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Université de Nice Sophia Antipolis, Parc Valrose

06108 Nice Cedex 2, France
rascle@math.unice.fr

PATRIZIA BAGNERINI

Dipartimento di matematica “F. Casorati”, Università di Pavia
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Abstract. We introduce a new framework for studying two-dimensional conservation
laws by compensated compactness arguments. Our main result deals with 2D conserva-
tion laws which are nonlinear in the sense that their velocity fields are a.e. not co-linear.

We prove that if uε is a family of uniformly bounded approximate solutions of such equa-
tions with H−1-compact entropy production and with (a minimal amount of) uniform
time regularity, then (a subsequence of) uε convergences strongly to a weak solution. We
note that no translation invariance in space — and in particular, no spatial regularity
of u(·, t) is required. Our new approach avoids the use of a large family of entropies; by
a judicious choice of entropies, we show that only two entropy production bounds will
suffice. We demonstrate these convergence results in the context of vanishing viscosity,
kinetic BGK and finite volume approximations. Finally, the intimate connection between
our 2D compensated compactness arguments and the notion of multi-dimensional non-
linearity based on kinetic formulation is clarified.
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1. Introduction and Statement of Main Results

Currently, there are four main approaches to study the existence of solutions for
quasilinear hyperbolic conservation laws. First was the standard tool of compactness
based on a priori BV bounds. Then, from the mid-eighties through the mid-nineties,
the other three approaches of compensated compactness, measure valued solutions
and kinetic formulations were developed, all of which appeal to a priori entropy
production bounds.

Compactness arguments based on BV bounds were proven as the most effective
tool for studying general one-dimensional systems of conservation laws. The long
line of results in this direction is stretched from Glimm’s celebrated result [12] to
the recent general existence result of Bianchini and Bressan [1]. Applications to
finite difference approximations — from Glimm’s scheme to high-resolution scalar
schemes, e.g. [13, 31] and the references therein, are primary numerical examples for
the success of the compactness approach. The approach is limited, however, to essen-
tially one-dimensional systems. Moreover, the multidimensional BV-based scalar
existence theory of Krushkov [14], hinges in an essential manner on the translation
invariance of the underlying solution operator. An alternative approach is offered
by the compensated compactness theory developed by Tartar [33, 34] and Murat
[18, 20]. Here, the hard-to-get BV estimates are replaced with L2-type entropy pro-
duction bounds (L2-type for quadratic entropies and likewise, for general strictly
convex entropies). The example of spectral approximations is in order; rather than
using BV bounds which are difficult to realize in the dual spectral space, the con-
vergence of the spectral viscosity approximation introduced in [29, 30] is achieved
by adapting L2-type entropy bounds. A similar situation is encountered with hyper-
viscosity limits, where lack of monotonicity excludes simple derivation of a priori
BV-bounds. Instead, convergence (of uniformly bounded solutions) follows by com-
pensated compactness arguments, e.g. [32]. So far, existence results based on com-
pensated compactness arguments were restricted to one-dimensional conservation
laws. DiPerna’s theory of measure valued solutions for nonlinear conversation laws
is a third approach to construct entropy solutions. This approach applies to mul-
tidimensional problems by appealing to all entropies associated with the nonlinear
conservation laws. The examples of finite volume schemes on irregular multidimen-
sional grid is in order. Lack of translation invariance excludes BV bounds (even in
the L1-contractive 1D case!); instead, convergence follows from entropy consistency,
see [7, 11] for example. This argument depends in an essential manner on having a
large family of entropies and hence its applications are so far restricted to scalar
equations. The fourth and last approach for studying the existence (and regular-
ity) of solutions, introduced in [16], is based on application of averaging lemmas
for the underlying kinetic formulations. Here, the example of convergence for FV
scheme [36] is in order. These kinetic arguments apply to scalar as well as systems
which admit a kinetic formulation and are not necessarily restricted to one space
dimension. Our discussion of the analytical methods available for studying multidi-
mensional conservation laws is by no means inclusive and we mention in passing the
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examples of compensated compactness and regularity in Hardy spaces, [8], or the
geometrical optics studies, e.g. [5], . . . . We refer to [4] for an extensive bibliography.

