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Approximate Solutions of Nonlinear Conservation
Laws and Related Equations

Eitan Tadmor!

To Peter Lax and Louis Nirenberg on their 70** birthday

Abstract

During the recent decades there was an enormous amount of activity
related to the construction and analysis of modern algorithms for the
approximate solution of nonlinear hyperbolic conservation laws and
related problems.

To present some aspects of this successful activity, we discuss the an-
alytical tools which are used in the development of convergence theories
for these algorithms. These include classical compactness arguments
(based on BV a priori estimates), the use of compensated compact-
ness arguments (based on H ~!-compact entropy production), measure
valued solutions (measured by their negative entropy production), and
finally, we highlight the most recent addition to this bag of analytical
tools — the use of averaging lemmas which yield new compactness and
regularity results for nonlinear conservation laws and related equations.

We demonstrate how these analytical tools are used in the con-
vergence analysis of approximate solutions for hyperbolic conservation
laws and related equations. Our discussion includes examples of Total
Variation Diminishing (T'VD) finite-difference schemes; error estimates
derived from the one-sided stability of Godunov-type methods for con-
vex conservation laws (and their multidimensional analogue — viscos-
ity solutions of demi-concave Hamilton-Jacobi equations); we outline,
in the one-dimensional case, the convergence proof of finite-element
streamline-diffusion and spectral viscosity schemes based on the div-
curl lemma; we also address the questions of convergence and error es-
timates for multidimensional finite-volume schemes on non-rectangular
grids; and finally, we indicate the convergence of approximate solutions
with underlying kinetic formulation, e.g., finite-volume and relaxation
schemes, once their regularizing effect is quantified in terms of the av-
eraging lemma.
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1 Introduction

The construction, analysis and implementation of approximate solutions to
nonlinear conservation laws and related equations were the major focus of
an enormous amount of activity in recent decades. Modern algorithms were
developed for the accurate computation of shock discontinuities, slip lines,
and other similar phenomena which could be characterized by spontaneous
evolution of change in scales. Such phenomena pose a considerable com-
putational challenge, which is answered, at least. partially, by these newly
constructed algorithms. New modern algorithms were devised, that achieve
one or more of the desirable properties of high-resolution, efficiency, stabil-
ity — in particular, lack of spurious oscillations, etc. The impact of these
new algorithms ranges from the original impetus in the field of Computa-
tional Fluid Dynamics (CFD), to the fields oil recovery, moving fronts, image
processing,... [74], [137], [131], [1].

We survey a variety of these algorithms for the approximate solution
of nonlinear conservation laws. The presentation is neither comprehensive
nor complete — the scope is too wide for the present framework!. Instead,
we focus our attention of the analysis part — more precisely, we discuss the
analytical tools which are used to study the stability and convergence of
these modern algorithms. We use these analytical issues as our ’touring
guide’ to provide a readers’ digest on the relevant approximate methods,
while studying there convergence properties.

Some general references are in order. The theory of hyperbolic con-
servation laws is covered in [94], [173],[155], [147]. For the theory of their
numerical approximation consult [102],[57],[58],[157]. We are concerned with
analytical tools which are used in the convergence theories of such numerical
approximations. The monograph [49] could be consulted on recent devel-
opment regarding weak convergence. The reviews of [167], [122, 123] are
recommended references for the theory of compensated compactness, and
[39, 40],[17] deal with applications to conservation laws and their numerical
approximations. Measure-valued solutions in the context of nonlinear con-
servation laws were introduced in [41]. The articles [61], [52], [44] prove the
averaging lemma, and [110],[111],[77] contain applications in the context of
kinetic formulation for nonlinear conservation laws and related equations.

Acknowledgments. I thank R. Spigler and S. Venakides for the hospital-
ity during the 1996 Venice conference on ”Recent Advances in Partial Differ-
ential equations and Applications” honoring Peter Lax and Louis Nirenberg

! Among the methods omitted from our discussion are Dafermos’ polygonal method,
[34], the particle method, [171], relaxation algorithms, [173], [19],[82],[124], and Boltzmann
schemes, [38], [133],[136].
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2 Hyperbolic Conservation Laws

2.1 A very brief overview — m equations in d spatial dimen-
sions

The general set-up consists of m equations in d spatial dimensions

Op+ Vs -Alp) =0, (t,z) e RT x R4, (2.1)
Here, A(p) := (Ai(p),...,Aq(p)) is the d-dimensional flux, and
p:= (pi1(t,z),..., pm(t,x)) is the unknown m-vector subject to initial con-

ditions p(0,z) = po(z).
The basic facts concerning such nonlinear hyperbolic systems are, consult
[94],[112], [35],[155],[57],[147],

e The evolution of spontaneous shock discontinuities which requires weak
(distributional) solutions of (2.1);

e The existence of possibly infinitely many weak solutions of (2.1);

e To single out a unique ‘physically relevant’ weak solution of (2.1), we
seek a solution, p = p(t, z), which can be realized as a viscosity limit
solution, p = lim p®,

Op° + V- A(p®) = eV - (QVp®), €Q > 0; (2.2)

e The entropy condition. The notion of a viscosity limit solution is inti-
mately related to the notion of an entropy solution, p, which requires
that for all convex entropy functions, 7(p), there holds, [93], [88, §5]

8n(p) + Va - F(p) < 0. (2.3)

A scalar function, 7(p), is an entropy function associated with (2.1), if its
Hessian, " (p), symmetrizes the spatial Jacobians, A%(p),

n"(p)A5(p) = Ai(p) 'n"(p), J=1,...,d.
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It follows that in this case there exists an entropy flux,
F(p) := (Fi(p),...,Faq(p)), which is determined by the compatibility re-
lations,

n'(p)T As(p) = Fj(p)", j=1,...,d. (2.4)

The basic questions regarding the existence, uniqueness and stability of
entropy solutions for general systems are open. Instead, the present trend
seems to concentrate on special systems with additional properties which
enable to answer the questions of existence, stability, large time behavior, etc.
One-dimensional 2 x 2 systems is a notable example for such systems: their
properties can be analyzed in view of the existence of Riemann invariants
and a family of entropy functions, [55], [94, §6], [155], (39, 40]. The system of
m > 2 chromatographic equations, [77], is another example for such systems.

The difficulty of analyzing general systems of conservation laws is demon-
strated by the following negative result due to Temple, [170], which states
that already for systems with m > 2 equations, there exists no metric, D(;-),
such that the problem (2.1), (2.3) is contractive, i.e.,

/BD : D(pl(ta '); p2(t7 )) < D(pl(o, '); P2(O, ))7 0<t< T7 (m 2 2)
(2.5)
In this context we state the following.

Theorem 2.1 Assume the system (2.1) is endowed with a one-parameter
family of entropy pairs, (n(p;c), F(p;c)), ¢ € R™, satisfying the symmetry
property

n(p;c) =n(c;p), Fpsc) = Flc;p). (2.6)

Let pt, p? be two entropy solutions of (2.1). Then the following a priori
estimate holds

/ n(p (¢, 2); p*(t, 2))dz < / n(ob(2); P2 (2)) de. 2.7)

Couple of remarks is is order.

1. Theorem 2.1 seems to circumvent the negative statement of (2.5). This
is done by replacing the metric D(-;-), with the weaker topology in-
duced by a family of convex entropies, 7(-;-). Many physically rele-
vant systems are endowed with at least one convex entropy function
(-~ which in turn, is linked to the hyperbolic character of these sys-
tems, [60],[51],[119]). Systems with “rich” families of entropies like
those required in Theorem 2.1 are rare, however, consult [146]. The
instructive (yet exceptional...) scalar case is dealt in §2.2. If we re-
lax the contractivity requirement, then we find a uniqueness theory for
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one-dimensional systems which was recently developed by Bressan and
his co-workers, [11]-[14]; Bressan’s theory is based on the L!-stability
(rather than contractivity) of the entropy solution operator of one-
dimensional systems.

2. Theorem 2.1 is based on the observation that the symmetry property
(2.6) is the key ingredient for Kruzkov’s penetrating ideas in [88], which
extends his scalar arguments into the case of general systems. I have
not found a written reference of this extension (though it seems to be
part of the ’folklore’ familiar to some, [36],[148]). For completeness we
therefore turn to

Proof of Theorem 2.1(Sketch). p!(¢,z) being an entropy solution of (2.1)
satisfies the entropy inequality (2.3). We employ the latter with the entropy
pair, (n(p*;c), F(p';c)) parameterized with ¢ = p?(7,y). This tells us that
pl(t,z) satisfies

aen(p' (8, ); p2(1,9)) + Vo - F(p' (8, 2); p*(7,)) < 0. (2.8)
Let 5 denotes a symmetric C§° unit mass mollifier which converges to Dirac
mass in R as § | 0; set ¢5(t — 7,2 — y) := ws(557) [, ps(*5) as an ap-
proximate Dirac mass in RT x R%. Multiplication’ of the entropy inequality
(2.8) by ¢s(t — 7,z — y) yields

8 (psn(p"; p)) + Vi - (96 F(p*;0%)) < (Beds)n(p'; p2) + (Vas) - F(p*; p7).
(2.9)
A dual manipulation — this time with (7,y) as the primary integration vari-
ables of p?(7,v) and (t, ) parameterizing c = p'(t, ), yields

8- (¢sm(p% p")) + Vy - (¢6F (0% p)) < (8r6)m(p%; p) + (Vyos) - F(p%;0").

