 − xj−1

2
;

on the right, Fj+1/2 is the numerical flux,

(3.15b) Fj+1/2 :=

∫ 1

ξ=0

F
(
ξWj + (1 − ξ)Wj+1

)
dξ.

We end up with a semidiscrete method of lines finite-element scheme for WΔ(t) :=
{Wk(t)}, which we abbreviate as

d

dt
WΔ = M−1

[
− AF

(
WΔ

)
+ νAQ

(
WΔ

)]
+ GΔ(t), GΔ := {M−1Gj(t)}.

Numerical examples for the one-dimensional FEM (3.15) and the corresponding
two-dimensional finite-element scheme [201] are shown in Figure 3.6.

The derivation of the finite-element schemes (3.12), (3.15) demonstrates several
typical features of the general framework of FEM. Once the grid and the space of
piecewise polynomials are chosen, then the weak formulation of the PDE dictates
the final format of the finite-element scheme. In particular, the finite-element for-
mulation automatically adapts itself to deal with general, unstructured grids: in
(3.15), for example, the gridpoints need not be equispaced. We notice that in the



522 EITAN TADMOR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5

0

0.5

1

1.5

u8, Δ t=0.005,Δ x=0.005

x

u
(x

)

t=0.0
t=0.125
t=0.25

w/ U(u)=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ+2μ=2.28e−005, γ=1.4, Cv=716,
κ=0.03,entropy=−ρ ln(p ρ−γ), Δt Δx=0.0002

x

p

t=0. 0
t=0.05
t=0. 1

(a) (b) (c)

Figure 3.6. Computations using the one- and two-dimensional
finite-element scheme (3.15). (a) The inviscid Burgers equation,
(2.7b), wt + (w2/2)x = 0. The dispersive character of the en-
tropy conservative scheme (3.15) yields the binary oscillations sur-
rounding the shock discontinuity [130]. (b) The time evolution of
a right moving pressure shock wave in one-dimensional Navier–
Stokes equations (2.7a) at t = 0, t = 0.05, and t = 0.1. (c) Water
surface elevation h(x, y, t) in a dam-break problem modeled by the
irrotational shallow-water equations (2.8a) at t = 25s [201].

simple case of piecewise linear elements, the computed FEM solution of (3.15) is
realized in terms of its pointvalues, Wj = W(xj). For more general polynomial-
based elements, the Wj ’s do not necessarily coincide with pointvalues but with
other local moments of the computed solution. There is a large catalog [5] of such
finite-element basis functions which provide approximations to any desired order.
The resulting FEM solution, W(x) =

∑
j Wjϕj(x), is viewed as an approximant

throughout the computational domain. One should compare the FEM numerical
flux (3.15b) with the finite-difference flux (3.7),

Fj+1/2 =
1

2
(F(Wj+1) + F(Wj));

the latter depends only on the gridvalues F(Wj),F(Wj+1), whereas the former
involves all the intermediate values of F (·).

A rather general setup for the construction of finite-element schemes is offered by
the Galerkin formulation. To this end, we let ΦΔ denote the finite-dimensional com-
putational space spanned by the finite-element basis functions, ΦΔ := span{ϕj}.
In defining ΦΔ, one has to specify three ingredients:

(i) the partition, ΩΔ =
⋃
Tj ;

(ii) the local basis functions, {ϕj}; and
(iii) the parameters to realize these local basis functions, e.g., using their point-

values sampled at a preselected set of gridpoints.

The framework of finite-element methods offers a great variety of choices in each
one of these three ingredients. In particular, there are different methodologies for
the choice of basis functions, {ϕj}. We shall mention the most important three:

(i) In “classical” FEMs, the ϕj ’s are polynomials of low degree with minimal
requirement of continuity across the interfaces of the elements.
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(ii) The FEM-based class of hp-methods [10] combine high-degree polynomials
(of order p) with an increasing number of elements (of order h−d, where h
stands for the discretization parameter Δ).

(iii) On the other extreme, the class of discontinuous Galerkin methods uses
basis functions which are allowed to experience jump discontinuities across
the interfaces [173, 6]. These are particularly effective basis functions in
problems with low regularity, such as the Eikonal equation [221] or problems
with shock discontinuities [47, 142].

Let PΔ denote an appropriate projection into the computational space ΦΔ.
The Galerkin method for the PDE (2.1) seeks an approximate solution, W =∑

Wjϕj(x), such that

(3.16a) PΔA(∂sW, ∂s−1W, . . . , ∂W,W,x) = PΔg(x).

In the prototype case, the projection PΔ is induced by a weak formulation of (2.1)
associated with an auxiliary biform,

∫
Ω
A(∂sw, . . . ,w,x)ϕ(x) dx → B(w,ϕ), such

that (2.1), is recast into the form

B(w,ϕ) =

∫
Ω

g(x)ϕ(x)dx, B(w,ϕ) :=

∫
Ω

A(∂sw, . . . ,w,x)ϕ(x) dx.

This is demonstrated with the example of the minimal surface equation (2.3a),
which was recast into the weak formulation (3.11). The corresponding finite-element
Galerkin approximation seeks W ∈ ΦΔ such that for all test function ϕj ,

(3.16b) B
(∑

k

Wkϕk, ϕj

)
= Gj , Gj :=

∫
g(x)ϕj(x)dx, j = 1, 2, . . . .

By assembling the equations (3.16b) for WΔ = {Wk}, one ends up with a system
of nonlinear algebraic equations, which we abbreviate as

(3.17a) A(WΔ) = GΔ.

As before, GΔ accounts for the discrete source terms {Gj} and the boundary
data, {bj}, bj =

∫
∂Ω

b(x)ϕj(x)dx. Similarly, the corresponding FEM for time-
dependent problems reads

(3.17b) Wn+1
Δ = M−1A(Wn

Δ) + ΔtGn
Δ.

Here, M is an invertible mass matrix, M = {(ϕj , ϕk)}, A is the assembly of the

nonlinear terms, A(WΔ) =
{
A
(∑

k Wkϕk, ϕj

)}
, and Gn

Δ = {M−1Gn} captures

the source and boundary terms. This is a generalization of the linear setup, in
which case (3.17) is reduced to a linear system of equations, A(WΔ) = AWΔ,
where A is the stiffness matrix, A := {A(ϕk, ϕj)}.

3.3. Finite-volume methods. Finite-volume (FV) methods use the same grids
as FEMs, by partitioning Ω into a set of (structured or unstructured) nonoverlap-
ping polyhedral cells, ΩΔ = {Tj}. FV schemes are realized in terms of cell aver-

ages, {Wj}, where one ends up with piecewise constant approximation, W(x) =∑
j Wj1Tj

. More general FV schemes employ higher-order local cell moments,
which lead to higher-order piecewise polynomial approximations. Similar to finite-
element methods, FV approximations are defined throughout the computational
domain, and unlike finite-difference methods, they are not limited to discrete point-
values. In contrast to FEMs, however, the FV approximations need not be smooth
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across the edges of the cells. They are therefore suitable to simulate problems with
large gradients and, in particular, the spontaneous formation of jump discontinu-
ities in nonlinear conservation laws [89, 90, 49, 136, 197].

As a prototype example, we consider the one-dimensional inviscid convection
equation (2.7b), whose solution is sought in terms of a piecewise linear FV approx-
imation,

(3.18) W(tn, x) =
∑
j

(
W

n

j + (x− xj)(W
′)
n
j

)
1Ij (x).

Here, Ij := [xj−1/2, xj+1/2), are one-dimensional cells of fixed mesh size Δx, W
n

j

are the approximate cell averages, and (W′)
n
j are the approximate first deriva-

tives, which are related to the first-order local moments,
∫
Ij

(x− xj)W(tn, x)dx =

(Δx)3(W′)
n
j /12. The globally defined FV solution W(tn, x) evolves into an exact

solution of (2.7b), W(tn, x) �→ wn(t, x)|t>tn ,

(3.19) t ≥ tn : ∂tw
n(t, x) + ∂xF(wn(t, x)) = g(t, x)

subject to wn(t, x) = W(tn, x) at t = tn.

We realize this solution at tn+1 = tn + Δt, in terms of its cell averages, W
n+1

j :

integration of (3.19) over the control volume Ij × [tn, tn+1) yields

(3.20a) W
n+1

j = W
n

j − Δt

Δx

(
F

n+ 1
2

j+ 1
2

− F
n+ 1

2

j− 1
2

)
+ ΔtG

n+ 1
2

j .