Our purpose in this paper is three fold. First, we present a framework for imple-
menting compensated compactness arguments in two space dimensions, thus extend-
ing the current framework beyond the 1D applications. Second, our new approach
avoids the use of a large (one-parameter) family of entropies; in Sec. 3 we show that
by a judicious choice of entropies, only two entropy production bounds will suffice,
in analogy to the one-entropy in the 1D case discussed in Sec. 2. Finally, a third
aspect is to highlight the role of nonlinearity in excluding oscillations in the 2D
case. Specifically, our main result in Theorem 3.1 below deals with 2D conservation
laws ut + f1(u)x1 + f2(u)x2 = 0, which are nonlinear in the sense that their velocity
field (f1, f2) is a.e. not co-linear, consult (3.11) or (3.15) below. Let uε is a family of
uniformly bounded approximate solutions with H−1-compact entropy production
(here rε are the corresponding residuals, rε := uε

t + f1(uε)x1 + f2(uε)x2)

{η′(uε)rε} ∈ Lp([0, T ]; X) with X ↪→ H−1
loc (R2

x) and p ≥ 1, for η = f1, f2.

Assuming the time regularity bound, ∂tu
ε ∈ Lq

loc(Rt;M(R2
x)), q > 1, then

(a subsequence of) uε convergences strongly to a weak solution. We note in passing
that no translation invariance in space — and in particular, no spatial regularity
of u(·, t) is required beyond the necessary uniform bound. In this context we clar-
ify, in Sec. 4 below, the intimate connection with the notion of multi-dimensional
nonlinearity introduced in [16] and we bring closer the relation between our 2D com-
pensated compactness arguments and the multi-dimensional kinetic arguments.

2. Strong Convergence — A Single Entropy Suffices in the 1D Case

We consider the scalar conservation law

∂tu + ∂xf(u) = 0, (2.1)

subject to initial conditions, u(x, 0) = u0. The entropy solution of (2.1) could be
realized by the vanishing viscosity limit, u = s lim uε where uε satisfies the viscosity
equation

∂tu
ε + ∂xf(uε) = ε∂xxuε. (2.2)

In the usual approach of compensated compactness developed by Tartar [33, 34] and
Murat [18], the H−1-compact entropy production for the whole family of Krushkov
entropies is sought, in order to conclude the strong convergence uε → u,

∂t

[
|uε − c|

]
+ ∂x

[
sgn(uε − c)(f(uε) − f(c))

]
↪→ H−1

loc (Rx, Rt), (2.3)

Here one makes use of two a priori estimates:

{A1} A uniform bound, ‖uε‖L∞
loc(Rx,Rt) ≤ Const.

{A2} An entropy production bound
√

ε‖∂xuε‖L2
loc(Rx,Rt) ≤ Const.
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Granted these two a priori bounds, Tartar [35] and independently Chen and Lu
(consult [4, Theorem 2.7]), have shown that the H−1-compact entropy production
of a single entropy is sufficient to enforce strong convergence to a weak solution of
(2.1). A similar “single entropy”-approach was initiated by Rascle for 1D systems,
consult [26, 27]. Since the above references are not readily available, the three-step
convergence argument is sketched below. First, the viscous term on the right of (2.2)
is clearly H−1-compact (vanishing of order

√
ε). For the second step we integrate

(2.2) against f ′(u) obtaining, with F ′(w) := (f ′(w))2,

∂tf(uε) + ∂xF (uε) = εf ′(uε)∂xxuε ≡ ε∂xxf(uε) − εf ′′(uε)(uε
x)2 =: Iε + IIε. (2.4)

The a priori bounds {A1}, {A2}, imply that the first term on the right is
H−1

loc (Rx, Rt)-compact,

‖Iε‖H−1
loc (Rx,Rt)

≤
√

ε‖f ′(uε)‖L∞ ×
√

ε‖∂xuε‖L2
loc(Rx,Rt) ≤ Const.

√
ε → 0;

the second term is L1-bounded

‖IIε‖L1
loc(Rx,Rt) ≤ ‖f ′′(uε)‖L∞ × ε‖∂xuε‖2

L2
loc(Rx,Rt)

≤ Const.

and hence by standard embedding, it is compact in W−1
loc (Lr(Rx, Rt)) for r < 2.