(2.10)
We now add the last two inequalities: by the symmetry property (2.1), the
sum of the right-hand sides of (2.9) and (2.10) vanishes, whereas by sending
§ to zero, the sum of the left-hand sides of (2.9) and (2.10) amounts to

dn(p'(t,); p°(t,2)) + Vo - F(p' (8, 2);0°(2,2)) 0.

The result follows by spatial integration. M

2.2 Scalar conservation laws (m =1,d > 1)

The family of admissible entropies in the scalar case consists of all convex
functions, and the envelope of this family leads to Kruzkov’s entropy pairs
88

n(pic) =|p—cl, Fp;c)=sgn(p—c)(Alp) — Alc)), c€R (2.11)
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Theorem 2.1 applies in this case and (2.7) now reads

o L'-contraction. If p', p? are two entropy solutions of the scalar conser-
vation law (2.1), then

1p*(2,-) = Pt M@y < 1P5(C) = po ()l a)- (2.12)

Thus, the entropy solution operator associated with scalar conservation
laws is L!-contractive (- or non-expansive to be exact), and hence, by the
Crandall-Tartar lemma [32], it is also monotone

Early constructions of approximate solutions for scalar conservation laws,
most notably — finite-difference approximations, utilized this monotonicity
property to construct convergent schemes, [30], [141]. Monotone approxima-
tions are limited, however, to first-order accuracy [71]. (We shall say more
on the issue of accuracy in §3.1). At this stage we note that the limitation
of first-order accuracy for monotone approximations, can be avoided if L!-
contractive solutions are replaced with (the weaker) requirement of bounded
variation solutions.

e TV bound. The solution operator associated with (2.1) is translation
invariant. Comparing the scalar entropy solution, p(t, -), with its trans-
late, p(t,- + Ax), the Ll-contraction statement in (2.12) yields the TV
bound, [172),

t,-+ Azx) — p(t, -
ot Moy < loo@lavs N, sy = sup 126 +82) = oz
Az#0 T

(2.14)
Construction of scalar entropy solutions by TV-bounded approximations
were used in the pioneering works of Oléinik [128], Vol’pert [172], Kruzkov
[88] and Crandall [28]. In the one-dimensional case, the TVD property (2.14)
enables to construct convergent difference schemes with high-order (> 1) res-
olution; Harten initiated the construction of high-resolution TVD schemes
in [69], following the earlier works [6], [98]. A whole generation of TVD
schemes was then developed during the beginning of the ’80s; some aspects
of these developments can be found in §3.2-§3.4.

2.3 One dimensional systems (m > 1,d =1)

We focus our attention on one-dimensional hyperbolic systems governed by

Oip + 0 A(p) =0, (t,z) € R" xR, (2.15)
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and subject to initial condition, p(0,z) = po(z). The hyperbolicity of the
system (2.15) is understood in the sense that its Jacobian, A’(p), has a
complete real eigensystem, (ax(p),7k(p)),k = 1,...,m. For example, the
existence of a convex entropy function guarantees the symmetry of A'(p) (—
w.r.t. 7(p)), and hence the complete real eigensystem. For most of our
discussion we shall assume the stronger strict hyperbolicity, i.e, distinct real
eigenvalues, ax(p) # a;(p).

A fundamental building block for the construction of approximate solu-
tions in the one-dimensional case is the solution of Riemann’s problem.

2.3.1 Riemann’s problem

Here one seeks a weak solution of (2.15) subject to the piecewise constant
initial data
pe, =<0
p(z,0) = { o, T 0. (2.16)

The solution is composed of m simple waves, each of which is associated
with one (right-)eigenpair, (ax(p),7k(p)), 1 < k < m. There are three
types of such waves: if the k-th field is genuinely nonlinear in the sense that
Tk - Vpag # 0, these are either k-shock or k-rarefaction waves; or, if the k-th
field is linearly degenerate in the sense that 4 - V,ap = 0, this is a k-th
contact wave.

These three simple waves are centered, depending on £ = £ (which is to
be expected from the dilation invariance of (2.15),(2.16)). The structure of
these three centered waves is as follows:

e A k-shock discontinuity of the form

_ pe, €<3
p(ﬁ) -‘{ pry € > 5;

here s denotes the shock speed which is determined by a Rankine-
Hugoniot relation so that ax(pg) > s > ax(pr).

e A k-rarefaction wave, p(€), which is directed along the correspond-
ing k-th eigenvector, p(¢) = ri(p(€)). Here 7 is the normalized k-
eigenvector, ri - Vax = 1 so that the gap between ax(pg) < ar(pr) is
filled with a fan of the form

ax(pe), ¢ < ax(pe)
ar(p(§)) = &, ax(pe) < & < ax(pr)
a’k(pr)a ak(P'r) <{
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e A k-contact discontinuity of the form

- Pe, §<3
p(g)“{pr’ §>S

where s denotes the shock speed which is determined by a Rankine-
Hugoniot relation so that ax(ps) = s = ag(pr).

We are concerned with admissible systems — systems which consist of either
genuinely nonlinear or linearly degenerate fields. We refer to [92] for the full
story which concludes with the celebrated

Theorem 2.2 (Lax solution of Riemann’s problem) The strictly hyper-
bolic admissible system (2.15), subject to Riemann initial data (2.16) with
pe — pr sufficiently small, admits a weak entropy solution, which consists of
shock- rarefaction- and contact-waves.

For a detailed account on the solution of Riemann problem consult [16].
An extension to a generalized Riemann problem subject to piecewise-linear
initial data can be found in [5], [99]. In this context we also mention the ap-
prozimate Riemann solvers, which became useful computational alternatives
to Lax’s construction. Roe introduced in [138] a linearized Riemann solver,
which resolves jumps discontinuities solely in terms of shock waves. Roe’s
solver has the computational advantage of sharp resolution (at least when
there is one dominant wave per computational cell); it may lead, however, to
unstable shocks. Osher and Solomon in [130] used, instead, an approximate
Riemann solver based solely on rarefaction fans; one then achieves stability
at the expense of deteriorated resolution of shock discontinuities.

2.3.2 Godunov, Lax-Friedrichs and Glimm schemes

We let p~%(t, z) be the entropy solution in the slab t" <t < t + At, subject
to piecewise constant data p®%(t = t",z) = 3 pPx, (). Here x denotes the
usual indicator function, x,(z) := 1{|x—aA:v|§A:v /23- Observe that in each
slab, p2%(t,z) consists of successive noninteracting Riemann solutions, at
least for a sufficiently small time interval At, for which the CFL condition,
At/Azmax|ag(p)| < 3 is met. In order to realize the solution in the next
time level, t"T1 = t" + At, it is extended with a jump discontinuity across the
line t"*!, by projecting it back into the finite-dimensional space of piecewise
constants. Different projections yield different schemes. We recall the basic
three.

Godunov Scheme. Godunov scheme [59] sets

P tn+1 .’B) Z pn+1
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where p7"! stands for the cell-average,

1
pptt= Az / pAF (™ - 0, 2)x, (z)dz,
T

which could be explicitly evaluated in terms of the flux of Riemann

solution across the cell interfaces at z,, 1,
2

_ _ At ntl na L
ot =py - -A—;{A(pm(t f,,,1) — A(PP(t +2,%_%)}- (2.17)

Godunov scheme had a profound impact on the field of Computational
Fluid Dynamics. His scheme became the forerunner for a large class of
upwind finite-volume methods which are evolved in terms of (exact or ap-
proximate) Riemann solvers. In my view, the most important aspect of
what Richtmyer & Morton describe as Godunov’s ”ingenious method” ({140,
p. 338]), lies in its global point of view: one does not simply evolve dis-
crete pointvalues {p'}, but instead, one evolves a globally defined solution,
p22(t,z), which is realized in terms of its discrete averages, {p"}.

Lax-Friedrichs Scheme. If the piecewise constant projection is carried
out over alternating staggered grids,

—n+1 . .
pZI% = = [ pAT(nt! — 0,2)X,,1(z)dz, then one effectively inte-

grates 'over the Riemann fan’ which is centered at (z, %,t”). This
recovers the Lax-Friedrichs (LxF) scheme, [91], with an explicit recur-
sion formula for the evolution of its cell-averages which reads

—n =N
et =Pt G - ag). @)

The Lax-Friedrichs scheme had a profound impact on the construction
and analysis of approximate methods for time-dependent problems, both
linear problems [50] and nonlinear systems [91]. The Lax-Friedrichs scheme
was and still is the stable, all purpose benchmark for approximate solution
of nonlinear systems.

