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Preface

The C.I.LM.E. School on Advanced Numerical Approzimation on Nonlinear Hyper-
bolic Equations, held in Cetraro (Italy) from June 23" to June 28", 1997, aimed
at providing a comprehensive and up-to-date presentation of numerical methods
which are nowadays used to solve nonlinear partial differential equations of hyper-
bolic type, developing shock discontinuities. The lectures were given by four out-
standing scientists in the field and reflect the state of the art of a broad spectrum of
topics. The most modern and effective methodologies in the framework of finite ele-
ments, finite differences, finite volumes, spectral methods and kinetic methods, have
been addressed. Particularly, high-order shock capturing techniques, discontinuous
space-time finite elements, discontinuous Galerkin methods, adaptive techniques
based upon a-posteriori error analysis. The theoretical properties of each method
and its algorithmic complexity are addressed. A wide variety of applications to
the solution of systems, of conservation laws arising from fluid dynamics and other
fields is considered.

This volume collects the texts of the four series of lectures presented at the
Summer School. They are arranged in alphabetic order according to the name of
the lecturer.

The first is, however, the lecture of Prof. Eithan Tadmor, reported at the be-
ginning as it contains an introductory overview to the subject which can serve as
an introduction for the other lectures in this volume.

As editor of these Lecture Notes, it is my pleasure to thank the Director and the
Members of the C.I.M.E. Scientific Committee, in particular Prof. Arrigo Cellina
for the invitation to organize the School and their support during the organization
and to the C.ILM.E. staff, lead by Prof. Pietro Zecca. My very sincere thanks go
to the lecturers for their excellent job of preparing and teaching the Course and a
preliminary version of the lectures to be distributed among the partecipants. Par-
ticularly thanks go to all the partecipants for having created an extraordinarily
friendly and stimulating atmosphere, and to those who have contributed with short
communications: Tim Barth, Angelo Iollo, Stefano Micheletti, Gabriella Puppo,
Giovanni Russo, Riccardo Sacco, Fausto Saleri and Alessandro Veneziani. Finally,
I would like to thank the Director and staff of the “Grand Hotel San Michele” in
Cetraro (Cosenza) for the kind ospitality and efficiency and the following collab-
orators for their invaluable help: Simona Lilliu, from CRS4 (scientific secretary),
Francesco Bosisio, Simona Perotto and Alessandro Veneziani from the Politecnico
di Milano for their careful editing of the manuscripts.

Milan, February 1998 Alfio Quarteroni
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Chapter 1

Approximate Solutions of Nonlinear
Conservation Laws

Eitan Tadmor

Department of Mathematics
UCLA, Los-Angeles CA 90095
and
School of Mathematical Sciences
Tel-Aviv University, Tel-Aviv 69978
E-mail: tadmor@math.ucla.edu

ABSTRACT

This is a summary of five lectures delivered at the CIME course on ”Advanced Nu-
merical Approzimation of Nonlinear Hyperbolic Equations” held in Cetraro, Italy,
on June 1997.

Following the introductory lecture I — which provides a general overview of
approrimate solution to nonlinear conservation laws, the remaining lectures deal
with the specifics of four complementing topics:

— Lecture II. Finite-difference methods — non-oscillatory central schemes;
— Lecture III. Spectral approzimations — the Spectral Viscosity method;
Lecture IV. Convergence rate estimates — a Lip’ convergence theory;
— Lecture V. Kinetic approzimations — reqularity of kinetic formulations.
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1 A General Overview

Abstract. In this introductory lecture, we overview the development of modern,
high-resolution approximations to hyperbolic conservation laws and related non-
linear equations. Since this overview also serves as an introduction for the other
lectures in this volume, it is less of a comprehensive overview, and more of a bird’s
eye view of topics which play a pivotal role in the lectures ahead. It consists of
a dual discussion on the various mathematical concepts and the related discrete
algorithms which are the required ingredients for these lectures.

I start with a brief overview on the mathematical theory for nonlinear hyper-
bolic conservation laws. The theory of the continuum ( - and in this case, the
dis-continuum), is intimately related to the construction, analysis and implemen-
tation of the corresponding discrete approximations. Here, the basic the notions of
viscosity regularization, entropy, monotonicity, total variation bounds and Rieman-
n’s problem are introduced. Then follow the the basic ingredients of the discrete
theory: the Lax-Wendroff theorem, and the pivotal finite-difference schemes of Go-
dunov, Lax-Friedrichs, and Glimm.

To proceed, our dual presentation of high-resolution approximations is classi-
fied according to the analytical tools which are used in the development of their
convergence theories. These include classical compactness arguments based on To-
tal Variation (TV) bounds, e.g., TVD finite-difference approximations. The use
of compensated compactness arguments based on H ‘-compact entropy produc-
tion is demonstrated in the context of streamline diffusion finite-element method
and spectral viscosity approximations. Measure valued solutions — measured by
their negative entropy production, are discussed in the context of multidimensional
finite-volume schemes. Finally, we discuss the recent use of averaging lemmas which
yield new compactness and regularity results for approximate solutions of nonlinear
conservation laws (as well as some related equations), which admit an underlying
kinetic formulation, e.g., finite-volume and relaxation schemes.

1.1 Introduction

The lectures in this volume deal with modern algorithms for the accurate compu-
tation of shock discontinuities, slip lines, and other similar phenomena which could
be characterized by spontaneous evolution of change in scales. Such phenomena
pose a considerable computational challenge, which is answered, at least partially,
by these newly constructed algorithms. New modern algorithms were devised, that
achieve one or more of the desirable properties of high-resolution, efficiency, sta-
bility — in particular, lack of spurious oscillations, etc. The impact of these new
algorithms ranges from the original impetus in the field of Computational Fluid
Dynamics (CFD), to the fields oil recovery, moving fronts, image processing,... [75],
[138], [132], [1].

In this introduction we survey a variety of these algorithms for the approximate
solution of nonlinear conservation laws. The presentation is neither comprehensive
nor complete — the scope is too wide for the present framework Instead, we discuss
the analytical tools which are used to study the stability and convergence of these
modern algorithms. We use these analytical issues as our ’touring guide’ to pro-
vide a readers’ digest on the relevant approximate methods, while studying there
convergence properties. They include



— Finite-difference methods. These are the most widely used methods for solving
nonlinear conservation laws. Godunov-type difference schemes play a pivotal
role. Two canonical examples include the upwind ENO schemes (discussed in
C.-W. Shu’s lectures) and a family of high-resolution non-oscillatory central
schemes (discussed in Lecture II);

— Finite element schemes. Here, the streamline diffusion method and its exten-
sions are canonical example, discussed in C. Johnson’s lectures;

— Spectral approzimations. The Spectral Viscosity (SV) methods is discussed in
Lecture III.

— Finite-volume schemes. Finite-Volume (FV) schemes offer a particular advan-
tage for integration over multidimensional general triangulation, beyond the
Cartesian grids. More can be found in B. Cockburn’s lectures.

— Kinetic formulations. Compactness and regularizing effects of approximate so-
lutions is quantified in terms of their underlying kinetic formulations, Lecture
V.

Some general references are in order. The theory of hyperbolic conservation laws
is covered in [94], [178],[157], [149]. For the theory of their numerical approxima-
tion consult [102],[58],[59],[159]. We are concerned with analytical tools which are
used in the convergence theories of such numerical approximations. The monograph
[50] could be consulted on recent development regarding weak convergence. The re-
views of [171], [123,124] are recommended references for the theory of compensated
compactness, and [40,41],[17] deal with applications to conservation laws and their
numerical approximations. Measure-valued solutions in the context of nonlinear
conservation laws were introduced in [42]. The articles [62], [53], [45] prove the av-
eraging lemma, and [111],[112],[77] contain applications in the context of kinetic
formulation for nonlinear conservation laws and related equations.

A final word about notations. Different authors use different notations. In this
introduction, the conservative variable are denoted by the ”density” p, the spatial
flux is A(:), (n, F) are entropy pairs, etc. In later lectures, these are replaced by
the more generic notations: conservative variables are u,v, ..., fluxes are denoted
by f,g,..., the entropy function is denoted U, etc.

1.2 Hyperbolic Conservation Laws

A very brief overview — m equations in d spatial dimensions
The general set-up consists of m equations in d spatial dimensions

dip+Va-Alp) =0, (t,z) e RS xR (1.1)
Here, A(p) = (A1 (p),...,Aq(p)) is the d-dimensional flux, and
p = (p1(t,x),... ,pm(t,x)) is the unknown m-vector subject to initial conditions

p(0,z) = po(z).
The basic facts concerning such nonlinear hyperbolic systems are, consult [94],[113],
[35],[157],[58],[149],

— The evolution of spontaneous shock discontinuities which requires weak (distri-
butional) solutions of (1.1);
— The existence of possibly infinitely many weak solutions of (1.1);



— To single out a unique ‘physically relevant’ weak solution of (1.1), we seek
a solution, p = p(t,z), which can be realized as a viscosity limit solution,
p =limp°,

Owp” +Va - A(p®) = eV - (QVep), £Q > 0; (1.2)

— The entropy condition. The notion of a viscosity limit solution is intimately
related to the notion of an entropy solution, p, which requires that for all
convex entropy functions, 7(p), there holds, [93], [88, §5]

omn(p) + Ve - F(p) <0. (1.3)

A scalar function, n(p), is an entropy function associated with (1.1), if its Hessian,
7" (p), symmetrizes the spatial Jacobians, A}(p),

n'(p)Aj(p) = Aj(p) ™" (p),  G=1,....d.

It follows that in this case there exists an entropy flux, F/(p) := (Fi(p),... , Fa(p)),
which is determined by the compatibility relations,
7(p) Ai(p) =Fi(p)", j=1,....d (1.4)

What is the relation between the entropy condition (1.3) and the viscosity
limit solution in (1.2)? multiply the latter, on the left, by 1’ (p°); the compatibility
relation (1.4) implies that the resulting two terms on the left of (1.2) amount to
the sum of perfect derivatives, 0¢n(p)* + Vo - F(p®). Consider now the right hand
side of (1.2) (for simplicity, we assume the viscosity matrix on the right to be the
identity matrix, @ = I). Here we invoke the identity

en' (p°) Aup® = eAun(p°) — (Vep®) 0 (p°)Vap®.

The first term tends to zero (in distribution sense); the second term is nonpositive
thanks to the convexity of 7, and hence tend to a nonpositive measure. Thus,
a viscosity limit solution must satisfy the entropy inequality (1.3). The inverse
implication: (1.3) = p = lim p° of viscosity solutions p° satisfying (1.2), holds in
the scalar case; the question requires a more intricate analysis for systems, consult
[93],[157] and the references therein.

Indeed, the basic questions regarding the existence, uniqueness and stability of
entropy solutions for general systems are open. Instead, the present trend seems to
concentrate on special systems with additional properties which enable to answer
the questions of existence, stability, large time behavior, etc. One-dimensional 2 x 2
systems is a notable example for such systems: their properties can be analyzed
in view of the existence of Riemann invariants and a family of entropy functions,
[56], [94, §6], [157], [40,41]. The system of m > 2 chromatographic equations, [77],
is another example for such systems.

The difficulty of analyzing general systems of conservation laws is demonstrated
by the following negative result due to Temple, [174], which states that already for
systems with m > 2 equations, there exists no metric, D(-; ), such that the problem
(1.1), (1.3) is contractive, i.e.,

AD: D(p'(t,);p’(t,) < D(p'(0,);p°(0,-)), 0<t<T, (m>2). (L5)

In this context we quote from [168] the following



Theorem 1.1 Assume the system (1.1) is endowed with a one-parameter family
of entropy pairs, (n(p;c), F(p;c)), c € R™, satisfying the symmetry property

n(p;e) =nlc;p), F(p;c) = F(c;p). (1.6)

Let p*, p? be two entropy solutions of (1.1). Then the following a priori estimate
holds

/n(pl(t, @);p’ (8, @))de < /n(pé(fc); po(@))dz. (1.7)
Theorem 1.1 is based on the observation that the symmetry property (1.6) is
the key ingredient for Kruzkov’s penetrating ideas in [88], which extends his scalar
arguments into the case of general systems. This extension seems to be part of the
"folklore’ familiar to some, [36],[150]); a sketch of the proof can be found in [168].

Remark 1.1 Theorem 1.1 seems to circumvent the negative statement of (1.5).
This is done by replacing the metric D(+;-), with the weaker topology induced by
a family of convex entropies, 7(-;-). Many physically relevant systems are endowed
with at least one convex entropy function (— which in turn, is linked to the hy-
perbolic character of these systems, [61],[52],[120]). Systems with “rich” families of
entropies like those required in Theorem 1.1 are rare, however, consult [148]. The
instructive (yet exceptional...) scalar case is dealt in §1.2. If we relax the contrac-
tivity requirement, then we find a uniqueness theory for one-dimensional systems
which was recently developed by Bressan and his co-workers, [11]-[14]; Bressan’s
theory is based on the L'-stability (rather than contractivity) of the entropy solu-
tion operator of one-dimensional systems.

Scalar conservation laws (m = 1,d > 1)

In the scalar case, the Jacobians A’ (p) are just scalars that can be always sym-
metrized, so that the compatibility relation (1.4) in fact defines the entropy fluxes,
Fj(p), for all convex n’s. Consequently, the family of admissible entropies in the
scalar case consists of all convex functions, and the envelope of this family leads to
Kruzkov’s entropy pairs [88]

np;c) =lp—cl, Flpic) = sgn(p—c)(Alp) — Alc)),  c€R. (1.8)
Theorem 1.1 applies in this case and (1.7) now reads
— L'-contraction. If p',p* are two entropy solutions of the scalar conservation
law (1.1), then
2 1 2 1
lp™(t,) = p (t )zt ) < llpo() — po ()Lt (z)- (1.9)
Thus, the entropy solution operator associated with scalar conservation laws is
L'-contractive (— or non-expansive to be exact), and hence, by the Crandall-Tartar
lemma (discussed below), it is also monotone
Po() = po() = p*(t,7) 2 p' (¢, ). (1.10)

The notions of conservation, L' contraction and monotonicity play an important
role in the theory of nonlinear conservation laws, at least in the scalar case. We
discuss the necessary details of these notions, by proving the inverse implication:
the monotonicity property (1.10) implies the all important Kruzkov’s entropy pairs
(1.8) satisfying (1.3).



Monotonicity and Kruzkov’s entropy pairs
An operator T is called monotone (or order preserving) if the following implication
holds for all p’s (in some unspecified measure subspace of L;,,)

p2 > p1 ae = T(p2) >T(p1) ae. (1.11)

We use the terminology that if p» dominates (pointwise, a.e.) p1, then T'(p2) domi-
nates T'(p1).

The following lemma due to Crandall & Tartar, [32], provides a useful characteri-
zation for such monotone operators.

Lemma 1.1 (Crandall-Tartar [32]) Consider an operator T, which is conser-
vative in the sense that fT(p) = fp, Vp’s. Then T tis monotone iff it is an
L!-contraction,

[ =101 [ 1= ol (112)

Proof. The standard notations, p1 V p2 := max(p1, p2) and p1 A p2 := min(p1, p2)
will be used. Since |p1 — p2| = p1 V p2 — p1 A p2, we find by conservation that

/Ipl—P2|=/Pl VP2—/Pl Apz:/T(prm)—/T(Pl Ap2). (1.13)

Now, p1 V p» dominates (pointwise a.e.) both p1 and p2; hence, if T is order pre-
serving, then T'(p1 V p2) dominates both T'(p1) and T'(p2), that is, T(p1 V p2) >
T(p1) V T(p2); similarly, =T (p1 A p2) > —T(p1) AT (p2). We conclude that T is an
L!-contraction, for

/ o1 — ol > / (o) V T(ps) — / T(pn) A / T(pa) = / (1) = T(po)].
(1.14)
The inverse implication (attributed to Stampacchia, I believe) starts with the iden-

tity 2wy = |w|+w, where w4 denotes, as usual, the 'positive part of’, wy := wVO0.
Setting w = T'(p1) — T'(p2) the integrated version of this identity reads

2 / (T(pr) — T(pa)s = / (1) — T(pa)| + / T(p1) — T(p2).

Given that T is L'-contractive, then together with conservation it yields that the
two integrals on the right do not exceed

2 [@e)-T@vos [ln=pi+ [ o= (1.15)

Now, if p» dominates p1, i.e., p1 < p2 a.e., then the sum of the two integrals on the
RHS vanishes, and consequently, the non-negative integrand on the LHS vanishes
as well, i.e., T(p1) — T(p2) <0.



Remark 1.2 For linear operators T', monotonicity coincides with positivity, T'(p) >
0, Vp > 0. Positive operators play a classical role in various branches of analysis.
They are encountered frequently, for example, in approximation theory, e.g., [37,
§9.4]. A well known example is provided by Bernstein polynomials, By (p)(z) :=
EKTL(%)xk(l — 2)" *p(£). They produce a positive linear map(s), p — Ba(p)

of C]0,1] into the space of n-degree polynomials. Linear monotone operators, like
Bernstein projections, are at most first-order accurate.

We turn to discuss the relation between monotone operators and the entropy
condition. Let {T}, ¢ > 0} be a one-parameter family of operators which form a
semi-group of constant-preserving, monotone operators. Thus we make

e Semi-group It is assumed that {7}} satisfies the basic semi-group ’closure’
(causality) relations,

Ti+s = TiTs, To = the identity mapping, (1.16)
and that it has an infinitesimal generator,

Vo - Alp) = lim (A" (Ti(p) = p)-

Remark 1.3 The existence of such a generator is outlined by the Hille-Yosida
linear theory. Extensions within the context of nonlinear evolution equations
are available: Kato’s approach in semi-Hilbert spaces and Crandall-Liggett ap-
proach in Banach spaces, consult [179, §XIV.6&7]. A concise informative ac-
count of this theory, which was specifically 'tailored’ within the L'-setup for
quasilinear evolution equations can be found in [28].

With this in mind we may identify, Typo =: p(t), as the solution of the abstract
Cauchy problem

pt+ Va - A(p(t)) =0, (1.17)

subject to given initial conditions p(0) = po. We assume that the following two
basic properties hold.
e Constant-preserving 7T} preserves constants, namely

T:[p = Const.] = Const. (1.18)

Finally, we bring in the key assumption of monotonicity.
e Monotonicity Our basic assumption is the monotonicity of the solution opera-
tors associated with (1.17),

po(-) > po(-) => p°(t,)) > p'(t,), Vt>0. (1.19)

The main result of this section, following the ingredients in [116] and in par-
ticular, [142], states that monotone, constant-preserving solution operators of the
Cauchy problem (1.17), are uniquely identified by the following entropy condition.
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Theorem 1.2 (Kruzkov’s Entropy Condition) Assume {p(t),t > 0} is a family
of solutions for the Cauchy problem (1.17) which is constant-preserving, (1.18), and
satisfies the monotonicity condition (1.19). Then the following entropy inequality
holds:

Oilp(t) — cl + Vo - {sgn(p — c)(A(p) — A(c)} <0, Vc's. (1.20)

Thus, monotonicity (+constant preserving) recover Kruzkov entropy pairs.

Proof. Starting with p(t) at arbitrary ¢ > 0, we compare p(t + At) := Taip(t)
with ((t + At) := Ta¢((t), where ((t) := (p(t) V ¢) which is cut-off at an arbitrary
constant level, c. Since p(t) V ¢ dominates both p(t) and c, the monotonicity of Ta¢
implies that at later times, (¢t + At) should dominate both, Tatp(t) (= p(t + At)
by to our notations), and Ta¢(c) (= ¢ since Ta; is assumed constant-preserving).
Thus ((t + At) > p(t + At) V ¢ and hence

pt+ At)Ve—p(t)Ve < C(t+ At) —¢(t)
At - At '
Let At | 0. By definition, the LHS gives 0:(p(t) V ¢); the RHS is governed by its

Cauchy problem, 0:((t) = —V. - A({(t)) = V- A(p(t) V ¢). We conclude that an
arbitrary ¢t > 0

Ot(p(t)Ve)+Va - A(p(t)Ve) <0. (1.21)
Similar arguments yield
—0e(p(t) Ne)+ V- A(p(t) Ac) <0. (1.22)

Together, the last two inequalities add up to the entropy inequality (1.20). H

Early constructions of approximate solutions for scalar conservation laws, most
notably — finite-difference approximations, utilized this monotonicity property to
construct convergent schemes, [30], [143]. Monotone approximations are limited,
however, to first-order accuracy [72]. At this stage we note that the limitation of
first-order accuracy for monotone approximations, can be avoided if L'-contractive
solutions are replaced with (the weaker) requirement of bounded variation solutions.

— TV bound. The solution operator associated with (1.1) is translation invariant.
Comparing the scalar entropy solution, p(t,-), with its translate, p(t,- + Ax),
the L'-contraction statement in (1.9) yields the TV bound, [177],

ot v < looO)llsv.  llott, sy = sup 12T A2 22l dlar 1 g
Az#£0 xz

Construction of scalar entropy solutions by TV-bounded approximations were used
in the pioneering works of Oléinik [129], Vol’pert [177], Kruzkov [88] and Crandall
[28]. In the one-dimensional case, the TVD property (1.23) enables to construct
convergent difference schemes with high-order (> 1) resolution; Harten initiated the
construction of high-resolution TVD schemes in [70], following the earlier works [6],
[98]. A whole generation of TVD schemes was then developed during the beginning
of the ’80s; some aspects of these developments can be found in §1.3.

11



One dimensional systems (m > 1,d = 1)
We focus our attention on one-dimensional hyperbolic systems governed by

dip+0.A(p) =0, (t,x) RS xRy, (1.24)

and subject to initial condition, p(0,z) = po(z). The hyperbolicity of the system
(1.24) is understood in the sense that its Jacobian, A'(p), has a complete real
eigensystem, (ax(p),rr(p)),k = 1,...,m. For example, the existence of a convex
entropy function guarantees the symmetry of A'(p) (— w.r.t. n’'(p)), and hence the
complete real eigensystem. For most of our discussion we shall assume the stronger
strict hyperbolicity, i.e, distinct real eigenvalues, a(p) # a;(p).

A fundamental building block for the construction of approximate solutions in
the one-dimensional case is the solution of Riemann’s problem.

Riemann’s problem
Here one seeks a weak solution of (1.24) subject to the piecewise constant initial
data
_ ) pe, <0
p(x,O)— {pr;$>0 (125)

The solution is composed of m simple waves, each of which is associated with one
(right-)eigenpair, (ax(p),rx(p)), 1 < k < m. There are three types of such waves:
if the k-th field is genuinely nonlinear in the sense that ri - V,ar # 0, these are
either k-shock or k-rarefaction waves; or, if the k-th field is linearly degenerate in
the sense that rr - V,ar = 0, this is a k-th contact wave.

These three simple waves are centered, depending on § = £ (which is to be
expected from the dilation invariance of (1.24),(1.25)). The structure of these three
centered waves is as follows:

— A k-shock discontinuity of the form

_Jpe, £<s
p(&)—{ph5>s;

here s denotes the shock speed which is determined by a Rankine-Hugoniot
relation so that ax(pr) > s > ar(pr).

— A Ek-rarefaction wave, p(£), which is directed along the corresponding k-th eigen-
vector, p(§) = re(p(§)). Here ry is the normalized k-eigenvector, ry - Var = 1
so that the gap between ax(p;) < ar(pr) is filled with a fan of the form

ar(pe), € < ar(pe)
ar(p(§)) = {5; ar(pe) < € < ar(pr)
ak’(pT)v ak(Pr) <&

— A k-contact discontinuity of the form

_Jp,E<s
p(ﬁ)—{pr,£>5

where s denotes the shock speed which is determined by a Rankine-Hugoniot
relation so that ax(p¢) = s = ar(pr).
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We are concerned with admissible systems — systems which consist of either gen-
uinely nonlinear or linearly degenerate fields. We refer to [92] for the full story
which is summarized in the celebrated

Theorem 1.3 (Laz solution of Riemann’s problem) The strictly hyperbolic
admissible system (1.24), subject to Riemann initial data (1.25) with pe — pr suffi-
ciently small, admits a weak entropy solution, which consists of shock- rarefaction-
and contact-waves.

For a detailed account on the solution of Riemann problem consult [16]. An
extension to a generalized Riemann problem subject to piecewise-linear initial data
can be found in [5], [99]. In this context we also mention the approzimate Riemann
solvers, which became useful computational alternatives to Lax’s construction. Roe
introduced in [139] a linearized Riemann solver, which resolves jumps discontinuities
solely in terms of shock waves. Roe’s solver has the computational advantage of
sharp resolution (at least when there is one dominant wave per computational
cell); it may lead, however, to unstable shocks. Osher and Solomon in [131] used,
instead, an approximate Riemann solver based solely on rarefaction fans; one then
achieves stability at the expense of deteriorated resolution of shock discontinuities.

Godunov, Lax-Friedrichs and Glimm schemes

We let p2® (¢, z) be the entropy solution in the slab " < t < t+ At, subject to piece-
wise constant data pA“”(t =t"z) =Y prxv(x). Here Xa(®) := l{jz—aaz/<az/2}
denotes the usual indicator function. Observe that in each slab, p2®(¢,z) consists
of successive noninteracting Riemann solutions, at least for a sufficiently small time
interval At, for which the CFL condition, At/Az max |ax(p)| < % is met. In order to
realize the solution in the next time level, t"T1 = ¢" 4+ At, it is extended with a jump
discontinuity across the line t**!, by projecting it back into the finite-dimensional
space of piecewise constants. Different projections yield different schemes. We recall
the basic three.

Godunov Scheme. Godunov scheme [60] sets

Az ,n —n
P ) =Y (@),
where p?*! stands for the cell-average,

1
n+41 Az gn+l
P / P (0, 2) o (2)de,

which could be explicitly evaluated in terms of the flux of Riemann solution
across the cell interfaces at x, 1

1
P =gt = DA ) - AT e, ) (126)

Godunov scheme had a profound impact on the field of Computational Fluid Dy-
namics. His scheme became the forerunner for a large class of upwind finite-volume
methods which are evolved in terms of (exact or approximate) Riemann solvers.
In my view, the most important aspect of what Richtmyer & Morton describe as
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Godunov’s ”ingenious method” ([141, p. 338)), lies in its global point of view: one
does not simply evolve discrete pointvalues {p} }, but instead, one evolves a globally
defined solution, p2® (¢, z), which is realized in terms of its discrete averages, {7 }.

Lax-Friedrichs Scheme. If the piecewise constant projection is carried out over
alternating staggered grids,ﬁﬁf% = A%D fm P2 ("t —0, a:)X,,Jr% (z)dx, then one
effectively integrates 'over the Riemann fan’ which is centered at (z, 1 , 7).

This recovers the Lax-Friedrichs (LxF) scheme, [91], with an explicit recursion
formula for the evolution of its cell-averages which reads

1 _ Pyt Py At n n
gt = et S A - A | (1.27)

The Lax-Friedrichs scheme had a profound impact on the construction and
analysis of approximate methods for time-dependent problems, both linear prob-
lems [51] and nonlinear systems [91]. The Lax-Friedrichs scheme was and still is the
stable, all purpose benchmark for approximate solution of nonlinear systems.

Both Godunov and Lax-Friedrichs schemes realize the exact solution operator
in terms of its finite-dimensional cell-averaging projection. This explains the versa-
tility of these schemes, and at the same time, it indicates their limited resolution
due to the fact that waves of different families that are averaged together at each
computational cell.

Glimm Scheme. Rather than averaging, Glimm’s scheme, [55], keeps its sharp
resolution by randomly sampling the evolving Riemann waves,

Az yn+1 _ Ax n+l n
P ey =Y pt (T = 0,8, + 1" AT)X, 41 (@)

v

This defines the Glimm’s approximate solution, p® (t,z), depending on the
mesh parameters Az = AA¢, and on the set of random variable {r"}, uni-
formly distributed in [—%, %] In its deterministic version, Liu [114] employs

equidistributed rather than a random sequence of numbers {r"}.

Glimm solution, p2® (¢, ), was then used to construct a solution for one-dimensional
admissible systems of conservation laws. Glimm’s celebrated theorem, [55], is still
serving today as the cornerstone for existence theorems which are concerned with
general one-dimensional systems, e.g. [114],[20],[146].

Theorem 1.4 (Ezistence in the large). There exists a weak entropy solution,
p(t,r) € L*[0,T],BV N L*(R;)], of the strictly hyperbolic system
(1.24), subject to initial conditions with sufficiently small wvariation,
Pl BvaLe g, <€

Glimm’s scheme has the advantage of retaining sharp resolution, since in each
computational cell, the local Riemann solution is realized by a randomly chosen
‘physical’ Riemann wave. Glimm’s scheme was turned into a computational tool
known as the Random Choice Method (RCM) in [22], and it serves as the building
block inside the front tracking method of Glimm and his co-workers, [57], [21].
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Multidimensional systems (m > 1,d > 1)

Very little rigor is known on m conservation laws in d spatial dimensions once
(m—1)(d—1) becomes positive, i.e., general multidimensional systems. We address
few major achievements.

Short time existence. For H°-initial data po, with s > %, an H*-solution exists
for a time interval [0, T'], with T' = T'(||po||z+ ), consult e.g, [83],[78, §5.3].

Short time existence — piecewise analytic data. An existence resultconjectured
by Richtmyer was proved by Harabetian in terms of a Cauchy-Kowalewski type
existence result [68].

Short time stability — piecewise smooth shock data. Existence for piecewise
smooth initial data where smoothness regions are separated by shock disconti-
nuities was studied in [118],[106].

Riemann invariants. The gradients of Riemann invariants enable us to 'diag-
onalize’ one-dimensional systems. More is known about 2 X 2 systems in one
space dimension thanks to the existence of Riemann invariants. Consult [56],
[157], [148]. Beyond m = 2 equations, only special systems admits a full set of
Riemann invariants (consult [148] and the references therein).

Riemann problem. Already in the d = 2-dimensional case, the collection of sim-
ple waves and their composed interaction in the construction of Riemann solu-
tion (— subject to piecewise constant initial data), is considerably more compli-
cated than in the one-dimensional setup. We refer to the recent book [33] for a
detailed discussion.