We now argue along the lines of Murat [19]. The sum on the right of the (2.4)
is W−1

loc (Lr)-compact while by {A1} the gradient on the left side is bounded in
W−1

loc (L∞), and hence by interpolation, these terms are compactly embedded in
H−1

loc . Thus, the right-hand sides of both (2.2) and (2.4) are H−1
loc -compact. In fact,

this H−1
loc -compactness remains valid if we replace uε, f(uε) and F (uε) on the left-

hand sides (2.2) and (2.4) with uε − ū, f(uε)− f(ū) and F (uε)−F (ū), respectively,
where ū := wlim uε. In the third step, we consider the expression

D(w) := (w − ū) × (F (w) − F (ū)) − (f(w) − f(ū))2.

Granted the above H−1
loc -compactness, we can now invoke the the div-curl lemma

which states that by extracting subsequences if necessary, the weak-* limit of D(uε)
is given by

wlim D(uε) = wlim(uε − ū) × wlim(F (uε) − F (ū)) −
(
wlim(f(uε) − f(ū))

)2

= −(f̄ − f(ū))2 ≤ 0, f̄ := wlim f(uε). (2.5)

But on the other hand, recalling F as the primitive of (f ′)2 implies that D(·) is
non-negative, for by Cauchy–Schwarz inequality

(f(w) − f(ū))2 =
( ∫ w

ū

f ′(v)dv

)2

≤ (w − ū)
∫ w

ū

(f ′(v))2dv

= (w − ū) × (F (w) − F (ū)).

Therefore, the weak limit of D(uε) is nonnegative, which is reconciled with (2.5)
when the desired convergence of the approximate flux holds, namely, wlim f(uε) =
f̄ = f(ū). Passing to the limit in (2.2) we conclude that ū is a weak solution,
∂tū + ∂xf(ū) = 0.
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Is ū the entropy solution? In general, the convergence wlim uε = ū need not be
a strong limit and the ū limit need not be the entropy solution, but more can be
said provided additional information on the nonlinearity of f is available. In the
convex case, for example, f̄ = f(ū) implies strong convergence of uε → ū and a
single entropy inequality implies ū is the entropy solution of (2.1), ([23] or [15]). The
statement of strong convergence can be extended to any interval of nonlinearity of f ,
either by the arguments of [34], or by using the above Cauchy–Schwarz inequality
as in [25, 28]. Indeed, our arguments above show the a.e. strong convergence of
(a subsequence of) D(uε) → 0. Therefore, if we quantify the nonlinearity of f ,
assuming that

f(u) is not affine on any nontrivial interval (2.6)

we conclude that (a subsequence) uε → ū and that ū is the unique entropy solution,
consult [6].

3. Strong Convergence — Two Entropies Suffice in the 2D Case

In this section we turn our attention to the two-dimensional case. Here we introduce
a proper notion of multidimensional nonlinearity and relate it to the strong conver-
gence of approximate solutions. Our reasoning is based on compensated compact-
ness arguments and as in the one-dimensional case, these arguments do not involve
a priori spatial BV estimates.

3.1. Compensated compactness in 2D conservation laws

We begin with the prototype viscous approximation. Let uε be solution of the 2D
viscous conservation law

∂tu
ε + ∂x1f1(uε) + ∂x2f2(uε) = ε∆uε, (3.1)

subject to uε(x, 0) = uε
0(x). As before, we utilize two a priori bounds associated

with (3.1),

{A1} A uniform bound, ‖uε‖L∞
loc(R

2
x,Rt) ≤ Const., and

{A2} An entropy production bound,
√

ε‖∇xuε‖L2
loc(R

2
x,Rt) ≤ Const.;

we add a third type of a time regularity bound,

{A3} ‖∂tu
ε‖Lq

loc(Rt;M(R2
x)) ≤ Const., with q > 1.

