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THE WELL-POSEDNESS OF THE KURAMOTO-SIVASHINSKY
EQUATION*

EITAN TADMOR

Abstract. The Kuramoto-Sivashinsky equation arises in a variety of applications, among which are
modeling reaction-diffusion systems, flame-propagation and viscous flow problems. It is considered here, as a
prototype to the larger class of generalized Burgers equations: those consist of quadratic nonlinearity and
arbitrary linear parabolic part. We show that such equations are well-posed, thus admitting a unique smooth
solution, continuously dependent on its initial data. As an attractive alternative to standard energy methods,
existence and stability are derived in this case, by "patching" in the large short time solutions without "loss
of derivatives".
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1. Introduction. The equation referred to in the title is of the form

oq,
-7+ Iv+ + a,t,+ ,=o.

This equation was independently advocated by Kuramoto [2], in connection with
reaction-diffusion systems, and by Sivashinsky [4], modeling flame propagation; it also
arises in the context of viscous film flow [5] and bifurcating solutions of the
Navier-Stokes equations.

In this paper we study the well-posedness question associated with the one-dimen-
sional version of the Kuramoto-Sivashinsky equation (abbreviated hereafter as the K-S
equation)

(1.1) O
Ot

2 02,/, 0%+ -x ++=0.)X 2 0X 4

It is shown that the Cauchy problem connected with (1.1) is well-posed: the K-S
equation admits a unique smooth solution, continuously dependent on its initial data.
In fact, all the results quoted below equally apply to the more general equation

o-Z x =P x ,=0,

with a linear part, strongly parabolic of arbitrary order

(1.2b) ReP(i5) >_ Const. I I1.
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Existence and stability results given here, are obtained by modifying Taylor’s recipe, [6,
p. 96], for treating the existence question in the special case of Burgers equation,
/b(i)=2. According to that recipe, roughly speaking, dissipation is used to com-
pensate nonlinearity, so that short time solutions can be constructed without running
into the familiar phenomenon of "loss of derivatives". Coupled with an L2-decay
estimate, short time solutions are then "patched" together, in the large. A study along
these lines is carried out in 2 below, where existence and stability questions are treated
in connection with the K-S equation. Existence and uniqueness in this case were
previously proved by energy methods, see e.g., Aimar and Penel [1], Nicolaenko and
Scheurer [3]. The technical details are avoided in 2: these are postponed to 4, all
proved by virtue of a single standard estimate on the linear dissipative part of the
equation, given in 3.

The above study thus suggests itself, with handling arbitrary linear dissipative
parts. In 5 we conclude by quoting the corresponding results to such generalized
Burgers equations.

2. Existence and stability. We start by putting the K-S equation in a conservative
form" we differentiate (1.1), obtaining that the new decayed variable u=u(x,t; 7)
e-ntJdp/x, /> O, satisfies

(2.1a) 3u
Ot
+ent(u2) +llu+ o2u+Ox Ox 2 Ox 4

a solution for the initial value problem (2.1a) is sought, u(t), t_>_0, subject to initial
condition

(2.1b) u(x,t=O) =f(x).
Both the pure Cauchy problem, < x < , and the periodic problem, say -r/2 =< x
=< r/2, are discussed. We explicitly treat the first infinite case by means of Fourier
expansion; the somewhat simpler periodic case can be likewise handled, using Fourier
series instead.

If we let ’(i)=/’(i; ’)--’0--2--4 denote the sym.bol associated with the
spatial linear part of (2.1a) and let O(,t)=O(,t; ’l)=e -tP(i;n) be its transformed
solution operator, then by Duhammel’s principle (2.1) admits the following integral
representation

n" 2(2.2) u(t)=Q(t; rl), f+ e .Q(t-r; ), -x (U (-))d-.

Abbreviate the right-hand side of (2.2) by ,In[u; f]; to simplify notation, we will
occasionally suppress the explicit dependence on the initial data, thus writing

(2.3) ,In[u an[u, f] Q(t; l). f+ fot n,
)

e .Q(t-r; l)*-x(U2(r)) dr.