Compressible Euler equations. These system of m = 5 equations governing
the evolution of density, 3-vector of momentum and Energy in d = 3-space
variables was — and still is, the prime target for further developments in our un-
derstanding of general hyperbolic conservation laws. We refer to Majda, [118],
for a definitive summary of this aspect.

1.3 Total Variation Bounds

Finite Difference Methods
We begin by covering the space and time variables with a discrete grid: it consists

of time-steps of size At and rectangular spatial cells of size Az := (Azy, ..., Azq).
Let C, denotes the cell which is centered around the gridpoint z, = vAz :=
(v1Azy, ... ,v4Azxg), and let {p}} denote the gridfunction associated with this

cell at time t" = nA¢. The gridfunction {p;} may represent approximate grid-
values, p(t",z,), or approximate cell averages, p(t",z.) (as in the Godunov and
LxF schemes), or a combination of higher moments, e.g., [23].

To construct a finite difference approximation of the conservation law (1.1),
one introduce a discrete numerical flur, H(p") := (Hi(p"),..., Ha(p"™)), where
H;(p") = H;j(py—ps--- »Pv+q) is an approximation to the A;(p") flux across the
interface separating the cell C, and its neighboring cell on the z;’s direction,
Cu+e; - Next, exact derivatives in (1.1) are replaced by divided differences: the time-
derivative is replaced with forward time difference, and spatial derivatives are re-
placed by spatial divided differences expressed in terms of Diy; v = (Puvte; —
¢v)/Azx;. We arrive at the finite-difference scheme of the form
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d
P =l — ALY Do Hi(phoy, o Pls). (1.28)
j=1

The essential feature of the difference schemes (1.28) is their conservation
form: perfect derivatives in (1.1) are replaced here by 'perfect differences’. It im-
plies that the change in mass over any spatial domain {2, E{ulwueﬁ} pnte,| -
E{ulwuen} p7|Cv|, depends solely on the discrete flux across the boundaries of that
domain. This is a discrete analogue for the notion of a weak solution of (1.1). In
their seminal paper [96], Lax & Wendroff introduced the notion of conservative
schemes, and prove that their strong limit solutions are indeed weak solutions of
(1.1).

Theorem 1.5 (Lax & Wendroff [96]) Consider the conservative difference scheme
(1.28), with consistent numerical fluz so that Hj(p, ... ,p) = Aj(p). Let At | 0 with
fized grid-ratios Aj := AA;_ = Const;, and let p2t = {p?'} denote the corresponding

J
solution (parameterized w.r.t. the vanishing grid-size). Assume that pAt converges
strongly, slim p2t(t", z,) = p(t,z), then p(z,t) is a weak solution of the conserva-

tion law (1.1).

The Lax-Wendroff theorem plays a fundamental role in the development of the
so called ’shock capturing’ methods. Instead of tracking jump discontinuities (-
by evolving the smooth pieces of the approximate solution on both sides of such
discontinuities), conservative schemes capture a discretized version of shock dis-
continuities. Equipped with the Lax-Wendroff theorem, it remains to prove strong
convergence, which leads us to discuss the compactness of {p} }.

TVD schemes (m =d =1)

We deal with scalar gridfunctions, {p; }, defined on the one-dimensional Cartesian
grid z, = vAgz,t" := nAt with fixed mesh ratio A := ﬁ—;. The total variation
of such gridfunction at time-level t" is given by )" |Ap:+%|, where Ap:Jr% =

pra1 — pu. It is said to be total-variation-diminishing (TVD) if
Do 1Aps 1 <Y 1Al (1.29)

Clearly, the TVD condition (1.29) is the discrete analogue of the scalar TV-bound
(1.23). Approximate solutions of difference schemes which respect the TVD prop-
erty (1.29), share the following desirable properties:

— Convergence — by Helly’s compactness argument, the piecewise-constant ap-
proximate solution, p2®(t", z) = >, puxv(x), converges strongly to a limit
function, p(t",z) as we refine the grid, Az | 0. This together with equiconti-
nuity in time and the Lax-Wendroff theorem, yield a weak solution, p(t,z), of
the conservation law (1.1).

— Spurious oscillations — are excluded by the TVD condition (1.23).
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— Accuracy — is not restricted to the first-order limitation of monotone schemes.
To be more precise, let us use p2t(t,z) to denote a global realization (say —
piecewise polynomial interpolant) of the approximate solution p} ~ p2t(t", x,).
The truncation error of the difference scheme is the amount by which the
approximate solution, p2t (¢, z), fails to satisfy the conservation laws (1.1). The
difference scheme is a-order accurate if its truncation error is, namely,

1007 + Vo - A(p™)ll = O((A1)*). (1.30)

(Typically, a strong norm || - || is used which is appropriate to the problem; in
general, however, accuracy is indeed a norm-dependent quantity). Consider for
example, monotone difference schemes. Monotone schemes are characterized by
the fact that p"*! is an increasing function of the preceding gridvalues which
participate in its stencil (1.28), p;_,,...,py+, (— so that the monotonicity
property (1.10) holds) . A classical result of Harten, Hyman & Lax [72] states
that monotone schemes are at most first-order accurate. TVD schemes, how-
ever, are not restricted to this first-order accuracy limitation, at least in the
one-dimensional case’. We demonstrate this point in the context of second-
order TVD difference schemes.

We distinguish between two types of TVD schemes, depending on the size of their
stencils.

Three-point schemes
Three-point schemes (p = ¢ = 1 in (1.28)) are the simplest ones — their stencil
occupies the three neighboring gridvalues, p;_1, py, py+1. Three-point conservative
schemes take the form

pu+1 =Pv — _{A(pv+1) - A(pv—l)} + E{Qqu%Apl/Jr% - QV*%APV*%}'

2
(1.31)
Thus, three-point schemes are identified solely by their numerical viscosity coeffi-
cient, QZ+% = Q(py, pr+1), which characterize the TVD condition
AAT 41
n n n L 2
A|au+%|SQu+% Sl, au+% = TnJrl (132)
vta

The schemes of Roe [139], Godunov [60], and Engquist-Osher (EO) [47], are canoni-
cal examples of upwind schemes, associated with (increasing amounts of) numerical
viscosity coefficients, which are given by,

@3 = Aay, 1, (1.33)
Apliy) — 2A(C) + A(p?
Qi}iciunov = )\ max [ (pu+1) 3 n(() + (py) 7 (134)
3 CeCH_% py+%
EO __ 1 p:Jrl /
0z, =g [ o (1.35)
vts v

! Consult [65], regarding the first-order accuracy limitation for multidimensional
d > 1 TVD schemes.
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The viscosity coefficients of the three upwind schemes are the same, Q7 1=
2
)\|a:’+% |, except for their different treatment of sonic points (where a(py)-a(py41) <

0). The Lax-Friedrichs (LxF') scheme (1.27) is the canonical central scheme. It has
a larger numerical viscosity coefficient,

ijg =1 (1.36)

All the three-point TVD schemes are limited to first-order accuracy. Indeed,
condition (1.32) is necessary for the TVD property of three-point schemes, [162],
and hence it excludes numerical viscosity associated with the second-order Lax-
Wendroff scheme, [96], fr/l = \? (a:+l)2. Therefore, scalar TVD schemes with
more than first-order accuraéy require at2 least five-point stencils.

Five-point schemes

Following the influential works of Boris & Book [6], van Leer [98], Harten [70],
Osher [130], Roe [139] and others, many authors have constructed second order
TVD schemes, using five-point (— or wider) stencils. For a more complete account
of these works we refer to the recent books by LeVeque, [102], and Godlewski &
Raviart, [58]. A large number of these schemes were constructed as second-order
upgraded versions of the basic three-point upwind schemes. The FCT scheme of
Boris & Book, [6], van Leer’s MUSCL scheme [98], and the ULTIMATE scheme of
Harten, [70], are prototype for this trend. In particular, in [70], Harten provided a
useful sufficient criterion for the scalar TVD property, which led to the development
of many non-oscillatory high-resolution schemes in the mid-80’s.

Higher order central schemes can be constructed by upgrading the staggered
LxF scheme (1.27). This will be the subject of our next lecture II. Here we quote a
five-point TVD scheme of Nessyahu-Tadmor (NT) [126] — a second-order predictor-
corrector upgrade of the staggered LxF scheme,

ntl A n
pv 2 =p,— E(A(Pu)),, (1.37)
—n+1 __ ﬁLL +/3:T/L+1
P,,_,_% =79 +
(PLL), - (Pﬁﬂ)’ At { n+i n+i }
8 a7 1 APi) = Al %) (1.38)

Here, {w),} denotes the discrete numerical derivative of an arbitrary gridfunc-
tion {w,}. The choice w, = 0 recovers the original first-order LxF scheme (1.27).
Second-order accuracy requires w;, ~ Azd,w(z,). To guarantee the non-oscillatory
properties is a key issue in the construction of higher (- than first-order..) resolu-
tion schemes; this requires more than just the naive divided differences as discrete
numerical derivatives. A prototype example is the so called min-mod limiter,

1 .
U):, - E(Su—% + Su+%) : mln{|Awu—%|7 |Awu+%|}7 Su—{—é = Sgn(Awu+%)

’ (1.39)

(We shall say more on (nonlinear) limiters like the min-mod below.) With this
choice of a limiter, the central NT scheme (1.37)-(1.38) satisfies the TVD property,
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and at the same time, it retains formal second order accuracy (at least away from
extreme gridvalues, p,, where p), = S,_L T S,41 = 0).

We conclude we few additional Remarks.

Limiters A variety of discrete TVD limiters like (1.39) was explored during the
’80s, e.g, [161] and the references therein. For example, a generalization of (1.39)
is provided by the family of min-mod limiters depending on tuning parameters,
0< 9Ui% <1,

. 1
xmln{ﬁyi%|Awui%|,5|wy+1 —wy—1|}- (1.40)

An essential feature of these limiters is co-monotonicity: they are ’tailored’
to produce piecewise-linear reconstruction of the form Y [w, + S w)(z —
z,)|xv(z), which is co-monotone with (and hence, share the TVD property
of —) the underlying piecewise-constant approximation ) w,x.(z). Another
feature is the limiting property at extrema gridvalues (where w, = 0), which is
necessary in order to satisfy the TVD property (1.29). In this context, limiters
can viewed as extrema detectors: the detection is global, yet they are activated
locally (at extrema gridvalues). The study of the TVD property along these
lines can be found in [164]. In particular, limiters are necessarily nonlinear in
the sense of their stencils’ dependence on the discrete gridfunction.

Systems — one-dimensional Godunov-type schemes The question of conver-
gence for approximate solution of hyperbolic systems is tied to the question of
existence of an entropy solution — in both cases there are no general theories
with m > 1 equations®. Nevertheless, the ingredients of scalar high-resolution
schemes were successfully integrated in the approximate solution of system of
conservation laws.

Many of these high-resolution methods for systems, employ the Godunov ap-
proach, where one evolves a globally defined approximate solution,
pA® (t,z), which is governed by iterating the evolution-projection cycle,

R Tpi_gn—1yp(t" 1), "1 <t < t" = nAt,
PAIP(Utn_O): tzt”:

Here, T; denotes the evolution operator (see (1.16), and P2 is an arbitrary,
possibly nonlinear conservative projection, which which is realized as a piecewise
polynomial,

P (@ t") =Y pi@)xi(@), pula) =pl. (1.41)

Typically, this piecewise polynomial approximate solution is reconstructed from
the previously computed cell averages, {p;, }, and in this context we may, again,
distinguish between two main classes of methods: upwind and central methods.

2 There is a large literature concerning two equations — the 2 x 2 p-system and
related equations are surveyed in [157].
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Upwind schemes evaluate cell averages at the center of the piecewise polynomial
elements; integration of (1.24) over C, x [t",t" "] yields

1
—n+l _ _n -
pl/ - pu Al’ /T

This in turn requires the evaluation of fluxes along the discontinuous cell in-
terfaces, (7 x z,, 1 ). Consequently, upwind schemes must take into account

ntl ¢+l

Fotrasg ir= [ flotra, g ar

=tn r=tn

the characteristic speeds along such interfaces. Special attention is required at
those interfaces in which there is a combination of forward- and backward-going
waves, where it is necessary to decompose the “Riemann fan” and determine
the separate contribution of each component by tracing “the direction of the
wind”. The original first-order accurate Godunov scheme (1.26) is the fore-
runner for all other upwind Godunov-type schemes. A variety of second- and
higher-order sequels to Godunov upwind scheme were constructed, analyzed
and implemented with great success during the seventies and eighties, start-
ing with van-Leer’s MUSCL scheme [98], followed by [139,70,130,26]. These
methods were subsequently adapted for a variety of nonlinear related systems,
ranging from incompressible Euler equations, [4], [46], to reacting flows, semi-
conductors modeling, . ... We refer to [59,102] and the references therein a for
a more complete accounts on these developments.

In contrast to upwind schemes, central schemes evaluate staggered cell averages
at the breakpoints between the piecewise polynomial elements,

—n+1 —n 1
Pory =Py~ g

Thus, averages are integrated over the entire Riemann fan, so that the corre-
sponding fluxes are now evaluated at the smooth centers of the cells, (7, z.).
Consequently, costly Riemann-solvers required in the upwind framework, can
be now replaced by straightforward quadrature rules. The first-order Lax-
Friedrichs (LxF) scheme (1.27) is the canonical example of such central dif-
ference schemes. The LxF scheme (like Godunov’s scheme) is based on a piece-
wise constant approximate solution, p, () = p,. Its Riemann-solver-free recipe,
however, is considerably simpler. Unfortunately, the LxF scheme introduces ex-
cessive numerical viscosity (already in the scalar case outlined in §1.3 we have
QLF =1 > QY4 resulting in relatively poor resolution. The central
scheme (1.37)-(1.38) is a second-order sequel to LxF scheme, with greatly im-
proved resolution. An attractive feature of the central scheme (1.37)-(1.38) is
that it avoids Riemann solvers: instead of characteristic variables, one may use
a componentwise extension of the non-oscillatory limiters (1.40).
Multidimensional systems There are basically two approaches.

One approach is to reduce the problem into a series of one-dimensional prob-
lems. Alternating Direction (ADI) methods and the closely related dimensional
splitting methods, e.g., [141, §8.8-9], are effective, widely used tools to solve
multidimensional problems by piecing them from one-dimensional problems —
one dimension at a time. Still, in the context of nonlinear conservation laws,
dimensional splitting encounters several limitations, [31]. A particular instruc-
tive example for the effect of dimensional splitting errors can be found in the

¢+l ntl

£ plwssn))dr — / Flo(r,.))dr

=tn r=tn
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approximate solution of the weakly hyperbolic system studied in [49],[81, §4.3].
The other approach is ’genuinely multidimensional’. There is a vast litera-
ture in this context. The beginning is with the pioneering multidimensional
second-order Lax-Wendroff scheme, [97]. To retain high-resolution of multidi-
mensional schemes without spurious oscillations, requires one or more of sev-
eral ingredients: a careful treatment of waves propagations (‘unwinding’), or
alternatively, a correctly tuned numerical dissipation which is free of Riemann-
solvers (’central differencing’), or the use of adaptive grids (which are not-
necessarily rectangular), ... . Waves propagation in the context of multidimen-
sional upwind algorithms were studied in [25,103,140,156] .... Another ’gen-
uinely multidimensional’ approach can be found in the positive schemes of [95].
The pointwise formulation of ENO schemes due to Shu & Osher, [153,154],
is another approach which avoids dimensional splitting: here, the reconstruc-
tion of cell-averages is bypassed by the reconstruction pointvalues of the fluxes
in each dimension; the semi-discrete fluxed are then integrated in time us-
ing non-oscillatory ODEs solvers (which are briefly mentioned in §1.3 below).
Multidimensional non-oscillatory central scheme was presented in [81], gen-
eralizing the one-dimensional (1.37)-(1.38); consult [105],[89] for applications
to the multidimensional incompressible Euler equations. Finite volume meth-
ods, [85,86,24,29]... , and finite-element methods (the streamline-diffusion and
discontinuous Galerkin schemes, [76,79,80,148,122]...) have the advantage of a
’built-in’ recipe for discretization over general triangular grids (we shall say
more on these methods in §1.5 below). Another ’genuinely multidimensional’
approach is based on a relaxation approximation was introduced in [82]. It
employs a central scheme of the type (1.37)-(1.38) to discretize the relaxation
models models, [178], [19], [125], ... .

TVD filters

Every discretization method is associated with an appropriate finite-dimensional
projection. It is well known that linear projections which are monotone (or equiv-
alently, positive), are at most first-order accurate, [60]. The lack of monotonicity
for higher order projections is reflected by spurious oscillations in the vicinity of
jump discontinuities. These are evident with the second-order (and higher) cen-
tered differences, whose dispersive nature is responsible to the formation of binary
oscillations [64],[104]. With highly-accurate spectral projections, for example, these
O(1) oscillations reflect the familiar Gibbs phenomena.

TVD schemes avoid spurious oscillations — to this end they use the necessarily
nonlinear projections (expressed in terms of nonlinear limiters like those in (1.40)).
TVD filters, instead, suppress spurious oscillations. At each time-level, one post-
process the computed (possibly oscillatory) solution {p(¢")}. In this context we
highlight the following.

e Linear filters. Consider linear convection problems with discontinuous initial
data. Approximate solutions of such problems suffer from loss of accuracy due
to propagation of singularities and their interference over domain of dependence
of the numerical scheme. Instead, one can show, by duality argument, that the
numerical scheme retains its original order of accuracy when the truncation in
(1.30) is measured w.r.t. sufficiently large negative norm, [121]. Linear filters then
enable to accurately recover the exact solution in any smoothness region of the exact
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solution, bounded away from its singular support. These filters amount to finite-
order mollifiers [121], or spectrally accurate mollifiers, [119], [67], which accurately
recover pointvalues from high-order moments.

e Artificial compression. Artificial compression was introduced by Harten
[69] as a method to sharpen the poor resolution of contact discontinuities. (Typ-
ically, the resolution of contacts by a-order schemes diffuses over a fan of width
(At)@/(@+1)) The idea is to enhance the focusing of characteristics by adding
an anti-diffusion modification to the numerical fluxes: if we let H, 1 denote the
numerical flux of a three-point TVD scheme (1.31), then one replaces it with a mod-
ified flux, HH_% — H,,+% + I~{V+%, which is expressed in terms of the min-mod
limiter (1.39)

-~ 1
H, 1= X{PL + Py — SQH(APV.;.%”PLH -} (1.42)

Artificial compression can be used as a second-order TVD filter as well. Let
QVJF% be the numerical viscosity of a three-point TVD scheme (1.31). Then, by
adding an artificial compression modification (1.42) which is based on the §-limiters
(1.40), pl, = p,,(9) with 0,41 =Q 41— )\2a3+%, one obtains a second-order TVD
scheme, [70], [133]. Thus, in this case the artificial compression (1.42) can be viewed
as a second-order anti-diffusive TVD filter of first-order TVD schemes

Pt e— it = {1 (o) — 1 (0"). (1.43)

e TVD filters. A particularly useful and effective, general-purpose TVD filter
was introduced by Engquist et. al. in [48]; it proceeds in three steps.
{i} (Isolate extrema). First, isolate extrema cells where Ap}}_, - Ap7 1 <O0.
2 2

{ii} (Measure local oscillation). Second, measure local oscillation, osc,, by setting

min

. 1 myy _ n n
osc, :=min{m,, 5 M,}, {M,,} ={ L (AP0 1,404 1)

max
{iii} (Filtering). Finally, oscillatory minima (respectively — oscillatory maxima) are
increased (and respectively, increased) by updating
oy = pr+ sgn(ApZ+% )osc,, and the corresponding neighboring gridvalues is mod-
ified by subtracting the same amount to retain conservation. This post-processing
can be repeated, if necessary, and one may use a local maximum principle, min; p7 <
py < max;p; as a stopping criterion. In this case, the above filter becomes TVD
once the binary oscillations are removed, [155].

TVB approximations (m > 1,d = 1)

One sided stability
As an example for Total variation Bounded (TVB) approximations, we begin with
the example of approximate solutions satisfying the one-sided Lip™ stability con-
dition.

Let {p°(t,x)} be a family of approximate solutions, tagged by their small-scale
parameterization, €. To upper-bound the convergence rate of such approximations,
we shall need the usual two ingredients of stability and consistency.
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— Lip*-stability. The family {p°} is Lip™-stable if
1o (t, ) Lip+ := sup Ozp°(t,z) < Const. (1.44)

This notion of Lip™-stability is motivated by Olginik’s One-Sided Lipschitz Con-
dition (OSLC), pz(t,) < Const, which uniquely identifies the entropy solution of
convez conservation laws, (1.24), with scalar A" > 0 (we refer to [100] for a recent
contribution concerning the one-sided stability of one-dimensional systems). Since
the Lip*-(semi)-norm dominates the total-variation,

o™ (¢, sy < Const.[|p" (¢, )lzip+ + lPo()llzr,  Const = 2|supp,p° (¢, )],

{p°} are TVB and by compactness, convergence follows. Equipped with Lip™-
stability, we are able to quantify this convergence statement. To this end, we measure
the local truncation error in terms of

— Lip'-consistency. The family {p°} is Lip'-consistent of order ¢ if

10:p" + 00 A(P)|Lip! (t.0) ~ - (1.45)

It follows that the stability+consistency in the above sense, imply the conver-
gence of {p°} to the entropy solution, p, and that the following error estimates hold
[166], [127],

. 1—sp
Ip° () = p(t, )lwe wr@y ~e7% , —1<s<1/p. (1.46)

The case (s,p) = (—1,1) corresponds to a sharp Lip'-error estimate of order &
— the Lip'-size of the truncation in (1.45); the case (s,p) = (0,1) yields an L'-
error estimate of order one-half, in agreement with Kuznetsov’s general convergence
theory, [90].

Multidimensional extensions to convex Hamilton-Jacobi equations are treated
in [107]. We note in passing that the requirement of Lip™ stability restricts our
discussion to convex problems; at the same time, it yields more than just conver-
gence. Indeed, the above error estimate, as well as additional local error estimates
will discussed in lecture IV.

Higher resolution schemes (with three letters acronym)

We have already mentioned the essential role played by nonlinear limiters in TVD
schemes. The mechanism in these nonlinear limiters is switched on in extrema cells,
so that the zero discrete slope p’ = 0 avoids new spurious extrema. This, in turn,
leads to deteriorated first-order local accuracy at non-sonic extrema, and global
accuracy is therefore limited to second-order®.

% The implicit assumption is that we seek an approximation to piecewise-smooth
solutions with finitely many oscillations, [169]. The convergence theories apply
to general BV solutions. Yet, general BV solutions cannot be resolved in actual
computations in terms of ’classical’ macroscopic discretizations — finite-difference,
finite-element, spectral methods, etc. Such methods can faithfully resolve piece-
wise smooth solutions.
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To obtain an improved accuracy, one seeks a more accurate realization of the
approximate solution, in terms of higher (than first-order) piecewise polynomials

"z) =Y p(@)xu(@), p me ) /4. (1.47)

Here, the exact solution is represented in a cell C, in terms of an r-order polynomial
Py, which is reconstructed from the its neighboring cell averages, {p,, }. If we let
pA””(t > t",-) denote the entropy solution subject to the reconstructed data at
t = t", PAm p(t",-), then the corresponding Godunov-type scheme governs the
evolution of cell averages

1
—n+1  __ Az yn+1 _
Py = _Ax/mp (t 0,z)xv(z)dz. (1.48)

The properties of Godunov-type scheme are determined by the polynomial re-
construction should meet three contradicting requirements:

{i} Conservation: p,(z) should be cell conservative in the sense that
JCCV pu(z) = JCCV pv(z). This tells us that P2 is a (possibly nonlinear) projection,
which in turn makes (1.48) a conservative scheme in the sense of Lax-Wendroff,
(1.28).

{ii} Accuracy: pd) ~ (A0 p(t™, ).

At this stage, we have to relax the TVD requirement. This brings us to the third
requirement of

{iii} TVB bound: we seek a bound on the total variation on the computed
solution. Of course, a bounded variation, ||p2® (¢",)||zv < Const. will suffice for
convergence by L'-compactness arguments (Helly’s theorem).

The (re-)construction of non-oscillatory polynomials led to new high-resolution
schemes. In this context we mention the following methods (which were popularized
by their trade-mark of three-letters acronym ...): the Piecewise-Parabolic Method
(PPM) [26], the Uniformly Non-Oscillatory (UNO) scheme [74], and the Essentially
Non-Oscillatory schemes (ENO) of Harten et. al. [71]. The particular topic of ENO
schemes is covered in C.-W. Shu’s lectures elsewhere in this volume.

There is large numerical evidence that these highly-accurate methods are TVB
(and hence convergent), at least for a large class of piecewise-smooth solutions. We
should note, however, that the convergence question of these schemes is open. (It
is my opinion that new characterizations of the (piecewise) regularity of solutions
to conservation laws, e.g., [38],[169] together with additional tools to analyze their
compactness, are necessary in order to address the questions of convergence and
stability of these highly-accurate schemes).

There are alternative approach to to construct high-resolution approximations
which circumvent the TVD limitations. We conclude by mentioning the following
two.

One approach is to evolve more than one-piece of information per cell. This is
fundamentally different from standard Godunov-type schemes where only the cell
average is evolved (and higher order projections are reconstructed from these aver-
ages — one per cell). In this context we mention the quasi-monotone TVB schemes
introduced in [23]. Here, one use a TVD evolution of cell averages together with
additional higher moments. Another instructive example for this approach is found
in the third-order TVB scheme, [144]: in fact, Sanders constructed a third-order
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non-expansive scheme (circumventing the first-order limitation of [72]), by using
a 2 x 2 system which governs the first two moments of the scalar solution. More
recently, Bouchut et. al. [8], constructed a second-order MUSCL scheme which re-
spects a discrete version of the entropy inequality (1.3) w.r.t all Kruzkov’s scalar
entropy pairs in (1.8); this circumvents the second-order limitation of Osher & Tad-
mor [133, Theorem 7.3], by evolving both — the cell average and the discrete slope
in each computational cell.

Another approach to enforce a TVB bound on higher(> 2)-resolution schemes,
makes use of gridsize-dependent limiters, p/) = pl){p", Az}, such that the follow-
ing holds, e.g., [151],

2% ("L, Iy < Ip2* (", )8y + Const - Az.

Such Az-dependent limiters fail to satisfy, however, the basic dilation invariance of
(1.24)-(1.25), (t,x) — (ct,cz).

Time discretizations

One may consider separately the discretization of time and spatial variables. Let
Py denote a (possibly nonlinear) finite-dimensional spatial discretization of (1.1);
this yields an N-dimensional approximate solution, pn (), which is governed by the
system of N nonlinear ODEs

D ot = Pu(on (1), (149)

System (1.49) is a semi-discrete approximation of (1.1). For example, if we let
Py = P2* N ~ (Az)~%, to be one of the piecewise-polynomial reconstructions
associated with Godunov-type methods in (1.47), then one ends up with a semi-
discrete finite-difference method, the so called method of lines. In fact, our discus-
sion on streamline-diffusion and spectral approximations in §1.4 and §1.4 below will
be primarily concerned with such semi-discrete approximations.

An explicit time discretization of (1.49) proceeds by either a multi-level or a
Runge-Kutta method. A CFL condition should be met, unless one accounts for
wave interactions, consult [101]. For the construction of non-oscillatory schemes,
one seeks time discretizations which retain the non-oscillatory properties of the spa-
tial discretization, Py . In this context we mention the TVB time-discretizations of
Shu & Osher, [152],[153,154]. Here, one obtains high-order multi-level and Runge-
Kutta time discretizations as convexr combinations of the standard forward time
differencing, which amounts to the first-order accurate forward Euler method. Con-
sequently, the time discretizations [153,154] retain the nonoscillatory properties of
the low-order forward Euler time differencing — in particular, TVD/TVB bounds,
and at the same time, they enable to match the time accuracy with the high-order
spatial accuracy.

Cell entropy inequality

Approximate solutions with bounded variation (obtained by TVD/TVB schemes)
converge to a weak solution; the question of uniqueness is addressed by an en-
tropy condition. In the context of finite-difference scheme, one seeks a cell entropy
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inequality — a conservative discrete analogue of the entropy inequality (1.3),
d
(o) Sn(ps) = ALY " Diw; Gi(ph s+ 5 Plty): (1.50)
j=1

By arguments a la Lax & Wendroff (Theorem 1.5), any approximate solution which
satisfies (1.50) with a consistent numerical entropy flux, G;(p,...,p) = F;(p), its
strong limit satisfies (1.3), which in turn yields uniqueness, at least in the scalar case.
Crandall & Majda, [30], following Harten, Hyman & Lax in [72], were the first to
implement this approach in the context of monotone difference schemes (in fact, the
abstract setup of Theorem 1.2 directly applies in this case). Osher [130] introduced
the so-called numerical E-fluxes to guarantee the cell entropy inequality. In [163] we
prove the entropy inequality for general fully-discrete E-schemes: the proof is based
on the key observation that the numerical viscosity ( — quantified in terms of the
numerical viscosity coefficient @ in (1.31)), associated with any E-flux, is a convex
combination of the Godunov and Lax-Friedrichs viscosities, given in (1.34) and
(1.36), respectively. Applications to the question of multidimensional convergence
can be found in [85],[86],[24],[128].... E-fluxes are restricted to first-order accuracy,
since they are consistent with all Kruzkov’s entropy pairs. A systematic study
of the cell entropy inequality for second-order resolution scheme can be found in
[133] (for upwind schemes) and in [126] (for central schemes). The above discussion
is restricted to scalar problems. Of course, general Godunov and LxF schemes
(m > 1,d = 1), satisfy a cell entropy inequality because the Riemann solutions do.
(For the LxF scheme, we refer to Lax, [93], who proved the cell entropy inequity
independently of the Riemann solution.