Since the solution operator associated with (3.1) is L1-contractive,
‖∂tu

ε(·, t)‖M(R2
x) ≤ ‖∂tu

ε(·, 0)‖M(R2
x) and {A3} with q = ∞ holds for sufficiently

regular initial data, say

‖uε
0‖BV + ε‖∇xuε

0‖BV ≤ Const. (3.2)

We note that the {A3}-bound hinges on the translation invariance in time. In typical
cases, this requires BV bounded initial data (and in fact, BV bounded initial total
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flux so that ‖f1(uε
0)x1 + f2(uε

0)x2‖M(R2
x) < Const. will do), but otherwise it is

independent of a priori spatial BV bound ‖uε(·, t)‖BV < Const.
We begin by multiplying (3.1) against f1

′(uε) and f2
′(uε), obtaining

(f1
′(uε))2∂x1u

ε + (f1
′(uε)f2

′(uε))∂x2u
ε = f1

′(uε)ε∆uε − ∂tf1
′ (3.3)

(f1
′(uε)f2

′(uε))∂x1u
ε + (f2

′(uε))2∂x2u
ε = f2

′(uε)ε∆uε − ∂tf2
′. (3.4)

The entropy production bound (A2) implies for arbitrary φ ∈ C2,
that the product φ′(uε)ε∆uε can be decomposed as the sum of two terms,√

ε∇ · (φ′(uε)∇uε) in L2([0, T ],X ) with “X =
√

εH−1
loc (R2

x)” which is
H−1-compact, and −

√
εφ′′(uε)|∇xuε|2 in L1

loc(Rt,M(R2
x)); likewise, the bounds

assumed in {A1}, {A3} imply that ∂tφ(uε) is L1
loc(Rt,M(R2

x))-bounded.
Thus, if we let F11, F22 and F12 denote the (indefinite) primitives of
(f1

′(u))2, (f2
′(u))2 and f1

′(u)f2
′(u), respectively, then (3.3), (3.4) tell us that each

of the gradients,

∂x1F11(uε) + ∂x2F12(uε) and ∂x1F12(uε) + ∂x2F22(uε)

is the sum of two terms — one is bounded in L2([0, T ]; X ↪→ H−1
loc (R2

x)) and
the other in L1

loc(Rt,M(R2
x)). In addition, by {A1} these gradients are bounded

in L∞([0, T ]; W−1
loc (L∞(Ω))). Moreover, the time regularity bound {A3} implies

that the gradients in (3.1) are bounded in Cλ([0, T ]; W−1
loc (L1(R2

x))) with λ = 1/q′

and therefore, recalling that q > 1, that their W−1
loc (L1)-norms are equi-continuous

in time. We can now invoke the following “time-dependent” version of Murat
lemma [19], consult Lemma 6.1 below for the precise statement, which states that
equi-continuity and the L∞-bounds together with the L2([0, T ],X ) + L1(Rt,M)
decomposition yield H−1

loc (R2
x)-compactness,

∂x1F11(uε) + ∂x2F12(uε) ↪→ L∞([0, T ]; H−1
loc (R2

x)), (3.5)

∂x1F12(uε) + ∂x2F22(uε) ↪→ L∞([0, T ]; H−1
loc (R2

x)). (3.6)

The div-curl lemma implies that the weak limits, F̄ij := wlim Fij(uε(·, t)), satisfy

wlim
[
F11(uε)F22(uε) − F 2

12(u
ε)

]
= F11 · F22 − F12

2
, (3.7)

or equivalently,

wlim
[
(F11 − F11)(F22 − F22) − (F12 − F12)2

]
= 0, Fij = Fij(uε). (3.8)

To proceed, we consider the nonnegative form

D(w) := (F11(w) − F11(c))(F22(w) − F22(c)) − (F12(w) − F12(c))2

where c = c(x, t) denotes an arbitrary fixed state, independent of uε, which
is yet to be determined. Cauchy–Schwarz inequality shows that D(w) is indeed



September 15, 2005 17:4 WSPC/JHDE 00059

Compensated Compactness for 2D Conservation Laws 703

nonnegative,

(F12(w) − F12(c))2 =
( ∫ w

c

f1
′(v)f2

′(v)dv

)2

≤
∫ w

c

(f1
′(v))2dv

∫ w

c

(f2
′(v))2dv

= (F11(w) − F11(c))(F22(w) − F22(c)). (3.9)

Using (3.8) we conclude

wlim D(uε) = wlim
[
(F11(uε) − F11(c))(F22(uε) − F22(c)) − (F12(uε) − F12(c))2

]
= wlim

[
(F11(uε) − F11) + (F11 − F11(c))

]
·
[
(F22(uε) − F22) + (F22 − F22(c))

]
−

[
(F12(uε) − F12)2

+ 2(F12(uε) − F12)(F12 − F12(c)) + (F12 − F12(c))2
]

=
[
(F11 − F11(c))(F22 − F22(c)) − (F12 − F12(c))2

]
. (3.10)

We now choose c = c(x, t) such that
∫ c(f1

′(v))2dv = F11; such c(x, t) cer-
tainly exists since 0 ≤ F11 ≤

∫ umax

umin
(f1

′(v))2dv. With this choice of c we find
F11(c) − F11 = 0 and (3.9),(3.10) tell us that 0 ≤ D(uε) ⇀ 0. Since D(uε) is
bounded then wlim D2(uε) = wlim D(uε) = 0 and hence D(uε) converges strongly,
s lim D(uε) = 0.