The question of existence of a solution for (2.1) is now transformed into that of a fixed
point solution for ,In[u ]. Fixing T, T>0, we seek a fixed point solution for ,In[u in
L([0, T], L2), equipped with the standard norm Ilull--supo<_t<_rlu(’; t)1.2 The ex-
istence of such a fixed point solution is guaranteed, at least for a short time, as a
consequence of

2We adopt the notation of single bars to denote spatial norming; for example, Iwl#,.
(f (1 / 1412 )"1v(4)12 d)1/2. Similarly, double bars are reserved to space-time norming’ for example, Ilwll.
supo _<,_< rlw(., t)l#,.. In particular, Iwl-lwljo-(f w2(x)dx)1/2, Ilwll-llwllo.
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LEMMA 2.1 (short time contraction). Given v, w in L([0, T], L2) and ,In[. ]= ,In[. ;f]
as in (2.3). Then, there exists a constant rio>= O, such that for ri >= rio we have,

(2.4a) [[J[oI-J[wl[I<-M(T; )’(]lvil+liwl])’ilv-wl[.
Here, M(T; ri ) is given by,

(2.48) M(T; ri) 2e "r- T1/s.

By virtue of Lemma 2.1 we find
COROLLARY 2.2 (short time boundedness). Set T= T1, T > O, such that

4M(T1; ri)" If ]<1-(2.5a)
Then, for ri >= rio we have,

(2.5b) [la " [flll<=21f I,
Thus, the fixed point iterations, 3"l[f] remain inside the origin centered ball of

radius 2[/]. Hence--since by Lemma 2.1 Jn[’] contracts inside that ball, having a
Lipschitz constant 4M(T1; ri).< 1--the existence of a fixed point solution for 3n[u
follows, at least for a short time interval, 0 < < T1. Furthermore, the length of that
existence interval, T1, depends on no higher than the initial L2-norm. This latter fact
plays a central role in the foregoing analysis; in particular, it enables the local solution
just constructed, to be continued to a global one, with the help of

LEMMA 2.3 (large time decay). Let u(t; ri)= u(x,t; ri) be a solution of (2.1). Then,
there exists a constant rio>__ O, such that for ri >= rio we have

(2.6) [u(t2; ri)l<=e-(n-n)(t-tl)’lu(tl; ri)l, O<=t<=t2<=T"
Verification of Lemma 2.3 is straightforward" multiplying (2.1a) by u(x,t; ri),

integrating by parts while noting the vanishing contribution of the nonlinear term, we
find

d 2 2 3u 12 3:u(t )1/2 lu(t)l ---lu(t)l + -a-x(t) 8x 2

invoking the Parseval relation, the last equality yields

m ax(a/2 lu(/)l <- ))-Iu(t)l =

and integration finally leads us to (2.6) with rl0 1/4. We remark that in the periodic
case, ,r/2 =< x <_ ,r/2, one can invoke instead Poincarr’s inequality,

-’/1 3x

leading, in a similar way, to (2.6) with ri0 0. Observe that in genera] the exponential
growth bound, rio, may depend on the period.

To conclude the existence of solution in the large, we now fix ri, ri >_-ri0, with
appropriately chosen rio in either the finite or infinite case; then, short time

3With the infinite pure Cauchy problem, u(x,t) is required to vanish at x= + oe, indeed, lu(t)l., < c
according to Theorem 2.6 below.
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solutionswconstructed according to Lemma 2.1mcan be successively "patched" to-
gether, over time intervals which--according to Lemma 2.3Bare of a fixed (non-
shrinking) length T1. Integrating, we obtain a global solution for the K-S equation,
=q,(x,t); the solution so obtained ismup to integration factorwunique. Thus we
finally arrive at

THEOREM 2.4 (existence). The K-S equation (1.1), with prescribed initial data
k( O) in Hl, admits a unique solution, k ok(x, ), which satisfies,

(2.7) <= e noT. O<t<T<.

In fact, q,(t), t>0, belongs to HI: a further L2 estimate needed here, is discussed
in 4 below.

The global solution referred to in Theorem 2.4, is constructed by patching together
short time solutions, using a single L2 a priori estimate. Such a patching procedure
differs from existence proofs via standard energy methods, e.g., [1], [3], where higher a
priori estimates are called for. Instead, we rely here on having a derivative-free Lipschitz
contraction factor, so that short time solutions can be constructed, without running
into the familiar phenomenon of "loss of derivatives". We note that solving the
integrodifferential equation (2.2) by fixed point iterations results in the existence of a
solution satisfying the original differential equation (2.1), in a weak sense. Concerning
the existence of such a solution under a stronger topology, one observes that (2.1a)
contains two destabilizing sources: the focusing effect ("loss of derivatives") caused by
the nonlinear term, and the exponential divergence of the second order dissipative term.
It is the balance of these two terms by the fourth-order dissipation, which leads us to
the important derivative-free Lipschitz contraction factor in this case. Making a finer
study of that balance, we are able to conclude that the solution constructed above is, in
fact, smooth enough to be interpreted as a classical one. To this end, we sharpen
Lemma 2.1, stating