Here, G
n+ 1

2

j is the approximate cell average of g(t, x) over Ij× [tn, tn+1), and F
n+ 1

2

j± 1
2

are the numerical fluxes

(3.20b) F
n+ 1

2

j± 1
2

=
1

Δt

∫ tn+1

tn
F
(
wn(τ, xj± 1

2
)
)
dτ.

To complete the formulation of the FV scheme (3.21), one needs to specify the
missing approximate derivatives, (W′)

n
j . We shall mention three possible recipes

for doing so.
(i) Set (W′)

n+1
j ≡ 0. This yields the celebrated Godunov scheme [89], the

forerunner for all FV methods,

W
n+1

j = W
n

j − Δt

Δx

(
F
(
wn

j+ 1
2

)
− F
(
wn

j− 1
2

))
+ ΔtG

n+ 1
2

j+1/2.

Here, wn
j+ 1

2

= wn(tn+
1
2 , xj+ 1

2
) is the solution of a (generalized) Riemann problem

(3.19) localized along the interface {(τ, xj+ 1
2
) : tn < τ ≤ tn+1}. The initial

discontinuities at the initial stage of these interfaces, (tn, xj± 1
2
) are resolved into

nonlinear waves and a proper Riemann solver is required to accumulate those waves,
which impinge on the interfaces at t = tn+

1
2 from within the cell Ij [177, 212]. To

this end, one needs to trace left-going and right-going waves, which is the hallmark
of so-called upwind schemes.

(ii) To gain additional resolution, one may consider a second approach of re-
constructing the missing numerical derivatives, (W′)

n
j , from the computed cell

averages, {Wn

j }. For example, one may use a (possibly nonlinear) combination of

Eitan
Text Box
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(a) (b) (c)

Figure 3.7. (a) A triangular grid, (b) a dual grid, and (c) the
resulting staggered grid [127]

forward and backward differences

(3.20c) (W′)
n
j = S

(
. . . , D±W

n

j+1, D+W
n

j , D−W
n

j , D±W
n

j−1, . . . ,
)
.

There is a whole library of such modern recipes (called limiters), which enable one to
reconstruct W(tn, x) from its cell averages in the “direction of smoothness”, while
preserving the nonoscillatory behavior of the underlying exact solution wn(t, x).
The intense period of development of such limiters during the 1980s and 1990s
was marked by a series of acronyms such as the second-order MUSCL and TVD
scheme [135, 100, 192], cubic-order PPM scheme [50], and the class of higher-order
(W)ENO schemes [102, 101, 186, 141, 49, 79].

(iii) A third approach is to evolve the missing numerical derivatives, (W′)
n
j ,

using, e.g., a discontinuous Galerkin method [47, 142]. Here, FV methods meet

FEM, (3.17b), with evolved basis functions ϕj(x) =
(
W

n

j + (x− xj)(W
′)nj
)
1Ij (x).

In summary, starting with the FV representation (3.18), and followed by the
various steps of (3.20), one ends up with the general class of upwind FV schemes,

W(tn, x) �→
∑
j

(
W

n+1

j + (x− xj)(W
′)
n+1
j

)
1Ij (x).

To avoid the intricate and time-consuming Riemann solvers for upwind FV
schemes, another class of central FV schemes was developed, which employ the
FV representation over staggered grids. Examples of such two-dimensional stag-
gered grids are depicted in Figure 3.7.

We demonstrate the one-dimensional framework of such central schemes in the
context of the same inviscid convection equation we had before (2.7b), whose solu-
tion is sought in terms of a piecewise linear FV approximation,

W(tn, x) =
∑
j

(
W

n

j + (x− xj)(W
′)
n
j

)
1Ij (x).

To avoid the discontinuous edges at xj±1/2, however, one computes the FV solution

at tn+1 = tn + Δt over the staggered grid, Ij+1/2: integration of the PDE (2.7b)

over the control volumes Ij+1/2 × [tn, tn+1) yields

W
n+1

j+1/2 =
1

2

(
W

n

j + W
n

j+1

)
+

Δx

8

(
(W′)

n
j − (W′)

n
j+1

)
− Δt

Δx

(
F

n+ 1
2

j+1 − F
n+ 1

2

j

)
+ ΔtG

n+ 1
2

j+1/2.

(3.21a)
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Here, G
n+ 1

2

j+1/2 is the approximate cell average of g(t, x) over Ij+1/2 × [tn, tn+1) and

F
n+ 1

2
j are the numerical fluxes evaluated at the intermediate pointvalues, W

n+1/2
j ,

(3.21b)

F
n+ 1

2
j = F

(
W

n+ 1
2

j

)
, W

n+ 1
2

j := W
n

j − Δt

2

(
FW(W

n

j )(W′)
n
j + g(tn,xj)

)
.

As before, one needs to specify the missing approximate derivatives, (W′)
n
j , and

we mention three possible recipes for doing so.
(i) Set (W′)

n
j ≡ 0. This yields the Lax–Friedrichs scheme [128], the forerunner

for all central schemes,

W
n+1

j+1/2 =W
n

j+1/2 −
Δt

Δx

(
F(W

n

j+1) − F(W
n

j )
)

+
1

2

(
W

n

j − 2W
n

j+1/2 + W
n

j+1

)
+ ΔtG

n+ 1
2

j+1/2.

Here, FV methods meet finite difference methods, (3.10b), when the cell averages

W
n

j are viewed as the gridvalues Wn
j . The expression inside the last parenthesis on

the right,

(3.21c)
1

2

(
W

n

j − 2W
n

j+1/2 + W
n

j+1

)
≈ (Δx)2

4Δt
∂2
xW(tn, xj),

is an example of a second-order numerical dissipation [122]. This excessive dissipa-
tion of vanishing order (Δx)2/Δt → 0 comes at the expense of lost resolution.

(ii) To gain additional resolution, one can use nonoscillatory reconstruction of
the missing numerical derivatives from the computed cell averages, yielding the
Nessyahu–Tadmor scheme and its extensions [155, 126]:

(3.21d) (W′)
n
j = S

(
. . . , D+W

n

j , D−W
n

j , . . .
)
.

Here, S stands for any limiter from the library of MUSCL, TVD, PPM, (W)ENO
limiters.

(iii) Finally, a third possible approach for specifying the missing approximate
derivatives, (W′)

n
j , is to evolve these missing numerical derivatives, using, e.g., a

discontinuous Galerkin method [47, 142].
In summary, starting with the FV representation (3.18) and followed by the

various steps of (3.21), one ends up with the general class of central FV schemes,
which alternate between two dual grids,

W(tn, x) �→
∑
j

(
W

n+1

j+ 1
2

+ (x− xj+ 1
2
)(W′)

n+1
j+ 1

2

)
1I

j+1
2

(x).

Figure 3.8 demonstrates three different examples of numerical simulation of sharp
gradients using FV central schemes (3.21)

We turn to the multidimensional framework. As an example, we consider a weak
formulation of the two-dimensional chemotaxis model (2.9), which is formulated on
a triangular grid, Ω =

⋃
j Tj ,

(3.22)
d

dt

∫
Tj

w(t,x)dx = κ

∫
∂Tj

n(x)·∇xc(t,x)w(t,x)dx+

∫
∂Tj

n(x)·∇xw(t,x)dx.

Here n(x) is the outward normal along the boundary of Tj . The FV method seeks a

piecewise constant approximation of the density w(t,x), W (t,x) =
∑

j W j(t)1j(x),

and a piecewise-linear representation for the approximate concentration, C(t,x) =
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Figure 3.8. Numerical solution using FV central schemes. (a)
Density of compressible Euler equations computed at t = 0.01 us-
ing a central discontinuous Galerkin method [142]. (b) Saturating

dissipation, wt + f(w)x =
(
wx/
√

1 + w2
x

)
x

[126]. (c) Density con-
tours of two-dimensional Riemann problem (without a Riemann
solver).

∑
k Ck(t)ϕk(x). The boundary integrals on the right of (3.22) are evaluated by

approximate quadratures, based on boundary gridvalues, w(t,xj�) and ∇xc(t,xj�).
To this end, one employs numerical fluxes to reconstruct approximate boundary
values by a judicious nonlinear combination of the neighboring cell averages and
concentration values {W k, Ck | k ∈ N (j)}. For example, the first integral on
the right of (3.22), involving the differential flux, F(c, w) := ∇xc(t,x)w(t,x), is
approximated by∫

∂Tj

n(x) · ∇xc(t,x)w(t,x) ≈
∑
�

ω� n(xj�) · Fj�

{
Ck∈N (j)(t),W k∈N (j)(t)

}
,

where ω� are the proper weights for the quadrature rule on the right. The resulting
FV approximation of (2.9) amounts to a semidiscrete system of nonlinear ODEs
for the cell averages

d

dt
W j(t) = κ

∑
�

ω� n(xj�) · Fj�

{
Ck∈N (j)(t),W k∈N (j)(t)

}
+
∑
�

ω� n(xj�) ·Qj�

{
W k∈N (j)(t)

}
.