1.4 Entropy Production Bounds

Compensated compactness (m < 2,d = 1)
We deal with a family of approximate solutions, {p°}, such that

(i) It is uniformly bounded, p* € L*, with a weak® limit, p® — p;
(ii) The entropy production, for all convex entropies 7, lies in a compact subset of
Wi, (L2 (t,2)),

loc

V' >0:  Am(p%) + 0. F(p°) = Wigo (L*(t, ). (1.51)

The conclusion is that A(p°) — A(p), and hence p is a weak solution; in fact, there
is a strong convergence, p° — p, on any nonaffine interval of A(-). For a complete
account on the theory of compensated compactness we refer to the innovative works
of Tartar [171] and Murat [124]. In the present context, compensated compactness
argument is based on a clever application of the div-curl lemma. First scalar ap-
plications are due to Murat-Tartar, [123],[171], followed by extensions to certain
m = 2 systems by DiPerna [40] and Chen [17].

The current framework has the advantage of dealing with L?-type estimates
rather than the more intricate BV framework. How does one verify the W, !(L?)-
condition (1.51)? we illustrate this point with canonical viscosity approximation
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(1.2). Multiplication by i’ shows that its entropy production amounts to €(n' Q). —
en” Q(p)?. By entropy convexity, en”’ @ > 0*, and space-time integration yields

— An entropy production bound

Vell

op°
o ||leoc(t,x) < Const. (1.52)
Though this bound is too weak for strong compactness, it is the key estimate
behind the W, ! (L?)-compactness condition (1.51). We continue with the specific
examples of streamline-diffusion in §1.4 and spectral viscosity methods in §1.4.

The streamline diffusion finite-element method

The Streamline Diffusion (SD) finite element scheme, due to Hughes, Johnson,
Szepessy and their co-workers [76], [79], [80], was one of the first methods whose con-
vergence was analyzed by compensated compactness arguments. (Of course, finite-
element methods fit into L?-type Hilbert-space arguments). In the SD method,
formulated here in several space dimensions, one seeks a piecewise polynomial,
{pA“”}7 which is uniquely determined by requiring for all piecewise polynomial test
functions ¥4%,

(@™ + Vs - Ap™®), 2%+ Aa] [ + A () ) =0, (153)

Here, Az denotes the spatial grid size (for simplicity we ignore time discretization).
The expression inside the framed box on the left represents a diffusion term along
the streamlines, # = A'(p®). Setting the test function, 12* = p2®, (1.53) yields
the desired entropy production bound

VAZ||0ip™ + Ve -A(pAI)”le (1) < Const. (1.54)

Thus, the spatial derivative in (1.52) is replaced here by a streamline-directional
gradient. This together with an L*°-bound imply lecl (L?)-compact entropy pro-
duction, (1.51), and convergence follows [79],[80],[160]. We note in passing that the
extension of the SD method for systems of equations is carried out by projection
into entropy variables, [120], which in turn provide the correct interpretation of
(1.54) as an entropy production bound.

The lectures of C. Johnson in this volume will present a comprehensive discussion
of the streamline diffusion method and its related extensions.

The spectral viscosity method

Since spectral projections are inherently oscillatory, they do not lend themselves
to a priori TVB bound. Spectral methods provide another example for a family
of approximate solutions whose convergence could be better dealt, therefore, by
compensated compactness arguments. Spurious Gibbs oscillations violate the strict
TVD condition in this case. Instead, an entropy production bound, analogous to

* Observe that the viscosity matrix is therefore required to be positive w.r.t. the
Hessian 7" .
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(1.52) is sought. Indeed, such bound could be secured by spectrally accurate hyper-
viscosity which is expressed in terms of the computed Fourier coefficients. This
leads us to a discussion on the Spectral Viscosity (SV) method.

Let Pn denote an appropriate spatial projection into the space of N-degree
polynomials,

Pyp(t,z) = > pr(t)pr();

[k|<N

here {(;} stands for a given family of orthogonal polynomials, either trigonometric
or algebraic omes, e.g., {e***}, {Li(2)}, {Tx(x)}, etc. The corresponding N-degree
approximate solution, pn (¢, ), is governed by the spectral viscosity (SV) approxi-
mation
(_1)S+1 s s

OipN + 0-Pn A(pn) = W%(Q * 0PN ). (1.55)
The left hand side of (1.55) is the standard spectral approximation of the conser-
vation law (1.1). The expression on the right

_1)s+1 _1)s+1 . 2s
S @ aom) = S0 S QuawelP @),  (150)

|k|>N?

represents the so called spectral viscosity introduced in [165]. It contains a minimal
amount of high-modes regularization which retains the underlying spectral accuracy
of the overall approximation. The case s = 1 corresponds to a truncated second-
order viscosity

%m@*mmy=% > Quart)gl ().

|k|>N?

It involves a viscous-free zone for the first N? modes, 0 < 6 < % High modes
diffusion is tuned by the viscosity coefficients Qk

Larger s’s corresponds to truncated hyper-diffusion of order 2s. This allows for
even a larger viscosity-free zone of size N?, with 0 < 0 < 2=1 (with possibly
s = sy < V/N), consult [167]. The underlying hyper-viscosity approximation (for
say s = 2) reads

Oip” + 0:A(p°) +€%02p° = 0. (1.57)

We note that already the solution operator associated with (1.57) is not monotone,
hence L'-contraction and the TVD condition fail in this case.
Instead, an L’-type entropy production estimate analogous to (1.52)
1 0pn
WH%HL%O (t) < Const.

together with an L°°-bound, carry out the convergence analysis by compensated
compactness arguments, [165], [117]. Extensions to certain m = 2 systems can be
found in [145]. We shall return to a detailed discussion on the SV method in our
lecture III.
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1.5 Measure-valued solutions(m = 1,d > 1)

We turn our attention to the multidimensional scalar case, dealing with a fami-
lies of uniformly bounded approximate solutions, {p°}, with weak* limit, p* — p.
DiPerna’s result [42] states that if the entropy production of such a family tends
weakly to a negative measure, m < 0,

V' >0: On(p°) + Ve F(p°) = m <0, (1.58)

then the measure-valued solution p coincides with the entropy solution, and con-
vergence follows. This framework was used to prove the convergence of multidimen-
sional finite-difference schemes [27], streamline diffusion method [79],[80], spectral-
viscosity approximations [18] and finite-volume schemes [24], [86],[85]. We focus our
attention on the latter.

Finite volume schemes (d > 1)

We are concerned with finite-volume schemes based on possibly unstructured tri-
angulation grid {7} } (for simplicity we restrict attention to the d = 2 case). The
spatial domain is covered by a triangulation, {T}}, and we compute approximate
averages over these triangles, p;, ~ ﬁ fTV p(t", x)dz, governed by the finite volume
(FV) scheme

At P
—n+l _ —n _ n n
P =P E Av, (pv,p2,)- (1.59)
0

Here fl,,M stand for approximate fluxes across the interfaces of T, and its neighboring
triangles (identified by a secondary index pu).

Typically, the approximate fluxes, fl,,y are derived on the basis of approximate
Riemann solvers across these interfaces, which yield a monotone scheme. That is,
the right hand side of (1.59) is a monotone function of its arguments (py, py, ),
and hence the corresponding FV scheme is L'-contractive. However, at this stage
one cannot proceed with the previous compactness arguments which apply to TVD
schemes over fixed Cartesian grid: since the grid is unstructured, the discrete solu-
tion operator is not translation invariant and L'-contraction need not imply a TV
bound. Instead, an entropy dissipation estimate yields

ZAtZ loy — p,T,LM|(Aat)‘9 < Const, 0<6<1 (1.60)
n [

Observe that (1.60) is weaker than a TV bound (corresponding to 6 = 0), yet it
suffices for convergence to a measure-valued solution, consult [24], [85].
These questions will be addressed in B. Cockburn’s lectures, later in this volume.

1.6 Kinetic Approximations

By a kinetic formulation of (1.1) we mean a representation of the solution p(t,x)
as the average of a ’microscopic’ density function, f(¢,z,v). The formulation is a
kinetic one by its analogy with the classical kinetic models such as Boltzmann or
Vlasov models - see for instance [15],[44]. In particular, we add a real-valued variable
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called velocity, v, and the unknown becomes a ’density-like’ function, f(t,z,v),
which is governed by an appropriate transport equation.

A useful tool in this context is the velocity averaging lemma, dealing with the
regularity of the moments for such transport solutions.

Velocity averaging lemmas (m > 1,d > 1)
We deal with solutions to transport equations

a(v) - Vo f(z,v) = 0y9(x, v). (1.61)

The averaging lemmas, [62], [53], [45], state that in the generic non-degenerate
case, averaging over the velocity space, f(z) := fv f(z,v)dv, yields a gain of spatial
regularity. The prototype statement reads

Lemma 1.2 ([62],[45],[111]). Let f € LP(x,v) be a solution of the transport equa-
tion (1.61) with g € L(z,v),1 < g < p < 2. Assume the following non-degeneracy
condition holds

measy{v| |a(v) - §| < 6}gj=1 < Const - 6%, a € (0,1). (1.62)
Then f(z) := fv f(x,v)dv belongs to Sobolev space W (L (x)),
a 1 6 1-96

fl@)ew (L' (), 6< c=Lt T 16

al=Z)+ (s+1)p T 4

Variants of the averaging lemmas were used by DiPerna and Lions to construct
global weak (renormalized) solutions of Boltzmann, Vlasov-Maxwell and related
kinetic systems, [43], [44]; in Bardos et. al., [2], averaging lemmas were used to
construct solutions of the incompressible Navier-Stokes equations. We turn our
attention to their use in the context of nonlinear conservation laws and related
equations.

Nonlinear conservation laws

As a prototype example we begin with a Boltzmann-like — or more precisely, a BGK-
like model proposed in [136]. Its 'hydrodynamical limit’ describes both the scalar
conservation law (1.1) together with its entropy inequalities, (1.20). It consists in
solving the transport equation

68]; +a(v) Vof = é(x,ﬁ (v) = %), (t,z,v) €ERF xRI xRy,  (1.64)
Fole=0 = Xpo(»)(v),  (x,v) ERG X R,. (1.65)

Here, X< (¢,2)(v) denotes the ‘pseudo-Maxwellian’,

+l10<v<pf
-1lp°<v<0, (1.66)
0 |v| > p°

Xps (V) 1=

which is associated with the average of f¢,

pi(tx)=f":= /fa(t,a:,v)dv, (t,z) € R x RZ. (1.67)
R
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Notice that the BGK-like model in (1.64)-(1.67) is a semilinear, nonlocal, hyperbolic
(first-order) equation which is rather simple to solve for fixed € > 0. This kinetic
model was introduced in [136], following the earlier works [9],[54]. It follows that
that if po € L*(RY) N L= (R?), then p° converges in L*((0,T) x R?) to the unique
entropy solution (1.1), (1.20). In fact, there is a convergence on the underlying
microscopic level, to a kinetic formulation of (1.1), (1.20). The latter is described by
a limiting ’density-function’, f(¢,,v), which is governed by the transport equation

g+a(v)~vzf = %—T

o (t,z,v) € D' (R} x RY x R,) (1.68)

subject to initial conditions

= Xpo(t,2)(v)- (1.69)

Here, m is a nonnegative bounded measure on R} x R? x R,.

In what sense does the kinetic formulation (1.68-1.69) ’describe’ the conserva-
tion law (1.1-1.20)? observe that by averaging of (1.68) one recovers the conservation
law (1.1), and taking its higher moments by integration against n'(v), one recovers
Kruzkov entropy inequalities (1.20)) for all conver entropies 7.

Theorem 1.6 Consider the BGK-like model (1.64)-(1.65).
{1} There ezists a nonnegative measure, m®(t,z,v), which is bounded indepen-
dently of e, such that the relazation term on the right of (1.64) admits

om*®
£>0. 1.70
> (1.70)
{it} The solution f° of the kinetic model (1.64)-(1.65) converges in
L*(0,7) x RE x R,) (VT < 00) to the solution of (1.68)-(1.69). In addition, its
associated measure, m®, converges weakly to the measure, m, uniquely determined
by the kinetic formulation (1.68)-(1.69) with f = x,.

2 ) =

Remark 1.4 One may deduce from the above result and from [136] that m van-
ishes on open sets of the form {(z,v,t) / (z,t) € Ov € R} where O is an open set
on which p is locally Lipschitz. In other words, m is ’supported by the shocks”.

Proof. Several proof are available, each highlights the related aspects of this issue.
One approach makes use of the simple H-functions, a la Boltzmann, constructed

in [136], He(f7) == |f* — Xel-
Lemma 1.3 ([136, Corollary 3.2]) For any real ¢ the following functions
He(f%) = 1f" — xel

are kinetic entropy functions, i.e., we have

/[Bt +a(v) - V| f* — xcldv <0. (1.71)

v
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Let us Remark that our kinetic entropy functions, H.(f%), are intimately related
to Kruzkov entropy functions, (1.8). Indeed, in [136] we prove that as e | 0, f.
approaches x,. With this in mind, the inequality (1.71) turns into Kruzkov’s entropy
inequality (1.20). The entropy (or H-)inequality, (1.71), then yields macroscopic
convergence by compensated compactness arguments in the one-dimensional case,
and by BV+-entropy production bounds in the multidimensional case. Earlier works
on kinetic models related to (1.68) can be found in [9],[54],[84].

An alternative proof, presented in [111], makes use of the averaging lemma,
1.2. In view of the results recalled above, we just have to verify that (1.70) holds,
1

(Xpe — fs) = aa%. This fact can be shown in several ways.

One way is to observe that if g(v) is an L'(R) function which satisfy (- as f¢
does),

0 <sign(v)g <1, /g(v) dv =« (1.72)
R
then there exists a nonnegative, bounded, continuous g such that
Xa(v) —g(v) = d'(v), q€Cs. (1.73)

Indeed, set q(v) = ffoo (Xa(w)—g(w))dw: in the case a > 0 (- the other case be-
ing treated similarly), we see that ¢ is nondecreasing on (—oco, a) and nonincreasing
on (a, +00) and we conclude since g(—oo) = 0 and g(+00) = a — ngdv =0.

The characterization in (1.73) of g’s satisfying (1.72), is in fact equivalent with
the following elementary lemma due to Brenier [9], which in turn yields still another
possible proof for the desired representation of the relaxation term in (1.70).

Lemma 1.4 ([9]) Let o € R and let ¢ be a C' conver function on R such that
@' is bounded. Then, xa(v) is a minimizer of infg {fR @' (v)g(v) dv} where the
infimum is taken over all g € G := {g € L'(R), fR gdv=a, 0<gsign(v) < 1}.

In addition, xo(v) is the unique minimizer if ¢’ is strictly increasing on R.

Granted that (1.70) holds, i.e., the relaxation term on the right of (1.64) belongs
to Wy ' (M¢,z), then the averaging lemma 1.2 applies with s = ¢ =1, p =2 (here
we identify, t <> zo, 7 <> &0, ao(v) = 1). It follows that if the conservation law is
linearly non-degenerate in the sense that (1.62) holds, that is, if 3a € (0,1) such
that

meas{v| |7+ A'(v) - €] < 8} < Const - 6%, V1> +|¢]° =1, (1.74)

then, {p°} is compact — in fact {p°(¢ > 0,-)} gains Sobolev regularity of order

§ = —

a+4-

‘We conclude this section with several remarks.
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Regularizing effect

We have shown above how the averaging lemma implies convergence under the

non-degeneracy condition (1.74). Moreover, in this case we quantified the Sobolev

We-regularity of the approximate solutions, {p°}. In fact, even more can be said

if the solution operator associated with {p°} is translation invariant: a bootstrap
(o3

argument presented in [111] yields the improved regularity of order s = a3

p°(t>0,) € Watz (L' (). (1.75)

This shows that due to nonlinearity, (1.74), the corresponding solution operator,
T, has a regularization effect, as it maps L — W¥(L') with s,¢ > 0.

In particular, this framework provides an alternative route to analyze the con-
vergence of general entropy stable multidimensional schemes, independent of the
underlying kinetic formulations. Here we refer to finite-difference, finite-volume,
streamline-diffusion and spectral approximations ..., which were studied in [29,24,85]
and [86,79,80,18], for example. Indeed, the key feature in the convergence proof for
all of these methods is the W, !(L?)-compact entropy production,

loc
dn(p") + Ve - F(p°) = Wi (L*(t,2)), W0 >0. (1.76)

Hence, if the underlying conservation law satisfies the non-linear degeneracy condi-
tion (1.74), then the corresponding family of approximate solutions, {p°(t > 0,)}
becomes compact. Moreover, if the entropy production is in fact a bounded mea-
sure, (— and here positive measures are included compared with the nonpositive
entropy production required from measure-valued solutions in (1.58)), then there
is actually a gain of Sobolev regularity of order 1%, and of order ;%5 for the
translation invariant case. (The expected optimal order is ). We shall outline this
general framework for studying the regularizing effect of approximate solutions to

multidimensional scalar equations in Lecture V.

Kinetic schemes

There is more than one way to convert microscopic kinetic formulations of non-
linear equations, into macroscopic algorithms for the approximate solution of such
equations. We mention the following three examples (in the context of conservation
laws).

— Brenier’s transport collapse method, [9], is a macroscopic projection method
which preceded the BGK-like model (1.64), see also [54]. Here one alternates be-
tween transporting microscopic 'pseudo-Maxwellians’ which start with f(t", -, v)
:= Xp(tn,(v), and projecting their macroscopic averaging, p(t" ', ) = f(¢t" !,
A convergence analysis of this method by the velocity averaging lemma was re-
cently worked out in [176].

— Another approach is based on Chapman-Enskog asymptotic expansions, [15].
We refer to [147], for an example of macroscopic approximation other than the
usual Navier-Stokes-like viscosity regularization ( — the scalar version of this
regularized Chapman-Enskog expansion is studied in Lecture IV).

— Still another approach is offered by Godunov-type schemes, (1.3), based on
projections of the Maxwellians associated with the specific kinetic formulations.
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These amount to specific Riemann solvers which were studied in [39], [135],
[137].

We conclude by noting that kinetic formulations like those mentioned above in
the context of scalar conservation laws apply in more general situations. For exten-
sions consult [111] for degenerate parabolic equations, [112],[110] for the system of
2 x 2 isentropic equations, [77] for the system of chromatographic equations, ....
We shall say more on these issues in Lecture V.
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2 Non-oscillatory central schemes

Abstract. We discuss a new class of high-resolution approximations for hyperbolic
systems of conservation laws, which are based on central differencing. Its two main
ingredients include:

#1. A non-oscillatory reconstruction of pointvalues from their given cell aver-
ages; and

#2. A central differencing based on staggered evolution of the reconstructed
averages.

Many of the modern high-resolution schemes for such systems, are based on
Godunov-type upwind differencing; their intricate and time consuming part involves
the field-by-field characteristic decomposition, which is required in order to identify
the ”direction of the wind”. Instead, our proposed central (staggered) stencils enjoy
the main advantage is simplicity: no Riemann problems are solved, and hence field-
by-field decompositions are avoided. This could be viewed as the high-order sequel
to the celebrated Lax-Friedrichs (staggered) scheme. Typically, staggering suffers
from excessive numerical dissipation. Here, excessive dissipation is compensated by
using modern, high-resolution, non-oscillatory reconstructions.

We highlight several features of this new class of central schemes.

Scalar equations. For both the second- and third-order schemes we prove vari-
ation bounds (- which in turn yield convergence with precise error estimates), as
well as entropy and multidimensional L*-stability estimates.

Systems of equations. Extension to systems is carried out by componentwise ap-
plication of the scalar framework. It is in this context that our central schemes offer
a remarkable advantage over the corresponding upwind framework.
Multidimensional problems. Since we bypass the need for (approximate) Riemann
solvers, multidimensional problems are solved without dimensional splitting. In fact,
the proposed class of central schemes is utilized for a variety of nonlinear transport
equations.

A variety of numerical experiments confirm the high-resolution content of the
proposed central schemes. They include second- and third-order approximations for
one- and two-dimensional Euler, MHD, as well as other compressible and incom-
pressible equations. These numerical experiments demonstrate that the proposed
central schemes offer simple, robust, Riemann-solver-free approximations, while at
the same time, they retain the high-resolution content of the more expensive upwind
schemes.

2.1 Introduction

In recent years, central schemes for approximating solutions of hyperbolic con-
servation laws, received a considerable amount of renewed attention. A family
of high-resolution, non-oscillatory, central schemes, was developed to handle such
problems. Compared with the ’classical’ upwind schemes, these central schemes
were shown to be both simple and stable for a large variety of problems rang-
ing from one-dimensional scalar problems to multi-dimensional systems of con-
servation laws. They were successfully implemented for a variety of other related
problems, such as, e.g., the incompressible Euler equations [25],[22],[20], [21], the
magneto-hydrodynamics equations [45], viscoelastic flows—[20] hyperbolic systems
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with relaxation source terms [4],[37],[38] non-linear optics [36],[7], and slow moving
shocks [17].

The family of high-order central schemes we deal with, can be viewed as a direct
extension to the first-order, Lax-Friedrichs (LxF) scheme [9], which on one hand
is robust and stable, but on the other hand suffers from excessive dissipation. To
address this problematic property of the LxF scheme, a Godunov-like second-order
central scheme was developed by Nessyahu and Tadmor (NT) in [31] (see also [41]).
It was extended to higher-order of accuracy as well as for more space dimensions
(consult [1], [16], [2], [3] and [21], for the two-dimensional case, and [40], [14], [29]
and [24] for the third-order schemes).

The NT scheme is based on reconstructing, in each time step, a piecewise-
polynomial interpolant from the cell-averages computed in the previous time step.
This interpolant is then (exactly) evolved in time, and finally, it is projected on its
staggered averages, resulting with the staggered cell-averages at the next time-step.
The one- and two-dimensional second-order schemes, are based on a piecewise-linear
MUSCL-type reconstruction, whereas the third-order schemes are based on the non-
oscillatory piecewise-parabolic reconstruction [28],[29]. Higher orders are treated in
[39].

Like upwind schemes, the reconstructed piecewise-polynomials used by the cen-
tral schemes, also make use of non-linear limiters which guarantee the overall non-
oscillatory nature of the approximate solution. But unlike the upwind schemes,
central schemes avoid the intricate and time consuming Riemann solvers; this ad-
vantage is particularly important in the multi-dimensional setup, where no such
Riemann solvers exist.

2.2 A Short guide to Godunov-Type schemes
We want to solve the hyperbolic system of conservation laws
ue + f(u)e =0 (2.77)

by Godunov-type schemes. To this end we proceed in two steps. First, we introduce a
small spatial scale, Az, and we consider the corresponding (Steklov) sliding average
of u('7 t);

e L ISR S
x I,

The sliding average of (2.77) then yields

e (z,t) + Aix [f(u(x + %,t)) — f(u(z — %,t))] =0. (2.78)

Next, we introduce a small time-step, At, and integrate over the slab t < 7 < t4 At,

a(z,t + At) = (z,t) (2.79)



We end up with an equivalent reformulation of the conservation law (2.77): it ex-
presses the precise relation between the sliding averages, u(-, t), and their underlying
pointvalues, u(-,t). We shall use this reformulation, (2.79), as the starting point for
the construction of Godunov-type schemes.

We construct an approximate solution, w(-,t"), at the discrete time-levels, t" =
nAt. Here, w(z,t") is a piecewise polynomial written in the form

w(z,t") =Y pi@)@), xi(@) =15,

where p;(x) are algebraic polynomials supported at the discrete cells, I; = I,
centered around the midpoints, z; := jAz. An ezact evolution of w(-,t") based on
(2.79), reads

w(z, t" ) = @(z, ") (2.80)

To construct a Godunov-type scheme, we realize (2.80) — or at least an accu-
rate approximation of it, at discrete gridpoints. Here, we distinguish between the
main methods, according to their way of sampling (2.80): these two main sampling
methods correspond to upwind schemes and central schemes.

Upwind schemes

Let @] abbreviates the cell averages, o] = 4 fl]- w(€,t")d¢. By sampling (2.80)

at the mid-cells, x = zj, we obtain an evolution scheme for these averages, which
reads
L L

; :’D?_A%; /T:tn f(w(zH%,T))dT—/ flw(e,_y,m)dr|. (281)

T=t"

Here, it remains to recover the pointvalues, {w(ijr% , 7}, t" <7 <t"! in terms
of their known cell averages, {&] };, and to this end we proceed in two steps:

— First, the reconstruction — we recover the pointwise values of w(-,7) at 7 =t",
by a reconstruction of a piecewise polynomial approximation

w(z, t") =Y pi(@)x; (@), pi(w;) =w]. (2.82)

— Second, the evolution — w(a:j+%, 7 > t") are determined as the solutions of
the generalized Riemann problems

p](ill) T <$j+%7

2.83
pi+1(x) &>z 1. (2.83)

we + f(w)e =0, =17 w(x,t")={
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The solution of (2.83) is composed of a family of nonlinear waves — left-going and
right-going waves. An exact Riemann solver, or at least an approximate one is used
to distribute these nonlinear waves between the two neighboring cells, I; and I;;.
It is this distribution of waves according to their direction which is responsible for
upwind differencing, consult Figure 2.2. We briefly recall few canonical examples
for this category of upwind Godunov-type schemes.

Wj t+Aat)
t+ At ¢
|
fj_l—e — = fj
W
: o —f—
B | 4 O
Wj-l ()

Fig. 2.1: Upwind differencing by Godunov-type scheme.

The original Godunov scheme is based on piecewise-constant reconstruction,
w(z,t") = Yw] x;, followed by an exact Riemann solver. This results in a first-order
accurate upwind method [11], which is the forerunner for all other Godunov-type
schemes. A second-order extension was introduced by van Leer [19]: his MUSCL
scheme reconstructs a piecewise linear approximation, w(z,t") = Xp;(z)x;(z),

with linear pieces of the form p;(z) = @} + wj (EZ?) so that p;(x;) = wj. Here

the w} -s are possibly limited slopes which are reconstructed from the known cell-
averages, w; = {(w})'} = {w' (u‘)?){;;_l} (Throughout this lecture we use primes,
w;-,w;-', ..., to denote discrete derivatives, which approximate the corresponding
differential ones). A whole library of limiters is available in this context, so that the
co-monotonicity of w(z,t™) with Yw;y; is guaranteed, e.g., [42]. The Piecewise-
Parabolic Method (PPM) of Colella-Woodward [6] and respectively, ENO schemes
of Harten et.al. [13], offer, respectively, third- and higher-order Godunov-type up-
wind schemes. (A detailed account of ENO schemes can be found in lectures of C.W.
Shu in this volume). Finally, we should not give the impression that limiters are
used exclusively in conjunction with Godunov-type schemes. The positive schemes
of Liu and Lax, [27], offer simple and fast upwind schemes for multidimensional
systems, based on an alternative positivity principle.

Central schemes
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As before, we seek a piecewise-polynomial, w(z,t") = Xp;(z)x;(x), which serves
as an approximate solution to the ezact evolution of sliding averages in (2.80),

gt
u")(z,tnﬂ) = w(z,t") — Aix /tn flw(zx + %,T))dr (2.84)

L

[ stute- %,T))drl .

n

Note that the polynomial pieces of w(z,t™) are supported in the cells, I; = { ‘

|§ - xj | < 4z } with interfacing breakpoints at the half-integers gridpoints, ith =

We recall that upwind schemes (2.81) were based on sampling (2.80) in the
midcells, © = x;. In contrast, central schemes are based on sampling (2.84) at the
interfacing breakpoints, x = Tiils which yields

) 1 gt
Wi =y o /T:tn flw(@jt1,7))dr - /T:tn f(w(l‘ij))dT] - (2.85)

We want to utilize (2.85) in terms of the known cell averages at time level 7 =
t", {w]};. The remaining task is therefore to recover the pointvalues {w(-, )| t"
T < t”"'l} and in particular, the staggered averages, {w" +1} As before, this task

IN

is accomplished in two main steps:

— First, we use the given cell averages {@w} };, to reconstruct the pointvalues of
w(-, 7 =t") as piecewise polynomial approximation

= pi@xi(@), pil;) =w]. (2.86)

In particular, the staggered averages on the right of (2.85) are given by

S

_n 1 “it} fitt
i+ = An pj(z)dz + pj+i(z)dz | . (2.87)
z;

T .
J+%

The resulting central scheme (2.85) then reads

— 1 i+l Tit1
W= @i+ [ g @ | + (2.89)
*i Yit+3s
1 t’n+1 tn+1
“ x| [ s [ f(w(xj,T))dT]~
T=t" T=t"

— Second, we follow the evolution of the pointvalues along the mid-cells, x =
zj, {w(zj, T > t")};, which are governed by

we + f(w)e =0, 7>t" w(z,t") =p;jz) z€Ij. (2.89)

47



Let {ax(u)}r denote the eigenvalues of the Jacobian A(u) := %. By hyperbolic-
ity, information  regarding  the  interfacing  discontinuities  at

(xii%,t") propagates no faster than m’?x|ak(u)|. Hence, the mid-cells val-
ues governed by (2.89), {w(z;,7 > t")};, remain free of discontinuities, at
least for sufficiently small time step dictated by the CFL condition At <
1Az - ml?x|ak(u)|. Consequently, since the numerical fluxes on the right of

n41
(2.88), f::tn f(w(z;,7))dr, involve only smooth integrands, they can be com-

puted within any degree of desired accuracy by an appropriate quadrature rule.

t+At
_—

w wo (1)

X
X X412 X+

Fig. 2.2: Central differencing by Godunov-type scheme.

It is the staggered averaging over the fan of left-going and right-going waves
centered at the half-integered interfaces, (z;, 1 ,t™), which characterizes the cen-
tral differencing, consult Figure 2.2. A main feature of these central schemes — in
contrast to upwind ones, is the computation of smooth numerical fluxes along the
mid-cells, (z = z;,7 > t"), which avoids the costly (approximate) Riemann solvers.
A couple of examples of central Godunov-type schemes is in order.

The first-order Lax-Friedrichs (LxF) approximation is the forerunner for such
central schemes — it is based on piecewise constant reconstruction, w(z,t") =
Xpj(x)x;j(z) with p;j(z) = w}. The resulting central scheme, (2.88), then reads

(with the usual fixed mesh ratio A := 4%)
_n 1, _ _
@ = 5 (@5 + Bye1) = M| f(D540) = F(105)] (2.90)

Our main focus in the rest of this chapter is on non-oscillatory higher-order exten-
sions of the LxF schemes.