Both Godunov and Lax-Friedrichs schemes realize the exact solution op-
erator in terms of its finite-dimensional cell-averaging projection. This ex-
plains the versatility of these schemes, and at the same time, it indicates
their limited resolution due to the fact that waves of different families that
are averaged together at each computational cell.

Glimm Scheme. Rather than averaging, Glimm’s scheme, [54], keeps its
sharp resolution by randomly sampling the evolving Riemann waves,

P2 ) = Z pAz(n+l g, T,p1t TnAx)XH%(:z:).
14
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This defines the Glimm’s approximate solution, p®~%(¢, z), depending
on the mesh parameters Az = AAt, and on the set of random variable
{r"}, uniformly distributed in [—3,3]. In its deterministic version,
Liu [113] employs equidistributed rather than a random sequence of

numbers {r"}.

Glimm solution, p®%(t,z), was then used to construct a solution for
one-dimensional admissible systems of conservation laws. Glimm’s cele-
brated theorem, [54], is still serving today as the cornerstone for existence
theorems which are concerned with general one-dimensional systems, e.g.
[113],[20],[144)].

Theorem 2.3 (Existence in the large) . There ezists a weak entropy
solution, p(t,-) € L*[[0,T], BV N L*(R;)|, of the strictly hyperbolic sys-
tem (2.15), subject to initial conditions with sufficiently small variation,
lpo()ll BVAL=(R,) < €

Glimm’s scheme has the advantage of retaining sharp resolution, since
in each computational cell, the local Riemann solution is realized by a ran-
domly chosen ’physical’ Riemann wave. Glimm’s scheme was turned into a
computational tool known as the Random Choice Method (RCM) in [22],
and it serves as the building block inside the front tracking method of Glimm
and his co-workers, [56], [21].

2.4 Multidimensional systems (m > 1,d > 1)

Very little rigor is known on m conservation laws in d spatial dimensions
once (m—1)(d—1) becomes positive, i.e., general multidimensional systems.
We address few major achievements.

Short time existence. For H’-initial data pg, with s > %, an H*-solution
exists for a time interval [0,7], with T = T(||po||xs), consult e.g,
[83],[78, §5.3].

Short time existence — piecewise analytic data. An existence result
conjectured by Richtmyer was proved by Harabetian in terms of a
Cauchy-Kowalewski type existence result [67].

Short time stability — piecewise smooth shock data. Existence for
piecewise smooth initial data where smoothness regions are separated
by shock discontinuities was studied in [117],[106].

Riemann problem. Already in the d = 2-dimensional case, the collection
of simple waves and their composed interaction in the construction
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of Riemann solution (- subject to piecewise constant initial data), is
considerably more complicated than in the one-dimensional setup. We
refer to the recent book [33] for a detailed discussion.

Compressible Euler equations. These system of m = 5 equations gov-
erning the evolution of density, 3-vector of momentum and Energy in
d = 3-space variables was — and still is, the prime target for further
developments in our understanding of general hyperbolic conservation
laws. We refer to Majda, [117], for a definitive summary of this aspect.

3 Finite Difference Methods — TVD Schemes

We begin by covering the space and time variables with a discrete grid:
it consists of time-steps of size Atf and rectangular spatial cells of size
Az := (Azy,...,Azq). Let C, denotes the cell which is centered around
the gridpoint z, = vAz := (1nAzy,...,v3Azs), and let {p'} denote the
gridfunction associated with this cell at time t = nAt. The gridfunction
{pl} may represent approximate gridvalues, p(t", z,), or approximate cell
averages, p(t", z,) (as in the Godunov and LxF schemes), or a combination
of higher moments, e.g., [23].

To construct a finite difference approximation of the conservation law
(2.1), one introduce a discrete numerical fluz, H(p™) := (H1(p"), ..., Hq(p")),
where H;(p") = H;(py_p, - -, Pp4+q) 1S an approximation to the A;(p") flux
across the interface separating the cell C, and its neighboring cell on the z;’s
direction, C,4¢;. Next, exact derivatives in (2.1) are replaced by divided dif-
ferences: the time-derivative is replaced with forward time difference, and
spatial derivatives are replaced by spatial divided differences expressed in
terms of Dz ¢y := (dvie; — ¢v)/Ax;. We arrive at the finite-difference
scheme of the form

d

PiT = pp = ALY Doy Hi(ph -, Pliig)- (3.1)
j=1

The essential feature of the difference schemes (3.1) is their conserva-
tion form: perfect derivatives in (2.1) are replaced here by ’perfect dif-
ferences’. It implies that the change in mass over any spatial domain €2,
> vz €0} P2 HC, | — > (vaven} PuICv|, depends solely on the discrete flux
across the boundaries of that domain. This is a discrete analogue for the no-
tion of a weak solution of (2.1). In their seminal paper [96], Lax & Wendroff
introduced the notion of conservative schemes, and prove that their strong
limit solutions are indeed weak solutions of (2.1).
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Theorem 3.1 (Lax & Wendroff [96]) Consider the conservative differ-
ence scheme (3.1), with consistent numerical fluz so that H;(p,...,p) =
Ai(p). Let At | 0 with fized grid-ratios Aj := Axt = Const;, and let pAt =

J
{p2} denote the correspondmg solution (pammeterzzed w.T.t. the vanishing

grid-size). Assume that p™t converges strongly, slimpt(t", z,) = p(t,z),
then p(z,t) is a weak solution of the conservation law (2.1).

The Lax-Wendroff theorem plays a fundamental role in the development
of the so called ’shock capturing’ methods. Instead of tracking jump dis-
continuities (— by evolving the smooth pieces of the approximate solution
on both sides of such discontinuities), conservative schemes capture a dis-
cretized version of shock discontinuities. Equipped with the Lax-Wendroff
theorem, it remains to prove strong convergence, which leads us to discuss
the compactness of {p}}.

3.1 Compactness arguments (m =d =1)

We deal with scalar gridfunctions, {p}}}, defined on the one-dimensional

Cartesian grid z, := vAz,t" := nAt with fixed mesh ratio A := &%. The

total variation of such gridfunction at time-level t™ is given by ), IA,OI’LLl l,
2

where Ap” 1= Py 11 —py. It is said to be total-variation-diminishing (TVD)

if
PRIV Z Vi (32)
14
Clearly, the TVD condition (3.2) is the discrete analogue of the scalar TV-
bound (2.14). Approximate solutions of difference schemes which respect
the TVD property (3.2), share the following desirable properties:

e Convergence — by Helly’s compactness argument, the piecewise-constant
approximate solution, p2%(t", z) = 5 pPx,(z), converges strongly to
a limit function, p(t", z) as we refine the grid, Az | 0. This together
with equicontinuity in time and the Lax-Wendroff theorem, yield a
weak solution, p(t, z), of the conservation law (2.1).

e Spurious oscillations — are excluded by the TVD condition (2.14).

e Accuracy — is not restricted to the first-order limitation of monotone
schemes. To be more precise, let us use p2i(t, ) to denote a global
realization (say — piecewise polynomial interpolant) of the approxi-
mate solution p? ~ p2t(t",z,). The truncation error of the difference
scheme is the amount by Wthh the approximate solution, p®t(t, ),
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fails to satisfy the conservation laws (2.1). The difference scheme is
a-order accurate if its truncation error is, namely,

18:0% + V- A(p2)]| = O((At)*). (3.3)

(Typically, a strong norm ||- || is used which is appropriate to the prob-
lem; in general, however, accuracy is indeed a norm-dependent quan-
tity). Consider for example, monotone difference schemes. Monotone
schemes are characterized by the fact that p?*! is an increasing func-
tion of the preceding gridvalues which participate in its stencil (3.1),
PY—py+-+3Pyyq (— so that the monotonicity property (2.13) holds) .
A classical result of Harten, Hyman & Lax [71] states that monotone
schemes are at most first-order accurate. TVD schemes, however, are
not restricted to this first-order accuracy limitation (at least in the
one-dimensional case?). We demonstrate this point in the context of
second-order TVD difference schemes.