(3.23a)

Here, Fj� {·, ·} and Qj� {·} are the convective and diffusive numerical fluxes, respec-
tively, depending on the concentrations {Ck}, which in turn are determined as the
FEM solution of the Poisson equation (2.9b):

(3.23b)
∑

k∈N (j)

Ck(t)

∫
x∈Tk

∇ϕk(x) · ∇ϕj(x)dx =
∑

k∈N (j)

W k(t)

∫
x∈Tk

ϕj(x).

A numerical example for an FV computation of the chemotaxis model (2.9) is
provided in Figure 3.9.

FV methods for elliptic and parabolic equations were introduced in [211, 180,
181]. For recent progress in this direction, we refer to [45, 77] and the references
therein. As with the FEM framework, one ends up with nonlinear system of alge-
braic equations for the FV solution which is realized in terms of few local moments,
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Figure 3.9. A finite-volume simulation [78] for the blow-up of
Patlak–Keller–Segel chemotaxis model (2.9) at t = 0.09, t = 0.13,
and t = 0.18.

WΔ = {Wj ,W
′
j ,W

′′
j , . . . , }

(3.24a) A(WΔ) = GΔ.

Similarly, the corresponding FV schemes for time-dependent problems read

(3.24b) Wn+1
Δ = M−1A(Wn

Δ) + ΔtGn
Δ.

A main feature of FV schemes is the reconstruction of approximate pointvalues
along the cell’s boundaries, {W(tn+

1
2 ,x) | x ∈ ∂Tj}, which are recovered from the

computed local moments, WΔ = {Wj ,W
′
j ,W

′′
j , . . .}. This led to the development

of essentially nonlinear FV schemes, in the sense that their upwind or central stencils
are data dependent.

3.4. Spectral methods. Spectral methods employ spectral representations of ap-

proximate solutions for nonlinear PDEs (2.1), W(x) =
∑

k Ŵkϕk(x). The local
character of the building blocks in finite-difference, finite-element and finite-volume
methods is lost. Instead, the basis functions of spectral methods are determined
by discrete orthogonality with respect to preselected sets of collocation gridpoints,
{xj}. This leads to global interpolants with one-to-one correspondence between the

spectral data {Ŵk} and the pointvalues, {Wj = W(xj)}.
We begin with a time-dependent periodic problem [159, 123, 93, 19, 103]. As

an example, we consider the Schrödinger equation (2.6) over a 2π-torus, Ω = Td
x,

which is covered by a Cartesian grid of (2N + 1)d equispaced gridpoints:

xj = (j1Δx1, . . . , jdΔxd), j := (j1, . . . , jd) ∈ Zd, Δx := (Δx1, . . . ,Δxd),

−N ≤ j� ≤ N.

An approximate solution of the periodic Schrödinger equation, WN (t,x), is sought

in terms of the discrete Fourier coefficients, Ŵk,

WN (t,x) =
∑

|k�|≤N

Ŵk(t)eik·x, Ŵk(t) :=
∑

|j�|≤N

W(t,xj)e
−ij·xk〈Δx〉,

k = (k1, . . . , kd) ∈ Zd,

where 〈Δx〉 is the volume of the d-dimensional cell 〈Δx〉 :=
∏d

j=1
Δxj

2π . Observe
that differentiation can be carried out exactly as an algebraic operation in Fourier
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space,

∂s
xWN (t,x) =

∑
|k�|≤N

(ik1)
s1 · · · (ikd)sdŴk(t)eik·x, s = (s1, . . . , sd) ∈ Zd

+.

The discrete Fourier coefficients, Ŵk, are accessible via the fast Fourier transform
(FFT) [52]. To derive a spectral approximation of (2.6), we use its discrete weak
formulation:

i�
d

dt

∑
j

w(t,xj)ϕ(xj)〈Δx〉

= − �2

2m

∑
j

Δxw(t,xj) · ϕ(xj)〈Δx〉 +
∑
j

V
(
w(t,xj)

)
w(t,xj)ϕ(xj)〈Δx〉.

(3.25)

An approximation to the exact solution, w(t,x) =
∑

|k|≤∞ ŵk(t)eik·x, is sought in

terms of a trigonometric polynomial, WN (t,x). To this end, we use the orthogonal
set of trigonometric test functions, ΦN = span{ϕj = eij·x}|j�|≤N . We now use ϕ ∈
ΦN as the test functions in (3.25): since by orthogonality,

∑
k ϕp(xk)ϕq(xk)〈Δx〉 =

δpq, we end up with the spectral scheme for Wj ≡ Wj(t),

(3.26) i�
d

dt
Wj = − �2

2m
ΔxWj+V (Wj)Wj, ΔxWj := −

∑
|k�|≤N

|k|2Ŵke
ik·xj .

This amounts to a semidiscrete (method of lines) system of nonlinear ODEs for
the pointvalues {Wj(t)}. The spectral scheme (3.26) furnishes an exact statement
of Schrödinger equation (2.6) at the collocation points, xj. Observe that the com-

putation of the Laplacian, ΔxWj = −
∑

|k�|≤N |k|2Ŵke
ik·xj , is carried out in the

Figure 3.10. Contour plots of the density, |w(x, t)|2, using a
pseudo-spectral computation [13], for the interaction of two vor-
tex dipoles in a rotating two-dimensional Bose–Einstein conden-
sate governed by the Schrödinger equation (2.6) with potential
V = V (x, ∂,w) = |x|2 + i∂θ + 200|w|2.
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Fourier space, and in contrast to finite-difference, finite-element, and finite-volume
methods, spectral approximations of differential operators such as the Laplacian,
are exact for all the Fourier modes, |k�| ≤ N . Algebraic operations, however, such
as composition of V (W) or multiplication, V (W)W, are carried out as exact oper-
ations over the computational grid {xj}. A numerical example for spectral Fourier
computation of the Schrödinger equation (2.6) is provided in Figure 3.10.

As our next example for spectral methods we consider the quasilinear system of
inviscid convection equations (2.7b) over the interval Ω = [−1, 1]. Its discrete weak
formulation, corresponding to (3.14) with ν = 0, reads

(3.27)
d

dt

∑
j

w(t, xj)ϕ(xj)ωj =
∑
j

F(w(t, xj))ϕ
′(xj)ωj +

∑
j

g(t, xj)ϕ(xj)ωj ,

∀ϕ ∈ C1
0 [−1, 1].

Here, the xj ’s and ωj ’s are the collocation points and the weights, respectively,
which retain the exactness of certain Gauss quadratures with the corresponding
integrals in (3.14). Since the problem is nonperiodic, the discrete equations (3.27)
are augmented with appropriate Dirichlet- or Neumann-type boundary conditions
at x = ±1. We now seek a spectral approximant in terms of algebraic polynomials
[93, 214]. We proceed by expressing the spectral approximant in terms of the
orthogonal family of Legendre polynomials, {pk(x)}k≥0:

WN (t, x) =
N∑

k=0

Ŵk(t)pk(x), Ŵk(t) =
N∑
j=0

W(t, xj)pk(xj)ωj .

Observe that the approximant WN (t, x) can be realized in one of two equivalent
ways: either as the interpolant of the pointvalues, {Wj(t) = W(t, xj)}Nj=0, where
the Gauss collocation points, −1 = x0<x1 · · · <xN =1, are chosen as the N zeroes
of (1−x2)p′N (x); or in the dual space in terms of the discrete Legendre coefficients,

{Ŵk(t)}Nk=0. We substitute the Nth degree spectral approximant, WN (t,x), for
the exact solution w(t, x) =

∑
k≤∞ ŵk(t)pk(x), and we use the polynomial N -

space, ΦN = span{pk}k≤N , as the test space for (3.27). To this end, we test
(3.27) with the Nth degree polynomial test functions, ϕ ∈ span{ϕk(x)}Nk=0, where
ϕk(xj) = δjk. We end up with the Legendre spectral scheme,

(3.28a)
d

dt
WN (t, xj) + ∂xF

(
WN (t, xj)

)
= SVN

(
WN (t, xj)

)
+ g(t, xj),

j = 1, 2, . . . , N − 1.