2.3 Central schemes in one-space dimension
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The second-order Nessyahu-Tadmor scheme

In this section we overview the construction of high-resolution central schemes in
one-space dimension. We begin with the reconstruction of the second-order, non-
oscillatory Nessyahu and Tadmor (NT) scheme, [31]. To approximate solutions of
(2.77), we introduce a piecewise-linear approximate solution at the discrete time
levels, " = nAt, based on linear functions p;(z,t"™) which are supported at the
cells I; (see Figure 2.3),

w(w, = = Y pi(z,t")x; () (2.91)

= Z [u‘;jf + w) (mgf)] xi(®),  xj(e):= 1z

LxF -

X

X. X. X.
j j+t12 j+1

Fig.2.3: The second-order reconstruction

Second-order of accuracy is guaranteed if the discrete slopes approximate the
corresponding derivatives, w} ~ Az - d,w(z;,t") + O(Az)”. Such a non-oscillatory
approximation of the derivatives is possible, e.g., by using built-in non-linear lim-
iters of the form

— T — T ]‘ — T — 7 — 7 — T
’ll); = MM{H(’[U]_;’_I — ’lUJ ), E(’U}j+1 — ’lUj_l), 9(’!1)] — ’lUj_l)}. (292)
Here and below, 6 € (0,2) is a non-oscillatory limiter and MM denotes the Min-
Mod function
min;{z;} if ; > 0,Vi
MM{z1,x2,..} = { max;{z;}if x; <0,Vi
0 otherwise.

An ezact evolution of w, based on integration of the conservation law over the

staggered cell, Liiys then reads, (2.85)

gt
W= [ e [ ) - S )

i+ L
i+
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n

The first integral is the staggered cell-average at time t", w1, which can be
2

computed directly from the above reconstruction,
N 1 Tp 41

L = —
j+i Az |
J

£

n 1 _n _n 1
w(z,t")dr = a(w]- +wjyq) + g(w; —wjy). (2.93)

The time integrals of the flux are computed by the second-order accurate mid-point
quadrature rule

1

/ Fw(ay, P))dr ~ At - Flu(e;, 7)),

=tn

Here, the Taylor expansion is being used to predict the required mid-values of w

il t .
’ll)(l'],t +2) ~ ’u)(l'],t) =+ th(zj,t )
o At " R U
= wj _7A(wj )(p]‘(l']‘,t ))m = w;j _EA]U);
In summary, we end up with the central scheme, [31], which consists of a first-
order predictor step,
n+% n A

followed by the second-order corrector step, (2.88),

1 1

Ot = 2@ i) + 5 —whe) - A[f@E) - ] (@9)

The scalar non-oscillatory properties of (2.94)-(2.95) were proved in [31], [32],
including the TVD property, cell entropy inequality, L;,.— error estimates, etc.
Moreover, the numerical experiments, reported in [30], [31], [2], [3], [45], [37], [38],
[39], with one-dimensional systems of conservation laws, show that such second-
order central schemes enjoy the same high-resolution as the corresponding second-
order upwind schemes do. Thus, the excessive smearing typical to the first-order
LxF central scheme is compensated here by the second-order accurate MUSCL
reconstruction.

In figure 2.4 we compare, side by side, the upwind ULT scheme of Harten, [12],
with our central scheme (2.94)-(2.95). The comparable high-resolution of this so
called Lax’s Riemann problem is evident.

At the same time, the central scheme (2.94)-(2.95) has the advantage over the
corresponding upwind schemes, in that no (approximate) Riemann solvers, as in
(2.83), are required. Hence, these Riemann-free central schemes provide an effi-
cient high-resolution alternative in the one-dimensional case, and a particularly ad-
vantageous framework for multidimensional computations, e.g., [3], [2], [16]. This
advantage in the multidimensional case will be explored in the next section. Also,
staggered central differencing, along the lines of the Riemann-free Nessyahu-Tadmor
scheme (2.94)-(2.95), admits simple efficient extensions in the presence of general
source terms, [8], and in particular, stiff source terms, [4]. Indeed, it is a key ingre-
dient behind the relaxation schemes studied in [18].

It should be noted, however, that the component-wise version of these central
schemes might result in deterioration of resolution at the computed extrema. The
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second-order computation presented in figure 2.3 below demonstrates this point.
(this will be corrected by higher order central methods). Of course, this — so called
extrema clipping, is typical to high-resolution upwind schemes as well; but it is
more pronounced with our central schemes due to the built-in extrema-switching
to the dissipative LxF scheme. Indeed, once an extrema cell, I;, is detected (by
the limiter), it sets a zero slope, w;- = 0, in which case the second-order scheme
(2.94)-(2.95) is reduced back to the first-order LxF, (2.90).
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The third-order central scheme
Following the framework outlined in §2.3, the upgrade to third-order central scheme
consists of two main ingredients:

(i) A third-order accurate, piecewise-quadratic polynomial reconstruction which
enjoys desirable non-oscillatory properties;

(ii) An appropriate quadrature rule to approximate the numerical fluxes along
cells’ interfaces.

Following [29], we proceed as follows. The piecewise-parabolic reconstruction
takes the form

T —xj 1 z—xzj\>2
pf(x)zw?+w§-( A$J)+§w;’( A$’) . (2.96)
Here, w} are the (pointvalues of) the reconstructed second derivatives
wy =0, Ay A_w]; (2.97)

w; are the (pointvalues of) the reconstructed slopes,

w; = 9]‘A0’U_)?; (2.98)

and wj are the reconstructed pointvalues

=) — 2 (2.99)

Observe that, starting with third- (and higher-) order accurate methods, pointwise
values cannot be interchanged with cell averages, wj' # wj'.

Here, 6; are appropriate nonlinear limiters which guarantee the non-oscillatory
behavior of the third-order reconstruction; its precise form can be found in [28],
[29]. They guarantee that the reconstruction (2.96) is non-oscillatory in the sense
that N(w(-,t")) — the number of extrema of w(z,t"), does not exceed that of its
piecewise-constant projection, N(Xwj x;(-)),

N(w(-, ") < N(Z] (). (2.100)

Next we turn to the evolution of the piecewise-parabolic reconstructed solution.
To this end we need to evaluate the staggered averages, {u‘)?+l }, and to approximate
2

n+1
the interface fluxes, {f::tn f(w(xj,r))dr}.

With p;(z) = w} + w] (mgi’) + 1w} (mgzj )2 specified in (2.96)-(2.99), one
evaluates the staggered averages of the third-order reconstruction w(z,t") =
Zpi(x) xi(x)

n 1 Tj+1

L = —
its Az
Tj

1
w(z,t")dzr = = (w; + wj41) + g(wg —wiy). (2.101)

N =

Remarkably, we obtain here the same formula for the staggered averages as in the
second-order cases, consult (2.93); the only difference is the use of the new limited
slopes in (2.98), w} = 6; Agw}.
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Next, we approximate the (exact) numerical fluxes by Simpson’s quadrature
rule, which is (more than) sufficient for retaining the overall third-order accuracy,

n+1
L e e~ 2 ) + 5@ @] @10y
Az ), w(zj, 7))dr ~ & w; w; w; . .
This in turn, requires the three approximate pointvalues on the right, w;-H'ﬂ ~

w(zj, t"P) for B =0, 1,1. Following our approach in the second-order case, [31],

we use Taylor expansion to predict

wj = wj — Z—i; (2.103)
= (A 0)w(a, ") = — Az - 0, f(wla;,t")) =

= —a(w}) - wj,; (2.104)
W) = (Az - 0) w(zj, t") =
= Az 0, [a(w?)Ax . (%f(w(xj,t”))] =
= o’ (w})w] + 2a(w])a’ (w])(w))®. (2.105)
In summary of the scalar setup, we end up with a two step scheme where,
starting with the reconstructed pointvalues

O (2.106)

we predict the pointvalues w;&ﬁ by, e.g. Taylor expansions,

. AB8)? .. 1
w! P = w} 4+ AW} + ( g) Wy, B=3.1 (2.107)
this is followed by the corrector step
—n 1 _n _n 1
Wy =5 (@F + i) + g(w; —wja) + (2.108)

n+%

B % { [f(w?ﬂ) +Af(wi®) + f(w?jfll)}
- [f(w?) +af]TE) f“”?“)] } '

In figure 2.3 we revisit the so called Woodward-Colella problem, [46], where we
compare the second vs. the third-order results. The improvement in resolving the
density field is evident.

We conclude this section with several remarks.

Remarks.

1. Stability.
We briefly mention the stability results for the scalar central schemes. In the
second order case, the NT scheme was shown to be both TVD and entropy
stable in the sense of satisfying a cell entropy inequality — consult [31]. The
third-order scalar central scheme is stable in the sense of satisfying the NED
property, (2.100), namely
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Theorem 2.1 ([29]) Consider the central scheme (2.106),(2.107),
(2.108), based on the third-order accurate quadratic reconstruction, (2.96)-
(2.99). Then it satisfies the so-called Number of Ertrema Diminishing (NED)
property, in the sense that

N( EZI;XW@(Z‘)) < N( ﬁ),’,’XU(z)> ) (2.109)

. Source terms, radial coordinates, ...

Extensions of the central framework which deal with both, stiff and non-stiff
source terms can be found in [37],[38], [8], [4]. In particular, Kupferman in
[20],[21] developed the central framework within the radial coordinates which
require to handle both — variable coefficients + source terms.

. Higher order central schemes.

We refer to [39], where a high-order ENO reconstruction is realized by a stag-
gered cell averaging. Here, intricate Riemann solvers are replaced by high order
quadrature rules. and for this purpose, one can effectively use the RK method
(rather than the Taylor expansion outlined above):

. Taylor vs. Runge-Kutta.

The evaluations of Taylor expansions could be substituted by the more eco-
nomical Runge-Kutta integrations; the simplicity becomes more pronounced
with systems. A particular useful approach in this context was proposed in
[39], using the natural continuous extensions of RK schemes.

. Systems.

One of the main advantages of our central-staggered framework over that of the
upwind schemes, is that expensive and time-consuming characteristic decompo-
sitions can be avoided. Specifically, all the non-oscillatory computations can be
carried out with diagonal limiters, based on a
component-wise extension of the scalar limiters outlined above.
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2.4 Central schemes in two space dimensions

Following the one dimensional setup, one can derive a non-oscillatory, two-dimensio-
nal central scheme. Here we sketch the construction of the second-order two-dimensional
scheme following [16] (see also [2],[1]). For the two-dimensional third-order accurate
scheme, we refer to [24].

We consider the two-dimensional hyperbolic system of conservation laws

we + f(u)e + g(u)y =0. (2.110)

To approximate a solution to (2.110), we start with a two-dimensional linear recon-
struction

w(z,y,t") = Pk y)xsk (@, y), (2.111)
gk

; = " ' M) v (Y=
p],k-(l',y) Wi g +w],k' ( Az +wj,k < Ay ) .

Here, the discrete slopes in the z and in the y direction approximate the correspond-
ing derivatives, w}; ~ Az - wq(xj, yx, t") + O(Ax)?, )y, ~ Ay - wy (@), Y, t"7) +
O(Ay)?, and x;(z,y) is the characteristic function of the cell C;; := {(5,77)|
i€ -] < 4%, n—ykl < %} = I; ® Ji. Of course, it is essential to reconstruct
the discrete slopes, w' and w', with built in limiters, which guarantee the non-
oscillatory character of the reconstruction; the family of min-mod limiters is a
prototype example

_n _n 1 —n —n —n —n
’ll);k. = _ZM’_ZM’{Q(’U)J_+_1,]c — ’ll)j,k.), E(wj+l,k — wj_l,k),Q(wj,k — wj—l,k)} (2112,)

1, _ _ _ _
(w?,k+1 - w?,kfl)a 9(U’?,k - w?,kfl)}- (2-112‘)

wj, = MM{O(W] 11 — Wjk), 3

An exact evolution of this reconstruction, which is based on integration of the
conservation law over the staggered volume yields

_n+1 _ n
itd e+l
t’n+1
Y 7[ 7[ Fw(ayer,y 7)) — Fwles,y, 7))l dydr b +
r=tn Jyes, y
t’n+1
o 7[ 7[ (0@, i1, 7)) — g(w(e, yo, )] dedr b .
T=t" EGI]__'_%
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The exact averages at t" — consult the floor plan in Figure 2.6 yields

H);L_F%,k_,’_% = ][ w(z,y,t")dzdy = (2.114)
RETR WY
1 _n _n _n _n
= 7@k + D+ Dk + D) +
1
+ 6 {(w]k W1 ) + (W1 — Wipres1) +

+ (w;k - w},k+1) + (w;#l,k - w;‘+1,k+1)}-

y

i G k+1 i G k+1 :

| 1 U Cir12k+1/2

: NwLNE |

Yk+l2 | kel /

| sw | s |

- Gk - Gk 3
li+1/2

| ‘ | :
§+1/2

Fig.2.6: Floor plan of the staggered grid.

So far everything is exact. We now turn to approrimate the four fluxes on
the right of (2.113), starting with the one along the East face, consult figure 2.7,

ftn+1

order approximation of the temporal integral, JCyeJ fw(zjs,y, t”+%))dy; and,
k

+}

7[ w(zjt1,y,7))dydr. We use the midpoint quadrature rule for second-

k+2
for reasons to be clarified below, we use the second-order rectangular quadrature
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rule for the spatial integration across the y-axis, yielding

J.

In a similar manner we approximate the remaining fluxes.

tn+1
n+2

][ x]'i'l:y: ))dydTN% f( ]+1k-)+f( 41, k+1)]' (2115)

kv 1
Wisizksr2 €™

n+l

fW(X jyq y,0)dydt

n
L T3

(xj+1,yk, t n+]J2)

n+l

\]t—\\][;(w(x,yk 1) dxdt

n
7 sz

Fig.2.7: The central, staggered stencil.

These approximate fluxes make wuse of the midpoint values,

1
w]n: 2 = w(zj, yr, e ), and it is here that we take advantage of utilizing these mid-

values for the spatial integration by the rectangular rule. Namely, since these mid-
values are secured at the smooth center of their cells, Cjz, bounded away from the
jump discontinuities along the edges, we may use Taylor expansion, w(z;, yx, t"*é) =
W + Stw(zj, yr,t") + O(At)%. Finally, we use the conservation law (2.110) to
express the time derivative, w;, in terms of the spatial derivatives, f(w)" and g(w)",

ijl = Wik — —f( )ik = Hg( )ik (2.116)
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Here, f(w)j, ~ Az - f(w(@j, yr, t"))e and g(w)j, ~ Ay - g(w(z;, yk,t"))y, are one-
dimensional discrete slopes in the z- and y-directions, of the type reconstructed in
(2.112")-(2.112"); for example, multiplication by the corresponding Jacobians A and
B yields

f(w)ie = A(W])wy, g(w)jy, = B(wjy,)w)y.

Equipped with the midvalues (2.116), we can now evaluate the approximate fluxes,
e,g., (2.115). Inserting these values, together with the staggered average computed
in (2.115), into (2.113), we conclude with new staggered averages at t = t"*!, given
by

E;_:%lk_,’_% = i(@ﬂ + @1k + 0 g1+ D1 et1) + (2.117)
35— W) = 5 [F@iE) - fwir)]
+ %ﬁ(wé,kﬂ - w§‘+1,k+1) - % [f(w;jl%,kﬂ) - f(w]n:-él)}
+ s = whan) = & [o@)th) - gl )]

1 /2 nt+i n+i
+ E(w}+1,k - w;‘+1,k+1) Y [g(wj+12,k+1) - g(wj+12,k)j| .

In summary, we end up with a simple two-step predictor-corrector scheme which
could be conveniently expressed in terms on the one-dimensional staggered averag-
ing notations

1
<wj. >pp1= Wik Hwikar), <wok >j11:= S Wik +wikk)-

5

)

Our scheme consists of a predictor step

nti A
Wik = Wik — Ef]",k - %9}@ (2.118)

_ 1 _ _ 1 n+l n«l»l
1
“’?:%,k+%:< Z(“’?,- +wjy1,) + g(“’;‘,- —wiyr) =M = f?) >+
1 _n _n 1 n+l n+l
+< Z(w.,k + W k41) + g(w‘k —w jp1) = w9 ki — 9.k %) >+l -

In figures 2.8 taken from [16], we present the two-dimensional computation
of a double-Mach reflection problem; in figure 2.9 we quote from [45] the two-
dimensional computation of MHD solution of Kelvin-Helmholtz instability due to
shear flow. The computations are based on our second-order central scheme. It is
remarkable that such a simple ’two-lines’ algorithm, with no characteristic decom-
positions and no dimensional splitting, approximates the rather complicated double
Mach reflection problem with such high resolution. Couple of remarks are in order.

— The two-dimensional computation is more sensitive to the type of limiter than
in the one-dimensional framework [31]. In the context of the double Mach
reflection problem, the M M, (consult (2.92) with § = 2) seems to yield the
sharper results.
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051 4

M%\

()

Fig. 2.8: Double Mach reflection problem computed with the central scheme using
M M, limiter with CFL=0.475 at ¢t = 0.2 (a) density computed with 480 x 120
cells (b) density computed with 960 x 240 cells (c) x-velocity computed with
960 x 240 cells
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Fig. 2.9: Kelvin-Helmholtz instability due to shear flow. Transverse configuration
(B perpendicular to v). Pressure contours at t = 140

— No effort was made to optimize the boundary treatment. The staggered stencils
require a different treatment for even-odd cells intersecting with the bound-
aries. A more careful treatment following [26] is presented in §2.4. The lack of
boundary resolution could be observed at the bottom of the two Mach stems.

We conclude this section with brief remarks on further results related to central
schemes.

Remarks.

1. Simplicity.
Again, we would like to highlight the simplicity of the central schemes, which
is particularly evident in the multidimensional setup: no characteristic infor-
mation is required — in fact, even the exact Jacobians of the fluxes are not
required; also, since no (approximate) Riemann solvers are involved, the cen-
tral schemes require no dimensional splitting; as an example we refer to the
approximation of the incompressible equations by central schemes, §2.5; the
results in [7] provide another example of a weakly hyperbolic multidimensional
system which could be efficiently solved in term of central schemes, by avoiding
dimensional splitting.

2. Non-staggering. We refer to [15] for a non-staggered version of the central
schemes.

3. Stability.
The following maximum principle holds for the nonoscillatory scalar central
schemes:

Theorem 2.2 [16] Consider the two-dimensional scalar scheme (2.116-2.117),
with minmod slopes, w' and w', in (2.112-2.112')). Then for any 0 < 2 there
ezists a sufficiently small CFL number, Cg ( — e.g. C1 = (/7 —2)/6 ~ 0.1),
such that if the CFL condition is fulfilled,

max(\ - max| £, (w)], 1 - max|g. (w)]) < Co,

62



then the following local maximum principle holds

min  {op,}<@"1, . < max  {op,}. (2.119)
p-Gbi=h T T e T e
la=(k+3)l=3 la—(k+3)1=4

4. Third-order accuracy. Extensions to third-order accuracy in two space dimen-
sions can be found in [24].

Boundary conditions
Following [25], we demonstrate our boundary treatment in the case of the left-
boundary (see Figure 2.10).

/»———T———>———T———

|
|
T
|

0k+1 1 1/2k+1
- - - - -

I
0,k+1/21

Fig.2.10: Two dimensions - left boundary

We distinguish between inflow (f'(wY,, ;) > 0), and outflow (f'(w?,,,) <0),
boundary cells.

In inflow boundary cells, we reconstruct a constant interpolant from the pre-
scribed point-values at these boundaries,

P12,y t") S wo g, Wiy =0. (2.120)

This reconstruction is then used to build the approximate solution at time ¢t*™" in
the interior cells. At the next-time step, t"*!, the cell-averages at these boundary
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cells are defined according to the prescribed point-values as

_n41 I n+1
W4 k+1/2 = Wo k412"

We now turn to the outflow boundary cells. Here, we extrapolate the data from
the interior of the domain, up to the boundary. First, we determine the discrete
slope in the z-direction, w'l/Q,k. This slope is then used to extrapolate the cell-
average up to the boundary,

n _ . n Az
Wo,k = Wiy/2,k — BN Wi/2,k>
S . . 1/2
which is then used to predict the mid-value, wg,z 2 = wi s, — 3 for — gy Here
! — n ! \ — b n \
fO,k = a(wO,k)wl/Q,ka 9o,k = (wO,k)w1/2,k-

The discrete slope in the y-direction, wy j, is computed in that boundary cell in an
analogous way to the interior computation. In summary, the staggered average at
time t"*! is given by

— T — T
41 _ Wy + Wiy kg1
Wy 4, k4172 = - 9 +

1 ! ! \ \
+ g(—w1/2,k — Wi/ k1 + Wijak — Wi/2 kt1)

W) + FWa) = ) — F(a)

—p(g(w?)s k1) + g(WG j41) — g(wiyax) — 9(wo k41))-

(2.121)

This concludes the boundary treatment of the left boundary. Similar expressions
hold for the other three boundaries.

We now turn to the corners and as a prototype, consider the upper-left corner
(see Figure 2.11). In the corner we repeat the previous boundary treatment with
one simple modification. The main difference regarding the boundary scheme in the
corner is based on the number of different possible inflow/outflow configurations in
that corner.
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Fig.2.11: Upper-left corner

Computationally, the most complicated case is when the flow in that upper-left

corner is outflow in both directions. In this case, the staggered average at time " ",
—_n-41 . .
Wy )y N _1ya> 1 computed according to
w;/Q,N,l/Z =... Limited slopes
\ p—
Wy/a,N—1/2 = - -~
n IR ) Az, 1 .
Wo N_1/2 = Wi/ N—1/2 — 3 Wi/2,N—1/2 Predictor (west)
n+1/2 — n >\ ! ©" \
oN—1/2 =Won-1/2 = 5fon—1/2 = 590.n-1/2
n N ) A \ .
Wiy N = Wi N_12 + 5 Wi N 1y Predictor (north)
n+l/2 _ n X pr \
Wyoy = Wij2,N — 5f1/2,N - %91/2,N
no__ N Az 1 Ay .
WoN = WijaNo1/2 — S5 WijeN—1/2 + S Wija N_1)2 Predictor (north-west)
n+l/2 _ n A gt B\
ooN — Wo,nN — EfO,N — 390,N

The cell-average in the north-west edge of Figure 2.11 in time ¢"**, is given in this
outflow-outflow case by the corrector step

! \
_n _n —Wi/a N—1/2 T Wija N_1/2
“’1/&?]\!71/4 = Wiz N_1/2 / ! 1 ! /! (2.122)

=AM f(wi/o n) + f(wl)on-1/2) = Fwon) — f(wo n-1/2))
—p(g(wi)s n) + g(wg,n) — g(wi/2, N—172) — g(wo,n—1/2)")-

. P ’ — \ —
When one of the boundaries is inflow, we have w5 y_1/5 = Wi s ny_1/» = 0, and

11_);’;21]\,_1/4 = wgfvl (- the prescribed pointvalues at the corner).
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Fig.2.12: The 2D IBVP Burgers equation: T=1. (a) N=41, (a') N=81
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As an example, we we approximate a solution to the two-dimensional Burgers
equation

U + uty + uuy =0, (2.123)
subject to the initial conditions,
05 -1<z<0,-1<y<0

0 0<z<1,-1<y<0
uo(x,y) =

1 0<z<1,0<y<1

—02-1<2<0,0<y<l.

and augmented with boundary conditions at the inflow boundaries which are equal
to the initial values at these same boundaries. Figures 2.12 show the evolution of
the solution in time for mesh sizes 41 % 41 and 81 * 81. Again, we note that there
are no spurious oscillations at the boundaries, oscillations that are inherent with a
naive treatment of inflow boundaries.

2.5 Incompressible Euler equations

The vorticity formulation
We are concerned with the approximate solution of the 2D Euler (- and respectively
— NS) equations, expressed in terms of the vorticity, w := V x u,

wi + (uw)e + (vw)y = 0 ( +rAw). (2.124)
Here, u = (u,v), is the two-component divergence-free velocity field,
Ue + vy = 0. (2.125)
Equation (2.124) can be viewed as a nonlinear (viscous) conservation law,
wt + f(w)e + g(w)y =0 (+riw), (2.126)

with a global flux, (f, g) := (uw,vw). At the same time, the incompressibility (2.125)
enables us to rewrite (2.124) in the equivalent convective form

wt + uwz + vwy = 0. (2.127)

Equation (2.127) guarantees that the vorticity, w, propagates with finite speed, at
least for uniformly bounded velocity field, w € L. This duality between the conser-
vative and convective forms of the equations plays an essential role in our discussion.

To approximate (2.124) by a second-order central scheme (following [16,31]) we
introduce a piecewise-linear polynomial MUSCL approximate solution, w(-, -, t), at
the discrete time levels, t" = nAt,

n -n T —Tj —
w(w,y,t") = Z{Wj,k + Wik ( AIJ) oy (%) e, (2128)

7k
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with pieces supported in the cells, C;j  := {({,C) ||§ —z;| < %, € —yw| < % }
As before, we use the ezact staggered averages at t", followed by the midpoint
rule to approximate the corresponding flux. For example, the averaged flux, f = uw
is approximated by Analogous expressions hold for the remaining fluxes. Note that
finite speed of propagation (of w — which is due to the discrete incompressibility
relation (2.132) below), guarantees that these values are 'secured’ inside a region of

I . nt+i . .
local smoothness of the flow. The missing midvalues, Wik 2 are predicted using a

first-order Taylor expansion (where \ := % and p = ﬁ—;, are the usual fixed
mesh-ratios),

e X B At V2! 2.129

Wi =05, — Efj,k — 59k (+AWV o). (2.129)

Equipped with these midvalues, we are now able to use the approximate fluxes
which yield a second-order corrector step outlined in (2.134) below. Finally, we
have to recover the velocity field from the computed values of vorticity. We end up
with the following algorithm.
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1. Reconstruct
(a) An exact discrete divergence-free reconstruction of the velocity field. We define
the discrete vorticity at the mid-cells as the average of the four corners of
each cell, i.e.

1
Wittt = 7 (@WirLken F Wik + Wik WjLk)- (2.130)
We then use a streamfunction, v, such that Ay = —w, which is obtained
in the min-cells, e.g., by solving the five-points Laplacian, Ad)]-Jr%,kJr% =
Wit l kgl Then, its gradient, Vi recovers the velocity field
Uik = paVyt, Uik = —pyVai). (2.131)
Here, p1 and py denote averaging in the z-direction and in the y-direction,
respectively, such that, e.g.,
1
Uik = 5 (wj+%,k+% LT WS LI W w'—%,k—%) :

Observe that with this integer indexed velocity field, we retain a discrete
incompressibility relation, centered around (j + %, k+ %),

S U, = U Zpyl < Vgl — Uk 541
_+_

T v =0, (2.132)

which is essential for the maximum principle in (2.5).
2. Predict
(a) Prepare the pointvalues of the divergence-free velocity field , w(-,-,¢"), from
the reconstructed vorticity pointvalues, wj,. To this end, use the Biot-
Savart solver (2.131); .

(b) Predict the midvalues of the vorticity, w’, 2,

U.)Jn,k 2 = ik Euj,kw},k - %vj,kw},k. (2133)
Note: Observe that here we use the predictor step (2.129) in its convective
formulation (2.127), that is, (f',g') = (w', vw").

3. Correct

€l

(a) As in step (2a), use the previously calculated values of the vorticity to
compute the divergence-free pointvalues of the velocity, at time t”+%,
U(', K] tn+%)

(b) Finally, the previously calculated pointvalues of the velocities and vorticity
are plugged into the second-order corrector step in order to compute the
staggered cell-averages of the vorticity at time ¢"**,

_ 1, _ _ 1
“’;L%I,H% =< 7@ + @) + g(wé‘,. —wit1) >pep +
n+% n+%
- < )‘((”"J)]‘Jrl,. - (uw)j,. ) >k+% +
1, _ 1
+ < Z(w?k +wfk+1) + g(w_\,k — w_‘,kJrl) >]-+% +
nti n+i
—< u((vw).,k—fl - (vw)_,k ) >j+% : (2.134)



The specific recovery of the velocity field outlined above, retains the dual
convective-conservative form of the vorticity variable, which in turn leads to the
maximum principle [25].

min  {@p,} <@ . < max {@p,} (2.135)
P T A A e ST
la—(k+3)=3 la—(k+3)1=3

As in the compressible case — compare (2.119), the main idea in [25] is to rewrite
o't as a conver combination of the cell averages at t",
jt35.k+35
OF by @711y OF k1> Of 41, k41
In figure 2.14 we show the central computation of a ’thin’ shear-layer problem,
[5]. For details, consult [25].

Fig.2.13: t = 8 , 64*64 Fig.2.14: t = 8 , 128*128

The “thin” shear-layer problem, solved by the second-order central scheme
(2.129),(2.134) with spectral reconstruction of the velocity field.

The velocity formulation

Following [22] our goal is introduce a second-order central difference scheme for in-
compressible flows, based on wvelocity variables. The use of the velocity formulation
yields a more versatile algorithm. The advantage of our proposed central scheme in
its velocity formulation is two-fold: generalization to the three dimensional case is
straightforward, and the treatment of boundary conditions associated with general
geometries becomes simpler. The result is a simple fast high-resolution method,
whose accuracy is comparable to that of an upwind scheme. In addition, numer-
ical experiments show the new scheme to be immune to some of the well-known
deleterious consequences of under-resolution.
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We consider a two-dimensional incompressible flow field, u = (u,v), so that
V -u = 0. The equations of motion for a Newtonian fluid in conservation form are

ug = [_uz + vug —p]x +[~uwv +vuy], = U (u,0,u, - )z + 97 (4,0, Uy - )y
vy = [—uv + v, + [—v2 + vy —p]y = (U, 0, Uz, o + g0 (U, 0, Uy . )y
(2.136)

where p is the pressure, v is the kinematic viscosity, and subscripts denote partial
derivatives. The functions f*¥(-) and g“(-) are components of the fluxes of the
conserved quantities v and v.