LEMMA 2.5 (short time contraction). Given v, w in L([0, T], Hs) s>_O, and
Jn[.]=Jn[.; f] as in (2.3). Then, there exists a constant ,lo>=O, such that for l>=,lo we
have,

(2.8)

Thus, each fixed point iteration gives us a smoother correction. In particular,
setting s to be zero, we find on account of Corollary 2.2 that (Jnl[f]}n>_0 form a
Cauchy sequence in the L([0, Tx], H2)Borigin centered ball of radius 2. ence, the
fixed point iterations Jnt"l[f] converge to a unique, short time solution, u=u(x,t) in
L([0, T1], H2). Thanks to the L2-decay estimate in Lemma 2.3, such short time
solutions can be patched in the large as before, integrated once and yielding

THEOREM 2.6 (existence). The K-S equation (1.1), with prescribed initial data
q(t =0) in n3, admits a unique solution, q=q(x, t), which satisfies,

(2.9) <
H2 -’ e O<t<T<.

Finally, we turn to examine the question of stability: allowing the initial data to
vary as well, we have the final extension to the short time contraction lemma, which
now reads
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LEMMA 2.7 (short time contraction). Given v, w in L([0, T], H) with f=v(t=O),
g= w(t=0) in H+-. Then, there exists a constant rio>=O such that for ri >-_o we have,

(2.10) II .[o;fl-J.[w; glll +=
<=lf-gln’+2+ZS’M(t;  )’(lloll /llwlls)’llo-wll .

Now let v( )= Jn[ o( ); v(t=0)], w( )= Jn[w( ); w(t=0)] be two different fixed
point solutions of (2.1a), whose initial data f= t)(t= 0) and g= w(t= 0) are assumed to
be in H2; according to Theorem 2.6, u(t) and t)(t) belong to H2 later on, >= 0, and as
a consequence of Lemma 2.7 with s 0, we have short time stability

1}v(t)-w(t) In2<= Iv(t=O)-w(t=O) Io O<=t<= Z.1-M(T,; n)’(If [+

Successive application of the last inequality yields the desired stability result, which we
state as our final

THEOREM 2.8 (stability). Let , be two different solutions of the K-S equation
(1.1), with initial data q(t=0), p(t=0) lying in n 3. Then, there exist constants C and

fl >= O (both may depend on [(Ob/Ox)(t- O) + l(OP/Ox)(t= O) l), such that the following
estimate holds:

(2.11) -x (t)---x (t) < C.e
H2

0)g(t= --aYx (t=0) O<t<T<.

3. An estimate on the dissipative kernel. The following classical estimate is in the
heart of the matter.

LV.MM. 3.1. Git)en oa(x) in Wm, 1 <=p <_ 2, and real r, r >= 1/p. Then, there exist
constants, C Ct,,r and rio >= O, such that for ri >= rio we hat)e,

(3.1) IQ(t; ri)*bOlH,.+r<=C’e--(l--no)t’l--(r--1/2+l/p)/4"lbOlW

Remark. We adopt here the standard notation, Wm, to denote the Le-type Sobolev
space of order m, consisting of those functions whose derivatives up to order m belong
to L ’. (Although not specifically referred to, a fractional Sobolev space with nonin-
tegral m should be interpreted as a Besov space: to comply with notation, we therefore
restrict attention to integral orders, with the understanding that final results can be
interpolated into Besov space.)

For completeness, we include here a short calculation verifying (3.1): setting
t,=p/(2-p) and letting/,’ be its conjugate, 1//, + 1//,’ 1; then the H61der inequality
yields

(3.2) IQ(t," )* eOlH-+r< 1 / = /*re_

Since by the Hausdorff-Young inequality the Fourier transform is of type
(2/,’, (2/,’)’=p), the second factor on the right of (3.2), Ilw,, does not exceed

(3.3)
m 1/2/,’

f_ o(1 "-[ [2)/*’ml (,d()[2/* d <_ (2,.tr ) l/2-1/P oa w,
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Next, we split the first factor on the fight of (3.2),

e -2tt( )d et /lq_ 112]r ,4_,2 -Bte

the first of the two integrals admits a pessimistic bound of

e- 2t(ti dl < 2v/3,re
Iz2

while the second one is estimated by

e )di>v(1 + 112)/zr --2p,’(4-

_<2.r+ t2.re_.t.d__2.r_lF 2r+ 1 -(.+/4

=0 4 (t)

Added together, we find that the first factor on the fight of (3.2), does not exceed

(3.4) (1 +
1e-(rl-)t" t-(2tr+l)/8t TO

with Stirling’s formula giving us a bound of

1 ) r-1/2+l/pBp,r= (4e)l/23r/2 r +

Recalling that (2/’)’=p, (3.2), (3.3) and (3.4) yield the required estimate (3.1) with
Cp,r (2,rt" ) /2 -1/Pep, r.