3.2 TVD difference schemes

We follow the presentation in [132]. The starting point is the viscosity reg-
ularization (2.2) with vanishing viscosity of order ¢ = Az /2X (recall that A
denotes the fixed mesh-ratio, At/Axz),

Bip+ 0:Ap) = 52 0,(Q0sp). (3.4)
We discretize (3.4) with the help of
(i) An approzimate fluz, A" = ./i(p,"j_p“, ey Py Poipo1) R A(PD);
(ii) A numerical viscosity coefficient, QZ+% = Q(P)_pr1r--»Pusp)-

These discrete quantities are used to replace the temporal and spatial deriva-
tives in (3.4) by appropriate forward and centered divided differences. The
resulting finite difference method reads

A - i 1
1
ot = - S{ A - A s{Qn A, - QA L} (35)

Observe that (3.5) can be put into conservation form (3.1), in terms of the
numerical flux

1. - - 1
H,oy (o) = 5 (A + AD) = QL ATy,

?Consult [64], regarding the first-order accuracy limitation for multidimensional d > 1
TVD schemes. This limitation is linked to the lack of a ’'proper’ isotropic definition for
the total-variation of multidimensional gridfunctions.
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Also, the stencil on the right of (3.5) occupies the (2p + 1) neighboring grid-
values, p}_, ..., py,p,- Thus, (3.5) is a (2p+1)-points conservative difference-
scheme. Harten in [69], was the first to identify a useful sufficient criterion
for the TVD property for such scalar difference schemes. Harten’s criterion,
in its reformulation from [161], states that the difference scheme (3.5) is
TVD provided it contains ‘enough viscosity’ in the sense that

AA"

Y

<Qp1 <L (3.6)
u+-;-

We distinguish between two types of TVD schemes, depending on the size
of their stencils.
3.2.1 Three-point schemes

Three-point schemes (p = 1) are the simplest ones — their stencil on the
right of (3.5) occupies the three neighboring gridvalues, p}_,, p},p}, ;. In

this case, A? = A(pP), so that three-point schemes take the form

ot = o= D A )~ AWE) g { @y Al @y A ) 37)

Thus, three-point schemes are identified solely by their numerical viscos-
ity coefficient, QZ+ L = Q(p}, P}, 1), which characterize the TVD condition

(corresponding to (3.6))
AA™

n n n - v+3
)\Iay+%| S Qy+% S ]., au+% = Ap;’;"+1 (3.8)
2

The schemes of Roe [138], Godunov [59], and Engquist-Osher (EQ) [46], are
canonical examples of upwind schemes, associated with (increasing amounts
of) numerical viscosity coefficients, which are given by,

Qs = Mal,, |
QGodunov — )\ max [A(pl/+1)_2A() ( )]
V+2 CECU+% Apg+2
1 Py+1
QE%, = A— / A'(O)de.
1/+2 AP,H_% o l ( )l C

The viscosity coefficients of the three upwind schemes are the same,
Q;‘+1 = /\Ia”/‘+1 |, except for their different treatment of sonic points (where
2 2
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a(p})-a(py,1) <0). The Lax-Friedrichs (LxF) scheme (2.18) is the canonical
central scheme. It has a larger numerical viscosity coefficient Qlfﬁi = 1.
2

All the three-point TVD schemes are limited to first-order accuracy. In-
deed, condition (3.8) is in fact necessary for the TVD property of three-point
schemes, [160], and hence it excludes numerical viscosity associated with the
second-order Lax-Wendroff scheme, [96], inv_% = )‘2(G‘Z+% )2. Therefore,

scalar TVD schemes with more than first-order accuracy require at least
five-point stencils.

3.2.2 Five-point schemes

Following the influential works of Boris & Book [6], van Leer [98], Harten
[69], Osher [129], Roe [138] and others, many authors have constructed sec-
ond order TVD schemes, using five-point (- or wider) stencils. For a more
complete account of these works we refer to the recent books by LeVeque,
[102], and Godlewski & Raviart, [57]. A large number of these schemes were
constructed as second-order upgraded versions of the basic three-point up-
wind schemes. The FCT scheme of Boris & Book, [6], van Leer’s MUSCL
scheme [98], and the ULTIMATE scheme of Harten, [69], are prototype for
this trend.

We quote here a five-point TVD scheme of Nessyahu-Tadmor (NT) [125],
which is a second-order upgraded version of the central LxF scheme (2.18):
we use the same viscosity coefficient, @, 1= 1, but we augmented it with

a modified approximate flux, A,; expressed in terms of the cell averages, p,,

1
and the midvalues pz+2 = p — %(A(ﬁ:}))’ , this modified flux is given by

1
A, = A(pz+2) + (p2)' /2. Using these quantities in the viscosity form (3.5)
we end up with a second-order predictor-corrector scheme, which admits a
LxF-like staggered form (2.18)

nt+l _ A _
pv t = By = (ABD)), (3.9)
Pory T T2 T

(08) = (h) Aty nil "

—he Rl A - AT} (310)

Here, {w! } denotes the discrete numerical derivative of an arbitrary grid-
function {w,}. The choice w,, = 0 recovers the original first-order LxF

scheme (2.18). Second-order accuracy requires w!, ~ Azd,w(z,); a proto-
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type example is the so called min-mod limiter,

w,'/ = 5(81/—% + SV+_%) . min{]Awy_%_l, lAwy+%l}, Su+% = sgn(Awar%).

(3.11)
With this choice of a limiter, the central NT scheme (3.9)-(3.10) satisfies the
TVD condition (3.6), and at the same time, it retains formal second order
accuracy (at least away from extreme gridvalues, p,, where p;, = s,_ 1+

Sy+% = 0)
We conclude we few additional remarks.

Limiters A variety of discrete TVD limiters like (3.11) was explored dur-
ing the ’80s, e.g, [159] and the references therein. For example, a
generalization of (3.11) is provided by the family of min-mod limiters
depending on tuning parameters, 0 < 6, 1< 1,

1
w(8) = 5(5,_1+5,41) %

: 1
mm{HV_%IA'wV_% l, §Iwy+l - ’w,,_ll, 91/-}-% lAwy+%l}3.12)

An essential feature of these limiters is co-monotonicity: they are ’tai-
lored’ to produce piecewise-linear reconstruction of the form ) [w, +
A=w, (% — z,)|xv(z), which is co-monotone with (and hence, share the
TVD property of —) the underlying piecewise-constant approximation
Y wyxv(z). Another feature is the limiting property at extrema grid-
values (where p}, = 0), which is necessary in order to satisfy the TVD
property (3.2). In particular, these limiters are necessarily nonlinear
in the sense of their dependence on the discrete gridfunction.

Systems (One-dimensional problems). The question of convergence for ap-
proximate solution of hyperbolic systems is tied to the question of
existence of an entropy solution — in both cases there are no general
theories with m > 1 equations3. Nevertheless, the ingredients of scalar
high-resolution schemes were successfully integrated in the approxi-
mate solution of system of conservation laws.

Many of these high-resolution methods for systems, employ the Go-
dunov approach, where one evolves a global approximation which is
realized as a piecewise polynomial,

p(z,t") = pi(z)x;(x), BPu(zy) =P (3.13)
J

3There is a large literature concerning two equations — the 2 x 2 p-system and related
equations are surveyed in [155].
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Typically, this piecewise polynomial approximate solution is recon-
structed from the previously computed cell averages, {p} }, and in this
context we may distinguish between two main classes of methods: up-
wind and central methods.

Upwind schemes evaluate cell averages at the center of the piecewise
polynomial elements; integration of (2.15) over C, x [t",t"*!] yields

tn+1

1
n+l _ =n _
A A { /T _,, femey 0 ))dr /

T=t"

t'n,+1

F(p(r, 3, _3,))dr

This in turn requires the evaluation of fluxes along the discontinuous
cell interfaces, (7 x z,, +1 ). Consequently, upwind schemes must take
into account the characteristic speeds along such interfaces. Special
attention is required at those interfaces in which there is a combina-
tion of forward- and backward-going waves, where it is necessary to
decompose the “Riemann fan” and determine the separate contribu-
tion of each component by tracing “the direction of the wind”. These
characteristic decompositions ( — using exact or approximate Riemann
solvers) enable to solve with high resolution the corresponding charac-
teristic variables. At the same time, It is the need to follow these
characteristic variables which greatly complicates the upwind algo-
rithms, making them difficult to implement and generalize to complex
systems. The original first-order accurate Godunov scheme (2.17) is
the forerunner for all other upwind Godunov-type schemes. A vari-
ety of second- and higher-order sequels to Godunov upwind scheme
were constructed, analyzed and implemented with great success dur-
ing the seventies and eighties, starting with van-Leer’s MUSCL scheme
[98], followed by [138, 69, 129, 26]. These methods were subsequently
adapted for a variety of nonlinear related systems, ranging from incom-
pressible Euler equations, [4], [45], to reacting flows, semiconductors
modeling, .... We shall say more about these methods in §3.4 below.
At this point we refer to [58, 102] and the references therein a for a
more complete accounts on these developments.

In contrast to upwind schemes, central schemes evaluate staggered
cell averages at the breakpoints between the piecewise polynomial el-
ements,

tn+1

tn+l
P = - A [ | i [ f(p(T,arV))dr] .

T=t

Thus, averages are integrated over the entire Riemann fan, so that
the corresponding fluxes are now evaluated at the smooth centers of
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the cells, (7,z,). Consequently, costly Riemann-solvers required in the
upwind framework, can be now replaced by straightforward quadra-
ture rules. The first-order Lax-Friedrichs (LxF) scheme (2.18) is the
canonical example of such central difference schemes. The LxF scheme
(like Godunov’s scheme) is based on a piecewise constant approximate
solution, p,(z) = p,. Its Riemann-solver-free recipe, however, is con-
siderably simpler. Unfortunately, the LxF scheme introduces exces-
sive numerical viscosity (already in the scalar case outlined in §3.2.1
we have QL=F = 1 > QG0dwov) resulting in relatively poor resolu-
tion. The central scheme (3.9)-(3.10) is a second-order sequel to LxF
scheme, with greatly improved resolution. An attractive feature of the
central scheme (3.9)-(3.10) is that it avoids Riemann solvers: instead
of characteristic variables, one may use a componentwise extension of
the non-oscillatory limiters (3.12).