The computational grid consists of rectangular cells of sizes Az and Ay; at time
level t" =nAt, these cells, C; ;, are centered at (z; =iAx,y; = jAy). Starting with
the corresponding cell averages, u™ = (uy;,v)';), we first reconstruct a piecewise
linear polynomial approximation which recovers the point values of the velocity
field, u™(z,y) = (u"(z,y),v"(x,y)). For second-order accuracy, the piecewise linear
reconstructed velocities take the form,

! \

n n ui,' ui,'
u (x,y)=Ui,j+A—;(x—1‘i)+A—;(y—yj), z,y €Ci;j. (2.137)

As before, exact averaging over a staggered control volume yields

ﬁi+%,j+%(tn+l) = u(zayatn)dxdy (2'138)
i+5.0+d

c
+ At D+f ][ “(zi,y,7)dydr
gt

+ At D;rf ][ 9" (z,y;, 7)dzdr },
r=tn Jzer,

1

it+3
and a similar averaging applies for ¥ :‘ ird
2
An exact computation yields
n n Az A
][ u(z,y,t")dzdy = ,u;r,u;u” — ?DJF Fw ,j SyDy i w”. (2.139)

Citd.itd

The incompressible fluxes, e.g., f* = —u? +vu, — ps, are approximated in terms of

the midpoint rule , which in turn employs predicted midvalues which are obtained
from half-step Taylor expansion. Thus our scheme starts with a predictor step of
the form

ntl At w, n Vi w; )
u; P =ufj — 5 [2 v A” +ul; iyj +U?1 Al; + Gopi; —vViuj
(2.140)
ntl At w) vl v 9
v ;0= v — 5 {v?,] A” +ui; A” + 20}, Al + Gypl; —vVivij|.
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Note that the predictor step is nothing but a forward Euler scheme; conservation
form is not essential for the spatial discretization at this stage.

This is followed by a corrector step

VAL 2\ ~nt1 + 40 AT 44 Ay o+ 4o
(1= 25 vh) W oy = bty = DIty - DYl +

(2.141)

1 1 I
+ 4 |,z nty VWi
— AtDz Ky |:’u,i,j lli,]- — m +

\
— AtDut {vn% n+g ’/ui,j]
y Pz .

i Wiy T T 2Ay

Note that the viscous terms are handled here by the implicit Crank-Nicholson
discretization which is favored due to its preferable stability properties. Here, we
ignore the pressure terms; instead, the contribution of the pressure will be integrated
by enforcing zero-divergence fluxes at the last projection step.

Compute the potential ¢; ; solving the Poisson equation

— — — — 1 - —~n -, —~n
(D202 sy + DIyt Jous = g [Deny iy + Dyme 0y oy |

(2.142)
Then, the pressure gradient at "' is being updated,
Gep[ [y oy = Dimfeis,  Guplly 1= Dywleis, (2.143)
and finally, it is used to evaluate the divergence-free velocity field, u"+!
u?j%l,ﬂ_% = G?:;H% - Athp?:%l,j+%. (2.144)

In Figure 2.15, we plot vorticity contours for two shear layer problems studied in
[5]: the inviscid “thick” shear layer problem corresponding to (uf,v3) with p = 30,
and a viscous “thin” shear layer problem (with v = 5 - 1075), corresponding to
(uf,vd) with p = 100. As in [5], both plots in Figures 2.15a and 2.15b are recorded
at time ¢ = 1.2, and are subject to an initial perturbation v$, with & = 0.05.
Further applications of the central schemes for more complex incompressible flows
(with ’variable’ axisymmetric coefficients, forcing source/viscous terms, ...), can be
found in [20],[21].
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150 200 250 50 100 150 200

Fig.2.15: Contour lines of the vorticity, w = v, — uy, at t = 1.2 with initial
(u”,v%),8 = 0.05, using a 256 x 256 grid. (a) A “thick” shear layer with p = 30,
and v = 0. The contour levels range from —36 to 36 (cf. Figure 3c in Ref. [5]).
(b) A “thin” shear layer with p = 100, and v = 5 - 107>, The contour levels
range from —70 to 70 (cf. Figure 9b in Ref. [5]).
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3 The Spectral Viscosity Method

3.1 Introduction

Let Py stands for one of the standard spectral projections — Fourier, Chebyshev,
Legendre ... . It is well known that such spectral projections, Pyu, provide highly
accurate approximations for sufficiently smooth w’s. This superior accuracy is de-
stroyed if u contains discontinuities. Indeed, Py u produces O(1) Gibbs’ oscillations
in the local neighborhoods of the discontinuities, and moreover, their global accuracy
deteriorates to first-order.

We are interested in spectral approximations of nonlinear conservation laws

=4 5 (u) =0, (3.145)

subject to initial conditions, u(z,0) = uo, and augmented with appropriate bound-
ary conditions. The purpose of a spectral method is to compute an approximation
to the projection of u(-,t) rather than u(-,t) itself. Consequently, since nonlinear
conservation laws exhibit spontaneous shock discontinuities, the spectral approxi-
mation faces two difficulties:

Stability. Numerical tests indicate that the convergence of spectral approxima-
tions to nonlinear conservation laws fails. In [26]-[28] we prove® that this failure
is related to the fact that spurious Gibbs oscillations pollute the entire com-
putational domain, and that the lack of entropy dissipation then renders these
spectral approximations unstable.

Accuracy. The accuracy of the spectral computation is limited by the first order
convergence rate of Pyu(-,t).

With this in mind we turn to discuss the Spectral Viscosity (SV) method introduced
in [26]. Our discussion focuses on three aspects: the periodic Fourier SV method in
both — one and several space dimensions and the nonperiodic Legendre SV method.

In §3.2 we begin with the one-dimensional periodic problems. The purpose of
the SV method is to stabilize the nonlinear spectral approximation without sacrific-
ing its underlying spectral accuracy. This is achieved by augmenting the standard
spectral approximation with high frequency regularization. In §3.2 we briefly re-
view the convergence results of the periodic Fourier SV method, [26]-[29], [17],
[5], [21]. These convergence results employ high frequency regularization based on
second order viscosity. In §3.2 we discuss spectral approximations based on “super-
viscosity”, i.e., high-frequency parabolic regularizations of order > 2. These ’super’
spectral viscosities were introduced and analyzed in [30]. Extensions of the spec-
tral super viscosity to non-periodic problems was presented in [13]. We prove the
H~'-stability of these spectral 'super-viscosity’ approximations, and together with
L*-stability, convergence follows by compensated compactness arguments [31],[16].

In §3.3 we turn to the nonperiodic case and discuss the Legendre SV method,
[18]. Extensions to and applications with Chebyshev SV method can be found in
[12],[2],[15]. Finally, the multidimensional problem is treated in §3.5, along the lines
of [5].

% Consult the counterexamples in the introductory section of Lecture IV below.
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We close this introduction by referring to the numerical experiments in §3.4
quoted from [18]; see also [28]. These numerical tests show that by post-processing
the spectral (super)-viscosity approximation, the exact entropy solution is recovered
within spectral accuracy. This post-processing is carried out as a highly accurate
mollification and operated either in the physical space as in [10],[1],[18], or in the
dual Fourier space as in [11],[19],[32]. It should be emphasized that the role of
post-processing is essential in order to realize the highly accurate content of the SV
solution.

For further applications in two- and three-dimensional atmospheric simulations we
refer to [2],[15],[7] and the references therein.

3.2 The Fourier Spectral Viscosity (SV) method

To solve the periodic conservation law (3.145) by a spectral method, one employs
an N-degree trigonometric polynomial

un (o, t) = ux(t)e™ (3.146)

[k|<N

in order to approximate the Fourier projection of the exact entropy solution, Pyu.5
Starting with un (z,0) = Pnyuo(z), the classical spectral method lets un (z,t) evolve
according to the approximate model

Oun 0
T [Py (f(un))] =0. (3.147)
As we have already noted, the convergence of uy towards the entropy solution of
(3.145), un T, may fail, [26]. Instead, we modify (3.147) by augmenting it
— 00

with high frequency viscosity regularization which amounts to

Oun 0 s+1 O° O’un
W—f-%[PNf(uN(x,t))] =en(-1) e [Qm(z,t)* el s> 1.
(3.148,)
This kind of spectral viscosity can be efficiently implemented in Fourier space as
0° Ouny _ SN2 A ika
v [Qm(x,t) S ] —c %‘;N(zk) O (t)an (t)e'™® . (3.149)
m< <

It involves the following three ingredients:
— the viscosity amplitude, € = ey,

2C,

~ S
N2s—1"

e=en (3.150)

Here, C; is a constant which may depend on the fixed order of super-viscosity, s.
(A pessimistic upper bound of this constant will be specified below — consult
[6, Theorem 2.1]).

6 The spectral Fourier projection of u(z) is given by EleN(u, etk the pseu-
dospectral Fourier projection of u(z) is given by EleN < u,e*® > e where
< u,e*® >i= Ag >, u(z,)e~*® is collocated at the 2N + 1 equidistant grid-

values z, = 2nvAz. Pyu denotes either one of these two projections.
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— the effective size of the inviscid spectrum, m = muy,
2s —1

mEmNNNe, 0 < 95

(3.151)

— the SV smoothing factors, Cjk (t), which are activated only on high wavenum-
bers, |k| > my, satisfying
251
my ° ~

1— <m> <Qr(t) <1, k| >mn. (3.152)
The SV method can be viewed as a compromise between the total-variation
stable viscosity approximation — see (3.154) and (3.1605) below — which is restricted
to first order accuracy (corresponding to § = 0), and the spectrally accurate yet
unstable spectral method (3.147) (corresponding to # = 1). The additional SV on
the right of (3.148,) is small enough to retain the formal spectral accuracy of the

underlying spectral approximation, i.e., the following estimate holds

s+p 05w —0(q—p— 0%y
llen gz [@m(2,1) % 522 |12y < Const - N=O@P=D | Z | 2,
(3.153)

Vg>p+1>—o0.

At the same time this SV is shown in §3 & 4 to be large enough so that it enforces a
sufficient amount of entropy dissipation, and hence — by compensated compactness
arguments — [31],[16], to prevent the unstable spurious Gibbs’ oscillations.

The Fourier SV method — 2nd order viscosity
The unique entropy solution of the scalar conservation law (3.145) is the one which
is realized as the vanishing viscosity solution, v = lim. o u®, where u® satisfies the
standard viscosity equation
€ 2
%it + %f(uﬁ(x,t)) = 6%1;6(1‘,15). (3.154)

This section provides a brief review of the convergence results for the Fourier
SV method (3.148,) with s = 1. The convergence analysis is based on the close
resemblance of the Fourier SV method (3.148;) with s = 1 to the usual viscosity
regularization (3.154). To quantify this similarity we rewrite (3.148;) with s =1 in
the equivalent form

Jun 0 _
T + %f(uzv(x,t)) = (3.155)
_ un 0 oun 0
= en S —en g [Bu (o, t)x S| 4 511 = Pr)flu),
where
N
A ik , 1 k| < muy,
Ry(w,t):= Y Re(t)e™, Ri(t) z{l_Q ® Ikl >mN (3.156)
[ k = N -

Observe that the SV approximation in (3.155) contains two additional modifi-
cations to the standard viscosity approximation in (3.154).
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{i} The second term on the right of (3.155) measures the difference between the

spectral viscosity, en % [Qm(x, t) * Bg N ] , and the standard vanishing viscosity,

2
EN ‘93;‘2” . The following straightforward estimate shows this difference to be L*-

bounded V8 < %,

0 0
lew gz [Rr 0+ G2 llee < (3.157)

< Const - e x [m}v/" max [k*7Y% + mi | llun (-, )] 22

[k|>m N

< Const - N Hun (-, 8)]| .2

< Const - ||lun (-, t)]| L2, W

IN
N =

{ii} The spectral projection error contained in the third term on the right of (3.155)
does not exceed

1,0
I(I = Pr) fun(,8))ll 2 < Const [l mm-un (-, 8)ll 2 (3.158)
Equipped with the last two estimates one concludes the standard entropy dissipa-
tion bound, [26], [17], [28], [5],

ou 1
o ()l + VERI 2 e, < Comst,  ex ~ (3.159)

The inequality (3.159) is the usual statement of entropy stability familiar from
the standard viscosity setup (3.154). For the L*°-stability of the Fourier SV ap-
proximation consult e.g. [17],[27, §5] and [5, §4] for the one- and respectively,
multi-dimensional problems. The convergence of the SV method then follows by
compensated compactness arguments, [31],[16].

We note in passing that the the Fourier SV approximation (3.148;), (3.150-
(3.151) shares other familiar properties of the standard viscosity approximation
(3.154), e.g., total variation boundedness, Oleinik’s one-sided Lipschitz regularity
(for 6 < %), L'-convergence rate of order one-half, [21],[28].

Fourier SV method revisited — super viscosity

In this section we remove the restriction § < 3 in (3.151), which limits the portion
of the inviscid spectrum. The key is to replace the standard second-order viscosity
regularization (3.154) with the “super-viscosity” regularization

ou* 9, . L en 0% .
ar T ag (W (@) = e(=1)°" Ssu(a, ). (3.1605)

The convergence analysis of the spectral “super-viscosity” method (3.148;) is
linked to the behavior of the “super-viscosity” regularization (3.1605). To this end
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we rewrite (3.148;) in the equivalent form

a’l,LN (3 s+1 aQS’U/N

AN o fluw () = e (-1) T O

(—8)3 o° unN

ppe [RN(z,t) * 5| 82([_ Py)f(uy) = (3.161)

+en

=T (un) + Zo(un) + Zs(un).

As before, we observe that the second and third terms on the right of (3.161), Z>(un)
and Zs(un), are the two additional terms which distinguish the spectral “super-
viscosity” approximation (3.161) from the super-viscosity regularization (3.160).
In the sequel we shall use the following upper-bounds on these two terms.

{i} The second term, Z,(un), measures the difference between the SV regulariza-
tion in (3.161) and the “super-viscosity” in (3.160,). Using the SV parameteri-
zation in (3.152), (3.151) and (3.150) (in this order), we find that this difference
does not exceed

(=0)° [ asuN]
. < 3.162
e S5 (R (1) 5 S e < (3.162)

<en

5 2s—1 9g_ 2
my +my®  max |k|**
myN

—1
v } llun ()l
[k]>

< Const - N250—25+1||UN(':t)”L2

2s — 1
< Const - [Jun (-, 8]l .2, V6 < 525 :

Thus, the second term on the right of (3.161), Z»(ux), is L?-bounded :
o)l ) < Constllu ()10 (3.163)

{ii} Regarding the third term, Z3(un), we shall make a frequent use of the spectral
estimate which we quote from [5, §2.3], stating that”,

s (1 = P} (- )2 < (3.164)

1
qu pII uv ()2, Vg2 p> -0, ¢> 5.

(The restriction g > 5 is required only for the pseudospectral Fourier projection,
Py, whose truncation estimate in provided in e.g., [25, Lemma 2.2]). An upper
bound on the constants Cs appearing on the right of (3.164) is given by [5,
Theorem 7.1]

C ~Z||f Mo lunllF=; (3.165)

" As usual we let dPw(zx) := Z(zk)pﬁ)(k) T Note that if Jw(z)dz = 0 then

k40
Ow(x) with p < 0 coincides with the |p|-th order primitive of w(z).
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this estimate may serve as a (pessimistic) bound for the same constant used in
conjunction with the viscosity amplitude, en, in (3.150).

Next we turn to the behavior of the quadratic entropy of the SV solution, U(un) =
1u%. (A similar treatment applies to general convex entropy functions U(un).)

Multiplication of (3.161) by un implies

st o [ eree=

3.166
= unTi(un) +unZo(un) + unZs(un) = ( )

= IIl(uN) +IIQ(UN) +II3(UN).

The three expressions on the right (3.166) represent the quadratic entropy dissipa-
tion + production of the SV method. Successive ” differentiation by parts” enable
us to rewrite the first expression as

II (un) = (3.167)

0 [0Pun un un\?
— _1\stpt+1 Y _
- + 2:2 1( g or [ OxP Oxt } 6N( oxs )
p+qg=2s—

0<p<s
=TI (’U,N) =+ 1112(1”\1).
Similarly, the second expression can be rewritten as

IIs(un) = (3.168)

0 (0Pun |0'Rn(z,t) O°un
= _1\str Y )
=N Z (=1) 81:(891:1’ [ Ox1 * ox* }>+
ptg=s—1
0° 0°
o T ()« o

= 1121(uN) =+ IIQQ(UN).
Finally, we have for the third expression

IIs(uy) = (3.169)

=, ., 0 [0Puy 077
=% %{ 91— Py flun) | +

OxP Ox~P

8SUN 8754»1

Oxs Ox—st! (

+(-1)° I—Py)f(un)
= II31(1LN) +II32(UN).
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We arrive at the following entropy estimate which plays an essential role in the
convergence analysis of the SV method.

Lemma 3.1 Entropy dissipation estimate There ezists a constant,
Const ~ |lux(+,0)||2, (but otherwise is independent of N ), such that the following
estimate holds

2Cs

8SUN
||uN(7t)||L2 + VEN”W”L%OC(E’t) S Const, EN = —N2S*1 .

(3.170)

Remark 3.1 Observe that the entropy dissipation estimate in (3.170) is consider-
ably weaker in the “super-viscosity” case where s > 1, than in the standard viscosity
regularization, s = 1 quoted in (3.159).

Proof. Spatial integration of (3.166) yields

1d 0°
57l G Olze +enllzZun (0)lIze = (un, To(un)) 2 + (un, Zs(un)) 22 (@)-

2 dt
(3.171)

According to (3.163), the first expression on the right of the last inequality does
not exceed

|(un, Zo(un)) 2] < Const - [lun (-, t)[|72. (3.172)

According to (4.6c), the second expression on the right= (_1)3865;:31\, 36;73:1 (I -

Py)f(un), and by (3.164) it does not exceed

0°u Cs 0°u
[(un, Zs(un)) 2| < | 3 ;VHL2 "N I xSNHLz < (3.173)
1 0°
< EEN”%UN('J)”iz'

(In fact, in the spectral case, the second expression vanishes by orthogonality ).
The result follows from Gronwall’s inequality. W

Equipped with Lemma 3.1 we now turn to the main result of this section, stating

Theorem 3.1 Convergence Consider the Fourier “super-viscosity” approzima-
tion (8.148s)-(3.152), subject to L™ -initial data, un(-,0). Then uniformly bounded
un converges to the unique entropy solution of the conver conservation law (3.145).

Proof. We proceed in three steps.

Step 1. (L*°-stability). The L°°-stability for spectral viscosity of 2nd order,
s =1, follows by LP-iterations along the lines of [17] and [5], (we omit the details).
The issue of an L* bound for spectral viscosity of ’super’ order s > 1 remains an
open question. The intricate part of this question could be traced to the fact that
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already the underlying super-viscosity regularization (3.1605), lacks monotonicity
for s > 1: instead, it exhibits additional oscillations which are added to the spectral
Gibbs’ oscillations (Both types of oscillations are post-processed without sacrificing
neither stability nor spectral accuracy).

Step 2. (H™'-stability). We want to show that both — the local error on the
right hand-side of (3.161), Z Z;j(un), and the quadratic entropy dissipation +

1<;<3
production on the right of (3.166), Z ZI;(un), belong to a compact subset of
1<j<3

H, l;cl (z,t).

To this end we first prepare the following. Bernstein’s inequality gives us Vp < s < ¢

apuN 8quN apuN aquN
lew [Tt G| Micer < Comst-en |t w1555 e <

... by Bernstein inequality ... < Const - en - NP ||un||poo X

0°un
s ||Ll20£(z,t) <

xNT7%|
...by Lemma 3.1... < Const - v/en - N?T97%||uy || ~

~ V3G, - NPYI725F3 |y . (3.174)

Consider now the first two expressions, Z;(un) and ZI(un). The inequality
(3.174) with (p,q) = (0,2s — 1) implies that Z; (un) tends to zero in H, '(z,t), for

loc
||Il(uN)||Hf1(ac,t) < Const - £/ 2CS/N . ||1LN||L<>O — 0. (3175)

We turn now to the expression ZI1(un) in (3.167): its first half tends to zero in

Hl;cl(x7t)7 for by (3.174) we have Vp + q = 25 — 1,
L ()l o) = (3.176)
0 [0°un 0lun
= . _1\str Y
=l Y 0[S o <
p+g=2s—-1
0<p<s
< Const-/20/N- 3 luwli <
p+g=2s—1
0<p<s

< Const - s4/2Cs /N - |lun||z=~ — 0;

the second half of ZI; in (3.167), —en (6;;‘5])2, is bounded in Li,.(z,t), consult

Lemma 3.1, and hence by Murat’s Lemma [16], belongs to a compact subset of
H; (z,t). We conclude

loc

IIlz(uN) — S 0. (3177)



We continue with the next pair of expressions, Z>(un) and ZI2(un). According
to (3.163), Zo(un) — and therefore also ZIs(un) = unZz(un) — are L?-bounded,
and hence belong to a compact subset of Hl;i (z,t); in fact, by repeating our pre-

vious arguments which led to (3.163) one finds that

_1,0°un
IZ2 (un) =12,y < Comst - enmiy 1”W”L2(w,t) < (3.178)
2s—1
< Const - enmyy ' ~V2C, - N~ — 0.

A similar treatment shows that the first half of ZI2(uy) in (3.168) tends to zero in
H Y(z,t), for

loc

L1 (w0l 2 = (3.179)
0 (0Pun |0?'Rn(z,t) O°un

_ _1\stp Y ’

=evll 3 () m(azp [ i " 0w | Jaten <
ptg=s—1

< NP q L <

SEN - Z ||uN||L°°'mN”W”leoc(:c,t)—
ptg=s—1

< Const- ey 3 N""luyllree < 53/2Co/N - |Jux |1 = 0.

ptg=s—1

The second half of ZIs(un) is L'-bounded, for

[|ZI22(un) =en aaZiV Ry (z,t) * aaZiV |1 < (3.180)
2°un
Const - 5N||W”ilzoc(x,t) < Const.

Finally we treat the third pair of expressions, Zs(un) and ZI3(un ). The spectral
decay estimate (3.164) with (p,q) = (0, s), together with Lemma 3.1 imply that
T3(un) tends to zero in H; !(x,t); indeed

loc
_ 0
1Za(un) = 5 (I = Pn) f(u)ll g =10, (3.181)

< ~/2Cs/N .
< 5 e ~ /2N - 0

A similar argument applies to the expression ZIs(un) given in (4.6¢). Sobolev
inequality — consult (3.174), followed by the spectral decay estimate (3.164) imply
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that the first half of ZI3(un) does not exceed
12131 (un) = (3.182)

s—1
. 0 |0Pun O7P
= (—1)17% [ dzxP dzr—r (I' = Px)f(un) ”Hz_ol“”*t) =

p=0

0%u o’
< Z 1=l - 5o U = P¥)f(un)liz @) <

= C, 0"
UN
< Const- Yy Nlluw | 755 1175 ez oy <
p=0

~ Const - s4/2Cs/N||lun||z~ — 0.

According to Lemma 3.1, the second half of ZI3(un) is Ll-bounded, for

aSUN 678+1

'gra:ﬁ(

|8 uN” ’un
8 s L2 N2s 1” a s

and hence by Murat’s Lemma [16], belongs to a compact subset of H, !(z,t).
We conclude that the entropy dissipation of the Fourier spectral ’super-viscosity’
method, for both linear and quadratic entropies, belongs to a compact subset of
Hloc ($ t)

Step 3. (Convergence). It follows that the SV solution ux converges strongly
(in L} .,Vp < o0) to a weak solution of (3.145). In fact, except for the L'-bounded
terms ZI22(un) and ZI32(un), we have shown that all the other expressions which
contribute to the entropy dissipation tend either to zero or to a negative measure.
Using the strong convergence of uy it follows that ZIs2(un) and ZI3»(un) also tend
to zero, consult [17]. Hence the convergence to the unique entropy solution. W

IZ132(un) = I—Py)f(un)llr < (3.183)

IN

|2 < Const,

Remarks.

1. Low pass filter [8]. We note that the spectral “super-viscosity” in (3.148;) allows
for an increasing order of parabolicity, s ~ N*, u < 1/2 (at least for bounded
Cs’s). This enables us to rewrite the spectral “super-viscosity” method in the
form

aUN 0 _ zkm
-t a—[PNf un)] = —N“;N ) (3.184)

where o (€) is a symmetric low pass filter satisfying

< ¢, €l <1,
o () (3.185)
> €17 — %, 1€l > 0.

In particular, for s ~ N*  one is led to a low pass filter which is C'*°-tailored
at the origin, consult [32].
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2. Super viscosity reqularization. The estimates outlined in Theorem 3.1 imply the
convergence of the regularized ’super-viscosity’ approximation »° in (3.160,),
to the entropy solution of the convex conservation law (3.145).

Assertion 3.1
Consider the ’super-viscosity’ regularization (3.160;),

out D, . e 0%
S o [ (@) = (- 1)

u®(z,t), (3.186)

subject to given L'() L>-initial data, u(-,0). Assume that u° is uniformly
bounded. Then u® converges to the unique entropy solution of the convex con-
servation law (3.145).

The question of L* bound for the superviscosity case — (3.186) with s > 1, is
open. Unlike the regular viscosity case, the solution operator associated with
(3.186) with s > 1 is not monotone — here there are ”spurious” oscillations, on
top of the Gibbs’ oscillations due to the Fourier projection. What we have shown
is that the oscillations of either type do not cause instability. Moreover, these
oscillations contain, in some weak sense, highly accurate information on the
exact entropy solution; this could be revealed by post-processing the spectral
(super)-viscosity approximation, e.g. [18].

3.3 Non-periodic boundaries

In this section we discuss the Legendre SV method, [18]. Extensions to Chebyshev
SV method can be found in [12], [15]. Applications to atmospheric simulations can
be found in [2].

The Legendre SV approximation

In the spectral viscosity approximation of (3.145) we seek a IPy-polynomial of the
N

form un(z,t) = ) 4r(t)Li(z), such that Vo € Py[—1,1], we have
k=0
(Lun + L2y flun), 0w = —en(@-Lun, Do)n + (Blun),@)n.  (3.187)
8tuN o7 Nf(un),p)N = —€N (,MUN,(,MQO N UN), P)N - .

The approximation (3.187) involves the boundary operator, B(uny), and the Spec-
tral Viscosity operator, ). Here, B(un) is a forcing polynomial in IPy[—1,1] of the
form

Blux) = A1 — 2) + p()) (1 + 2)| Ly (), (3.188)
involving (at most) two nonzero free parameters, A(t) and p(t), which should en-

able un(z,t) to match inflow boundary data prescribed at * = £1 whenever
+f'(un(£1,t)) < 0. And, Q denotes the spectral viscosity operator,

N e}
Qp=) Quérle, VYo=Y ¢uls, (3.189)
k=0

k=0 =
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which is associated with bounded viscosity coefficients,

QkEO k< mn,

\ (3.190)
12@,@1—(%) k> my.

The free pair of spectral viscosity parameters (¢n,mn) will be chosen later, such
that ex J 0 and mn 1 0o, in order to retain the formal spectral accuracy of (3.187)
with (3.145). We close this section by explaining how the SV method (3.187) can be
implemented as a collocation method. Let us 'test’ (3.187) against ¢ = ¢;, where ;
is the standard characteristic polynomial of Py[—1, 1] satisfying ¢;(£;) = 85,0 <
i,j < N. At the interior points we obtain

L (€,t) + 5o In () €,1) = en 3o Qpmun) (€ 0), SIS N1
(3.191)

These equations are augmented, at the outflow boundaries, (say at x = +1), with

%uw(+l,t) + %INf(uN)(H,t) = (3.192)

= ex g QUar )+, 0) = L QU uw)(+1,1).

We note that the last term on the right of (3.192) prevents the creation of a bound-
ary layer. Equations (3.191), (3.192) together with the prescribed inflow data (say
at ¥ = —1), furnish a complete equivalent statement of the pseudospectral (collo-
cation) viscosity approximation (3.187).

The SV approximation (3.191),(3.192) enjoys formal spectral accuracy, i.e., its
truncation error decays as fast as the global smoothness of the underlying solution
permits. However, it is essential to keep in mind that this superior accuracy cannot
be realized in the presence of shock discontinuities, unless the final SV solution is
post-processed. The rest of this section is devoted to clarify this point.

Epilogue — on spectral post-processing
It is well-known that spectral projections like myu, Znu, etc., provide highly ac-
curate approximations of u, provided w itself is sufficiently smooth. Indeed, these
projections enjoy spectral convergence rate. This superior accuracy is destroyed if u
contains discontinuities: both 7y u and Zyu produce spurious O(1) Gibbs’ oscilla-
tions which are localized in the neighborhoods of the discontinuities, and moreover,
their global accuracy is deteriorated to first-order.

To accelerate the convergence rate in such cases, we follow a similar treatment
in [10] for the Fourier projections of discontinuous data. We introduce a mollifier
of the form

7P (@5y) = p(* ) Ky (i), (3.193)

which consists of the following two ingredients:

— p(z) is a C§°(—1, 1)-localizer satisfying p(0) = 1;
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— Kp(z;y) is the Christoffel-Darboux kernel

K,y(z;y) = Z L |(|32J[|1|12(y) _ (p ‘;‘ 1) Lp+1($)Lp(ya): : f//p+l(y)Lp($), (3.194)

We let F*# denote the smoothing filter

1
P = [ gy, (3.195)

=—1

depending on the two fixed parameters, o, 8 € (0,1). Then, the following spectral
error estimate was derived in [20]: Vs > 1 there exists a constant Cs o such that

lu(z) — F* (myu) (2)] < (3.196)

Con [Nw“w)ﬂmm_l G+ NG e |Dfu<y)|] :
’ le—y|<o J
0<j<s
Similar estimate holds for Zy . These estimates show (at least for 3 < 1) that except
for a small neighborhood of the discontinuities (measured by the free parameter «),
one can filter the Legendre projections, myw and Zyu, in order to recover pointwise
values of u within spectral accuracy.

Next, let u be the desired exact solution of a given problem. The purpose of a
spectral method is to compute an approximation to the projection of u rather than u
itself. Consequently, if the underlying solution of our problem is discontinuous, then
the approximation computed by a spectral method, ux, exhibits the two difficulties
of local Gibbs’ oscillations, and global, low(=first)-order accuracy.