As before, algebraic operations are carried out in physical space and differential
operations are carried out in the spectral space of Legendre polynomials. Thus, for
example, on the left of (3.28a) we compute the exact derivative of the numerical
flux in terms of the derivatives of {pk(x)} at the computational gridpoints, {xj},

∂xF
(
WN (t, xj)

)
=

N∑
k=0

F̂(W)k(t)p
′
k(xj),

F̂(W)k(t) =
N∑
j=0

F
(
W(t, xj)

)
pk(xj)ωj .

(3.28b)
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Figure 3.11. Computations using the Legendre spectral viscosity
scheme (3.28). (a) A density field in Euler equations, (2.7a), using
N = 220 modes. (b) The density field after postprocessing. (c) the
pressure field after postprocessing (compare with the FEM solution
in Figure 3.6(b)).

To complete the description of the Legendre spectral scheme, one may need to
augment (3.28b) with appropriate boundary conditions of WN (t,±1). On the
right of (3.28a) we have added a judicious amount of so-called spectral viscosity :

(3.28c) SVN

(
WN (t, xj)

)
:= −N

N∑
k=0

(
k

N

)2σ

Ŵk(t)pk(xj), σ � 1.

Without it, the spectral solution may develop spurious Gibbs oscillations [195].
Observe that the spectral viscosity term in (3.28c) adds a negligible amount of nu-
merical dissipation for low modes, k � N , when compared, for example, with the
numerical dissipation in the FV scheme (3.21c). Figure 3.11(a) demonstrates the
solution of the Euler equations (2.7b) using Legendre spectral viscosity [195, 197].
When the underlying solutions contain large gradients, such as shock discontinuities
depicted in the density in Figure 3.11(a), spectral representations suffer from spuri-
ous Gibbs oscillations. To this end, one needs to postprocess the computed spectral
solution [143, 151, 199]. The preprocessed Gibbs oscillations and postprocessed
spectral results are depicted in Figure 3.11(b)–(c).

In a similar manner, other families of orthogonal polynomials lead to the Cheby-
shev spectral method, Hermite spectral method, etc.

The derivation of the spectral schemes (3.26), (3.28) demonstrates several typi-
cal features of spectral methods. In particular, the use of basis functions which are
globally supported over the whole domain Ω, leads to spectral stencils which are
global, in contrast to the local stencils of finite-difference, finite-element, and finite-
volume methods. Moreover, spectral methods are “tied” to Cartesian geometries
and preselected sets of collocation points to realize these global basis functions.
Despite the availability of fast transform methods, the implementation of spec-
tral schemes is therefore computationally intensive, due to the fact that there are
∼Nd gridpoints. The main advantage of spectral methods, however, is their high
resolution, which requires much smaller N ’s to achieve the same resolution as local
methods based on a discretization parameter Δ. The efficiency of spectral vs. other
methods in this context of high resolution can be quantified in terms of the saving
in the number of degrees of freedom involved, Nd � |Ω|/Δd. Convincing evidence
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is provided by the success of spectral methods in numerical weather prediction
[174, 38, 116].

We turn our attention to boundary-value problems. The global character of
spectral representations leads to major difficulties in their implementation for such
problems, where one ends up with nonlinear algebraic systems which are dense: the
computed pointvalues, {WN (xj)}, are all connected throughout the computational
domain. There are several ways to avoid such prohibitively expensive computation.
We mention in this context the important spectral element methods [162, 20,
103]. Spectral element methods implement spectral representations on subdomains,
Ω =

⋃
j Ωj , which are augmented with compatible boundary conditions at the

interfaces, along ∂Ωj . In this fashion, one combines the local nature and geometric
flexibility of FEMs with the high resolution of spectral methods (indeed, these
methods can be viewed as the limiting case of the FEM-based hp-methods with
p = ∞). The resulting algebraic systems amount to matrices with sparse blocks,
which reflect the semilocal nature of the spectral element methods.

A general description of spectral methods is offered by the Galerkin formulation
(3.16a),

PNA(∂sWN , ∂s−1WN , . . . , ∂W,W,x) = PNg(x).

Here, PN is a projection to the computational N -space, ΦN = span{ϕj}, spanned
by orthogonal basis functions of trigonometric or algebraic polynomials of degree
|j| ≤ N .

Spectral schemes can be realized either in terms of their pointvalues, WΔ =

{WN (xj)}, or in terms of the coefficients, WΔ = {Ŵk}. We end up with the
nonlinear system of algebraic equations

(3.29a) A(WΔ) = GΔ.

Similarly, we have spectral schemes for time-dependent problems. Expressed either
in terms of the pointvalues, Wn

Δ := {W(tn,xj)}, or their spectral coefficients,

Wn
Δ = {Ŵk(tn)}, the spectral scheme reads

(3.29b) Wn+1
Δ = M−1A(Wn

Δ) + ΔtGn
Δ.

The global character of spectral basis functions may yield a dense mass matrix, M.
To avoid it, one may use preconditioning matrices, which “approximately” invert
M; for a whole library of such preconditioning matrices we refer to, for example,
[92, 216, 179].

3.5. Which method to use? In sections 3.1 through 3.4, we discussed the four
main classes of numerical methods for PDEs: finite-difference, finite-element, finite-
volume, and spectral methods. These numerical methods, together with their own
toolkits, provide general, all-purpose tools for the approximate solution for general
nonlinear PDEs. There is no recipe to determine which of these methods is most
suitable for a given nonlinear PDE problem: most researchers will agree that there
is no one superior method except, of course, the one they happen to be using
in their current problem. Each method has advantages and disadvantages which
were briefly mentioned above and are elaborated in the vast literature. In many
applications, users may employ different ingredients of these methods to produce a
numerical scheme, which is tailored to a specific problem, in order to gain overall
efficiency, achieve higher-resolution, or ensure a sound theoretical basis using the
concepts that are outlined in Section 4 below.
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Moreover, beyond the four main classes of numerical methods discussed above,
there are other methods which focus on specific families of nonlinear PDEs so that
they can offer a more “faithful” description of the equations they are supposed to
approximate. There is a variety of highly sophisticated, modern numerical methods,
which are tied to the specific character of the underlying nonlinear PDEs. We
mention our subjective choice of the top ten.

Particle methods are mesh-free methods that are used to trace the dynamics of
singularities and approximate diffusive and dispersive phenomena [172, 147, 65, 39].

The particle-in-cell (PIC) method was advocated in computational plasma physics
[63].

The class of vortex methods are used to simulate incompressible and slightly com-
pressible flows [41, 65].

The immersed boundary method, which originated in the context of bioflows [167],
traces the time evolution of the boundary of elastic structures which are immersed
in incompressible fluids [168].

The level-set method [160, 184, 161] is used for tracking interfaces and shapes by
realizing them in as the zero-level set of higher-dimensional smooth surfaces.

The front tracking method was developed by Glimm and collaborators [87, 105],
where a separate grid is used to mark and trace the interface whereas a fixed grid
is used in between these interfaces.

Wavefront methods and the moment method [74] are encountered in high-frequency
computations, offering an alternative to traditional geometrical optics techniques
based on ray tracing.

An important component in the solution of a nonlinear “problem” is the discrete
geometry associated with it. There are several numerical methods which focus on
this aspect of the problem, and we mention the most important two.

In domain decomposition methods [213] one decomposes a given boundary-value
problem into a system of smaller problems supported on sub-domains which are
carefully matched at their interfaces.

In adaptive mesh refinement (AMR) [15] one links a local refinement of the under-
lying grid to gain better resolution wherever the numerical solution develops large
gradients.

4. Basic concepts in the analysis of numerical methods

The computed solution of a numerical scheme does not solve approximately the
corresponding nonlinear PDE. Instead, numerical solutions are obtained as exact
solutions of numerical schemes which are approximate models for the underlying
PDEs (we ignore roundoff errors). This observation immediately leads to the fol-
lowing fundamental questions:

(i) In what sense does a numerical scheme approximate the underlying PDE?
The answer is quantified by the notion of consistency .
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(ii) Let WΔ be the solution of a numerical scheme, which is an approximation
of the nonlinear boundary-value problem (2.1). In what sense does WΔ

approximate the exact solution of the PDE, w(·)? Similarly, if Wn
Δ is the

numerical solution of an approximate nonlinear time-dependent scheme,
then in what sense does Wn

Δ approximate the corresponding exact solution
w(tn, ·)? In other words, how do we know that by solving a numerical model
which is “nearby” the exact differential equation, we obtain a numerical
solution which is nearby the solution of the exact problem? This is the
question of convergence.