Remark 1. In the infinite case under consideration, an exponential growth bound,
To-- 1/4, was found. In general, T0 may depend on the period, in the spirit of an earlier
remark; for example, 10 0, in the r-periodic case.

Remark 2. For future reference, we quote here the constants Cp, in two special
cases: as can be readily verified, C2,0--1 (indeed, such an estimate also follows by a
straightforward integration by parts, essentially contained in the verification of Lemma
2.3 above); also, by sharpening the above pessimistic bounds, one finds C1, < 8.

4. Proof of main results. We first study the operator Jn[.; introduced in (2.3),
whose fixed point solutions are sought. Equipped with Lemma 3.1, we are able to
derive the following summary stability estimate

(S) [Jn[v(t); f]-J,[w(t); g]

+2s+l’ent’tl/8" sup [v(r)+w(r)l/s. sup Io()-w()l,.
0<’r<t 0<’r<t

To verify (S)--assuming the quantities on the right are finite and >= 0--we consider
the difference

J,[v(t); f]-Jn[w(t); g]=Q(t; rl)*(f-g)

+ ten’.Q(t-,; ),-x(V2(z)-w2(,))d,,
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so that after taking norms on both sides we have

IJn[v(t); f]-Jn[w(t); g] In/=<lQ(t;
0 2( 2Q(t-r; rt),-x (V z)-w (1)

HS+

Now applying Lemma 3.1 with respect to both terms on the right of the last inequality:
the first term with (r,p,m)=(O,2,s+ 2), and the second one with (r,p,m)=(3,1,s-1);
recalling the earlier quoted constants C)_,0 1 and C1, < 8, we find

IJn[v(t); f]-Jn[w(t); g]

nr e-(n-no)(t-r) (t )-7/84-8. e
0 2( 2 d’r.

The last integral bounds the interaction between the linear dissipative part of the
equation, and the nonlinear differentiated quadratic term; the loss of derivative due to
the latter is compensated here by dissipation, weighted with the L topology. In order
to return to the usual L2 setup, we apply the Leibniz rule and Cauchy-Schwarz
inequality to find

0 2 -<2’+l"lv(*)+w(*)lH,’tv(*)-w(*) Ins.

Inserted into the last integral and carrying out the integration, we end up with the
required estimate (S).

We now turn to prove the results in [}2, starting with:
Short time contractions (Lemma 2.1, Lemma 2.5, Lemma 2.7). Taking supremum

over both sides of the (S) estimate with varying t, 0 =< =< T, and equipped with the
notation of

M(T; 1) 2enr" Ti/8

in (2.4b), we find

f]-,IT[w; glll+).zlf-gl.+=+2’M(T;  ).(llolls/ltwll ).llo-wll ,

so that Lemma 2.7 follows. Taking the special case f=g proves Lemma 2.5, and further
setting s =0, yields Lemma 2.1,

(Observe that in the case of Lemma 2.1, where no gain of derivatives is involved, one
can in fact improve the contraction factor M(T; 1) to be enrT7/8.)

An immediate consequence of Lemma 2.1 is the following:
Short time boundedness (Corollary 2.2). Setting o--Jn-1][f] and w=0 in Lemma

2.1, we find

lln, [n,"-:’q)] IIJ,[v; f]-J,[w--o; f] + IlJ, tw--o; f]

<=M(T; n).llJ t.-l [f]ll + IIQ(,;  ),lli.
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We now consider a temporal interval of length T such that 4M(Tx; ,l).[/q < 1" assum-
ing IIJtn-ll[f]ll__< 20q in that interval, then together with Lemma 3.1 taking (r,p,m)=
(0, 2, 0), we obtain

)lf l.lf [+[f l<-_21f l,

and Corollary 2.2 follows by induction.
Owing to the last two results in the small, one may construct fixed point solutions,

u(t), as local solutions over time intervals [TN, TN+x] N=0,1,2,-.., such that
4M(TN+ TN; rt)’lU(ZN)l< 1. Thanks to the large L2-estimate in Lemma 2.3, the local
solutions just constructed can be patched in the large, over fixed length time intervals,
TN- NT1, N 0,1,. ., obtaining

Existence. (Theorem 2.4, Theorem 2.6). Given the initial data q(t=0) in H1, we
set f=(3q/3x)(t=O) for the initial value problem (2.1); let u(t), t>=O, be its global
solution, constructed according to the above recipe. Integrated once, we obtain a
solution for the K-S equation, (x, t)= f u(, t) d, which satisfies--choosing
in Lemma 2.3--

-x (t) <_enr. -x(t=0) O<=t<=T.