With this in mind, we now turn to discuss the present context of nonlinear
conservation laws. The standard, viscous-free spectral method supports the spu-
rious Gibbs’ oscillations which render the overall approximation unstable (consult
the introductory counterexamples in Lecture IV below). The task of the Spectral
Viscosity is therefore two fold: to stabilize the standard spectral method (— which
is otherwise unstable), and to retain the overall spectral accuracy of the underlying
spectral method.

The question of stability is addressed in the following sections: we prove that
Spectral Viscosity guarantees the H ™ '-stability (and hence the convergence) of the
Legendre SV approximation,

LP

loc

—limun(z,t) = u(z,t), Vp< oco. (3.197)

The question of spectral accuracy requires further clarification. As noted above, the
Legendre SV solution, un (-, t), should be considered as an accurate approximation
of Zyu(-,t), rather than u(-,t) itself. Therefore, the convergence rate of the SV
method is limited by the first order convergence rate of Zyu(-,t). (Of course, this
limitation arises once shock-discontinuities are formed). We recall that according
to (3.196), this first-order limitation can be avoided by filtering Zyu: the filtered
interpolant, F*?(Iyu), retains a spectral convergence rate, at least in smooth
regions of the discontinuous entropy solution wu(-,t¢). This suggests to apply the
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same filtering procedure (3.195) to un(-,t), in order to accelerate the convergence
rate of the SV method.

Let {ix(t)}h—o denote the computed coefficients of the Legendre SV method.
The computation of the SV solution is based on adding spectral viscosity only
to the "high” modes — those with wavenumbers & > my. Therefore, one ezpects

. . . . L
the computation of the viscous-free coefficients, at least, iy (t) = W, k=
EllN
1,...,mn, to be spectrally accurate approximation of the exact pseudospectral
(ua Lk’)N

Legendre coefficients, . Assuming that indeed this is the case, then ac-

Lk I3
cording to (3.196) one can post-process the SV solution, un (-, t), in order to re-
cover spectral convergence rate in smooth regions of the entropy solutions. Thus,
at the final stage of the SV method, (3.191),(3.192) should be augmented with the

post-processing procedure

1

F*Puy(a,t) = / v =N’ (2 y)uw (y)dy. (3.198)
rz=—1

The numerical experiments in [23] confirm that the SV method contains a spectrally

accurate information about the discontinuous solution — by post-processing one

recovers this information despite the presence of shock discontinuities.

We conclude by noting that the post-processing of the SV solution plays a nec-
essary key role in realizing the spectral accuracy of the SV method within smooth
regions of the underlying solution. The treatment of Gibbs’ oscillations in the neigh-
borhood of discontinuities requires an alternative ’'one-sided’ filtering procedure,
which is studies in e.g., [9].

Convergence of the Legendre SV method

We want to prove the convergence of (3.187) by compensated compactness argu-
ments. To this end we want to show that 2 U(un)+ = F(un) belongs to a compact
subset of H, !(z,t) for all convex entropy pairs (U(un), F(un)). Our main tool in
this dlrectlon reads [18, §5]

Lemma 3.2 A weak representation of the truncation error of the Legendre viscosity
approzimation (3.187) is given by

(gruw + 5 fn), ) =3 L(p), pmH €D(-11),  (3199)

where the following estimates hold:

1,0
ZII I < 0(—=) [lle = exll + el genl]. (3.200)
0
14(¢)] < Olenmi VTN | = pn . (3.201)
Is(p) = 0 0 <O/ 0 3.202
[Is(p) = —en (g un, 5oon)| < O(Ven)llg-enll, (3.202)
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Is(p) = 2(—1)N ! /T At)on(—1,t)dt. (3.203)

=0
Here, on (-, t) is an arbitrary IPn-polynomial at our disposal.

Appropriate choices of test functions, pn yield the desired convergence result.
Theorem 3.2 Let un(z,t) be the Legendre viscosity approzimation of (3.187),
(8.190), with spectral viscosity parameters (en, mn) which satisfy

0len ~ % my < Const - N with 0<q<0<1. (3.204)

Then, (a subsequence of) un (x,t) converges strongly (in LT ., p < c0) to a weak so-
lution of the conservation law (3.145). Moreover, if @ < 1, then (the whole sequence

of) un(x,t) converges strongly to the unique entropy solution of (3.145).

3.4 Numerical results

In this section we will present numerical experiments which demonstrate the per-
formance of the Legendre SV method for systems of conservation laws. We consider
the approximate solution of the Euler equations of gas dynamics,

d d P pv
@ )+ 5o flu(z, 1) =0, w=pv| flu)=|p +p |, (3205
E v(E +p)

where p denotes the density of the gas, v its velocity, m = pv its momentum, E
its energy per unit volume and p = (y — 1) - (E — £pv?) its (polytropic) pressure,
v=14.

The Legendre SV approximation of this system reads

S (€6,8) + 2T () €6,1) = ex o Qpmux) (€6 0), 1STSN =1
(3.206)

Here, uy = “(pn,pnun, En) € IPy[—1,1] denotes the polynomial approximation
of the 3-vector of (density, momentum, energy), and Q abbreviates a general 3 x 3
spectral viscosity matrix, {Qiﬂ }szmN, 1 < ¢,7 < 3 which is activated only on ’high’
Legendre modes, i.e., Qij =0, Yk > mn (¢, ). The numerical results reported in
this section were obtained using a simple scalar viscosity matrix,

0 . .0 f) i
Qg un) = (@ pn, Qg pnoN, Q7 EN), (3.207)

with the viscosity coefficients, Qk,given by

O =eopl—E= 4 sy, (3.208)

(k —mn)

The Legendre SV method (3.206,(3.207) amounts to a nonlinear system of (N +
1)®> ODEs which was integrated in time using the second order Adams-Bashforth
ODE solver. We implemented the SV method for two test problems.
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e The Riemann shock tube problem [22]. Our first example is the Riemann
problem (3.205), subject to initial conditions

ue = (1., 0, 2.5), r <0,
u(z,0) =

(3.209)

ur = (0.125, 0, 0.25), z > 0.
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Fig.3.16: Density pny with N=128
post-processing.
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Fig.3.17: Velocity vy with N=128 Legendre modes. (a) before and (b) after

post-processing.
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Fig.3.18: Pressure vy with N=128 Legendre modes. (a) before and (b) after
post-processing.

Figures 3.16a, 3.17a and 3.18a display the computed density pn, velocity vy,
and pressure py, with N = 128 Legendre modes. The numerical results in these fig-
ures show that the presence of Spectral Viscosity guarantees the convergence of the
pseudospectral Legendre method that is otherwise unstable. However, Gibbs’ oscil-
lations which are inherited from the projected solution, Znu(-,t), are still present.

To remove these oscillations without sacrificing spectral accuracy, the SV solu-
tion on the left side of figures (3.205)-(3.209) was post-processed using the filtering
procedure (3.195), F**? with (a, 3) = (0.2,0.85). Again, as in the scalar case, the
post-processing leads to a dramatic improvement in the quality of the computed
results, revealing the high-resolution content of the SV computation. In particular,
comparing the results obtained by the post-processed SV method in figures 3.16b-
3.18b, we find the representation of the rarefaction wave and the capturing of the
contact discontinuity to be better than the results obtained by the finite-difference
methods in [22] or the high-resolution schemes in [22]. (It is worthwhile noting
that these high resolutions results of the SV computations were obtained without
the costly characteristic decompositions which are employed in the modern high
resolution finite difference approximations.)

The resolution of the shock discontinuity, however, still suffers from a smearing
of spurious Gibbs’ oscillations. As told by the error estimate (3.196), the oscilla-
tions in the neighborhood of the discontinuities cannot be removed by the filtering
procedure (3.195). Instead, these oscillations can be avoided by using an alternative
‘one-sided’ filter which is currently under investigation [9].
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Fig.3.19: Density pny with N=220 Legendre modes. (a) before and (b) after
post-processing.
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Fig. 3.20: Velocity vy with N=220 Legendre modes. (a) before and (b) after
post-processing.
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Fig.3.21: Pressure px with N=220 Legendre modes. (a) before and (b) after
post-processing.

e The shock-disturbance interaction e.g., [SO]. Our second example models the
interaction of a sinusoidal disturbance and a shock wave due to initial conditions

(3.857143, 10.333333, 2.629369), z < —0.8,

(p(z,0),v(z,0),p(z,0)) = { (3.210)
(1.4 0.2sin(bmzx), 0., 1.), z > —0.8.

The exact solution of this problem, (3.205),(3.210), consists of a density wave that
will emerge behind the shock discontinuity, and the fine structure of this density
wave makes the current problem a suitable test case for high order methods. For
example, second order MUSCL type schemes, [14], are unable to resolve the fine
structure of the density wave unless the number of grid points is substantially
increased.

The Legendre SV method was implemented in this case with SV parameters
(en,mn) = (%,8VN). Figures 3.19-3.21 display the numerical results of the SV
approximation which was integrated in time by the second-order Adams-Bashforth
method with time step At =2.5-107°.

Figures 3.19a, 3.20a, and 3.21a show the approximated density pn, velocity
vnN, and pressure py at t = 0.36, computed with N = 220 Legendre modes. These
results were post-processed by the filtering procedure (3.195), F*#, with (o, 3) =
(0.1,0.89). Figures 3.19b, 3.20b and 3.21b present the post-processed results, which
show that the velocity and pressure waves are well resolved. The density wave still
contains Gibbs’ oscillations in the neighborhood of the shock discontinuity, and
its first extremum behind the shock is smeared by our smoothing filter. Here, a
‘one-sided’ filter would be recommended instead. A better resolution of the density
profile near the shock was obtained by a different spectral method presented in [3].
However, the latter is a shock fitting like method which might not be easy to extend
to higher dimensions.
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3.5 Multidimensional Fourier SV method

We want to solve the multidimensional 2m-periodic initial-value problem, (3.145) by
a spectral method. To this end we approximate the spectral/pseudo-spectral projec-
tion of the exact entropy solution, Pyu(-,t), using an N-trigonometric polynomial,
un(z,t) = Z\§\<N 1 (t)e’®®, which is governed by the semi-discrete approximation

d

%u]v(x,t) +0, - Puflun(z,t) =en Y 05Q% (o, 1) xun(z,t).  (3.211)
7, k=1

Together with one’s favorite ODE solver, (3.211) gives a fully discrete method for
the approximate solution of (3.145).

To suppress these oscillations, without sacrificing the overall spectral accuracy,
we augment the standard Fourier approximation on the right-hand side of (3.211)
by spectral viscosity, which consists of the following three ingredients:

— A vanishing viscosity amplitude, ey, of size

en~NTY fH<1. (3.212)

— A viscosity-free spectrum of size my >> 1,

N3
(log N)#

mn ~

, B<1. (3.213)

— A family of viscosity kernels, ngk (z,t) = El]zlsz Qé’k(t)eigw, 1<4,k<d,
activated only on high wavenumbers |£| > my, which can be conveniently
implemented in the Fourier space as

d
en Y ORQN *un(z,t) = (3.214)

Joke=1

N d
=—on > <QebE> ST, <QEe>= > QMg

[El=mpn Jk=1

The viscosity kernels we deal with, Qf\}k (z,t), are assumed to be spherically symmet-
ric, that is, Qék = {,’k, V|¢| = p, with monotonically increasing Fourier coefficients,
Q;,’k, that satisfy

my

Q3" — 8jx] < Const. P Vp > mn. (3.215)

The main convergence result, quoted from [5], are based on the following two
lemmas.

Lemma 3.3 L™ stability There exists a constant such that

llun (5 t)||noo 2y < Comst - [|lun (-, 0)||zoo(z), VELT. (3.216)
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Lemma 3.4 Entropy Consistency There exists a vanishing sequence, en, such
that

%U(u]v) +0,; - F(uy) <ex =0, inD'. (3.217)

Proofs of Lemma 3.3 and Lemma 3.4can be found in [5]. Granted the L*°-
stability and the entropy consistency, we can combine DiPerna’s uniqueness result
for measure-valued solutions [6] with the finiteness of propagation speed (see also
[24] for the case of bounded domains) to conclude the following.

Theorem 3.3 Let uy be the solution of the SV approzimation (3.211)-(3.215),
subject to bounded initial conditions satisfying

lun (-, 0)|| oo 2y + €° |0z un (-, 0)||£2 2y < Const. (3.218)

Then un converges strongly to the unique entropy solution of (3.145).
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4 Convergence Rate Estimates

Abstract. Let {v°(z,t)}<>0 be a family of approximate solutions for the convex
conservation law u; + f(u); = 0 subject to C-initial data, uo(z). The notion of
approzimate solutions is quantified in terms of Lip'-consistency: we assume that
{v°(z,t)} are Lip'-consistent in the sense its initial+truncation errors are of order
O(e), 1v°(0) — wo (M zip 2y + [lvF + fF(V%)all 1 o.ry = O€). Here, € is the ’small
scale’ of the approximate solution, e.g., the vanishing amplitude of size ¢, a gridsize
of order ¢ ~ Az, etc. We then prove that stability implies convergence; namely,
if {v°(x,t)} are LipT-stable ( — in the sense that they satisfy Oleinik’s E-entropy
condition), then they converge to the entropy solution, and the convergence rate
estimate [|v°(-,t) — u(-,t)||,,,/ (., = O(¢) holds. Consequently, the familiar L”-type
and new pointwise error estimates are derived. In particular, we recover classical L*-
estimates (& al Kuznetsov) of order O(/€). And we improve it to an O(g) pointwise
error estimate for all but finitely many O(g)-neighborhoods of shock discontinuities.

These convergence rate results are then demonstrated in the context of various
approximate solutions, including Chapman-Enskog regularization, finite-difference
schemes, Godunov-type methods, spectral viscosity methods, ...

4.1 Introduction

We are concerned here with the convergence rate of approximate solutions to the
nonlinear scalar conservation law,

ue + f(u)e =0, (4.219)
subject to Ca-initial conditions,
u(x,0) = uo(x). (4.220)

In this context we first recall Strang’s theorem which shows that the classical Lax-
Richtmyer (LR) linear convergence theory applies for such nonlinear problem, as
long as the underlying solution is sufficiently smooth e.g., [29, §5]. The generic
convergence error estimate in this context reads

[0, 8) = u(, )] < O [lv° (-, 0) = uo ()l + [vf + f(v7)a]l], 0t ST (4.221)

Here, {v°}, is a family of approximate solutions which is tagged by its ’small scale’,
g, e.g., a viscosity amplitude of size ¢, a gridcells of size £ ~ Az, the number of
Fourier modes, N ~ ¢!, etc. The linear Lax-Richtmyer theory tells us that if the
approximate solution is stable, ||v°(-,t)|| < Const, then the error, ||[v°(-,t) —u(-, )]
is upper bounded by the initial+truncation errors, given respectively on the right
of (4.221). In particular, if the approximation is consistent ( — in the sense that
that its initial4+truncation errors tend to zero as € | 0), then stability implies
convergence.

What norm, || - ||, should be used in (4.221)? The linear Lax-Richtmyer theory is
often implemented in term of the I? norm; likewise, Strang’s extension to nonlinear
smooth problems is usually expressed in terms of higher Sobolev H® norms. There
are two main reasons for the use of the L? framework:
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1. It is the appropriate topology to measure stability and well-posedness of hy-
perbolic systems;

2. The Fourier space serves as a 'mirror site’ for the real space L?-stability and
error analysis. The von-Neumann stability analysis for finite-difference schemes
is a classical example.

Since the solutions of the nonlinear conservation laws develop spontaneous
shock-discontinuities at a finite time, however, Strang’s result does not apply be-
yond this critical time. Indeed, the Fourier method as well as other L?-conservative
schemes provide simple counterexamples of consistent approximations which fail
to converge (to the discontinuous entropy solution), despite their linearized L2
stability. Here are two counterexamples in this directions (more can be found in
[38,37,13].)

Counterezample 1 [38]. The Fourier approximation of the 2r-periodic equation
(4.219), expressed in term of the Fourier partial sum projection Sy, reads

0 0
S lox (2,6 + 5= [Sn f(vn (2,8))] = 0.

Multiplying this by vy (z,t) and integrating over the 2m-period, we obtain that
[

vy —being orthogonal to % (I — Sn)f(vn(z,t))], satisfies

s | ohte = =[x 0 s )l

v (z,t) 5
! r=zm
— [ ez o
Thus, the total quadratic entropy, n(u) = 1u?, is globally conserved in time

1 27 1 27
5/ vx (z,t)de = 5/ vx (z,0)dz, (4.222)
0 0

which in  turn yields the existence of a weak L*(z)-limit,
u(z,t) = wlimy e vn(z,t). Yet, u(x,t) cannot be the entropy solution of a non-
linear equation (4.219) where f”(-) # 0. Otherwise, Sn f(vn(z,t)) and therefore
f(vn(z,t)) should tend, in the weak distributional sense, to f(u(z,t)); consequently,
since f(u) is nonlinear, u(z,t) = slimy o vn(z,t), which by (4.222) should satisfy
%foh w’(z,t)dz = %foh w?(x,0)dz. But this is incompatible with the (quadratic)
entropy inequality if w(x,t) contains shock discontinuities.

Our second example is a discrete one.
Counterezample 2. We consider the 2m-periodic conservation law
Ou a(e*)

ot or

Expressed in terms of the trigonometric interpolant at the equidistant gridpoints

Ty, = %, the corresponding Y dospectral approximation reads

:0,

9 O un(eb)y
BT [UN(a:,t)] + oz [¢N6 ] =0.
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Multiply this by ¢xe’~ @ and integrate over the 27-period: since the trape-
zoidal rule is exact with integration of the 2N-trigonometric polynomial obtained
from the second brackets, we have

2N

d v (Tw,t) " 0,1 v (z,8)\2
%Ze Ax = — %[g(dme )" ]dz = 0.

v=0 Y

Thus, the total exponential entropy, n(u) = e*, is globally conserved in time

Zn(mv (zv,t))Ax = Zn(mv (zv,0)) Az, n(u) = e". (4.223)

Hence, if vy (z,t) converges (even weakly) to a discontinuous weak solution, u(z, t),
then ¢ye?™ @Y tends (at least weakly) to e*®Y. Consequently, (4.223) would
imply the global entropy conservation of f027r @Y dy in time, which rules out the
possibility of u(z,t) being the unique entropy solution.

In this chapter we extend the linear convergence theory into the weak regime.
The extension is based on the usual two ingredients of stability and consistency. On
the one hand, the counterexamples mentioned above show that one must strengthen
the linearized L>-stability requirement. We assume that the approximate solutions
are LipT-stable in the sense that they satisfy a one-sided Lipschitz condition, in
agreement with Oleinik’s E-condition for the entropy solution. On the other hand,
the lack of smoothness requires to weaken the consistency requirement, which is
measured here in the Lip’-(semi)norm. As a guiding example, let us consider the
usual viscosity approximation, v®, with ’truncation error’ ev,. Localized to the

1—
neighborhood of shock discontinuities we find that ||6Ufm||Lf = O(eTp) which

rules out the L? norms as possible measures for the a priori error estimate (4.221);
instead, the weak Lip'-(semi)norm yields a truncation error of size ||evs,||ripy =
O(e) which agrees with the fact that ¢ is the smallest scale present in a viscosity
approximation in this case.

In §4.3 we prove for Lip*-stable approximate solutions, that their Lip’-conver-
gence rate to the entropy solution is of the same order as their Lip'-consistency.
Thus, we show that under the assumption of Lip™ -stability, the basic Lax-Richtmyer
a priori error bound (4.221) still holds when we replace the L? with the weaker Lip’
norm.

Our Lip'-convergence rate estimates could be converted into stronger LP con-
vergence rate estimates. In particular, we recover the usual L'-convergence rate
of order one half, and we obtain new pointwise error estimates which depend on
the local smoothness of the entropy solution. In fact, though the L'-convergence
rate of order O(,/€) is optimal, in practice one obtains an L'-rate of order O(¢),
when there are finitely many shock discontinuities, [42],[43] (and these are the only
solutions that can be computed!). In this case, we can use our Lip’ theory to derive
local error estimates which improve the L'-result: using a bootstrap argument we
show in [41], that the Lip*-stable approximate solutions satisfy an O(g) pointwise
error estimate for all but finitely many O(g)-neighborhoods of shock discontinuities.

We now turn to the multidimensional setup. Kuznetsov [15] was the first to
provide error estimates for scalar approximate solutions, {v°}, for both — the one-
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and multi-dimensional setups. Subsequently, many authors have used Kuznetsov’s
approach to prove convergence + L'-error estimates; we refer for the detailed treat-
ments of [31], [22], [42],... . A more recent treatment of [7] employs the entropy
dissipation estimate (1.60), which in turn, by Kuznetsov arguments, yields an L*-
convergence rate estimate of order (Aa:)# (independently of the BV bound).

Kuznetsov’s approach employs a regularized version of Kruzkov’s entropy pairs
in (1.8), n°(v5;¢) ~ |v° —¢|, F°(v°;c) ~ sgn(v® — ¢)(A(v°) — A(c)). Here, one
measures by how much the entropy dissipation rate of {v°} fails to satisfy the
entropy inequality (1.3), with Kruzkov’s regularized entropies. Following the general
recent convergence result of [2], we consider a family of approximate solutions, {v°},
which satisfies

O¢|v° —¢| + Vg - {sgn(v® — ¢)(A(v°) — A(e))} < O:Ro(t, ) + Va - R(t,z),
(4.224)

with
IRo(t, ) lad. . + IR(@,8)llaa, . < Const - =. (4.225)

Then, the convergence rate proof proceeds along the lines of Theorem 1.1: Using the
key property of symmetry of the regularized entropy pairs, (° := @1, F° := 5 F),
one finds fm 7’ (v°;u)de < Const.e/d. In addition, there is a regularization error,
ln? — Nl 1 (), of size O(6), and an L' error estimate of order O(1/2) follows (under
reasonable assumptions on the L'-initial error w.r.t. BV data), consult [2]

"G 8) —ul)llzy < Const.Ve.

loc(x

Observe that this error estimate, based on (4.224)-(4.225) is the multidimen-
sional analogue of our Lip’-consistency requirement. In general, Kuznetsov ap-
proach makes a stronger requirement of approximate entropy inequalities (i.e., in
terms of all of Kruzkov’s pairs), and in return, ones obtains convergence results
which apply to general, non-convex equations. The lectures by B. Cockburn pro-
vide a detailed account of Kuznetsov’s L!-convergence theory. In this chapter we
therefore focus our attention on the Lip'-convergence theory mentioned above. Its
multidimensional extension deals with convex Hamilton-Jacobi equations (rather
than conservation laws), consult §4.3.

In §4.4 we implement these error estimates for a variety of approximate solu-
tions. The examples we discuss include

— Regularized Chapman-Enskog approximations [33];
— Finite-difference E-schemes [24];

— Godunov-type schemes [26];

— Glimm’s scheme [24];

Spectral viscosity approximations, [40]

Other examples dealing with 2x 2 systems with and without stiff relaxation coupling
terms could be found in [27],[18].

102



4.2 Approximate solutions

We study approximate solutions of the scalar convex conservation law

%u(m,t) + (,%f(u(z,t)) =0, f'">a>0, (4.226)

with compactly supported initial conditions prescribed at ¢ = 0,
w(z,t =0) = uo(x). (4.227)

Let {v°(z,t)}->0 be a family of approximate solutions of the conservation law
(4.226), (4.227) in the following sense.

Definition 4.1 A. We say that {v°(z,t)}->0 are conservative solutions if

/xvs(x,t)dx: /Iuo(x)dx, t>0. (4.228)

B. We say that {v°(z,t)}e>0 are Lip'-consistent with the conservation law (4.226),
(4.227) if the following estimates are fulfilled®:
(i) consistency with the initial conditions (4.227),

llv° (2,0) — uo(2)|Lip < Ko-e (4.229)
(ii) consistency with the conservation law (4.226),
[vf (z,t) + f(v° (2, )zl Lip' (2,10,27) < K1 - €. (4.230)

We are interested in the convergence rate of the approximate solutions, v*(z,t),
as their small parameter ¢ | 0. This requires an appropriate stability definition
for such approximate solutions. Recall that the entropy solution of the nonlinear
conservation law (4.226), (4.227) satisfies the a priori estimate [4,39]

1
luC, Ol pip+ < 77— (4.231)
L ||uo||Li1pJr +at’
The case |luol|zip,+ = oo is included in (4.231), and it corresponds to the exact

~ t~1 decay rate of an initial rarefaction.

Definition 4.2 We say that {v°(z,t)}.>0 are Lipt-stable if there exists a constant
B > 0 (independent of ¢ and £) such that the following estimate, analogous to
(4.231), is fulfilled:

1

07 C D)llip+ < — , t>0 (4.232)
S o Ol L, + Bt
& We let||¢||zip, loll nip+ and”‘/’”up’ denote respectively, esssup,y %ﬁ“’)

(p—¢0,¥) PO
]+ and supy Tolleir where @9 = fsupw

plz)—e(y)

eSSSUPz£y [ =y ®.
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Remarks.

1. The case of an initial rarefaction subject to the quadratic flux f(u) = Zu’

demonstrates that the a priori decay estimate of the exact entropy solution in
(4.231) is sharp. A comparison of (4.232) with (4.231) shows that a necessary
condition for the convergence of {v°}e>0 is

0<B<a, (4.233)

for otherwise, the decay rate of {v°(-,t)} (and hence of its € — 0 limit) would
be faster than that of the exact entropy solution.

2. The case B > 0 in (4.232) corresponds to a strict Lip™*-stability in the sense
that [[v°(-,t)||1;p,+ decays in time, in agreement with the decay of rarefactions
indicated in (4.231).

3. In general, any a priori bound

[l0°(-, )]l Lip+ < Constr < oo, 0<Lt<T, (4.234)

is a sufficient stability condition for the convergence results discussed below.
In particular, we allow for 8 = 0 in (4.232), as long as the approximate initial
conditions are LipT-bounded. We remark that the restriction of Lip*-bounded
initial data is indeed necessary for convergence, in view of the counterexample
of Roe’s scheme discussed in remark 4.2 in §4.4. Unless stated otherwise, we
therefore restrict our attention to the class of LipT-bounded (i.e., rarefaction-
free) initial conditions, where

L = max(luoll iy 107 (-, 0)ll i) < 0. (4.235)

4. Finally, we remark that in case of strict Lip™-stability, i.e., in case (4.232)
holds with 8 > 0, then one can remove this restriction of Lip*-bounded initial
data and our convergence results can be extended to include general L{,.-initial
conditions, initial rarefaction are included. The discussion of this case could be
found in [25], and it leads to similar error estimates discussed in this chapter,
with e being replaced by elog(e).

4.3 Convergence rate estimates

Convex conservation laws
We begin with the following theorem which is at the heart of matter.

Theorem 4.1 A. Let {v°(x,t)}e>0 be a family of conservative, Lip™-stable ap-
prozimate solutions of the conver conservation law (4.226),(4.227), subject to the
Lip™ - bounded initial conditions (4.235). Then the following error estimate holds

[0°(, T) = u(, T)llLipr < O [[[07(,0) = wo ()l ip + [[0F + F (05 )all it 0,1 ] 5
(4.236)

where
Cr~ (14 BLT)", n:=
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B. In particular, if the family {v°(z,t)}c>0 5 also Lip'-consistent of order O(e),
ie., (4.229),(4.230) hold, then v°(x,t) converges to the entropy solution u(z,t) and
the following convergence rate estimate holds

o (- T) = u(-, T)||pips < M7 ¢, My := (Ko+ Kr)(1+BLIT)".  (4.237)

Proof. We proceed along the lines of [39,24]. The difference, e°(z,t) := v°(z,t) —
u(z,t), satisfies the error equation

0

€ 0 — e _ e
T (z,t) + s=[a-(z,t)e’ (z,t)] = F~ (x,t), (4.238)

Jx

where a@.(z,t) stands for the mean-value

we0)= [ a0+ (- Oule s, a)= 0
£=0
and F*(z,t) is the truncation error,
F(2,t) = v (2,t) + f(v° (2,1))e-

Given an arbitrary ¢(z)eWy '™, we let {¢°(z,t)}o<t<r denote the solution of
the backward transport equation

i (z,t) +a:(z,t) s (2, t) =0, t<T, (4.239)
corresponding to the endvalues, ¢(z), prescribed at t = T,
¢ (2,T) = o(x).

Here, the following a priori estimate holds [39, Theorem 2.2]

T
"5 D)llip < exp(/ lae (s Dllpip+dr) - lle(@)llzip, 0<E<T.  (4.240)
t

The Lip*-stability of the entropy solution (4.231) and its approximate solutions
in (4.232), provide us with the one-sided Lipschitz upper-bound required on the
right-hand side of (4.240):

_ max ' . max f"
@, llpipt < —5—[l0°C Pllpip+ + lul Tllpip+] < L+ 3 (4.241)
Equipped with (4.240), (4.241) we conclude
+m\n
o Dl < S oy, <
P =1+ 8Lt P
0 (4.242)

S CT”W(x)”LlP: OStSTa Cr:= (1+/8L0+T)n7
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and employing (4.239) we also have

(. M s < (. . <
1% @, Mlzipto.y < laloo max [l (> B)llzine) <

(4.243)
< lals Crllp(@)|Lip,  laleo = max|f'].

Of course, (4.239) is just the adjoint problem of the error equation (4.238) which
gives us

(€ (), 90) = (€400, 07 (4 0) + (F (0, 0), 97 (0, ) poguiory. (4:244)
Conservation implies that 5 = [ e°(z,0)dz = 0 and by (4.242) we find
|(e7(,0), 7 (- )] < [le(, )| zip Nl (5 O] i <
< (14 BLFT)"le* (- 0)llzip -l (@)l in

similarly, conservation implies that ﬁg = fw 0,71 Fé(z,t)dedt = 0 and by
(4.242),(4.243) we find

[(F© (x,t), ¢ (2, 1)) L2(2 0,77 | < I1FF (2, )| Lip! 2,10, 19 (@, | Lip(a,fo, 1) <

< (1 +laloo)CrlIF* (2, )l Lip! (2 10,77 |0 (@) || ip-
(4.245)

The error estimate (4.236) follows from the last two estimates together with (4.244).
|

The Lip'-convergence rate estimate (4.237) can be extended to more familiar
W, P-convergence rate estimates. The rest of this section is devoted to three corol-
laries which summarize these extensions.