We address these questions in the context of the numerical methods outlined
above. All numerical methods are realized over finite-dimensional spaces which in-
volve small discretization scales. Finite-difference methods are realized in terms of
gridvalues, Wn

Δ = {Wj(t
n)}, and relations of their divided differences over small

Cartesian cells of size Δ = |Δx|. Finite-element methods are expressed in terms of
piecewise polynomial basis functions,

∑
Wj(t

n)ϕj(x), which are supported over lo-
cal elements or cells of small size, Δ = maxj diamTj . In this case, Wn

Δ = {Wj(t
n)}

are realized in terms of the pointvalues at preselected nodes of Tj . Finite-volume

methods are expressed in terms of cell averages, Wn
Δ = {Wj(t

n)} (and possibly
higher-order moments) over general polyhedral cells of size Δ = maxj diamTj .
Spectral methods use global polynomials of increasing degree N , which could be
expressed in terms of their gridvalues, Wn

Δ = {W(tn,xj)}, or their spectral con-

tent, Wn
Δ = {Ŵk(tn)}; in this case, Δ = 1/N is the small discretization parameter.

We can write this collection of different numerical methods in one of the following
two abstract forms.

The implementation of different numerical methods for boundary-value problems
ends up with a numerical scheme, which amounts to one of the nonlinear systems
of algebraic equations, (3.10a), (3.17a), (3.24a), or (3.29a):

(4.1a) A(WΔ) = GΔ.

Similarly, numerical methods for time-dependent problems end up with one of the
evolutionary schemes, (3.10b), (3.17b), (3.24b), or (3.29b):

(4.1b) Wn+1
Δ = M−1A(Wn

Δ) + ΔtGn
Δ.

The numerical schemes (4.1a) and (4.1b) express the relation between the com-
puted gridvalues, cell averages, spectral coefficients, etc., and their numerical deriva-
tives of order |j| ≤ s. In the previous sections we have seen how each numerical
method uses its own “recipe” for computing numerical derivatives, based on appro-
priate stencils, which are characteristic to that numerical method.

4.1. Consistency and order of accuracy. Let w(x) be the solution of the PDE
(2.1). The amount by which w(x) fails to satisfy the discrete approximation (4.1)
is called the local truncation error. To quantify this statement, we need to realize
the exact solution over the computational grid, ΩΔ. Different numerical methods
employ different ways to realize exact solutions. In the case of finite-difference
methods, for example, the exact solution is typically realized in terms of its dis-
crete pointvalues, wn

Δ = {wj(t
n)}, at the Cartesian gridpoints ΩΔ. Finite-element

methods can use the discrete pointvalues of the exact solution, {wj(t
n)}, or employ

the FEM projection of the exact solution, wn
Δ =

∑
wj(t

n)ϕj(x). Similarly, finite-
volume methods typically employ the exact cell averages wn

Δ = {wj(t
n)} associated
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with ΩΔ = {Tj} to form the FV projection wn
Δ(x) =

∑
wj(t

n)ϕj(x), and spectral
methods use the spectral data of the exact solution, wn

Δ = {ŵj(t
n)} to realize the

projection of the exact solution, wn
Δ(x) =

∑
ŵj(t

n)pj(x).
We let wn

Δ, and respectively, wΔ denote the various discrete realizations of exact
solutions described above, with, or respectively, without time-dependence. Thus,
wn

Δ and wΔ are viewed as projections of the exact solutions over the computational
domain, ΩΔ, and we shall use these projections of the exact solutions to quantify
the local truncation errors. We distinguish between two cases. For boundary-value
problems, the local truncation error of the numerical scheme (4.1a) is given by

(4.2a) {local error} := A(wΔ) −GΔ.

For time-dependent problems, the local truncation error of the numerical scheme
(4.1b) is given by

(4.2b) {local error} :=
wn+1

Δ −M−1A(wn
Δ)

Δt
−Gn

Δ.

In both cases, the local error depends on the small discretization parameter, Δ.

Definition 4.1 (Consistency and order of accuracy). Fix a vector norm |‖·|‖.
We say that the numerical scheme (4.1) is an accurate approximation of the PDE
(2.1) of order r > 0 if, for all solutions of (2.1), the corresponding local error (4.2)
is of order O(Δr).

We distinguish between two cases.

(i) Boundary-value problems. The numerical scheme (4.1a) is an approxima-
tion of order r of the boundary-value problem (2.1) if

(4.3a) |‖A(wΔ) −GΔ|‖ <∼ Δr.

(ii) Time-dependent problems. The numerical scheme (4.1b) is an approxima-
tion of the time-dependent problem (2.1) of order r = (r1, r2) if

(4.3b)

∥∥∥∥∣∣∣∣wn+1
Δ −M−1A(wn

Δ)

Δt
−Gn

Δ

∥∥∥∥∣∣∣∣ <∼ Δr1 + (Δt)r2 .

A numerical scheme is consistent if it is accurate of order r > 0.

The definition of accuracy tells us that as we refine the underlying grid of an
accurate finite-difference method or an accurate finite-element or finite-volume tri-
angulation, or increase the number of spectral modes, etc., the numerical scheme
(4.1) becomes a more “faithful” representation of the nonlinear PDE (2.1). Of
course, the higher r is, the “closer” (4.1) gets as a representation of (2.1). This,
however, does not necessarily imply that the numerical solution gets “closer” to the
exact solution of the PDE: consistency alone will not suffice for convergence.

It is a straightforward matter to verify the order of accuracy of a given numerical
scheme. For example, the centered difference is second-order accurate:

(4.4a)

∥∥∥∥∣∣∣∣wj+1,k −wj−1,k

2Δx
− ∂xw(xj , yk)

∥∥∥∥∣∣∣∣ <∼ (Δx)2.

Larger stencils can be used to design difference approximations of derivatives to any
order of accuracy. Similarly, the derivatives of piecewise linear polynomials used
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in finite-element schemes, yield first-order accurate approximations of the exact
gradients,

(4.4b)
∥∥∣∣∇x

∑
j

wjϕj(x) −∇xw(x)
∥∥∣∣ <∼ Δ, Δ = max

j
diam(Tj).

An extensive catalog is available for finite-element discretizations with a higher-
order of accuracy [43, 114, 44], or the systematic derivation of FEM stencils in [5]
and the references therein. Finite-volume methods enable us to reconstruct high-
order approximants from the computed cell averages. For example, the piecewise
linear FV approximation we met in (3.21),

(4.4c)
∥∥∣∣∑

j

(
wj + (x− xj)(w

′)j
)
1Ij (x) −w(x)

∥∥∣∣ <∼ (Δx)2,

is a second-order accurate approximation, provided the numerical derivatives are
properly reconstructed so that (w′)j ≈ w′(xj). The global stencils of spectral
methods based on N ∼ 1/Δ modes enjoy exponential accuracy:

(4.4d)
∥∥∣∣Dm

x

∑
k

ŵk(t)eik·x −Dm
x w(x)

∥∥∣∣ <∼ e−
θ
√

η/Δ, η > 0, θ ∈ (0, 1].

Remark on accuracy and smoothness. What norms should be employed to
measure the accuracy in (4.3) and (4.4)? The standard notion of accuracy requires
the exact solution to be sufficiently smooth, so that one can measure the local error
in the usual pointwise sense, using the uniform L∞-norm. Thus, for example, (4.4b)
holds for twice differentiable w’s and (4.4d) for analytic ones. On the other hand,
one can interpret the notion of accuracy for less regular solutions, provided the
error is measured in “weaker” norms. For example, (4.4a) and (4.4c) hold for L2-
solutions, when the error is measured in negative Sobolev (semi-)norm W−2(L∞).

4.2. Convergence and convergence rate. The question of convergence is of
prime interest in the construction, analysis, and, of course, the implementation
of numerical methods. Here, one would like to secure the convergence of the ap-
proximate solution to the exact one, as we refine the computational grid by letting
Δ ↓ 0.

Definition 4.2 (Convergence and convergence rate). Fix a vector norm ‖ · ‖.
(i) Boundary-value problems. Consider the numerical scheme (4.1a) as a con-

sistent approximation of the PDE (2.1). Let WΔ = {WΔ(x) | x ∈ ΩΔ},
denote the numerical solution and let w(x) be the exact solution of (2.1),
which is realized by a discrete projection, wΔ = {wΔ(x) | x ∈ ΩΔ}. We
say that WΔ converges to the exact solution, w, if there exists q > 0 such
that

(4.5a) ‖WΔ −wΔ‖ <∼ Δq, q > 0.