Multidimensional systems There are basically two approaches.

One approach is to reduce the problem into a series of one-dimensional
problems. Alternating Direction (ADI) methods and the closely re-
lated dimensional splitting methods, e.g., [140, §8.8-9], are effective,
widely used tools to solve multidimensional problems by piecing them
from one-dimensional problems — one dimension at a time. Still, in the
context of nonlinear conservation laws, dimensional splitting encoun-
ters several limitations, [31]. A particular instructive example for the
effect of dimensional splitting errors can be found in the approximate
solution of the weakly hyperbolic system studied in [48],[81, §4.3].

The other approach is ’genuinely multidimensional’. There is a vast
literature in this context. The beginning is with the pioneering multi-
dimensional second-order Lax-Wendroff scheme, [97]. To retain high-
resolution of multidimensional schemes without spurious oscillations,
requires one or more of several ingredients: a careful treatment of
waves propagations ('unwinding’), or alternatively, a correctly tuned
numerical dissipation which is free of Riemann-solvers (’central differ-
encing’), or the use of adaptive grids (which are not-necessarily rect-
angular), ... . Waves propagation in the context of multidimensional
upwind algorithms were studied in {25, 103, 139, 154] .... Another
‘genuinely multidimensional’ approach can be found in the positive
schemes of [95]. The pointwise formulation of ENO schemes due to
Shu & Osher, [151, 152], is another approach which avoids dimensional
splitting: here, the reconstruction of cell-averages is bypassed by the
reconstruction pointvalues of the fluxes in each dimension; the semi-
discrete fluxed are then integrated in time using non-oscillatory ODEs
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solvers (which are briefly mentioned in §3.4.2 below). Multidimensional
non-oscillatory central scheme was presented in [81], generalizing the
one-dimensional (3.9)-(3.10); consult [105],[89] for applications to the
multidimensional incompressible Euler equations. Finite volume meth-
ods, [85, 86, 24, 29]... , and finite-element methods (the streamline-
diffusion and discontinuous Galerkin schemes, [76, 79, 80, 146, 121]...)
have the advantage of a ’built-in’ recipe for discretization over general
triangular grids (we shall say more on these methods in §7 below). An-
other ’genuinely multidimensional’ approach is based on a relaxation
approximation was introduced in [82]. It employs a central scheme of
the type (3.9)-(3.10) to discretize the relaxation models models, [173],
119], [124],....

3.3 TVD filters

Every discretization method 1is associated with an appropriate
finite-dimensional projection. It is well known that linear projections which
are monotone (or equivalently, positive), are at most first-order accurate,
[59]. The lack of monotonicity for higher order projections is reflected by
spurious oscillations in the vicinity of jump discontinuities. These are evident
with the second-order (and higher) centered differences, whose dispersive na-
ture is responsible to the formation of binary oscillations [63],[104]. With
highly-accurate spectral projections, for example, these O(1) oscillations re-
flect the familiar Gibbs phenomena.

TVD schemes avoid spurious oscillations — to this end they use the
necessarily nonlinear projections (expressed in terms of nonlinear limiters
like those in (3.12)). TVD filters, instead, suppress spurious oscillations. At
each time-level, one post-process the computed (possibly oscillatory) solution
{p™}. In this context we highlight the following.

e Linear filters. Consider linear convection problems with discontin-
uous initial data. Approximate solutions of such problems suffer from loss
of accuracy due to propagation of singularities and their interference over
domain of dependence of the numerical scheme. Instead, one can show, by
duality argument, that the numerical scheme retains its original order of
accuracy when the truncation in (3.3) is measured w.r.t. sufficiently large
negative norm, [120]. Linear filters then enable to accurately recover the ex-
act solution in any smoothness region of the exact solution, bounded away
from its singular support. These filters amount to finite-order mollifiers
[120], or spectrally accurate mollifiers, [118], [66], which accurately recover
pointvalues from high-order moments. (We outline such technique in §4.2).

e Artificial compression. Artificial compression was introduced by
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Harten [68] as a method to sharpen the poor resolution of contact discon-
tinuities. (Typically, the resolution of contacts by a-order schemes diffuses
over a fan of width (At)(®/(e+1)) The idea is to enhance the focusing
of characteristics by adding an anti-diffusion modification to the numerical
fluxes: if welet H,, 1 denote the numerical flux of a three-point TVD scheme

(3.7), then one replaces it with a modified flux, H,.,1 — H, 1+ H, 1,
which is expressed in terms of the min-mod limiter (3.11)
H

1
vy = 510+ s = sgn(Bp, )P = Aul)- (3.14)

S

Artificial compression can be used as a second-order TVD filter as well.
Let @, 1 be the numerical viscosity of a three-point TVD scheme (3.7).

Then, by adding an artificial compression modification (3.14) which is based
on the f-limiters (3.12), p!, = p.,(0) with 9V+% 1= Qy+% — A2a3+%, one
obtains a second-order TVD scheme, [69], [132]. Thus, in this case the
artificial compression (3.14) can be viewed as a second-order anti-diffusive

TVD filter of first-order TVD schemes
prtte— ol = {H, 1 (") — H,_1 (o™} (3.15)

e TVD filters. A particularly useful and effective, general-purpose TVD
filter was introduced by Engquist et. al. in [47]; it proceeds in three steps.
{i} (Isolate extrema). First, isolate extrema cells where Ap” , - Ap” 41 <0

2 2

{ii} (Measure local oscillation). Second, measure local oscillation, osc,, by
setting

: 1 m min
osc, 1= min{m,, 5 M.}, YR Bl SR (Y SIS RY-VATEY

{iii} (Filtering). Finally, oscillatory minima (respectively — oscillatory max-

ima) are increased (and respectively, increased) by updating pl} — p} +

sgn(Ap? 41 Joscy,, and the corresponding neighboring gridvalue is modified
2

by subtracting the same amount to retain conservation. This post-processing
can be repeated, if necessary, and one may use a local maximum principle,
minjp;-‘ <ppr < maxjp;-‘ as a stopping criterion. In this case, the above filter
becomes TVD once the binary oscillations are removed, [153].

3.4 TVB approximations

3.4.1 Higher resolution schemes (with three letters acronym)

We have already mentioned the essential role played by nonlinear limiters
in TVD schemes. The mechanism in these nonlinear limiters is switched on
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in extrema cells, so that the zero discrete slope p’ = 0 avoids new spurious
extrema. This, in turn, leads to deteriorated first-order local accuracy at
non-sonic extrema, and global accuracy is therefore limited to second-order*.

To obtain an improved accuracy, one seeks a more accurate realization
of the approximate solution, in terms of higher (than first-order) piecewise
polynomials

p2e(t", ) Zpy xv(z), pu(z) = me

Ty (3.16)

Here, the exact solution is represented in a cell C, in terms of an r-order
polynomial p,,, which is reconstructed from the its neighboring cell averages,
{pv,}. If we let p2%(t > t",-) denote the entropy solution subject to the
reconstructed data at ¢t = t*, P2%p(t",-), then the corresponding Godunov-
type scheme governs the evolution of cell averages

1
prtl = o /pA”B(tThLl —0,z)xy(z)dz. (3.17)
T

The properties of Godunov-type scheme are determined by the polyno-
mial reconstruction should meet three contradicting requirements:

{i} Conservation: p,(x) should be cell conservative in the sense that
fe. pu(z) = f pu(x). This tells us that PA% is a (possibly nonlinear) pro-
jection, which in turn makes (3.17) a conservative scheme in the sense of
Lax-Wendroff, (3.1).

{ii} Accuracy: p(J) (AzOL) p(t", z,).

At this stage, we have to relax the TVD requirement. This brings us to the
third requirement of

{iii} TVB bound: we seek a bound on the total variation on the computed
solution. Of course, a bounded variation, ||p®%(t?,-)||py < Const. (and in
fact, even the weaker (Az)?||p®%||py < Const.) will suffice for convergence
by L!-compactness arguments.

The (re-)construction of non-oscillatory polynomials led to new high-
resolution schemes. In this context we mention the following methods (which
were popularized by their trade-mark of three-letters acronym ...):
the Piecewise-Parabolic Method (PPM) [26], the Uniformly Non-Oscillatory
(UNO) scheme [73], and the Essentially Non-Oscillatory schemes (ENO) of

“The implicit assumption is that we seek an approximation to piecewise-smooth solu-
tions with finitely many oscillations, [165]. The convergence theories apply to general BV
solutions. Yet, general BV solutions cannot be resolved in actual computations in terms of
‘classical’ macroscopic discretizations - finite-difference, finite-element, spectral methods,
etc. Such methods can faithfully resolve piecewise smooth solutions.
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Harten et. al. [70]. There is large numerical evidence that these highly-
accurate methods are TVB (and hence convergent), at least for a large class
of piecewise-smooth solutions. We should note, however, that the conver-
gence question of these schemes is open. (It is my opinion that new char-
acterizations of the (piecewise) regularity of solutions to conservation laws,
e.g., [37], together with additional tools to analyze their compactness, are
necessary in order to address the questions of convergence and stability of
these highly-accurate schemes).

