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FAST COMMUNICATION

BURGERS’ EQUATION WITH VANISHING HYPER-VISCOSITY*

EITAN TADMOR'

Abstract. We prove that bounded solutions of the vanishing hyper-viscosity equation, u+ +
Ff(w)e + (=1)%€82%u = 0 converge to the entropy solution of the corresponding convex conservation
law ut+ f(u)z = 0, f” > 0. The hyper-viscosity case, s > 1, lacks the monotonicity which underlines
the Krushkov BV theory in the viscous case s = 1. Instead we show how to adapt the Tartar-Murat
compensated compactness theory together with a weaker entropy dissipation bound to conclude the
convergence of the vanishing hyper-viscosity.
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1. Convergence with vanishing hyper-viscosity. Consider the convex con-
servation law

ou o
(11) o D sw=0, >0

ot
subject to initial conditions, u(z,0) = ug. We are concerned with the convergence of
its hyper-viscosity regularization of order s > 1

ou® 0 o2

(1.2) 5 + I (u®(z,t)) = (_I)SHE(%C%

u®(x,t).

The viscous case corresponding to s = 1 is well understood within the classical
Krushkov theory, which is built on the monotonicity of the associated solution opera-
tor, e.g., [Daf00, §VI]. The prototype is Burgers’ equation governed by the quadratic
flux f(u) = u?/2. The hyper-viscosity case for s > 1, however, lacks monotonicity
and the Krushkov BV theory seems out of reach. Instead we show how to adapt the
Tartar-Murat compensated compactness theory, [Tar75, Mur78] in the present non-
monotone framework. A similar approach originated with [Sch82] for the vanishing
diffusion-dispersion problem where the RHS of (1.2) is replaced by eu,, + d.us,,. In
the particular borderline case, 6. ~ €2, limit solutions may in fact violate Krushkov
entropy condition, [KL02]. Otherwise, entropy solution limits are recovered by com-
pensated arguments as long as diffusion dominates, 6. < &2, [Sch82, KL02]. We
should point out that in the present context, hyper-viscosity with s > 1 yields a
weaker entropy dissipation bound than in the viscosity dominated case s = 1, con-
sult (1.6) below. We show that this hyper-viscosity entropy dissipation estimate will
suffice.

To begin with, we rescale the hyper-viscosity amplitude ¢ = ey = N—(2s=1),
Denote uy = u®~, then (1.2) reads
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8UN o (_1)5-1-1 625
The rescaling in (1.3) is made such that uy has a smallest scale of order 1/N, in
the sense of satisfying , consult Lemma 1.2 below,

[07un (2, )l L2(0,1], L2, (2)) < Const. NP - [lun(z,t)|L2jo, 1,050 (2)): P <8

This estimate is motivated by the fact that uy is closely related to its N-term Fourier
projection, uy ~ Pyupy. Indeed, the approach taken here follows closely our discus-
sion on the spectral hyper-viscosity method introduced in [Tad93], consult (2.1) below,
which directly governs the approximate N-projection uy ~ Pyu. As in [Tad93], we
restrict attention to the periodic case.

We begin with the behavior of the quadratic entropy of the hyper-viscosity solu-
tion, U(un) = 2u%,. Multiplication of (1.3) by ux implies

L4 2 a 7 ( )s-i-l 825 77
(1.4) 26t N+ §f = N1 NG s UN = (un).

The expression on the right (1.4) represents the quadratic entropy dissipation + pro-
duction of the hyper-viscosity solution. Successive “differentiation by parts” enables
us to rewrite this expression as

_ 1 Cpystpi1 O [OPun OTun | 1 O un '\
IZ(un) = VT Z (—1) ol e e o
p+qg=2s—1
q=>s
(15) Z:II1(UN)+IIQ(’U,N).

and spatial integration leads to the following (compare [Tad93, Lemma 4.1])
LEMMA 1.1. [Entropy dissipation estimate]. The hyper-viscosity solution uy
satisfies the following apriori estimate