(ii) Time-dependent problems. Similarly, the solution of the time-dependent
numerical scheme (4.1b) converges to w(t,x) if there exists q = (q1, q2) > 0
such that

(4.5b) ‖Wn
Δ −wn

Δ‖ <∼ Δq1 + (Δt)q2 , tn ∈ [0, T ].

The exponents q, q1, q2 quantify the convergence rate of the numerical
scheme (4.1).
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Remark on convergence and smoothness. The notion of convergence is an
asymptotic statement: as we refine the grid or increase the number of modes, etc.,
we expect the numerical solution to get closer to the exact solution. As before,
the notion of convergence requires the exact solution to be sufficiently smooth,
depending on the norm, ‖ · ‖, one uses to measure the convergence rate in (4.5).
We say that a numerical scheme converges if the sequence of numerical solutions
converges for a sufficiently large class of exact data. Ideally, as the order of accuracy
of a numerical scheme increases, we expect its convergence rate to improve, e.g.,
q = r. But in fact, the solution of accurate schemes need not converge at all. This
brings us to the third main concept of stability.

4.3. Stability of numerical methods. The solution of a numerical scheme, Wn
Δ,

is uniquely determined by the prescribed data: which consists of the boundary data
and source term, GΔ, the initial values, W0

Δ, as well as other data supplied with
the underlying PDE. The numerical scheme is stable if a change of the data leads
to a comparable change in the numerical solution. To this end, we fix two vector
norms, ‖ · ‖ and |‖·|‖, to measure these changes. The choice of the possibly two
different norms, ‖ · ‖ and |‖·|‖, is intimately linked to the specific nature of the
problem—the underlying PDE, its discrete approximation and its realization on
the computational grid. We shall say more on these choices in section 4.5.

Definition 4.3 (Stability). We distinguish between two cases.

(i) Boundary-value problems. Let WΔ be the unique numerical solution of the
finite-difference, finite-element, finite-volume, or spectral schemes (3.10a),
(3.17a), (3.24a), or (3.29a):

(4.6a) A(WΔ) = GΔ.

Each of these schemes maps discrete data GΔ to a numerical solution WΔ.
We consider the mapping GΔ �→ WΔ. The numerical scheme (4.6a) is
stable if for all (sufficiently close) pairs of admissible data,

FΔ �→ UΔ and GΔ �→ WΔ,

the following estimate holds, uniformly for sufficiently Δ,

(4.6b) ‖WΔ −UΔ‖ <∼ |‖GΔ − FΔ|‖.
(ii) Time-dependent problems. Let Wn

Δ be the unique numerical solution of the
time-dependent schemes, (3.10b), (3.17b), (3.24b), or (3.29b):

(4.7a) Wn+1
Δ = M−1A(Wn

Δ) + ΔtGn
Δ.

Each of these schemes evolves discrete data (W0
Δ, {Gn

Δ}tn∈[0,T ]) which is
mapped to a numerical solution {Wn

Δ}tn∈[0,T ]. We consider the mapping

(W0
Δ, {Gn

Δ}tn∈[0,T ]) �→ {Wn
Δ}tn∈[0,T ]. The numerical scheme (4.7a) is sta-

ble, if for all (sufficiently close) pairs of admissible data,{
U0

Δ, {Fn
Δ}tn∈[0,T ]

}
�→ {Un

Δ}tn∈[0,T ] and
{
W0

Δ, {Gn
Δ}tn∈[0,T ]

}
�→ {Wn

Δ}tn∈[0,T ],

the following estimate holds uniformly for sufficiently small Δ and Δt:

(4.7b) ‖Wn
Δ −Un

Δ‖ <∼ ‖W0
Δ −U0

Δ‖ +

n∑
m=0

|‖Gm
Δ − Fm

Δ |‖, tn ∈ [0, T ].
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The notion of stability is a discrete analog of the notion of well-posedness of the
underlying PDE discussed in section 2.3. The stability estimates (4.6b) and (4.7b)
tell us that a small perturbation of the data, measured by the norm |‖·|‖, leads
to a comparably small change in the corresponding numerical solutions, measured
in norm ‖ · ‖. In particular, the stability of a numerical scheme (4.6b) enables
us to compare its numerical solution, WΔ, with the discrete projection of the
exact solution, wΔ. Indeed, by consistency, (4.2a), the discrete projection of the
exact solution, wΔ, satisfies the same numerical scheme as WΔ does, modulo the
perturbed data due to local truncation errors,

GΔ + {local error} �→ wΔ.

Similarly, in the case of a consistent time-dependent scheme (4.2b), the discrete
projection of the exact solution, Wn

Δ, solves the perturbed numerical scheme

Gn
Δ + Δt · {local error} �→ wn

Δ.

Stability implies that the difference between the computed solution and the discrete
projection of the exact solution, WΔ −wΔ and Wn

Δ −wn
Δ, is dictated by the size

of the local errors : by the assumption of consistency, they rapidly tend to zero. We
can summarize this argument as follows.

Theorem 1 (Stability implies convergence of consistent schemes). Let WΔ

be the solution of a numerical method (4.6a), consistent with a well-posed boundary-
value problem (2.1); in particular, assume that it is accurate of order r > 0, i.e.,
(4.3a) holds. Then, if the numerical method (4.6a) is stable (4.6b), its solution
converges with rth-order convergence rate,

(4.8a) ‖WΔ −wΔ‖ <∼ Δr.

Similarly, let Wn
Δ be the solution of a numerical method (4.7a) consistent with a

well-posed time-dependent problem (2.1); in particular, assume that it is accurate
of order r > 0, i.e., (4.3b) holds. Then, if the numerical method (4.7a) is stable
(4.7b), its solution converges with rth-order convergence rate,

(4.8b) ‖Wn
Δ −wn

Δ‖ <∼

n∑
m=0

Δt · |‖{local error}|‖ <∼ Δr1 + (Δt)r2 , tn ∈ [0, T ].

Remark on discrete projections. Observe that (4.8) does not involve the exact
solution of the PDE, w(x) and w(tn,x). Instead, it establishes convergence toward
their discrete projections, wΔ and wn

Δ. The remaining differences, w(·) −wΔ(·),
and similarly, w(tn, ·) − wn

Δ(·), depend on the type of numerical realization, and
their convergence is dictated solely by

(i) the regularity of the underlying solutions; and
(ii) the specific norm, ‖ · ‖ used to measure the difference between an exact

solution and its discrete projection.

It seems that this type of error, ‖w(·) −wΔ(·)‖, which must be made by the mere
representation of an infinite-dimensional exact solution over the finite-dimensional
computational grid, will dominate the overall convergence rate, ‖w(·) − WΔ(·)‖.
This, however, need not be the case. Once again, the choice of the norm ‖ · ‖ plays
an essential role here. We clarify this point with an example of spectral approxi-
mations. Consider the Fourier projection, wΔ(x) =

∑
|k|≤N ŵke

ik·x, of a certain
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exact solution, w(x). If w(x) contains discontinuities, then the representation er-
ror, ‖wΔ(·) −w(·)‖Lp is at most first-order accurate due to the Gibbs phenomena
[199]. However, when measured in negative Sobolev (semi-)norm, one recovers
the high accuracy of the Fourier projection, ‖wΔ(·) − w(·)‖H−s

<∼ N−s−1. Thus,
the representation error does not necessarily dominate the convergence rate, when
measured by proper “weak” norms. The information content in highly accurate
approximations of “rough” data can be extracted by postprocessing [129, 151, 199].
Figure 3.11(b) demonstrates how such postprocessing extracts the information from
the oscillatory SV solution in Figure 3.11(a).

Stability plays a central role in the theory of numerical methods. It shifts the
burden of a convergence proof into the concept of stability, which in turn depends
solely on the properties of the numerical scheme, but otherwise does not involve the
underlying PDE. The compatibility between the two—the numerical scheme and
the underlying PDE it approximates—is guaranteed by the easily checkable notion
of consistency. However, a convergence argument along these lines faces two main
practical difficulties. In generic cases, the norms employed by the stability estimates
(4.6b), (4.7b) are dictated by similar well-posedness estimates of the underlying
PDEs, and the local errors need not be small when measured in these norms. A
second, more notorious difficulty, is that the well-posedness of PDEs in the sense
of their continuous dependence on the data is often not known. Consequently, the
stability estimates sought in (4.6b) and (4.7b) are too difficult to establish. This
is particularly relevant in the nonlinear setup. One therefore seeks weaker stability
assumptions. A prototype example is the assumption of boundedness.