There are alternative approach to to construct high-resolution approxi-

mations which circumvent the TVD limitations. We conclude by mentioning
the following two.
One approach is to evolve more than one-piece of information per cell. This
is fundamentally different from standard Godunov-type schemes where only
the cell average is evolved (and higher order projections are reconstructed
from these averages — one per cell). In this context we mention the quasi-
monotone TVB schemes introduced in [23]. Here, one use a TVD evolution of
cell averages together with additional higher moments. Another instructive
example for this approach is found in the third-order TVB scheme, [142]: in
fact, Sanders constructed a third-order non-expansive scheme (circumvent-
ing the first-order limitation of [71]), by using a 2 x 2 system which governs
the first two moments of the scalar solution. More recently, Bouchut et.
al. [8], constructed a second-order MUSCL scheme which respects a discrete
version of the entropy inequality (2.3) w.r.t all Kruzkov’s scalar entropy pairs
in (2.11); this circumvents the second-order limitation of Osher & Tadmor
[132, Theorem 7.3], by evolving both — the cell average and the discrete slope
in each computational cell.

Another approach to enforce a TVB bound on higher(> 2)-resolution
schemes, makes use of gridsize-dependent limiters, p) = p(){5"*, Az}, such
that the following holds, e.g., [149],

o2 (L, sy < |p2% (™, )| By + Const - Az.

Such Az-dependent limiters fail to satisfy, however, the basic dilation in-
variance of (2.15)-(2.16), (t,z) — (ct, cz).

3.4.2 Time discretizations

One may consider separately the discretization of time and spatial variables.
Let Py denote a (possibly nonlinear) finite-dimensional spatial discretization
of (2.1); this yields an N-dimensional approximate solution, py(t), which is
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governed by the system of NV nonlinear ODEs

%PN(t) = Pn(pn (2))- (3.18)

System (3.18) is a semi-discrete approximation of (2.1). For example, if
we let Py = P2%, N ~ (Az)™%, to be one of the piecewise-polynomial
reconstructions associated with Godunov-type methods in (3.16), then one
ends up with a semi-discrete finite-difference method, the so called method of
lines. In fact, our discussion on streamline-diffusion and spectral approxima-
tions in §5 and §6 below will be primarily concerned with such semi-discrete
approximations.

An explicit time discretization of (3.18) proceeds by either a multi-level or
a Runge-Kutta method. A CFL condition should be met, unless one accounts
for wave interactions, consult [101]. For the construction of non-oscillatory
schemes, one seeks time discretizations which retain the non-oscillatory prop-
erties of the spatial discretization, Py. In this context we mention the
TVB time-discretizations of Shu & Osher, [150],[151, 152]. Here, one ob-
tains high-order multi-level and Runge-Kutta time discretizations as convez
combinations of the standard forward time differencing, which amounts to
the first-order accurate forward Euler method. Consequently, the time dis-
cretizations [151, 152] retain the nonoscillatory properties of the low-order
forward Euler time differencing — in particular, TVD/TVB bounds, and at
the same time, they enable to match the time accuracy with the high-order
spatial accuracy.

4 Godunov Type Methods

4.1 Compactness arguments cont’d — one-sided stability es-
timates

We prove convergence and derive error bounds using one-sided stability es-
timates. The one-sided stability estimates restrict our discussion to scalar
equations — one-dimensional convex conservation laws in §4.2 and multidi-
mensional convex Hamilton-Jacobi equation in §4.3. (We refer to [100] for
a recent contribution concerning the one-sided stability of one-dimensional
systems). We begin with the case d = 1.

Let {p°(t,z)} be a family of approximate solutions tagged by their small-
scale parameterization, €. To upper-bound the convergence rate of such
approximations, we shall need the usual two ingredients of stability and
consistency.

o Lip™-stability. The family {p°} is LipT-stable if
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0% (t, )| Lip+ := sup Ozp°(t, z) < Const. (4.1)
T

This notion of LipT-stability is motivated by Oléinik’s One-Sided Lipschitz
Condition (OSLC), p;(t,:) < Const, which uniquely identifies the entropy
solution of conver conservation laws, (2.15), with scalar A” > 0. Since the
Lip*-(semi)-norm dominates the total-variation,

l0° (2 )lBv < Const.|lp®(t, Lip+ + lo6( )L, Const = 2|supp,p(2,-)],

{p®} have bounded variation and convergence follows. Equipped with Lip™-
stability, we are able to quantify this convergence statement. To this end,
we measure the local truncation error in terms of

e Lip'-consistency. The family {p°} is Lip’-consistent of order ¢ if

100" + 8$A(p8)”L'ip'(t,x) ~ E. (4.2)

It follows that the stability+consistency in the above sense, imply the
convergence of {p®} to the entropy solution, p, and that the following error
estimates hold [163], [126],

1—sp

6% (¢, ) — (&, Mwe Loy ~e %, —1<s<1/p. (4.3)

The case (s,p) = (—1,1) corresponds to a sharp Lip’-error estimate of order
¢ — the Lip'-size of the truncation in (4.2); the case (s,p) = (0,1) yields an
Ll-error estimate of order one-half, in agreement with Kuznetsov’s general
convergence theory, [90]. (We shall return to it in §7.3). Moreover, additional
local error estimates follow, and we illustrate this in the context of Godunov-
type schemes.

4.2 Godunov type methods revisited (m =d = 1)

Godunov type schemes form a special class of transport projection methods
for the approximate solution of nonlinear conservation laws, [72].

Let E(ts — t1) denote the entropy solution operator associated with the
convex conservation law (2.15). A Godunov-type method yields a globally
defined approximate solution, p2%(t,z), which is governed by iterating the
evolution-projection cycle,

E(t —t" Dp(, "), "7 <t <t™ = nAt,
P (1) = (4.4)
PAZp(-, 1" - 0), t=1",

subject to initialization step, p(t = 0,-) = P2%uq(-).
Here, P2% is an arbitrary, possibly nonlinear conservative projection, which
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depends on a small spatial scale Az. For example, the piecewise polyno-
mial projection (3.16), P2%p(x) = 3. p,(z)xy(z), where the x,’s are the
characteristic functions of cells C, with possibly variable sizes, Az < |C,| <
Const.Az.

The question of Lip'-consistency for Godunov-type schemes based on
cell-conservative projections, P2%, could be answered in terms of the L!-
size of I — P over all BV functions [127]. Together with Lip™-stability we

conclude
l—sg

1p22(t, ) = p(t, Mlwsw < Const.|lI = Pllgy_, 11 (4.5)

The last error bound, (4.5), tells us that the convergence rate of a
Godunov-type scheme depends solely on the properties of PA%. First, Lip™t
stability is guaranteed if P2® retains the OSLC of the exact solution oper-
ator; the OSLC property of such projections was studied in [128],[10], [126].
Second, the convergence rate depends on measuring P2% as an approxi-
mate identity. Typically, ||I — P2%||gy_p: is of order O(Az), and (4.5)
yields the familiar L! rate of order O(v/Axz), [114], [30], [141], [145],... (and
[24, 27, 85, 86, 7] in the multidimensional case). Moreover, one can inter-
polate between the weak W ~1(L!)-error estimate of order O(Axz), and the
one-sided Lipschitz bounds of p and p»* to conclude, [163]

05 (t,2) — p(t, 2)| < Const.[1 + max|pz(t, 2)[](Az)'/°.

This shows a pointwise convergence which depends solely on the local smooth-
ness of the entropy solution in Q, := {y| |y — z| < C(Az)/3}.
4.3 Hamilton-Jacobi equations (m =1,d > 1)

We consider the multidimensional Hamilton-Jacobi (HJ) equation
Op+H(Vyp) =0, (t,z)€ RT x RY, (4.6)

with convex Hamiltonian, H” > 0. Its unique viscosity solution is identified
by the one-sided concavity condition, D2p < Const., consult [87], [108].
Given a family of approximate HJ solutions, {p®}, we make the analogous
one-sided stability requirement of

e Demi-concave stability. The family {p°} is demo-concave stable if

D2pf < Const. (4.7)

We then have the following.
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Theorem 4.1 ([107]) Assume {pi} and {p5} are two demi-concave stable
famalies of approrimate solutions. Then

165(8,7) = p3(t)llrmy < Constf|pi(0,-) — p5(0, )l (z) +

2
+ Const. > 10405 + H(Vp§)ll 11 (1,0)-(4-8)
j=1

If we let p§ = p!, p§ = p? denote two demi-concave viscosity solutions, then
(4.8) is an Ll-stability statement (compared with the usual L*-stability
statements of viscosity solutions, [29]). If we let {p{} = {p°} denote a given
family of demi-concave approximate HJ solutions, and let p§ equals the exact
viscosity solution p, then (4.8) yields the L!-error estimate

16°(t:) = p(t, Mzs () < Const.9up” + H(Vap)lpr(e) ~ O)-  (4:9)

This corresponds to the Lip'-error estimate of (4.3) with (s,p) = (-1,1).