1 S
(1.6) lun (-, T)72 + W|\amUN|\%2(m,[o,T]) < lun (5 0) 1720 < K3

Here and below K| stands for an N-independent L2-bound depending solely on the
initial energy, Ko > |Jun(-,0)]|z2.
Next, we decompose uy into low and high modes, uy = ul, + ul}

(1L7) un(@,t) = Y an(k,0)e™ + > dn(k, )™ = uy (2, t) + uy (z,1).
|k|<N |k|>N
Observe that the entropy dissipation bound for u%; in (1.6), Nz‘k‘<N(|k|/N)25|u(k t)|2 1201 <

K2, is considerably weaker in the hyper-viscosity case, s > 1, than in the standard
viscosity regularization with s = 1. In the latter case, (1.6) amounts to the H'-
bound [|0,un || z2(x,0,77) < KoV N. Nevertheless, interpolation of (1.6) in the general
hyper-viscosity case, s > 1, still enables us to control the L2-growth of d,uy,

s % 1_% T
(1.8) ||azUN||L2(z,[O,T]) < OOnSt-HamuN||j‘2(m7[07T])HUN|‘L2(QC7[07T]) < COHStT]V1 2s .
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To proceed we prepare three estimates. We begin with the higher modes in ufvl .

Here we utilize the entropy dissipation estimate (1.6), to find that for p < s

’ . /T ( E k[P - [a(k )I)zd
< Sk, t t <
L2([0,T],L>*(z)) ~ Jy—o

opuf (z.1)|

- |k|>N
’ 2 2 1 2 nT2
S04 . - P
(1.9) g( - 37 I[P Jatk t)] dt) 3 e S KN p<s
—|k|>N |k|>N

In particular ||u{VIHLz([07TLLoo(I) < Ky and we conclude 1/N is the smallest scale in
the hyper-viscosity solution uy is in the sense that

LEMMA 1.2. There exists a constant such that Vp < s the following holds
|02 (2, 1)

(1.10)

<C t.Np-[K K., Ko(T) = t o).
Lo L@) — o 0+ Ko] (T) = lJun(z, )| 220, 77,2 ()

To verify (1.10) we first note that the lower modes grouped in u; form an N-degree
trigonometric polynomial for which Bernstein’s inequality applies, [|02ul (@, ¢)|| Lo () <
Const.N? - |luk (x,t)|| oo (z). This together with (1.9) yield

9 T T
_ I 2 II 2
[z @) L 1y ey = 1N Oyt [ 020 o
T
< C’onst.NQp/ |uk (z, t)||%oo(z)dt + KEN?P
t=0

T T
< 2Oonst-N2”[/t_O IIUN(I,t)ll%oouc)dt+/t_0 I\val(x,t)llioou)dt] + KGN

(1.11) < Const.N? [KZO(T) +K§] m

Next, we treat the higher derivatives, dduy with s < ¢ < 2s. The hyper-viscosity
equation (1.3) relates the highest 2s-derivative to the first-order ones,

(112)  02un] < N2 || + FolOrunl]s o= sup 1 ()

Spatial integration of (1.3) against dyuy yields

1 d, .

HatuNH%z(m) + (atuNa f/(uN)aﬂcuN)LQ(m) = TON2s—1 gt

and by temporal integration we can bound the time derivative, |[Oyun||z2(z,0,77) in
terms of the spatial one ||0,un || £2(x,0,77);

1 1 1 .
1072z 0,7 < 3 ||8tuNH%2(m,[O,T])+§f§o ||3zUN||2L2(m,[o,T])+W 105un (-, 0)]|7--

Inserting this into (1.12) we find, in view of (1.8),
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S S— 1 S
1025 un || L2z 0,7 < Const. N**~* [2f00||6wuN||L2(z,[O,T]) + WH%”N(',OHFH} <

(1.13) < ConstN?°~1 {foolei + Cg < ConstooNQSfi.

Here and below Const,, denote different constants depending on ||un|| Lo (z,[0,77)
and Cy is a bound on initial smoothness,

(1.14) N=6=3(105un (-, 0)]| 12 < Co < o0,

measuring a minimal amount of H® smoothness of the initial data which prevents the
formation of an initial layer. In particular, (1.14) allows growing initial oscillations
as long as [|05un(-,0)] 2 ~ N~35). We summarize by stating

LEMMA 1.3. There exists a positive constant § = 6(s) ~ 1/s such that Vg, s <
q < 2s the following holds

< Consty - Nq_‘s, s < q<2s.