We begin by noting that the conservation and Lip™-stability of v*(-,¢) imply
that v°(-,T) — and consequently that the error, v*(-,T) — u(-,T"), have bounded

variation,

1

||'U5(.,T) — u(~7T)||BV S ConStm

(4.246)

We note in passing that the constant on the right of (4.246) depends on the finite
size of the support of the error.

We can now interpolate between the BV-bound (4.246) and the Lip'-error estimate
(4.237), to conclude the following.

Corollary 4.1 Let {v°(x,t)}e>0 be a family of conservative, Lip'-consistent and
Lip*-stable approzimate solutions of the conservation law (4.226), (4.227), with
Lipt-bounded initial conditions (4.285). Then the following convergence rate esti-
mates hold Vp < oo

1—sp

105, T) — u(, T)|lwer < Constr -& %, —1<s< (4.247)

=N
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The error estimate (4.247) with (s, p) = (0, 1) yields L' convergence rate of order
O(y/2), which is familiar from the setup of monotone difference approximations
[15,22,31]. Of course, uniform convergence (which corresponds to (s,p) = (0,00))
fails in this case, due to the possible presence of shock discontinuities in the entropy
solution u(-,t). Instead, one seeks pointwise convergence away from the singular
support of u(-,t). To this end, we employ a C3(—1,1)-unit mass mollifier of the
form (s5(x) = $((%). The error estimate (4.236) asserts that

[0F () % C5)(@) = (ul, T) % o) (@)| < M ]| Do
Moreover, if {(z) is chosen so that
/mk((x)dx =0 fork=1,2,...,r—1, (4.248)
then a straightforward error estimate based on Taylor’s expansion yields
) # 65) @) = e, T < 2 - 10,
where |u"];,. measures the degree of local smoothness of u(-,t),

r o
|’LL( )|10C = ”81‘7‘ u(')T)||L?ZC(z+5-supp§)~

1
The last two inequalities (with § ~ 7+2) imply

Corollary 4.2 Let {v°(z,t)}e>0 be a family of conservative, Lip'-consistent and
Lip™-stable approzimate solutions of the conservation law (4.226), (4.227), with
Lip*-bounded initial conditions (4.235). Then, for any r-order mollifier (s(x) =
$C(%) satisfying (4.248), the following convergence rate estimate holds

(r) -
WT#) == (4.249)

|(v°(-,T) * {5)(x) — u(z, T)| < Const(1 +

Corollary 4.2 shows that by post-processing the approximate solutions v°(-,t),
we are able to recover the pointwise values of u(x,t) with an error as close to ¢ as
the local smoothness of u(-,¢) permits. A similar treatment enables the recovery of
the derivatives of u(z,t) as well, consult [39, §4].

The particular case r = 1 in (4.249), deserves special attention. In this case,
post-processing of the approximate solution with arbitrary Cg-unit mass mollifier
¢(x), gives us

|(v° (-, T) * G5)(x) — u(z, T)| < Const - (1 + Jua (-, T)lioc) - Ve (4.250)

We claim that the pointwise convergence rate of order O(+{/) indicated in
(4.250) holds even without post-processing of the approximate solution. Indeed,
let us consider the difference

v (2, T) = (v°(, T) * G5)(2) = /[UE(LT) —v (& —y,T))Cs (y)dy =

Yy

_ UE(sz)_UE(z_va) Y.y
—/y { '—EC(g)dy-

-y
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By choosing a positive Cg-unit mass mollifier ¢(z) supported on (=1, 0) then, thanks
to the LipT-stability condition (4.232), the integrand on the right does not exceed
Const - 4, and hence

v (2, T) — (v°(,T) % ¢s)(z) < Const -4 . (4.251)

Similarly, a different choice of a positive C3-unit mass mollifier ¢(z) supported on
(0,1) leads to

v (z,T) — (v°(-,T) % {s)(x) > Const - 4. (4.252)

Each of the last two inequalities (with § ~ /) together with (4.250) show that the
approximate solution itself converges with an O(/e)-rate, as asserted. We summa-
rize what we have shown by stating the following.

Corollary 4.3 Let {v°(z,t)}e>0 be a family of conservative, Lip'-consistent and
Lip*-stable approzimate solutions of the conservation law (4.226), (4.227), with
Lip*-bounded initial conditions (4.235). Then the following convergence rate esti-
mate holds:

0% (2, T) — u(@,T)| < Co - /2, Co ~ |ta(, Tl oo (o 9504 92)- (4.253)

The above derivation of pointwise error estimates applies in more general situa-
tions. Consider, for example, a family of approximate solutions, {v°(z,t)}->0 which
satisfies the stronger L' error estimate of order, say, O(u),

(v T) = ul-, T), ()| < Co - pllpllze. (4.254)

Then our previous arguments show how to post-process v° (-, T') in order to recover
the pointwise values of the entropy solution, u(x,T) with an error as close to u as
the local smoothness of u(-,T") permits. In particular, using (4.254) with a positive

Cj-unit mass mollifier, (s(z) = +((%) we obtain

|07 (1) % 65) (@) = (u(, T) #Ga) (@) < Co- Kl (4:255)
Using this together with

|(u(, T) * G5) (@) — u(z, T)| < 8[ICllzr - lue (5 T)lloge, (@ ts-suppc) (4.256)

loc

we find (with 0 ~ /1)

|(v° (-, T) % ¢5) (z) — w(z, T)| < Constr (1 + |ux(, T)|ioc) /- (4.257)

If the approximate solutions {v®(z,t)}c>0 are also LipT-stable, then we may
augment (4.257) with (4.251)-(4.252) to conclude

Corollary 4.4 Assume that {v°(x,t)} is a family of Lip™ stable approzimate so-

lutions with global L'-convergence rate of order O(u), (4.254). Then the following
local pointwise error estimate holds

v (2, T) = u(@,T)| < Co - Vi, Co ™~ |ta (T (2= yiwatvin)-
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Remarks.

1. The usual L'-rate of order p ~ /2 leads to [24]
[v° (2, T) —u(@,T)| < Co - V&, Co~ua(, T)lpoo(e gm0t 47 (4258)

2. In case u(-,t) has finitely many shocks, [41], one obtain an L'-rate of order
p ~ €, [42], and hence we find a local error of order /&

|UE(1',T) - U(Z‘,T)| <GCs- \/gy Ce ~ |uiﬂ('aT)|L°°(z—\/E,z+ﬁ)' (4259)
3. Finally, in [41] we improved the estimate (4.259) replacing /¢ by ¢. Thus, we

obtain an optimal pointwise error estimate of order O(g) in all but finitely
many neighborhoods of shock discontinuities of width O(e).

Convex Hamilton-Jacobi equations

In this section we briefly comment on the multidimensioal generalization of the Lip'-
convergence theory outlined above, to convex Hamilton-Jacobi (HJ) equations. We
consider the multidimensional Hamilton-Jacobi (HJ) equation

du+ H(Vyu) =0, (t,z) € RT x RY, (4.260)

with convex Hamiltonian, H” > 0. Its unique viscosity solution is identified by
the one-sided concavity condition, D2u < Const., consult [16], [20]. Given a fam-
ily of approximate HJ solutions, {v°}, we make the analogous one-sided stability
requirement of

— Demi-concave stability. The family {v°} is demi-concave stable if

D2v° < Const. (4.261)
We then have the following.

Theorem 4.2 ([19]) Assume {vi} and {v5} are two demi-concave stable families
of approzimate solutions. Then

o1 (t,) = va(t, )1 @) < Const.[loi(0,-) = v3(0,)|lz1w) +
2
+ Const. » (10005 + H(Vov)|11 1) (4.262)
j=1
If we let v§ = v', v5 = v? denote two demi-concave viscosity solutions, then (4.262)
is an L'-stability statement (compared with the usual L*-stability statements of
viscosity solutions, [8]). If we let {vf} = {v°} denote a given family of demi-concave

approximate HJ solutions, and let v5 equals the exact viscosity solution u, then
(4.262) yields the L'-error estimate

l0°(,t) = u(, D)l 1@y < Const.||0pv" + H(Vav )|lp1 e ~ Oe).  (4.263)
This corresponds to the Lip'-error estimate of (1.46) with (s,p) = (—1,1). One can
1

+
then interpolate from (4.263) an LP-error estimates of order 0(62_: ). For a general
L*>-convergence theory for approximate solutions to HJ equations we refer to [1]
and the references therein.
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4.4 Examples

Regularized Chapman-Enskog expansion
Of course, the usual viscous approximation

Dt + 0 0] = e QM @ )], <@ L0, (4264)

is the canonical example for a family of approximate solutions whose convergence
rate could be analyzed in terms of our Lip’ theory outlined above. Here, we con-
centrate on yet another, more intricate regularization of the inviscid equations of
the form

—ek® . v
v fe = {m“ﬂ] ’
or equivalently,

L = Queru), Q= ie*'””'/“. (4.265)

Ut + f(U )z - m2e
Rosenau [28] has proposed this type of equation as a model for his regularized
version of the Chapman-Enskog expansion for hydrodynamics. The operator on
the right side looks like the usual viscosity term ev;, at low wave-numbers k, while
for higher wave numbers it is intended to model a bounded approximation of a
linearized collision operator, thereby avoiding the artificial instabilities that occur
when the Chapman-Enskog expansion for such an operator is truncated after a
finite number of terms [28].

We shall study the convergence rate of v® to the inviscid solution, along the
lines of [33]. It should be pointed out that the solution of (4.265) does not admit
all the entropy inequalities, except for the quadratic one; thus, the question of
convergence in this case, is not easily answered in terms of the usual L'-Kuznetsov
theory. Instead, we use the Lip’ theory outlined in §4.3. To this end, we first turn
to show that the nonlinear Regularized Chapman-Enskog (RCE) equation (4.265)
satisfies Oleinik’s E-entropy condition.

Theorem 4.3 Assume f” > a > 0. Then the following a priori estimate holds

1

[0 O[5, + at

" Ol ip+ < , t>0. (4.266)

Remark 4.1 The inequality (4.266) implies that the positive-variation and hence
the total-variation of v°(t) decays in time. Furthermore, this proves the zero mean-
free-path convergence to the entropy solution of (4.226) for any Lj,.-initial data
uo
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Proof. We add the artificial viscosity term duq, to regularize (4.265), obtaining
€ € 1 € € €
Orvs + 0p f(vs) = _m—%{w — Qme *v5} + 30205, (4.267)

Differentiation of (4.267) yields for w = 0,vj,

0w+ £ (u)orw + £ (1w == = ——{w = Qe 4w} + 502w,

Hence, since f > a > 0, it follows that W(t) = maz,w(t) is governed by the
differential inequality

1
m3e

and (4.266) follows by letting 6 | 0. W

W(t) + aW?(t) <

{W(t) — Qme * W} <0

Theorem 4.3 shows that solutions of the RCE equation (4.265) are Lip™-stable.
Moreover, (4.265) implies that the Lip’-size of their truncation if of order O(g), for

10:0° + 00 f (0°) | Lip = €llQme * O2v®|| 2 < €l|QmellLa|lv” (D)IBv < elus(0)][v-

Using our main result we conclude that the Lip’- convergence rate of the RCE
solutions to the corresponding entropy solution is also of order O(g).

Corollary 4.5 Assume that f” > a > 0, and let v° be the unique RCE solution
of (4.265) subject to C* initial conditions v*(0) = u(0). then v° converges to the
unique entropy solution of (4.226) and the following error estimates hold

1—s
[v° (£) = u(t)||wew < Const-e 2, —1<s<-=. (4.268)

=N

Finite-Difference approximations

We want to solve the conservation law (4.226)-(4.227) by difference approximations.
To this end we use a grid (z, := vAz,t" := nAt) with a fixed mesh-ratio A = ﬁ—; =
Const. The approximate solution at these grid points, v) = v(z,,t"), is determined
by a conservative difference approximation which takes the following viscosity form,

e.g., [35]°

on =t S won) = flu-D)]+ 5@y 1 Avyy s — Q) 1 Avy o] (4:269)

and is subject to LipT-bounded initial conditions,

1 [Fv+d

T Az “uo(€)de, Ly = |luollpip+ < oo (4.270)

vy

0
Uy

% We use the usual notations for forward and backward differences,
Aiv,,+% =t (vyt1 — y).
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Let v°(z,t) be the piecewise linear interpolant of our grid solution, v*(z,,t") = v},
depending on the small discretization parameter ¢ = Az | 0. It is given by

v (@, t) = Y o AT (2,1), AT (1) 1= Aj (@) AT (1),

where A;(z) and A™(t) denote the usual ‘hat’ functions,

1 1 _
Aj (:1}) = E min(a: —Tj—1,Tj+1 — $)+, Am(t) = E min(t — tm l,tm_H — t)+.

In [24] we show that these schemes are Lip'-consistent of order O(Az), thus arriving
at

Theorem 4.4 Assume that the difference approzimation (4.269)-(4.270) is Lip™ -
stable in the sense that the following one-sided Lipschitz condition is fulfilled:

(AU:+;)+ 1
max 2 < , 0<t"<T. (4.271)
v Az [LEF]-* + Bt
Then the following error estimates hold:
Az 1—sp 1
|07, T) —u(-,T)|lwse <Cr-(Az)™ 27, —-1<s< p (4.272)
02" (2, T) — u(z,T)| < Cp - max  |ug(§,T)| - VAzx. (4.273)
lg—zl< VA
The following first order accurate schemes (identified in a decreasing order ac-
cording to their numerical viscosity coefficient, QVJF% = Q:+l), are frequently
2
referred to in the literature.
Lax — Friedrichs : Q.71 =1, (4.274)
2
: her : EO __ A vt !
Engquist — Osher : QVJr% = m ’ |f (v)|dv, (4.275)
n n _ 2
Godunov : Q¢ 1 = Amax fr) + For) = 2/(v) . (4.276)
vty v vl — P
1
Roe:  QF . =)\-—2t2|. (4.277)

V+% A,Un 1
v+3

In [24] we prove the Lip™ stability of these schemes, and together with their Lip’

consistency (of order O(Ax)) we arrive at

Corollary 4.6 Consider the conservation law (4.226), (4.227) with Lip™ -bounded
initial data (4.235). Then the Roe, Godunov, Engquist-Osher, and Laz-Friedrichs
difference approzimations (4.274)-(4.277) with discrete initial data (4.270) con-
verge, and their piecewise-linear interpolants UA””(z,t), satisfy the convergence rate
estimates (4.272), (4.273).
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Remark 4.2 The Lip'-stability (4.271) of Roe scheme with 8 = 0 (no decay),
was proved in [3]. Note that the assumption of Lip™-bounded initial conditions is
essential for convergence to the entropy solution in this case, in view of the discrete
steady-state solution, v = sgn(v—{—%), which shows that convergence of Roe scheme
to the correct entropy rarefaction fails due to the fact that the initial data are not
LipT-bounded.

Godunov type schemes

Godunov type schemes form a special class of transport projection methods for
the approximate solution of nonlinear hyperbolic conservation laws. This class of
schemes takes the following form:

) Ty pn—1yv?® (771, "<t <"
027 () = (4.278)
PHIMDo2® (" —0), t = t" = nAt

where the initialization step is:
v (1% = 0) = P({I} Duo () - (4.279)

These schemes are composed of the following four ingredients:

(i) The possibly variable size grid cells, I} = [z

. n here the grid i
J_%,a:ﬁ_%),weetegds

regular in the sense that:

AZmaz

Az = Azmin < |1} | < AZmaa < Const. ; (4.280)

Azmin

(ii) A conservative piecewise polynomial grid projection, P = P({I}'}),

Apmmm:lw@w; (4.281)

(iii) The exact entropy solution operator associated with (4.219), T = T;
(iv) The time step At, which is restricted by the CFL condition:

Vo A

1o Ax
<1 = —
Amax|f' (04" (@, ) <1, A= T

(4.282)

As an example we recall here the subclass of Godunov-type schemes based on
piecewise-polynomial projections, which was discussed already in the ’short guide’
introduced in Lecture II.

To study the convergence rate of this class of schemes, we are required to ver-
ify the Lip'-consistency and Lip*-stability of the scheme in question. We begin
by reducing the question of Lip’-consistency to the level of a mere approximation
problem, namely, measuring in Lip’-semi-norm the distance between the exact so-
lution and its grid projection. Thus, our first theorem below enables us to avoid
the delicate bookkeeping of error accumulation due to the dynamic transport part
of the scheme.
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Theorem 4.5 (Lip'-consistency.) The Godunov type approzimation (4.278)-(4.279)
satisfies the following truncation error estimate:

x T T T n
[0 + F@)allLipt o fo27) < Ztoggngl(P—I)vA (8" = O)lleipr (4.283)

Remark 4.3 We emphasize that this theorem applies to both fixed and variable
grid schemes.

Proof. Let N denote the number of time steps in [0,T], i.e
T=t"=NAt . (4.284)

Then for every ¢ € C&(R

x[0,T
W + f(v? Z[ vt <pdxdt+/n_1/f(vAm)mnpdzdt]

Integration by parts gives that

N

WP 4 0 )i =Y {w“% ?)

n=1

tn—1 n—1

t —/ ((v‘”,w)+(f(v“),soz))dt]
(4.285)

But since v is a weak solution in the strip ® x (¢"1,¢"), as definition (4.278)
implies, then

tn o
[+ Get e a =) (4.286)
t
Therefore, by (4.285) and (4.286),

(0" + f(0* g [ ) +]

and since, by (4.278), v4%(-,¢"~! 4+ 0) = v*%(-,¢"!), we have that

t"

tn—l

N n N

(UtAac + f(UAz):cy L)O)Jc,t = Z(UAxv 30) ; 0 - Z((P - I)UAE("tn - 0)’ L)0("tn))

n=1 n=1

Recall the conservation of P asserted in (4.281), /(P — Iv™*®dz = 0. Therefore,

using the definition of the Lip'-seminorm, together with (4.284), we get

T x T n
(@7 + 10™)a, @)et] < 77 max (P = Do (8" = 0}y e, )llin

Dividing by ||¢(z,t)||zip and taking the supremum over ¢, we arrive at (4.283).
|
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Next, we turn to the question of Lip™-stability. The standard Lip™-seminorm,
Il zip+ , is inappropriate measure for the size of discontinuous piecewise polynomial
functions, since increasing jumps — even on the acceptable scale of the gridsize, are

LipT-unbounded. Instead, we replace it by its discrete analogue — [|-||4;,+, requiring
Az Az ") — Az " +
||UAI(',t")||gip+ ‘= max <U (z+ a:,A) v (@, )> < Const. (4.287)
T T

The discrete £ip™ stability is weaker than Lip™ stability, yet, as we shall show
below, it will suffice for our convergence rate estimates to hold. To see this, we
introduce a compactly supported non-negative unit mass mollifier,

Ys(z) = %1&(%) , /¢5(x)dx=/¢(x)dx=1 : (4.288)

The discrete £ip™ stability is related to the stronger Lip™ bound on the mollified
solution. The following lemma shows that Lip'-consistency of order O(Az) remains
invariant under a mollification with o5, § = O(Az). Thus, O(Az)-mollification
does not sacrifice accuracy yet we have the advantage of using the weaker discrete
Lip™ stability.

Lemma 4.1 Assume v2®(x,t) has o bounded variation and is Lip' -consistent with

(4.219) of order O(Ax),
IF4% (e, )l = O(A7)  ,  F2 (@0 =P+ f@™). . (4289)
Then v23%° = 15 % v2% is Lip'-consistent with (4.219) of order O(Az) + O(6).

We omit the straightforward proof (which could be found in [26]). Finally, we
combine Theorem 4.5 and Lemma 4.1 to achieve our main convergence rate estimate
for Godunov type schemes.

Theorem 4.6 (Convergence rate estimates) Assume that the Godunov type
approzimation (4.278)-(4.279) is LipT-stable, (4.287), and Lip'-consistent in the
sense that

(P = Dwllziy < O(AS)|wlav (4.290)

Then the following error estimates hold:

1—

=), ~1<s<

027 (o t) — ul- t)||wee = O(Az (4.291)

SR

Proof. Let us denote ﬁA”(-,t) = oy * UA””(-,t), where ¥ a, is the dilated mollifier
of

(4.292)

[MEENIES

_ Ll <
Y(z) = {07 2| >
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This choice of mollifier satisfies the Lip'-error estimate
[$ae *w — wllLiy < O(Az%)|w|lsy (4.293)

We show that 7 satisfies the LipT-stability condition (4.232), and it is Lip'-
consistent of order O(Az).

We start with the LipT-stability question. The definition of the discrete fip*t-
seminorm, (4.287), implies that ||17A””(~,t")||Lip+ = ||UA””(-,t”)||gip+ . Since v2? is
assumed to be discrete £ipT-stable, we conclude that at each time level t* we have

1527 (.t iyt = D < C . (4.204)

This, together with the fact that the intermediate exact solution operator decreases
the LipT-seminorm, (4.231) imply Lip™-boundedness for all ¢ > 0:

15°% ()| Lipt < Const.  ¥E>0 . (4.295)

Namely, the mollified approximation 5% is LipT-stable.

We note in passing that vA® (-,t), being compactly supported and Lip*-bounded,
has bounded variation. Turning to the question of Lip’-consistency we therefore con-
clude from assumption (4.290) together with the truncation error estimate (4.283),
that v2® is Lip'-consistent with (4.226) of order O(Az), and hence by lemma 4.1,

so does 947,

15 + F(57%)e |l = O(Aw) .

Furthermore, % is also Lip'-consistent with the initial condition (4.227), since by

(4.293), (4.279) and (4.290):

527 (-, 0) — v (-, 0) || Lipr + 027 (-, 0) — w0 ()| iy
< 0(Az?).

1527 (- 0) = u(-, 0) |y <
<

Therefore, Theorem 4.1 holds; in particular (4.236) tells us that
1527 (, T) = w(, Tl = O(Ag) . (4.296)
In addition, we have by (4.293),
1527 (, T) = 02 (, T) |y = O(A0?) . (4.207)
Combining (4.296) and (4.297) we end up with
[0, T) = u(, T)llip = O(Az) (4.298)

The Lip'-error estimate (4.298) may now be interpolated into the W*”?-error esti-
mates (4.291). |

Examples of the first-order Godunov and Engquist-Osher schemes as well as

the second-order (upwind) MUSCL and (central) Nessyahu-Tadmor schemes are
discussed in [26].
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Glimm scheme
We recall the construction of Glimm approximate solution for the conservation law
(4.226), see [10,32]. We let v(z,t) be the entropy solution of (4.226) in the slab

t" <t < t""' n > 0, subject to piecewise constant data v(z,t") = vax,,(x).

To proceed in time, the solution is extended (in a staggered fashion) with a jump
discontinuity across the lines t"*' n > 0, where v(z,t"*!) takes the piecewise
constant values

v(z, t"T) = szj—é Xot1 (z), vl’/’i; = U(Z‘U+% +r" Az, t"T —0).  (4.299)

v

Notice that in each slab, v(z,t) consists of successive noninteracting Riemann so-
lutions provided the CFL condition, A - max|a(u)| < 3 is met. This defines the
Glimm approximate solution, v(x,t) = v°(z,t), depending on the mesh parame-
ters e = Az = AAt, and the set of random variables {r"}, uniformly distributed
in [—3,3]. In the deterministic version of the Glimm scheme, Liu [21] employs
equidistributed rather than random sequence of numbers {r"}. We note that in
both versions, we make use of exactly one random or equidistributed choice per
time step (independently of the spatial cells), as was first advocated by Chorin [5].

It follows that both versions of Glimm scheme share the Lip*-stability estimate
(4.232). Indeed, since the solution of a scalar Riemann problem remains in the

. s n+1 n n n n
convex hull of its initial data, we may express UV+% as (1 — 9,,_’_%)1),, + 9U+%v,,+1

for some 67, € [0,1], and hence
2

n+1 _ n+l _ pgn n _gn n
LA UV_%—QVJr%AUVJr%—i—(l 9U7%)AUU7%.

We now distinguish between two cases. If either Av” , or Av” ,1 is negative, then
2 2

1 1
U:}:% — v:f% < max(AU:Jr% ,Av? L ). (4.300)

Otherwise — when both Av7, , and Av}_, are positive, the two values of v"j_r}
2 2 vTg

m+! are obtained as sampled values of two consecutive rarefaction waves, and

V-3

a straightforward computation shows that their difference satisfies (4.300). Thus in

either case, the Lip'-stability (4.232) holds with 3 = 0.

Although Glimm approximate solutions are conservative “on the average,” they
do not satisfy the conservation requirement (4.228). We therefore need to slightly
modify our previous convergence arguments in this case.

We first recall the truncation error estimate for the deterministic version of
Glimm scheme [14, Theorem 3.2],

and v

(UtAac + f(UAm)M W(x’t))LQ(z,[O,T]) <
(4.301)
< Constr [\/Ax| In Az| - ||¢||pe + Az - ||<p(z,t)||Lip(m,[0,T])] .

Let ¢(z,t) = ¢2%(z,t) denote the solution of the adjoint error equation (4.239).
Applying (4.301) instead of (4.245) and arguing along the lines of Theorem (4.1), we
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conclude that Glimm scheme is Lip'-consistent (and hence has a Lip'-convergence
rate) of order v Az|In Az,

(e (-, T), ()| < Constr [VAz|In Az - [|¢ll= + Az - [lp(@)l|zip] - (4.302)

To obtain an L'-convergence rate estimate we employ (4.302) with ¢5 = ¢ *
1¢ (3) yielding

(€2 T), )| < Constr [VA|In Acl + 5E] ()l (4.303)

Using this estimate together with
(€T, [o() =95 ()]) = (7, T) — e5(-, T), ¢) < Const - [le"(-, T) | sv - dlloll =,

imply (for § ~ /Az), the usual L'-convergence rate of order O(y/Az|ln Az|).

As noted in the closing remark of §4.3, the Lip™-stability of Glimm’s approximate

solutions enables us to convert the L'-type into pointwise convergence rate estimate.
We close this section by stating the following.

Theorem 4.7 Consider the conservation law (4.226), (4.227) with sufficiently small
Lip™-bounded initial data (4.235). Then the (deterministic version of) Glimm ap-
prozimate solution v2%(x,t) in (4.299) converges to the entropy solution u(zx,t),
and the following convergence rate estimates hold:

02 (-, T) = u(-,T)||z2 < Constr - \/Az|In Az|, (4.304)

v (z,T) — uw(x,T)| < Consty,r - [l + max |uz(€,T)|]- /Ax|In Az|.
le—z|< VAz
(4.305)

Remarks.

1. A sharp L'-error estimate of order O(v/Az) can be found in [22], improving
the previous error estimates of [14].

2. Theorem 4.7 hinges on the truncation error estimate (4.301) which assumes
initial data which sufficiently small variation [14]. Extensions to strong initial
discontinuities for Glimm scheme and the front tracking method can be found
in [6, Theorems 4.6 and 5.2].

The Spectral Viscosity method

We want to solve the 2m-periodic initial-value problem (4.219)-(4.220) by spectral

methods. To this end we use an N-trigonometric polynomial, vy (z,t) = ZQ’:_N Ok (1)

to approximate the spectral (or pseudospectral) projection of the exact entropy so-

lution, Pyu. Starting with vn (z,0) = Pnuo(x), the standard Fourier method reads,
0 0

= —P =0. 4.306

5V~ T g Pn fow) (4.306)

Together with one’s favorite ODE solver, (4.306) gives a fully discrete spectral

method for the approximate solution of (4.219).
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Although the spectral method (4.306) is a spectrally accurate approximation of
the conservation law (4.219) in the sense that its local error does not exceed

I(Z = Px) f(o ()l » < Const- N *flowllz2, Vs >0, (4.307)

the spectral solution, vy (z,t), need not approximate the corresponding entropy
solution, u(z,t). Indeed, the counterexamples in §4.1 show that the spectral ap-
proximation (4.306) lacks entropy dissipation, which is inconsistent with the en-
tropy condition (4.220). Consequently, the spectral approximation (4.306) supports
spurious Gibbs oscillations which prevent strong convergence to the exact solu-
tion of (1.1). To suppress these oscillations, without sacrificing the overall spectral
accuracy, we consider instead the Spectral Viscosity (SV) approximation

0 0 0 0
&UN(x,t) + %PNf(UN(:E,t)) = EN%QN * %UN(x,t). (4.308)

The left-hand side of (4.308) is the standard spectral approximation of (4.219). On
the right hand-side, it is augmented by spectral viscosity which consists of the follow-
ing three ingredients: a vanishing viscosity amplitude of size ey | 0, a viscosity-free
spectrum of size my >> 1, and a viscosity kernel, Qn(z,t) = EIIZ\=mN Qk(t)ei’”
activated only on high wavenumbers |k| > my, which can be conveniently imple-
mented in the Fourier space as

N
0 19] A ~ ikx
en5-Qn * goun(z,t) = —en > B Qu)n(t)e™.

|[k|=mN

We deal with real viscosity kernels Qn(z,t) with increasing Fourier coefficients,
Qr = Q|x|, which satisfy

2q
1— (%V) <Qu(t) <1, k| >my, forsome fixedq> 1, (4.309,)

and we let the spectral viscosity parameters, (enx, mn), lie in the range

1

e N9log N’

my ~N%, §<1. (4.310,)

We remark that this choice of spectral viscosity parameters is small enough to
retain the formal spectral accuracy of the overall approximation, since

0 19} _8s
llen 5—Qn * =——on (-, t)||g—s < Const - N™ 24 |Jun (-, t)||p2, Vs> 2. (4.311)
Ox ox
At the same time, it is sufficiently large to enforce the correct amount of entropy
dissipation that is missing otherwise, when either ey = 0 or my = N. Indeed, it

was shown in [38],[40],[23] that the SV approximation (4.308), (4.309,)-(4.3104) has
a bounded entropy production in the sense that

d
sN||%vN(x,t)||ilzoc(£,t) < Const, (4.312)

and this together with an L°°-bound imply — by compensated compactness argu-
ments, that the SV approximation vy converges to the unique entropy solution
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of (4.219). A detailed account on the SV method is outlined in Leture III of this
volume.
Observe that in the limit case ¢ = oo, the SV method (4.308), (4.309,)-(4.310,),
coincides with the usual viscosity approximation,
2

Evs(x,t) + %PNf(UE(l',t)) =en %vs(x,t).
But of course, the spectral accuracy (4.311) is lost in this limit case.