1+
One can then interpolate from (4.9) an LP-error estimates of order (’)(ETPE).
For a general L*°-convergence theory for approximate solutions to HJ equa-
tions we refer to [3] and the references therein.

5 Streamline Diffusion Finite Element Schemes

5.1 Compensated compactness (m < 2,d = 1)

We deal with a family of approximate solutions, {p}, such that
(1) It is uniformly bounded, p° € L™, with a weak* limit, p* — p;

(ii) The entropy production, for all convex entropies 7, lies in a compact
subset of W1 (L2(t, 7)),

V" > 0: Om(p%) + 0. F(p°) — W, H(L2(t, z)). (5.1)

loc

The conclusion is that A(p®*) — A(p), and hence p is a weak solution; in
fact, there is a strong convergence, p* — p, on any nonaffine interval of
A(+). For a complete account on the theory of compensated compactness we
refer to the innovative works of Tartar [167] and Murat [123]. In the present
context, compensated compactness argument is based on a clever application
of the div-curl lemma. First scalar applications are due to Murat-Tartar,
[122],[167], followed by extensions to certain m = 2 systems by DiPerna [39]
and Chen [17].
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The current framework has the advantage of dealing with L2-type esti-
mates rather than the more intricate BV framework. How does one verify the
W, }(L*)-condition (5.1)? we illustrate this point with canonical viscosity
approximation (2.2). Multiplication by 1’ shows that its entropy production
amounts to (7' Qpt)z — en”Q(p%)?. By entropy convexity, en”’Q > 0°, and

space-time integration yields

e An entropy production bound

0p°
Vel

Though this bound is too weak for strong compactness, it is the key es-
timate behind the W, 7 (L?)-compactness condition (5.1). We continue with

the specific examples of streamline-diffusion in §5.2 and spectral viscosity
methods in §6.

”leoc(t’x) S Const. (52)

5.2 The streamline diffusion method

The Streamline Diffusion (SD) finite element scheme, due to Hughes, John-
son, Szepessy and their co-workers [76], [79], [80], was one of the first methods
whose convergence was analyzed by compensated compactness arguments.
(Of course, finite-element methods fit into L2-type Hilbert-space arguments).
In the SD method, formulated here in several space dimensions, one seeks a
piecewise polynomial, {p®*}, which is uniquely determined by requiring for
all piecewise polynomial test functions 4%,

(0ep% + Vg - A(p27), 97 + Az | (Y7 + A (%" )Y2") ) = 0. (5.3)

Here, Az denotes the spatial grid size (for simplicity we ignore time dis-
cretization). The expression inside the framed box on the left represents a
diffusion term along the streamlines, & = A'(p™?). Setting the test function,
PA% = pA (5.3) yields the desired entropy production bound

VAZ||8:p2% + V- A(pA"“’)Hleoc(t,x) < Const. (5.4)

Thus, the spatial derivative in (5.2) is replaced here by a streamline-directional
gradient. This together with an L*-bound imply W, ! (L?)-compact entropy
production, (5.1), and convergence follows [79],[80],[158]. We note in passing
that the extension of the SD method for systems of equations is carried out
by projection into entropy variables, [119], which in turn provide the correct
interpretation of (5.4) as an entropy production bound.

®Observe that the viscosity matrix is therefore required to be positive w.r.t. the Hessian
1

n.
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5.3 TVD schemes revisited (d = 1)

We replace the streamline diffusion term inside the framed box on the left
of (5.3) by a weighted spatial diffusion expression,

(0ip™ + 0, A(p™7),p2%) + Az - | (027, 95%) g | = 0.

This yields a semi-discrete finite-difference scheme in its viscosity form (3.5),
and one may carry an alternative convergence analysis based on compensated
compactness arguments [169].

6 Spectral Viscosity Approximations

6.1 Compensated compactness cont’d (m < 2,d = 1)

Let Py denote an appropriate spatial projection into the space of N-degree
polynomials,

Prp(t,z) = Y pr(t)¢r(z);

|k|<N

here {¢x} stands for a given family of orthogonal polynomials, either trigono-
metric or algebraic ones, e.g., {¢***}, {Lx(z)}, {Tx(z)}, etc. The correspond-
ing N-degree approximate solution, px(t,z), is governed by the spectral
viscosity (SV) approximation

1
Otpn + 0PN A(pn) = Naa:(Q * OLpN)- (6.1)

The left hand side of (6.1) is the standard spectral approximation of the
conservation law (2.1). The expression on the right represents the so called
spectral viscosity introduced in [162]. It contains a minimal amount of high-
modes regularization which retains the underlying spectral accuracy of the
overall approximation,

—a (Q * Bzpn) : Z Qrr(t) bk ().

|k1>N9

It involves a viscous-free zone for the first N modes, 0 < 6 < % High modes

diffusion is tuned by the viscosity coefficients Q.
Spurious Gibbs oscillations violate the strict TVD condition in this case.
Instead, an entropy production estimate, analogous to (5.2) is sought,

=%
.

22 (t,0) < Const.
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This together with an L°°-bound carry out the convergence analysis by com-
pensated compactness arguments, [162], [116]. Extensions to certain m = 2
systems can be found in [143].

6.2 Hyper-viscosity approximations

The second-order high-modes diffusion on the right of (6.1) is replaced by
higher 2s-order diffusion,

( 1)s+1
N2s 1

s+1
(sz 1 Z Qrhx t)¢ )(2). (6.2)

|k|>N?®

251 02(Q * OzpN) =

This allows for a larger viscosity-free zone of size N?, with 0 < 6 < 23 1

(with possibly s = sy < v/N), consult [164]. The underlying hyper-v1sc031ty
approximation (for say s = 2) reads

Oip° + 0. A(p%) + 30205 = 0. (6.3)

The solution operator associated with (6.3) is not monotone, hence L!-
contraction and the TVD condition fail in this case. Instead, compensated
compactness arguments show, under the assumption of an L*°- bound®, the
hyper-viscosity approximation (6.3) and its analogous spectral-viscosity ap-
proximations, converge to the entropy solution.

7 Finite Volume Schemes (d > 1)

7.1 Measure-valued solutions (m =1,d > 1)

We turn our attention to the multidimensional scalar case, dealing with a
families of uniformly bounded approximate solutions, {pf}, with weak* limit,
p¢ — p. DiPerna’s result [41] states that if the entropy production of such a
family tends weakly to a negative measure, m < 0,

V" > 0: Om(p°) + Vg - F(p®) — m <0, (7.1)

then the measure-valued solution p coincides with the entropy solution, and
convergence follows. This framework was used to prove the convergence of
multidimensional finite-difference schemes [27], streamline diffusion method
[79],[80], spectral-viscosity approximations [18] and finite-volume schemes
[24], [86],[85]. We focus our attention on the latter.

®The L* boundedness of (6.3) is to the best of my knowledge, an open question, [62].
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7.2 Finite-volume schemes

We are concerned with finite-volume schemes based on possibly unstructured
triangulation grid {T,} (for simplicity we restrict attention to the d = 2
case). The spatial domain is covered by a triangulation, {T|v}, and we
compute approximate averages over these triangles, p}, ~ T——[ fT (t", z)dz,
governed by the finite volume (FV) scheme

) A -
it =p0 — = A, (o}, 0},)- (7.2)

Here fl,,” stand for approximate fluxes across the interfaces of T, and its
neighboring triangles (identified by a secondary index p).

Typically, the approximate fluxes, fi,,“ are derived on the basis of ap-
proximate Riemann solvers across these interfaces, which yield a monotone
scheme. That is, the right hand side of (7.2) is a monotone function of its ar-
guments (p7, p{,’”), and hence the corresponding FV scheme is L!-contractive.
However, at this stage one cannot proceed with the previous compactness
arguments which apply to TVD schemes over fixed Cartesian grid: since the
grid is unstructured, the discrete solution operator is not translation invari-
ant and L!-contraction need not imply a TV bound. Instead, an entropy
dissipation estimate yields

ZAtZ o), — pﬁJ(Am)H < Const, 0<6<1. (7.3)

n v,

Observe that (7.3) is weaker than a TV bound (corresponding to 6 = 0), yet
it suffices for convergence to a measure-valued solution, consult [24], [85].

7.3 Error estimates — compactness arguments revisited

Kuznetsov [90] was the first to provide error estimates for scalar approximate
solutions, {p°}, of multidimensional scalar conservation laws. Subsequently,
many authors have used Kuznetsov’s approach to prove convergence + L!-
error estimates; we refer for the detailed treatments of [141], [115], [166],...
. A more recent treatment of [24] employs the entropy dissipation estimate
(7.3), which in turn, by Kuznetsov arguments, yields an L!-convergence rate
estimate of order (Aa:) 5 (independently of the BV bound).