Definition 4.4 (Stability revisited—boundedness). Fix two vector norms, ‖·‖
and |‖·|‖.

(i) Boundary-value problems. Let WΔ be the numerical solution of the
boundary-value, finite-difference, finite-element, finite-volume, or spectral
scheme (3.10a), (3.17a), (3.24a) or (3.29a):

(4.9a) A(WΔ) = GΔ.

The numerical scheme (4.9a) is bounded if the following estimate holds
uniformly for sufficiently Δ:

(4.9b) ‖WΔ‖ <∼ |‖GΔ|‖.
(ii) Time-dependent problems. Let Wn

Δ be the numerical solution of the homo-
geneous time-dependent scheme, (3.10b), (3.17b), (3.24b) or (3.29b) with
Gn

Δ:

(4.10a) Wn+1
Δ = M−1A(Wn

Δ).

The numerical scheme (4.10a) is bounded if the following estimate holds
uniformly for sufficiently small Δ and Δt:

(4.10b) ‖Wn
Δ‖ <∼ ‖W0

Δ‖, tn ∈ [0, T ].

Remark on the notion of boundedness. There is more than just one notion
of boundedness with respect to the data. In boundary-value problems, one can
measure boundedness with respect to the boundary data bΔ, the inhomogenous
data GΔ, or with respect to both as sought in (4.9b). Similarly, boundedness in
time-dependent problems can be measured with respect to the initial data as sought
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in (4.10b), with respect to the boundary and inhomogeneous data (a resolvent type
estimate, e.g., [95]), or with respect to both.

The bounds in (4.9b) and (4.10b) tell us that if the data are inside a small ball
around the origin, then the corresponding numerical solution cannot be arbitrarily
large: it should be inside a ball of a comparable size. This is clearly necessary
to guarantee convergence. Otherwise, the numerical solution may grow arbitrarily
large, despite the vanishing size of the data which are associated with the (typical)
zero solution w ≡ 0. Thus, we view the bounds (4.9), (4.10) as a measure of
stability with respect to the special zero data (and in a more general setup, one
may employ other special “preferred” data). In certain cases, boundedness is also
sufficient to guarantee the convergence. We mention two important cases.

(i) The implication “boundedness =⇒ convergence” can be argued in certain
nonlinear cases, where the bounds (4.9b) and (4.10b) hold with a norm, ‖ · ‖, which
is “strong enough” to guarantee the compactness of the family of numerical solu-
tions, {WΔ} or {Wn

Δ}, and the (numerical) derivatives involved in the numerical
scheme. It follows that there is a converging subsequence as Δ ↓ 0, and consistency
then implies that this limit must be the desired solution of the underlying PDE.

This line of argument yields convergence, ‖Wn
Δ(x) −w(tn,x)‖ Δ→0−→ 0, but it lacks

convergence rate estimates. As examples, we mention the convergence proofs of
the Glimm finite-difference approximation [86] based on a total-variation bound,
the convergence of finite-difference and finite-element approximations of the incom-
pressible Euler and Navier–Stokes equation based on an energy bound [40, 114, 51],
or the convergence of finite-volume and spectral schemes based on their entropy
production bounds [53, 48, 77, 195].

(ii) The implication “boundedness =⇒ convergence” applies to the general case
of linear schemes. The numerical schemes (4.9a), (4.10a) are linear if the matrices
M and A are. In the linear case, the notion of boundedness is equivalent with the
notion of stability,2 which brings our discussion to the linear setup.

4.4. From the linear to the nonlinear setup. We have a fairly solid under-
standing of the linear theory for numerical methods for PDEs. Several key concepts
from the linear setup apply to nonlinear PDEs, as long as the underlying solutions
involved are sufficiently smooth. We mention a few of them.

FEMs for linear boundary-value problems are typically formulated within the
“weak” framework of the Lax–Milgram lemma, and are realized by Galerkin or
Ritz methods. There is an extensive “catalog” of conformal and nonconformal
elements which are chosen to be compatible with constraints of the underlying
PDEs. Convergence is quantified in terms of the Céa and Bramble–Hilbert lemmas
[43, 114, 25]. Stability of mixed-type FEMs for saddle-point problems is verified
in terms of the Babuška–Brezzi inf-sup condition [8, 26]. The finite elements are
adapted to local variations of the solution: adaptivity is often tuned by a posteriori
estimates [14, 22, 157].

Finite-difference methods for linear time-dependent problems come in several fla-
vors of dissipative or unitary schemes, explicit or implicit schemes [122, 123]. No-
table examples are the dissipative Lax–Friedrichs and Lax–Wendroff schemes, the
unitary Leap-Frog scheme and the implicit backward Euler and Crank–Nicolson

2Often, therefore, one finds in the literature the distinction between the nonlinear stability
estimates (4.6), (4.7), and the linear stability bounds, (4.9), (4.10).
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schemes [175, 95]. The computation of multidimensional probelms is often accom-
plished using splitting methods such as Strang splitting and alternating direction
implicit methods [175, 181]. Linear stability in the sense that the bound (4.10b)
holds, can be checked by von Neumann stability analysis. The notion of linear
stability is strong enough to guarantee stability against perturbations of the inho-
mogenous data (4.7b),

(4.10b) �→ ‖Wn
Δ −Un

Δ‖ <∼ ‖W0
Δ −U0

Δ‖ +
n∑

m=0

‖Gm
Δ − Fm

Δ‖, tn ∈ [0, T ],

which in turn yields (one half of) the celebrated Lax–Richtmyer equivalence theorem
[133].

Theorem 2 (Stability and convergence are equivalent for linear prob-
lems). Let Wn

Δ be the solution of a linear numerical scheme (4.10a) consistent
with a well-posed linear time-dependent problem (2.1). Then, stability (4.10b) is
necessary and sufficient for convergence.

The implication “stability =⇒ convergence” played a central role in the early
years of development of numerical methods for PDEs [175, Sec. 3.5]. As we already
mentioned, it shifts the burden of proving convergence into a proof of stability,
which in turn depends solely on the properties of the numerical method, but other-
wise does not involve the underlying PDE. A more quantitative approach [95, Sec.
5.1] implies that the convergence rate, ‖Wn

Δ −wn
Δ‖, is of the same order expected

by the order of consistency, namely, q = r. In the linear case, the assumption of
stability is more accessible than nonlinear stability: the bound (4.9b) amounts to
the uniform invertibilty of A; the bound (4.10b) amounts to the uniform power-
boundedness, (M−1A)n, or the uniform product-boundedness, ΠnM

−1A(tn). The
bounds should hold uniformly with respect to Δ ↓ 0. The inverse implication of the
equivalence theorem, “convergence =⇒ stability,” follows from general principles for
families of bounded linear operators.

The celebrated theorem of Strang [189] guarantees that linear stability carries
over to the nonlinear setup, as long as the underlying solution involved is sufficiently
smooth.

4.5. Challenges in numerical methods for nonlinear problems. Unlike the
linear setup, one cannot expect to have a unified framework to analyze the conver-
gence of numerical methods for nonlinear PDEs. If the solution of the nonlinear
PDE we are interested in approximating is sufficiently smooth, then the linear con-
vergence theory usually prevails. Thus, the main challenge is solving nonlinear
problems which come with a limited degree of smoothness. The challenges vary be-
tween different nonlinearities, depending on special feature of the problem at hand.
We mention two aspects of such challenges.

(i) Local and global invariants. Often, the solutions of problems with a
limited degree of smoothness have a restricted phase space, with values that lie
in a region or a lower-dimensional manifold, Σ ⊂ Rp, such that w(x) ∈ Σ for
all x ∈ Ω. In particular, nonlinear time-dependent problems are often endowed
with invariant regions, Σ ⊂ Rp, such that the nonlinear solution operator satisfies
w0(·) ∈ Σ �→ w(t, ·) ∈ Σ. To compensate for the loss of smoothness, it is essential to
design numerical approximations which respect the corresponding local invariants,
namely, their numerical solutions should stay in or nearby the preferred region,
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WΔ ∈ ΣΔ. As examples we mention properties of positivity, maximum principle,
convexity, etc. Other local invariants could come as differential forms carried out
by the exact solution, M(∂,w,x) ∈ Σ ⊂ Rp. As examples we mention constraint-
transport, which preserves incompressibility and other trace-free flows, irrotational
flows, topological degree, variational inequalities, and entropy inequalities.