The LipT-stability and Lip'-consistency (of order O(N~?)) of the SV approxi-
mation were studies in [40]. We thus arrive at

Theorem 4.8 (Convergence rate estimates) Consider the 2w-periodic nonlin-
ear conservation law (4.226) with Lip™ -initial-data. Then the SV approzimation
(4.308), (4.309,)-(4.310,) with ¢ > 2 converges to the entropy solution of (4.226)
and the following error estimates hold for 0 < to <Vt < T':

—sp

1
llow (-, t) = u(:,t)]lwer < Constr - N~ 2 ° —1<s<

(4.313)

SR

lon (,¢) — u(z, t)| < Constr - N5, 0<to<t<T; (4.314)

Finally, any r-th order mollifier, (4.248), recovers the pointvalues of vn to the order
of
low () * ¥, — vn(z,t)] < Cp - N™ 7427, (4.315)

Remarks.

1. Theorem 4.8 requires the initial data of the SV method, vx (z,0), to be Lip™-
bounded independently of N. Consequently, one might need to pre-process the
prescribed initial data uo unless they are smooth enough to begin with. The de
la Vallee Poussin pre-processing, for example, will guarantee this requirement
for arbitrary LipT-bounded initial data wuo.

2. The error estimates (4.313),(4.314) are not uniform in time as ¢o | 0, unless
the initial data are sufficiently smooth to guarantee the uniformity (in time )
of the Lip™ bound. For arbitrary Lip™-initial data, uo, an initial layer may be
formed, after which the spectral viscosity becomes effective and guarantees the
spectral decay of the discretization error.

3. According to (4.314) and (4.315), the pointwise convergence rate of the SV
solution in smooth regions of the entropy solution is of order ~ Nfé, and by
post-processing the SV solution this convergence rate can be made arbitrarily
close to N~'. In fact, numerical experiments reported in [38] show that by
post-processing the SV solution using the spectrally accurate mollifier of [12],

_1
Wr(z) = Yo(x) Dy (z),n ~ [5NT+2], we recover the pointwise values in smooth

regions of the entropy solution within spectral accuracy.

4. According to (4.313) with (s,p) = (0,1), the SV approximation has an L'-
convergence rate of order ~ N ~% in agreement with [30]. This correspond s to
the usual L'-convergence rate of order % for monotone difference approxima-
tions, [15],[31].

120



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

G. BarLEs & P.E. Soucanipis, Convergence of approzimation schemes for
fully nonlinear second order equations, Asympt. Anal. 4 (1991), 271-283.

F. Boucnur & B. PERTHAME, Kruzkov’s estimates for scalar conservation
laws revisited, Universite D’Orleans, preprint, 1996.

Y. BRENIER, Roe’s scheme and entropy solution for convez scalar conservation
laws, INRIA Report 423, France 1985.

Y. BRENIER & S. OSHER, The discrete one-sided Lipschitz condition for convex
scalar conservation laws. 1988, SIAM J. of Num. Anal. Vol. 25, 1, pp. 8-23.
A. J. CHORIN, Random choice solution of hyperbolic systems, J. Comp. Phys.,
22 (1976, pp. 517-533.

I. L. CHERN, Stability theorem and truncation error analysis for the Glimm
scheme and for a front tracking method for flows with strong discontinuities,
Comm. Pure Appl. Math., XLII (1989), pp. 815-844.

B. CockBURN, F. CoQUEL & P. LEFLOCH, Convergence of finite volume meth-
ods for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995),
687-705.

M. G. CrANDALL & P. L. LI1ONS, Viscosity solutions of Hamilton-Jacobi equa-
tions, Trans. Amer. Math. Soc. 277 (1983), 1-42.

M.G. CRANDALL & A. MAJDA, Monotone difference approzimations for scalar
conservation laws, Math.Comp.,34 (1980), 1-21.

J. GLIMM, Solutions in the large for nonlinear hyperbolic systems of equations,
Comm. Pure Appl. Math., 18 (1965), pp. 697-715.

J.B. GoopMAN & R.J. LEVEQUE, A geometric approach to high resolution
TVD schemes, SIAM J. Numer. Anal., 25 (1988), pp. 268-284.

D. GoTTLIEB & E. TADMOR, Recovering Pointwise Values of Discontinuous
Data within Spectral Accuracy, in ”Progress and Supercomputing in Computa-
tional Fluid Dynamics”, Progress in Scientific Computing, Vol. 6 (E. M. Mur-
man and S. S. Abarbanel, eds.), Birkhauser, Boston, 1985, 357-375.

J. GoobMAN & P.D. Lax, On dispersive difference schemes. I, Comm. Pure
Appl. Math. 41 (1988), 591-613.

D. HorF & J. SMOLLER, Error bounds for the Glimm scheme for a scalar
conservation law, Trans. Amer. Math. Soc., 289 (1988), pp. 611-642.

N.N. KuzNETsoV, On stable methods for solving nonlinear first order partial
differntial equations in the class of discontinuous solutions, Topics in Num.
Anal. III, Proc. Royal Irish Acad. Conf. Trinity College, Dublin (1976), pp.
183-192.

S.N. Kruzkov, The method of finite difference for a first order non-linear
equation with many independent variables, USSR comput Math. and Math.
Phys. 6 (1966), 136-151. (English Trans.)

S. N. KrusHKOV, First-order quasilinear equations in several independent vari-
ables, Math. USSR, Sb. 10 (1970), 217-243.

A. KurGaNov & E. TADMOR, Stiff systems of hyperbolic conservation laws.
convergence and error estimates, SIMA, in press.

C.-T. LiN & E. TaADMOR L'-Stability and error estimates for approzimate
Hamilton-Jacobi solutions, preprint.

P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pittman,
London 1982.

121



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math.
Phys., 57 (1977), pp. 135-148.

B. LUCIER, Error bounds for the methods of Glimm, Godunov, and LeVeque,
SIAM J. of Numer. Anal., 22 (1985), pp. 1074-1081.

Y. MADAY & E. TADMOR, Analysis of the spectral viscosity method for periodic
conservation laws, SINUM 26, 1989, pp. 854-870.

H. NEssyAHU & E. TADMOR , The convergence rate of approximate solutions
for nonlinear scalar conservation laws, STAM J. Numer. Anal. 29 (1992), 1-15.
H. NEssyAHU & T. TassA, Convergence rates of approzimate solutions to con-
mservation laws with initial rarefactions, SIAM J. Numer. Anal. 31 (1994),
628—654.

H. NEssyaHU, E. TADMOR & T. TassA, The convergence rate of Godunov type
schemes, STAM J. Numer. Anal. 31 (1994), 1-16.

H. NEssyanu, Convergence rate of approrimate solutions to weakly coupled
nonlinear systems, Math. Comp. 65 (1996) pp. 575-586.

P. ROSENAU, Eztending hydrodynamics via the regularization of the Chapman-
Enskog expansion, Phys. Rev. A, 40(1989), 7193-6.

R. RicHTMYER & K.W. MoRrTON, Difference methods for initial-value prob-
lems, 2nd ed., Interscience, New York, 1967.

S. SCHOCHET, The rate of convergence of spectral viscosity methods for periodic
scalar conservation laws, SINUM 27, 1990, pp. 1142-1159.

R. SANDERS, On convergence of monotone finite difference schemes with vari-
able spatial differencing, Math. of Comp., 40 (1983), pp. 91-106.

J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag,
New York, 1983.

S. SCHOCHET & E. TADMOR, The regularized Chapman-Enskog expansion for
scalar conservation laws, Arch. Rational Mech. Anal., 119 (1992), pp. 95-107.

E. TADMOR, The large time behavior of the scalar, genuinely nonlinear Laz-
Friedrichs scheme, Math. of Comp., 43, 168 (1984), pp. 353-368.

E. TADMOR, Numerical viscosity and the entropy condition for conservative
difference schemes, Math. Comp., 43 (1984), pp. 369-381.

E. TADMOR, The numerical viscosity of entropy stable schemes for systems of
conservation laws. I, Math.of Comp., 49 (1987), pp. 91-103.

E. TADMOR, Semi-discrete approzimations to nonlinear systems of conservation
laws; consistency and L™ -stability imply convergence,ICASE ICASE Report
No. 88-41.

E. TADMOR, Convergence of spectral methods for nonlinear conservation laws,
SIAM J. Numer. Anal., 26 (1989), pp. 30-44.

E. TADMOR, Local error estimates for discontinuous solutions of nonlinear hy-
perbolic equations, SIAM J. Numer. Anal., 28 (1991), pp. 811-906.

E. TADMOR, Total variation and error estimates fo spectral viscosity approzi-
mations, Math. Comp., 60 (1993), pp. 245-256.

E. TADMOR & T. TANG, The pointwise convergence rate for piecewise smooth
solutions for scalar conservatin laws, in preparation.

T. TANG & Z. H. TENG, Viscosity methods for piecewise smooth solutions to
scalar conservation laws, Math. Comp., 66 (1997), pp. 495-526.

T. TANG & P. -W. ZHANG, Optimal L' -rate of convergence for viscosity method
and monotone schemes to piecewise constant solutions with shocks, STAM J.
Numer. Anala. 34 (1997), pp 959-978.

122



5 Kinetic Formulations and Regularity

Abstract. We discuss the kinetic formulation of nonlinear conservation laws and
related equations, a kinetic formulation which describes both the equation and the
entropy criterion. This formulation is a kinetic one, involving an additional variable
called velocity by analogy. We apply this formulation to derive, based upon the
velocity averaging lemmas, new compactness and regularity results. In particular,
we highlight the regularizing effect of nonlinear entropy solution operators, and we
quantify the gained regularity in terms of the nonlinearity. Finally, we show that
this kinetic formulation is in fact valid and meaningful for more general classes
of equations, including equations involving nonlinear second-order terms, and the
2 x 2 hyperbolic system of isentropic gas dynamics, in both Eulerian or Lagrangian
variables ( — the so called ’p-system’).

5.1 Regularizing effect in one-space dimension

‘We consider the convex conservation law

(,%A(u(x,t)) =0, A">a>0. (5.316)
Starting with two values at the different positions, u; = u(x¢,t) and u, = u(z,,t),
we trace these values by backward characteristics. They impinge on the initial line
at ) = x, — ta(ug) and 22 = =, — ta(u,), respectively. Since the characteristics of
entropy solutions of convex conservation laws cannot intersect, one finds that the
ratio (z2 — x0)/(x, — x,) remains positive for all time. After rearrangement this

yields

19}
&u(xa t) +

a(u(z,,t)) — a(u(ze,t))
Ty — Xyp

<1
—t

Thus we conclude that the velocity of a(u) satisfies the Oléinik’s one-sided Lip
condition, a(u(:,t)), < 1/t. Thanks to the convexity of A, we obtain the Lip™
bound on w itself,

1
o2, 1) < —. 31
u(a:t)_at (5.317)

We recall that Lip™ bound (5.317) served as the cornerstone for the Lip’ convergence
theory outlined in Lecture IV. Here we focus on the issue of it regularity. Granted
(5.317), it follows that the solution operator associated with convex conservation
laws, T, has a nonlinear regularizing effect, mapping

T,: LY — BV, t>0. (5.318)

compact support of size L = |suppuol|, one obtains |suppu(-,t)| < L + Const.t.
The Lip™ bound (5.317) then yields an upper bound on the positive variation,
fuj(x,t)dx < Const.; since the sum of the positive and negative variations is
bounded,

/u:'(x,t) + uy (z,t)dr = /ux(z,t) < Const.||uo|| L,
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it follows that their difference is also bounded,
[|lu(z,t)||Bv = / [u:’(a:,t) —uy (x,t)] dx < Const. (5.319)

Observe that no regularity is ’gained’ in the linear case, where A" (u) = 0.
Indeed, the compactness asserted in (5.318) is a purely nonlinear regularizing phe-
nomenon which reflects the irreversibility of nonlinear conservation laws, due to loss
of entropy (information) across shock discontinuities. Here, nonlinearity is quanti-
fied in terms of convexity; in the prototype example of the inviscid Burgers’ equa-
tion,

0 0 ,u?
2 —(—)=0 5.320
Su+ (%) =0, (5.320)
one finds a time decay, u, (z,t) < 1/t. Tartar [31] proved this regularizing effect for
general nonlinear fluxes — nonlinear in the sense of A”(-) # 0, a.c..
The situation with multidimensional equations, however, is less clear. Consider
the 'two-dimensional Burgers’ equation’, analogous to (5.320)

0 0 u? 0 ,u?

= — (=) +5—(=)=0. 5.321

o' a3 T oD (5.321)
Since u(x1, z2,t) = uo(x1 — x2) is a steady solution of (5.321) for any uo, it follows
that initial oscillations persist (along 1 — z2 = Const), and hence there is no
regularizing effect which guarantee the compactness of the solution operator in this
case. More on oscillations and discontinuities can be found in Tartar’s review [32].

5.2 Velocity averaging lemmas (m > 1,d > 1)
We deal with solutions to transport equations

a(v) - Ve f(z,v) = 0y 9(z,v). (5.322)
The averaging lemmas, [13], [12], [11], state that in the generic non-degenerate

case, averaging over the velocity space, f(z) := fv f(z,v)dv, yields a gain of spatial
regularity. The prototype statement reads

Lemma 5.1 ([13],[11],[22]) Let f € LP(x,v) be a solution of the transport equation
(5.322) with g € L (z,v),1 < q < p < 2. Assume the following non-degeneracy
condition holds

meas,{v| |a(v) - £/|¢|| <0} < Const- 6%, a€(0,1). (5.323)
Then f(z) := fv f(x,v)dv belongs to Sobolev space W (L (x)),

fl@)ew’ (L' (z)), 6< = 1_6, 11'%9. (5.324)

a(l—B)+(s+1p r 4
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Variants of the averaging lemmas were used by DiPerna and Lions to construct
global weak (renormalized) solutions of Boltzmann, Vlasov-Maxwell and related
kinetic systems, [9], [10]; in Bardos et. al., [1], averaging lemmas were used to
construct solutions of the incompressible Navier-Stokes equations. We turn our
attention to their use in the context of nonlinear conservation laws and related
equations.

Proof. (Sketch). We shall sketch the proof in the particular case, p = ¢ which will
suffice to demonstrate the general p # g case.
Let £25(€,v) denote the set where the symbol a(v) - £ is ’small’,

25(&,0) ={(v,&)| la(v) -£'[<d}, ¢ = % : (5.325)
and decompose the average, f(z) accordingly:
F@) = [, fla,v0)do =
= [, 7 7‘?55()6.’2&0; (€v)| dv+ «— F' () (5.326)
+ [, 7 [FEvxa, (€ v)] dv —F@) - F (@).

Here, x represents the usual smooth partitioning relative to (25 and its comple-
ment, £25. On 2°, the symbol is 'bounded away’ from zero, so we gain one derivative:

—5 & —(m+1
7 lwr(zeyy < Const|lglloremd® "0 (5.327)

On 2 — along the ‘non uniformly elliptic’ rays, we have no gain of regularity,
but instead, our non-degeneracy assumption implies that |£2| is a ’small’ set and
therefore

— -5 o
If = f e < Const.[|f||Lr )0 (5.328)

Both (5.327) and (5.328) are straightforward for p = 2 and by estimating the
corresponding H' multipliers, the case 1 < p < 2 follows by interpolation. Finally,
we consider the K-functional

K(f,t):= inf [IIf = gllee + tlgllwzr] ;

The behavior of this functional, K (f,¢) ~ t°, characterize the smoothness of 7 in
the intermediate space between L” and W*(LP): more precisely, f belongs to Besov
space B?, with ’intermediate’ smoothness of order 6.

Now set g = ?6, then with appropriately scaled § we find that K(f,t) ~ t? with
0 = 775,7- This means that f(z) belongs to Besov space, f(z)eB% (LP(x)) and
(5.324) (with p = ¢ =r) follows. W
Remark 5.1 In the limiting case of « = 0 in (5.323), one finds that if

measy{v| |a(v) - & =0} =0, (5.329)

then averaging is a compact mapping, {f(z,v)} € L®® < {f} € LP. The case
p = 2 follows from Geérard’s results [12].
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5.3 Regularizing effect revisited (m = 1,d > 1)

In this section we resume our discussion on the regularization effect of nonlinear
conservation laws. The averaging lemma enables us to identify the proper notion
of 'nonlinearity’ in the multivariate case, which guarantee compactness.

The following result, adapted from [22], is in the heart of matter.

Theorem 5.1 Consider the scalar conservation law
O+ Va - A(u) =0, (t,z) e RS x RE. (5.330)
and assume that the following non-degeneracy condition holds (consult (5.323))

Ja € (0,1) : meas,{v| |7+ A (v) - €] < 8} < Const - 6%, Vr° +|¢]> = 1.
(5.331)

Let {u°} be a family of approzimate solutions with bounded measures of entropy
production,

dn(u’) + Vo - F(u') € M((0,T) xRE), vy > 0. (5.332)

Then u®(t,z) € WIT (L"(t,x), r= 3—13-

Remark 5.2 Note that the bounded measure of entropy production in (5.332)
need not be negative; general bounded measures will do.

Proof. To simplify notations, we use the customary 0" index for time direction,
z=(t xo0,%1,...,%4), A(u) = (Ao(u) =1, A1(u), ..., Ag(u)).
The entropy condition (5.332) with Kruzkov entropy pairs (1.1), reads
V. - [sgn(u” — v)(A(u") — A(v))] < 0.
This defines a family of non-negative measures, m*(z,v),
Ve - [sgn(v)A(v) — sgn(u® — v)(A(u®) — A(v))] =: m®(z,v). (5.333)

Differentiate (5.333) w.r.t. v: one finds that the indicator function, f(z,v) = xu (v),
where

—lu*<v<0, (5.334)
0 |v| > u®

+10<v<u®
Xuf(v) =

satisfies the transport equation,
0
Of +alw) V.f° = %ms(t,z, v), (5.335)

which corresponds to (5.322) with s = 1,g(z,v) = m®(z,v) € My, °. We now
apply the averaging lemma with (s = ¢ = 1, p = 2), which tells us that v*(¢,z) =

[ xus (v)dv € W,2F (L7 (t,x)) as asserted. W

loc

10 Once more, it is the symmetry property (1.6) which has a key role in the deriva-
tion of the transport kinetic formulation (5.322).
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It follows that if the non-degeneracy condition (5.331) holds, then the family of ap-
proximate solutions {u°} is compact and strong convergence follows. In this context
we refer to the convergence statement for measure-valued solutions for general mul-
tidimensional scalar conservation laws — approximate solutions measured by their
nonpositive entropy production outlined in Lecture I, §1.5.

Here, Theorem 5.1 yields even more, by quantifying the regularity of approxi-
mate solutions with bounded entropy productions in terms of the non-degeneracy
condition (5.331). In fact, more can be said if the solution operator associated with
{u®} is translation invariant: a bootstrap argument yields an improved regularity,
[22],

w(t>0,-) € Wats (L (z)). (5.336)

In particular, if the problem is nonlinear in the sense that the non-degeneracy
condition (5.329) holds,

meas,{v| 7+ A'(v) - £ =0} =0, (5.337)

then the corresponding solution operator, T3, t > 0, has a regularization effect map-
ping Tyisoy @ Lgw < L'. This could be viewed as a multidimensional general-
ization for Tartar’s regularization result for a.e. nonlinear one-dimensional fluxes,

A"()#£0, ae..

We continue with few multidimensional examples which illustrate the relation be-
tween the non-degeneracy condition, (5.331) and regularity.

Ezample #1. The 'two-dimensional Burgers’ equation’ (5.321),

19} 0 u? 0 u?

T 8_951(7) + 3—1,2(7)
has a linearized symbol 7' +v€] +v€5 which fails to satisfy the non-degeneracy/non-
linearity condition (5.331), since it vanishes Vv’s along 7/ = &} + &, = 0. This
corresponds to its persistence of oscillations along x1 — 2 = const, which excludes
compactness.

:0’

Ezample #2. We consider
Qu + i(u_Q) + i
c’)t 81‘1 2 81’2

In this case the linearized symbol is given by 7’ + v€] + e”£5; Here we have

(e“)=0. (5.338)

meas{v | |t +v€l +e"&| <8} < Const.0

(just consider the second-order touch-point at v = 1). Hence, the solution operator
associated with (5.338) is compact ( — in fact, mapping L§® — Ws (LYY

Ezample #3. Consider
0 0 m 0 oy

For n # m we obtain an index of non-degeneracy/non-linearity of order a =
1/ max{1 4+ m,1+ n}.
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Kinetic and other approximations

Theorem 5.1 provides an alternative route to analyze the convergence of general
entropy stable multi-dimensional schemes, schemes whose convergence proof was
previously accomplished by measure-valued arguments; here we refer to finite-
difference, finite-volume, streamline-diffusion and spectral approximations ..., which
were studied in [4,18,19,15,16,3]. Indeed, the feature in the convergence proof of all
these methods is the W, ! (L?)-compact entropy production, (5.348). Hence, if the
underlying conservation law satisfies the non-linear degeneracy condition (5.337),
then the corresponding family of approximate solutions, {u°(t > 0,-)} becomes
compact. Moreover, if the entropy production is bounded measure, then there is
actually a gain of regularity indicated in Theorem 5.1 and respectively, in (5.336)
for the translation invariant case.

Remark 5.3 Note that unlike the requirement for a nonpositive entropy produc-
tion from measure-valued solutions (consult (1.58) in Lecture I), here we allow for
an arbitrary bounded measure.

So far we have not addressed explicitly a kinetic formulation of the multidi-
mensional conservation law (5.330). The study of regularizing effect for multidi-
mensional conservation laws was originally carried out in [22] for the approximate
solution constructed by the following BGK-like model, [28] (see also [2],[14]),

O 4 a() Vol = L(xue@) = ), (ha,0) € B} xRS xRy, (5340)
Folimo = Xug(e)(¥), (@) € RE X R, (5.341)

Here, xy=(t,)(v) denotes the ‘pseudo-Maxwellian’,

+10<v<u®
Xue(v) = ¢ —1u° <v <0, (5.342)
0 |v| > u®

which is associated with the average of f°,
u(t,z) = f° = /fa(t,x,v)dv, (t,x) € R x RZ. (5.343)
R

The key property of this kinetic approximation is the existence of a nonnegative
measure, m° such that é(XuE (v) — fE) = 9m° (The existence of such measures

ov
proved in [22] and is related to H-functions studied in [28] and Brenier’s lemma

[2].) Thus, we may rewrite (5.340) in the form
of° om®

o0 ta) Vof* =—, m€M((0,T) x R% x R)). (5.344)

Let (n, F') be an entropy pair associated with (5.330). Integration of (5.344)
against 1’ (v) implies that the corresponding macroscopic averages, u°(t, x), satisfy

On(u’) + Vi - F(u®) <0, vy > 0. (5.345)
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Thus, the entropy production in this case is nonpositive and hence a bounded mea-
sure, so that Theorem 5.1 applies. Viewed as a measure-valued solution, conver-
gence follows along DiPerna’s theory [8]. If, moreover, the nondegeneracy condition
(5.331) holds, then we can further quantify the W*-regularity (of order s = ;%5.)

Theorem 5.1 offers a further generalization beyond the original, "kineticly’ mo-
tivated discussion in [22]. Indeed, consideration of Theorem 5.1 reveals the intimate
connection between the macroscopic assumption of bounded entropy production in
(5.332), and an underlying kinetic formulation (5.335), analogous to (5.344). For a
recent application of the regularizing effect for a convergence study of finite-volume
schemes along these lines we refer to [24].

5.4 Degenerate parabolic equations

As an example one can treat convective equations together with (possibly degener-
ate) diffusive terms

O + V- A(u®) =V, - (QVu®), Q >0. (5.346)
Assume the problem is not linearly degenerate, in the sense that
meas,{v| 7+ A'(v) - £ =0, (Q(v)£,&) =0} =0. (5.347)

Let {u°} be a family of approximate solutions of (5.322) with W, ! (L?)-compact
entropy production,

om(u®) + V, - F(u®) = W (L (t,x)), Vn" >0. (5.348)

Then {u®} is compact in L}, (¢, ), [22].
The case = 0 corresponds to our multidimensional discussion in §5.330; the
case A = 0 correspond possibly degenerate parabolic equations (consult [17] and
the references therein, for example). According to (5.347), satisfying the ellipticity
condition, (Q(v)£,£€) > 0 on a set of non-zero measure, guarantees regularization,
compactness ...

Again, a second-order version of the averaging lemma 1.2 enables us to quantify
the gained regularity which we state as

Lemma 5.2 Let f € L*(x,v) be a solution of the diffusive equation

—> i), f = %—T, Q= (gij) 2 0, m(t,z,v) € M.
Assume the following non-degeneracy condition holds
meas,{v] [0 < (€', Q(v)¢") < 8} < Const - 6%, a € (0,1). (5.349)
Then f(z) := fv f(x,v)dv belongs to Sobolev space W (L*(z)),

8

f@ ew (@), 6< s

(5.350)
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Ezample. Consider the isotropic equation

w4+ A(u) =0, 1.

Here Q;j(v) = di;¢'(v) and the lemma 5.2 applies. The kinetic formulation of
such equations was studied in [17]. In the particular case of porous media equation,
1

Y(u) =u™,m > 2, (5.349) holds with o = —— < 2 and one conclude a regularizing

effect of order s < ﬁ, ie., u(t>0,-): LY — W*(L).
A particular attractive advantage of the kinetic formulation in this case, is that it

applies to non-isotropic problems as well.

5.5 The 2 X 2 isentropic equations

We consider the 2 x 2 system of isentropic equations, governing the density p and
momentum m = pu,

o (p o (m
= + = =0. 5.351
ot (pu) ox <m72 +P(P)> ( )
Here p(p) is the pressure which is assumed to satisfy the (scaled) v law, p(p) =
kp', k= (7;1)2

The ques’gion of existence for this model, depending on the y-law, 1 < v < 3,
was already studied [7],[6] by compensated compactness arguments. Here we revisit
this problem with the kinetic formulation presented below which leads to existence
result for 3 < v < 0o, consult [23], and is complemented with a new existence proof
for 1 < < 3, consult [21].

For the derivation of our kinetic formulation of (5.351), we start by seeking all
weak entropy inequalities associated with the isentropic 2 x 2 system (5.351),

Orw + 0, A(w) = 0, w = [p] , A(w) = [ " } (5.352)

2
m =+ rp?

The family of entropy functions associated with (5.352) consists of those n(w)’s
whose Hessians symmetrize the Jacobian, A'(w); the requirement of a symmetric
n" (w)A'(w) yields the Euler-Poisson-Darboux equation, e.g, [6]

2
vy—1 -
Mop = %P‘Y 377uu-

Seeking weak entropy functions such that n(p,u),—o = 0, leads to the family of
weak (entropy, entropy flux) pairs, (n(p,u), F(p,u)), depending on an arbitrary ¢,

n(p, u) =p/W(€)<p(u+€p9)d€,

2o u) = p / w(©)p(u+ &) (u + 660" )de. (5.353)
Here, w(€) is given by
. 202 3=y y—1
w(@) =1 -&)% T R A



We note that 7 is convex iff ¢ is. Thus by the formal change of variables, v +—
u + £p?, the weight function w(€) becomes the ’pseudo-Maxwellian’, x,,.(v) +—

pu((v—w)p?),

Xowu(0) = (57" = (0 = w)*)}. (5.354)

We arrive at the kinetic formulation of (5.351) which reads
0eXp,u(v) + 0 [a(v, pu)Xpu(v)] = Oy, mEM . (5.355)

Observe that integration of (5.355) against any convex ¢ recovers all the weak
entropy inequalities. Again, as in the scalar case, the nonpositive measure m on
the right of (5.355), measures the loss of entropy which concentrates along shock
discontinuities.

The transport equation (5.355) is not purely kinetic due to the dependence on
the macroscopic velocity u (unless ¥ = 3 corresponding to 8 = 1),

a(v, p,u) = 0v + (1 — O)u +— u+ £6p°.

Compensated compactness arguments presented in [23] yield the following com-
pactness result.

Theorem 5.2 ([23]) Consider the isentropic equations (5.351) with v > 3 and let
(pn = pn(t,z),un = un(t,x)) be a family of approzimate solution with bounded
entropy production and finite energy, E, = poul + pl € LR}, L' (R,)). Then
a subsequence of pn (still denoted by pyn) converges pointwise to p, and (a subse-
quence of ) un converges pointwise to u on the set {p(z,t) > 0}. In particular, prun
converges pointwise to pu.

Finally, we consider the 2 x 2 system

ow — O, w =0,
{ Oww + Ozp(v) =0, t>0,z €R, (5.356)
endowed with the pressure law
12
p(v)=rkv™7, >0, K= u (5.357)

4y

The system (5.356)-(5.357) governs the isentropic gas dynamics written in La-
grangian coordinates. In general the equations (5.356)-(5.357) will be referred to as
the p-system (see [20],[30]).

For a kinetic formulation, we first seek the (entropy,entropy flux) pairs, (n, F),
associated with (5.356)-(5.357). They are determined by the relations

Mo + ' (0) Nww =0, (5.358)
where F' is computed by the compatibility relations

Fy=nup' (v), Fu=—n. (5.359)
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The solutions of (5.358) can be expressed in terms of the fundamental solution

n0w) = [ POl
R
where the fundamental solutions, x.,w(£), are given by

_ 1—-v _ _ 2\ A — 3— Y
xow@=v (07 = (=€), A=ge—p. (5.360)
Here and below, ¢ (rather than v occupied for the specific volume) denotes the
kinetic variable. The corresponding kinetic fluxes are then given by

how(§) = Q&wav,w(ﬁ)-

We arrive at the kinetic formulation of (5.356)-(5.357) which reads, [23]
OtXv,w + Ox[a(, v, w)xv,w(€)] = Ocem, m(t,xz,&) € M_, (5.361)

with macroscopic velocity, a(§,v,w) := 6(£ — w)/v.
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