Kuznetsov’s approach employs a regularized version of Kruzkov’s entropy
pairs in (2.11), n°(p;c) ~ [p— |, F*(p;¢) ~ sgn(p — c)(A(p) — A(c)). Here,
one measures by how much the entropy dissipation rate of {p°} fails to
satisfy the entropy inequality (2.3), with Kruzkov’s regularized entropies.
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Following the general recent convergence result of [7], we consider a family
of approximate solutions, {p®}, which satisfies

O4|p® — el + V- {sgn(p® — c)(A(p®) — A(c))} < 8iRo(t,2) + Vo R(¢, z), (7.4)

with
| Ro(t, z)l| M, . + | R(E, z)l|M,, < Const-e. (7.5)

Then, the convergence rate proof proceeds along the lines of Theorem 2.1:
Using the key property of symmetry of the regularized entropy pairs, (7% :=
¢sm, F® := ¢4 F), one finds [ n°(p%; p)dz < Const.c/é. In addition, there is
a regularization error, ||® — Nl z1(g), of size O(6), and an L! error estimate
of order O(4/€) follows (under reasonable assumptions on the L!-initial error
w.r.t. BV data), consult [7]

16°(t,) = (8, )l o) < Comst.
Observe that this error estimate, based on (7.4)-(7.5) is the multidimensional
analogue of the Lip'-consistency requirement we met earlier in (4.2).
8 Kinetic Approximations

8.1 Velocity averaging lemmas (m > 1,d > 1)

We deal with solutions to transport equations
a(v) ) v:vf(wa ’U) = 859(3:7 ’U). (81)

The averaging lemmas, [61], [52], [44], state that in the generic non-degenerate
case, averaging over the velocity space, f(z) := fv f(z,v)dv, yields a gain of
spatial regularity. The prototype statement reads

Lemma 8.1 ([44], [110]) . Let f € LP(z,v) be a solution of the transport
equation (8.1) with ¢ € L% (z,v),1 < ¢ < p < 2. Assume the following
non-degeneracy condition holds

measy{v| |a(v) - {| < 6}g=1 < Const- 6%,  a € (0,1). (8.2)

Then f(z) := [, f(z,v)dv belongs to Sobolev space WO(L'(z)),

flz) e wl(L (z)), #6<

o 1
o1-B)+(s+1)p T
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Variants of the averaging lemmas were used by DiPerna and Lions to con-
struct global weak (renormalized) solutions of Boltzmann, Vlasov-Maxwell
and related kinetic systems, [42], [43]; in Bardos et. al., [2], averaging lem-
mas were used to construct solutions of the incompressible Navier-Stokes
equations. We turn our attention to their use in the context of nonlinear
conservation laws and related equations.

8.1.1 Scalar conservation laws
The following result, adapted from [110], is in the heart of matter.

Theorem 8.1 ([110]) Consider the scalar conservation law (2.1) whose
fluz satisfies the non-degeneracy condition (consult (8.2))

Ja € (0,1) : meas,{v| |7+ A'(v) - €| < 6} < Const- 6%, Vri+|€*=1.
(8.4)
Let {pt} be a family of approzimate solutions satisfying the entropy condition

(2.3),

On(p®) + V- F(p®) <0, vn" > 0. (8.5)
Then p*(t,z) € Wlf(L’"(t, z)), r= g—ig.

Proof. To simplify notations, we use the customary 0%* index for time
direction,

T =(t & 30,21,...,24),  Alp) = (Ao(p) =1, A1(p), ..., Au(p))
The entropy condition (8.5) with Kruzkov entropy pairs (2.1), reads
Ve - [sgn(p® —v)(A(p°) — A(v))] < 0.
This defines a family of non-negative measures, mé(z, v),
Va - [sgn(v)A(v) — sgn(p® — v)(A(p®) — A(v))] =: m*(z, v). (8.6)

Differentiate (8.6) w.r.t. v: one finds that the indicator function, f(z,v) =
Xpe (v), where
+1 0<v<pf
Xpe(v) =< -1 pP<ov<0 , (8.7)
0 |v| >p°

satisfies the transport equation (8.1) with g(z,v) = m®(z,v) € M,, 7. We
now apply the averaging lemma with (s = ¢ = 1,p = 2), which tells us that
p%(t,x) = [ xpe(v)dv € WFH (L7 (¢, 7)) as asserted. M

loc

"Once more, it is the symmetry property (2.6) which has a key role in the derivation
of the transport kinetic formulation (8.1).
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Couple of remarks is in order.

1. The last theorem quantifies the regularity of entropy satisfying ap-
proximate solutions, {p¢}, in terms of the non-degeneracy (8.5). In
particular {p*} is compact and strong convergence follows.

In fact more can be said if the solution operator associated with {p°}
is translation invariant: a bootstrap argument yields an improved reg-
ularity, [110],

pf(t > 0,-) € Wa+z (LY (z)). (8.8)

This shows that due to nonlinearity, (8.4), the corresponding solution
operator has a regularization effect beyond the initial layer at ¢ = 0.

2. In particular, Theorem 8.1 provides an alternative route to analyze the
entropy stable multi-dimensional schemes whose convergence proof was
previously accomplished by measure-valued arguments; here we refer
to finite-difference, finite-volume, streamline-diffusion and spectral ap-
proximations ..., which were studied in {29, 24, 85, 86, 79, 80, 18],....
Indeed, the feature in the convergence proof of all these methods is the
Wl;cl(Lz)-compact entropy production, (8.11). Hence, if the underly-
ing conservation law satisfies the non-linear degeneracy condition,

meas,{v| 7+ A'(v) - £ =0} =0,

then the corresponding family of approximate solutions, {p(¢t > 0,-)}
becomes compact. Moreover, if the entropy production is bounded
measure, then there is actually a gain of regularity indicated in Theo-
rem 8.1 (— and in (8.8) for the translation invariant case).

8.1.2 Degenerate parabolic equations

The above results can be extended in several directions, consult [110] (and
[111] for certain m = 2 systems). As an example one can treat convective
equations together with (possibly degenerate) diffusive terms

Oip® + Vg - A(p®) = Vi - (QVyp®), Q >0. (8.9)
Assume the problem is not linearly degenerate, in the sense that
measy{v| 7+ A'(v) - £ =0, (Q(v)&,€) =0} = 0. (8.10)

Let {p°} be a family of approximate solutions of (8.1) with W, ! (L?)-compact
entropy production,

(o) + Vg - F(p°) = WL (L2(t,z)), Vq" > 0. (8.11)

loc
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Then {p®} is compact in L2 (¢, z), [110].
The case Q = 0 corresponds to a multidimensional extension of Tartar’s
compensated compactness arguments in §5.1, and it quantifies the regular-
ity of DiPerna’s measure-valued solutions in §7.1. The case A = 0 corre-
spond possibly degenerate parabolic equations (consult [84] and the refer-
ences therein, for example). According to (8.10), satisfying the ellipticity
condition, (Q(v)£,£) > 0 on a set of non-zero measure, guarantees regular-
ization, compactness ...

8.2 Kinetic schemes

We restrict our attention to the scalar case (— and refer to [15],[109], [133]
for a comprehensive rigorous treatment of Boltzmann equation). Here, we
demonstrate an application of Theorem 8.1 in the context of the BGK-like
relaxation model introduced in [135] following the earlier works [9],[53],

1

O f* + Al('v) Ve ff = e (Xp“: - f9). (8.12)

As before, the indicator function Xps(t’m)('v) denotes the ‘pseudo-Maxwellian’
(8.8) associated with p® := f¢. The relaxation term on the right of (8.12)
belongs to W=1(M;,), [9], and the averaging lemma 8.1 applies with (s =
g =1, p = 2). It follows that if the conservation law is linearly non-
degenerate in the sense that (8.5) holds, then {p°} is compact — in fact
{p°(t > 0,-)} gains Sobolev regularity of order ;%5, [110]. The relaxation
model (8.12) was analyzed previously by BV-compactness arguments, e.g.,
[53], [135].

There is more than one way to convert microscopic kinetic formulations
of nonlinear equations, into macroscopic algorithms for the approximate so-
lution of such equations. We conclude by mentioning the following three (in
the context of conservation laws). Brenier’s transport collapse method, [9], is
a macroscopic projection method which preceded the BGK-like model (8.12)
(see also [53]). Another approach is based on Chapman-Enskog asymptotic
expansions, and we refer to [145], for an example of macroscopic approxima-
tion other than the usual Navier-Stokes-like viscosity regularization, (3.4).
Still another approach is offered by Godunov-type schemes, (4.4), based on
projections of the Maxwellians associated with the specific kinetic formula-
tions. These amount to specific Riemann solvers which were studied in [38],
[134], [136].
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