1.15 ‘
(1.15) L2 (2, [0.7))

dun (z, t)’

To verify (1.15) we interpolate (1.13) and (1.6) to conclude (with 6 := < — 1)

0% @, )l 2o o.77) < ConstlloZun (e, D)1 oy % [93un (@ DIE0 019 <

1

< Constoe N2572:)8 x N(5=2)1-0) < Copsto Ntz =) i+(z -1 =

g 1 1 1

O T I
8(28 2>+ 2s’

and (1.15) follows with §(s) = das—1 = (25—1)/2s* ~ 1/s (and in fact (1.15) is verified
for ¢ = 2s with the slightly smaller §(s) =1/2s). W

(1.16) = Consto, N97%, g :

Finally, lemma 1.2 and its L? version in (1.15) yield,

H [6puN BquN} }
oxP Ox1

< OFunllrz(o, 1), L @) X 103unllzz (@) <

LY([0,T], L7, (=)

loc

< Const - NP [KOO(T) + Ko] x Consto N970
(1.17) < Constoo NP9 <5< g < 2s.

Equipped with the small scale upperbounds in (1.10), (1.15) and (1.17) we now
turn to the main result, stating

THEOREM 1.4. [Convergence]. Consider the hyper-viscosity solution (1.2) sub-
ject to L?-bounded initial data, ||u®(-,0)|z2 < Ko so that (1.14) holds and assume
u®(-,t) remains uniformly bounded, |[u®(-,t)| ro(a,j0,77) < 00. Then u® converges to
the unique entropy solution of the convex conservation law (1.1).
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Remark. (on L*°-stability.) The L*-stability with 2nd order viscosity, s = 1, can
be deduced by LP-iterations, monotonicity or entropy decay arguments. The issue of
an L bound for vanishing hyper-viscosity of order s > 1 remains an open question.

Proof. We seek H !-stability in the sense that both the local error on the right
hand-side of (1.3), Z(uy), and the quadratic entropy dissipation + production on
the right of (1.4), ZZ(un), belong to a compact subset of H,,!(z,t). By compensated
compactness arguments, this will suffice to deduce the L} -strong, p < co convergence
of un to a weak solution of the convex law (1.1).

Consider the first expression, Z(uy) on the right of (1.3). The inequality (1.6) with
q = 25 — 1 implies that Z(ux) tends to zero in H, ! (x,t), for

Ko

VN
(1.18)

We now turn to the entropy dissipation term ZZ (uy) in (1.5): its first half tends to
zero in Hy!(z,t), for by (1.17) we have Vp + ¢ = 25 — 1,

HI(UN)Eﬂ 2s ‘ — 0.

N2s—1 9 un

< Const. —— <
L0 @) \/_HUN”““(I’”_

1 8 8PUN 8‘1uN
17 ‘ < ‘_ ‘
H 1(un) LA([0,T],H; (z)) — N2s—1 Z Ox [ oxP Ox1 } LA([0,T],H; (=) —
oc p+q:2$—1 oc
q=>s
1 pra—s o Cs
(119) S COHStOO . W Z N S W — 0, Cs ~ S.
p+q=2s—1
q=>s
1 8SUN 2
The second half of ZZ in (1.5), “wu1 g ) is bounded in L}, (z,t), consult

Lemma 1.1 and hence by Murat’s Lemma [Mur78], belongs to a compact subset of
H, N(w,t)

(1.20) TTo(uy) — <O
Hloc(mt)

We conclude that the entropy dissipation of the hyper-viscosity solution — for
both linear and quadratic entropies, belongs to a compact subset of Hl_c1 (z,t). Tt
follows that the hyper-viscosity solution uy converges strongly (in L} ., Vp < co) to
a weak solution of (1.1). Indeed, since these entropy dissipation terms tend either to
zero or to a negative measure, the convergence to the unique entropy solution follows.