This proves Theorem 2.4. In order to show that u O/Ox possesses a certain degree of
smoothness, at least that of the initial data, we appeal to the short time contraction
estimate in Lemma 2.5 with s 0"

IlJ,[ol-J, tw] II,_-<M(T; )" (11oll / Ilwll).llo-wll
Consider first the time interval [0, T= T1] and let u=J[u] the fixed point solution
there; choosing v u and w= 0, we find

Ilull,-=lla,[ulll=<=M(Z ; n)llu[12+ IIO*
Using Lemma 2.3 and Lemma 3.1 with (r,p,m)=(0,2,2), we end up with

IlulIz<M(T l)lf
)- )_ 5+ If [2=< [f 12.

Successive application of the last inequality over the accumulated patching intervals,
implies

(5) ’/rl +
Ju(t; r/)I,=__< - If [/.

Choosing ,/= r/o, Theorem 2.6 now follows with a */o + ln(),

< (t=0) O<_t<_T<oo.-x ( )
H2 -e -x ,H

Remark. We note that the above solution =(x,t) lies, in fact, in the same
Sobolev space the initial data belong to, Hs, 0 __< s __< 2. This follows from a complement-
ing L2-estimate which we now derive" multiplying (1.1) by and integrating by parts,
we find

2 dt I,(t)l _-< (t)  (t)0x2
+ -a-Yx (t)
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We interpolate in a somewhat nonstandard way, Iq[ L =< elqbl + C. e- . Ixl, so that by
appropriately choosing e ,. 1(3ck/3x)( t)l- 2, the last inequality implies

1 d 2 12 -K
2 dt [(t)l Zv’l(t) +v

with K= K(l(8/Ox)(t)l). Thanks to Lemma 2.3, we can control

and L-boundedness now follows

I,(t)lse ,t. I,(t=0) l+ -l-g (t=0)
with arbitrarily small exponential growth factor 7, 7 > 0. Regarding the periodic case,
-w/2 x w/2, one may subtract the average

/2 X, ) &,

so that by invong Poincar6’s inequality for (t)-6(t) rather than inteolating, we
find

I,(t)-(t)lsl,(t=o)-(t=o)[+K (t=o)"t1/2.

5. A generalized Burgers equation. The results of the last sections were so
organized, in order to emphasize that the only a priori estimate required for the proofs,
concerns the linear dissipative part of the equation, see Lemma 3.1. Hence, the follow-
ing generalization can be easily worked out.

We consider the generalized Burgers equation

(5.1a)
u 3 (2) (3)3t

-P -x u=0

whose linear part, 3/3t + P(3/3x), is assumed strongly parabolic of order v,

(5.1b) Re(i6) Const. Il" 161.
Regarding the corresponding kernel, O(t; )=e-t(n+k(if)), we have, in analogy with
Lemma 3.1,

(5.2) [O(/; )*]Hm+rZC’e-(n-)t’t-(r-1/2+l/P)/’l]W.
In particular, considering Q(t; ) operating from L to H+s, it is found to have an
operator norm with an integrable singularity, -(s+3/2)/, provided s<u-. Argu-
ments similar to those introduced in 2, then lead us to

THOgM 5.1. Let u, v be two different solutions of the genera#zed Burgers equation
(5.1), with initial data lying in H, s<u-3/2. Then, there exist constants, C and0
(both may depend on [u(t= 0)1 + [v(t 0)1), such that the following estimate holds"

lu(t)-o(t) I.sz C’e u(t= 0)-o(t=
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We end up noting that the above recipe suggests itself, in studying the all im-
portant question regarding the long-time behavior of solutions for (5.1).

Remark. The special case P(/)x)--(-)2/x2)/2 can be considered as a one-
dimensional degenerate case of the formal d-dimensional Navier-Stokes equations;
global regularity in the latter case follows with dissipativity of order , > 1 + d/2, (see,
e.g., Rose and Sulem, J. de Physique, 39 (1978), pp. 441-484). In either way, one finds
, as the critical order of dissipativity which guarantees regularity in the one-dimen-
sional case, d= 1.
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