Another important class of invariants which is essential in many nonlinear nu-
merical methods is the class of global invariants. As examples we mention the
conservation of mass, which is the basic framework for modern “shock-capturing”
methods, the class of conservative schemes in the sense of Lax–Wendroff [134]; En-
ergy conservative schemes which are advocated in long-term calculations of weather
prediction using the global circulation model [3]; entropy stable schemes are sought
as a “faithful” computations of physically relevant shock-discontinuities [198, 201],
and numerical methods which preserve the integrals of motions for (completely)
integrable systems [217, 107, 108, 7].

(ii) On the choice of norms. As we mentioned earlier, the stronger notion
of (nonlinear) stability (4.6b), (4.7b) is difficult to verify in many nonlinear prob-
lems. This is particularly relevant for nonlinear problems with a limited degree of
smoothness. At the same time, nonlinearity makes the passage from boundedness
to convergence a more delicate task. The bounds (4.9b), (4.10b) on the numerical
solutions ‖WΔ‖ and, respectively, ‖Wn

Δ‖, do not guarantee convergence, unless
the norm ‖ · ‖ is strong enough to enforce compactness. There are several tools to
obtain such desired bounds. We mention strong compactness bounds expressed in
terms of Sobolev, Hölder, or Harnack-type estimates, monotonicity bounds [75], and
a host of weak compactness bounds, which involve convexity and quasi-convexity
arguments, compensated compactness, Γ- and H-convergence, concentration com-
pactness, or use of the averaging lemma [205, 138, 75, 91, 206, 84, 68, 60, 202]. The
difficulty lies with the fact that these bounds often require matching the nonlinear
PDE with a sufficiently weak norm ‖ · ‖ to measure consistency in the sense that
(4.3) holds. Thus, the passage from linear or nonlinear stability to convergence
depends on what kind of norms are employed in the stability and boundedness
estimates, (4.6b), (4.7b) and (4.9b), (4.10b).

So far we have not specified the norms, ‖ · ‖ and |‖·|‖, which are to be used
in the various estimates of consistency, convergence, and stability. For example,
the size of the local error in (4.2) should be measured by an appropriate norm,
|‖·|‖, which is compatible with the underlying PDE, the underlying grid, and the
specific numerical method being employed. The upper bounds on the local error
on the right of (4.3) then depend on the smoothness of w, which in turn requires a
higher-order Sobolev norm involving |‖∂βw|‖. Similarly, convergence in (4.5) and
stability estimates (4.6b), (4.7b) should be measured with respect to appropriate
norms, which are compatible with the underlying nonlinear PDE. A few examples
are in order.

In the linear case, the stability of numerical schemes for problems of hyperbolic
type is typically analyzed in terms the L2-norm [133, 122, 132, 189]. Problems
of parabolic and elliptic type use the uniform, L∞-norm [209]. The stability of
systems which arise from a mixed formulation of an FEM is often achieved in terms
of Babuška–Brezzi inf-sup condition [8, 26], where stability is measured in terms of
the H1- and H−1-norms, or similar pairs of dual norms, ‖ · ‖ and |‖·|‖. The well-
posedness of nonlinear conservation laws and related equations is typically achieved
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in the L1-norm, and numerical stability is therefore sought in the L1-metric [21].
In this case, one has L1-stability against perturbations which in turn implies the
bounded variation (BV)-stability [90, 100]. The theory of viscosity solutions for
nonlinear Hamilton–Jacobi and fully nonlinear elliptic equations was developed in
the L∞-framework [57, 30], as are the corresponding convergence theories [188,
158, 31]. To overcome the lack of smoothness, one can use negative Sobolev norms
|‖·|‖W−m(Lp) [151, 196, 85]. In certain cases, one must measure the errors which are

supported only on the computational grid, using discrete norms such as �2. In other
cases, one may need to carefully adjust the measure of local errors using norms
which are compatible with adaptive grids [22]. Nonlinear Schrödinger equations
and related semilinear dispersive equations were studied using mixed space-time
Strichartz Lq

tL
p
x norms [204], and the stability of numerical methods follows along

the same lines.
We conclude by noting that although the definition of stability does not involve

the underlying PDEs, the framework enforced by a choice of a proper norm makes
a fine interplay between the notion of stability of a numerical scheme and the well-
posedness of the underlying PDE it tries to approximate. This interplay remains a
key issue in the construction, analysis, and implementation of numerical methods
for nonlinear PDEs.

5. Future directions

There are three main sources of influence on new developments in numerical
methods for nonlinear PDEs.

Mathematical models and modern mathematical tools. A large por-
tion of the theory of PDEs was developed in response to models that originated
in the physical sciences. Just as the Laplace equation, the wave equation, and
the heat equation are prototypical linear PDEs, the minimal surface equation, the
Schrödinger equation, and Navier–Stokes equations are canonical examples that
are driving much of the study of nonlinear PDEs. A parallel development of nu-
merical methods follows. In recent decades, a growing part of the theory was
expanded to include nonlinear PDEs driven by models from social and biological
sciences. These models lack the precise foundations of Newton’s, Maxwell’s, or
Schrödinger’s equations. Instead, there is a growing role for nonlinear stochastic
PDEs [112, 146, 42] with a wide range of applications, from financial models and
data assimilation in atmospheric sciences to material sciences and biological mod-
els; see [118, 185, 116, 121, 154, 169, 166] and the references therein. Moreover,
more often than not, realistic models from social and biological sciences do not
allow separation of scales; instead, one is forced to study nonlinear PDEs across
scales. Numerical methods for such nonlinear PDEs will therefore have to integrate
stochastic aspects and will be inherently multiscale.

We should also mention the influence of modern mathematical tools on the de-
velopment of new directions for numerical methods for solving such equations. As
an example, we mention developments of new geometric tools in nonlinear PDEs
[98, 37, 210, 164], fully nonlinear elliptic equations, optimal transportation and
Navier–Stokes equations [57, 29, 218, 139] as examples which should pave the way
for future developments in numerical methods.
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Numerical analysis. The solution of numerical approximation of nonlinear
PDEs is realized over finite-dimensional spaces—gridvalues, local moments, cell av-
erages, etc. As such, the construction of novel numerical algorithms had a profound
impact on modern developments of numerical methods for (nonlinear) PDEs. In-
deed, it was well known that during the period of serial processors, the speed-up
in computation due to improved hardware—the exponential graph predicted by
“Moore’s law” [152]—was matched by a similar graph of speed-up due to the devel-
opment of novel computational algorithms. A few examples are in order: the QR
algorithm for computing eigensystems [80] and the fast Fourier transform FFT [52],
which gave the impetus for the development of spectral methods during the 1960s;
the development of multigrid and MATLAB in the 1970s [24, 148, 36]; wavelets,
linear programming interior point methods, and the fast multipole method (FMM)
[61, 149, 117, 94] in the 1980s; high-resolution methods for discontinuous solutions
in the 1990s [100, 49]; and curvelets, greedy algorithms, compressive sensing and
other “optimal algorithms” of finite-dimensional approximations, which have ma-
tured during recent years [32, 69, 33, 208, 66].

Future developments of numerical methods for nonlinear PDEs will continue to
be influenced by unknown numerical algorithms, which are yet to be developed:
new tools to cope with the “curse of dimensionality”, further systematic devel-
opments of adaptivity in the presence of different scales, probabilistic algorithms,
and an increasing role for combinatorial aspects of the underlying algorithms are a
few examples expected from future developments of numerical methods for solving
nonlinear PDEs.

New computational platforms. Computers used to get smaller and faster,
but in recent decades the direction changed towards faster computing using parallel
processing, cyber computing, and using dedicated rather than all-purpose proces-
sors. Different platforms will require dedicated algorithms, which will take full
advantage of new computing architectures. As a recent example, we mention the
success of using graphical processing units (GPUs) in running large scale simula-
tions much faster than multicore systems [111]. At the same time, the resulting
increase in computing power will enable us to simulate more than just nonlinear
PDEs at a given scale; it will enable us to model hierarchies of scales. We mention
in this context the examples of numerical homogenization and upscaling methods
[16, 109, 72], the heterogeneous multiscale method of E and Engquist [71], and the
equation-free approach of Keverkidis and his coworkers [120]. The main aspect in
these approaches goes beyond the numerical solution of a given model: petaflop
computational platforms will enable actual modeling across the hierarchy of dis-
crete scales. These developments will enable, in the context of numerical weather
prediction, for example, a multiscale simulation of the interplay between the global
circulation numerical model and highly localized dynamics. We will then get closer
to realizing the full potential behind von Neumann’s vision [156], where “the entire
computing machine is merely one component of a greater whole, namely, of the
unity formed by the computing machine, the mathematical problems that go with
it, and the type of planning which is called by both.”
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