[ |
2. Related models.

2.1. Spectral hyper-viscosity (SV) method. We consider the spectral vis-
cosity method (SV)

(2.1) R N T S (A TAOR
|k|<N

where o(§) is a symmetric low pass filter satisfying

o= (1g - ) -
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The SV method was introduced in [Tad89] for s = 1 and the convergence of its
hyper-viscosity version in [Tad93] is the forerunner of the present approach; consult
[MOT93, Ma98, GMTO01] for non-periodic extensions. The (hyper-)SV method allows
for an increasing order of parabolicity as long as CsN~% — 0 holds in (1.19), i.e
(recall §(s) ~ 1/s), we require s° << N. In particular, for s ~ (log N)*,u < 1 for
example, one is led to a low pass filter, o(¢) = (£2* — 1/N) which allows for an
increasing portion of the spectrum to stay viscous free, i.e., spectral viscosity is in-
troduced only at modes with wavenumbers |k| > Const.N (log N)~#/2 while retaining
high-order of accuracy at first half of the viscous-free spectrum

Ouy 0 _ || ik —p/2
W_|_8_[P]\,f(uj\, ) =-N ;ICKN( ) t)e™, mpy ~ Const.N(log N) .

Unlike the regular viscosity case, the solution operator associated with (1.2) with
s > 1 is not monotone — here there are ”spurious” oscillations, on top of the Gibbs’
oscillations due to the Fourier projection in (2.1). The convergence statement of
the hyper-SV method (2.1) in [Tad93] and its analogous statement in theorem 1.4
show that oscillations of either type do not cause instability. Moreover, these oscilla-
tions contain, in some weak sense, highly accurate information on the exact entropy
solution; this could be revealed by post-processing the spectral (hyper)-viscosity ap-
proximation, e.g. [GT85, MOT93, TT02].

2.2. Convergence with vanishing Kuramoto-Sivashinsky viscosity. We
are concerned with the convergence of its vanishing viscosity regularization which is
modeled after the 4th-order Kuramoto-Sivashinsky (KS) dissipation

ous 0 02 , O

(2.2) 5 + %f(us(:zr,t)) = —aﬁus(x,t) —€ @us(:zr,t).

Denote uy = u®N corresponding to KS viscosity amplitude of order ¢ = 1/N,
then (2.2) reads

8UN 1 82’U,N 1 8411,]\[
- t — -
ot D f (@) = ~F 52 ~ 73 aat
The rescaling made in (2.3) is such that uy has a smallest scale of order 1/N, in
the sense that

(2.4) [|0Fun (z,t) || L2 jo,77, L3

As before, (2.4) is deduced by separating small and large scale of order ~ N and using
the following quadratic entropy dissipation estimate

(2.3) =:Z(un).

(@) < Const.N? - |lun(z, )| 20,1, 155, (), P < 2.

loc

10 1 62’(1,1\[ 1 64’U,N
25) —=ud + — d——— — — —un—— =17 .
(2.5) 5 97N + / Ef(&)de N s T NI o (un)

The expression on the right (2.5) represents the quadratic entropy dissipation + pro-
duction of the KS-viscosity solution. Successive “differentiation by parts” enables us
to rewrite this expression as

IT(u )—%{ 1 ( Aun 8uN82uN)_iu ZM_N] [i(au_N) 1 (8 uN)2]

N3 ox3  Ox 02 N oz oz N3\ 922

:=7IZ1(un) + ZZ2(un),
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and spatial integration leads to the following
LEMMA 2.1. [Entropy dissipation estimate]. The KS-viscosity solution uy satis-
fies the following apriori estimate

L

0 Juy ||2
Ox? ‘ ‘LQ

1
g||uN(-,0)lliz<m>+NH— (@.1)
loc\ %>

1
(2.6) lun (D)3 + 15|

ox

Toc(:1)

Using this entropy dissipation estimate, one can argue the convergence of the van-
ishing KS viscosity along the lines of the hyper-viscosity case. The question whether
the vanishing KS limit is an entropy solution of (1.2) remains open.
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