In fact, more is true. We first note that D(w) has a minimum at u = c for
by (3.9)

D′(w) = (f1
′(w))2(F22(w) − F22(c)) + (f2

′(w))2(F11(w) − F11(c))

− 2f1
′(w)f2

′(w)(F12(w) − F12(c))
{
≥ 0, w > c

≤ 0, w < c
.

Next, we assume that f1
′ and f2

′ are linearly independent in the sense that their
linear combinations s(ξ, v) := ξ1f1

′(v) + ξ2f2
′(v) do not identically vanish, i.e.

∀|ξ| = 1 : s(ξ, ·) ≡� 0 on any nontrivial interval. (3.11)

Then, the Cauchy–Schwarz inequality (3.9) is strict, which in turn implies that
D(c) = 0 is in fact a strict minimum, D(w) > D(c), ∀w �= c. The strong convergence
D(uε) → D(c) = 0 then implies that (a subsequence of) uε converges strongly,
uε(·, t) → c(·, t) = ū(·, t) and the diagonal procedure coupled with equi-continuity
in time, ‖uε(·, t‖M(R2

x) ∈ C1/q′
([0, T ]) imply strong convergence in space-time. We

summarize by stating

Theorem 3.1. Consider the 2D scalar conservation law

∂tu + ∂x1f1(u) + ∂x2f2(u) = 0 (3.12)

and assume it is nonlinear in the sense that (3.11) holds. Let uε be a family of
uniformly bounded approximate solutions of (3.12),

∂tu
ε + ∂x1f1(uε) + ∂x2f2(uε) = rε, rε ⇀ 0. (3.13)
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Here, rε is the local residual, measuring the amount by which uε fails to satisfy
(3.12), with the following H−1-compact entropy production,

{η′(uε)rε} ∈ Lp([0, T ]; X) with X ↪→ H−1
loc (R2

x) and p ≥ 1, for η = f1, f2.

(3.14)

Finally, assume the time regularity bound, {A3} holds, i.e. there exists q > 1 such
that ∂tu

ε ∈ Lq
loc(Rt;M(R2

x)). Then a subsequence of uε converges, lim uε = u, to a
weak solution of (3.12).

Remark 3.2. The entropy production bound (3.14) is a realization of hypothesis
{A2} in the prototype case of vanishing viscosity which led to the above theorem;
compare (3.3), (3.4).

Remark 3.3. The nonlinearity assumption (3.11) can be found in the study of
Engquist and E [10] on the large time-behavior of 2D conservation laws. It is the 2D
extension of one-dimensional notion of nonlinearity in (2.6). In its slightly stronger
version, the 2D nonlinearity assumption requires that f1

′ and f2
′ are almost every-

where linearly independent in the sense that their linear combinations satisfy

meas{v
∣∣|s(ξ, v)| = 0} = 0, ∀|ξ| = 1, s(ξ, v) := ξ1f1

′(v) + ξ2f2
′(v). (3.15)

This notion of nonlinearity can be found in the study of [16] on kinetic formulations
for conservation laws; consult (4.5) below for the corresponding multidimensional
analogue.

Theorem 3.1 can be recast in terms of the general compensated compactness frame-
work which allows to relax the time regularity assumption {A3}.

Theorem 3.4. Let uε be a family of uniformly bounded solutions of the nonlinear,
approximate 2D conservation law (3.13), (3.11). Assume it has H−1

loc -compact
entropy production in the sense of (3.14). Finally, assume that {∂tu

ε(·, ·)} is H−1
loc -

compact. Then a subsequence of uε converges, lim uε = u, to a weak solution
of (3.12).

We note in passing that by Murat lemma, {A3} implies the H−1-compactness of
{∂tu

ε}. The proof is based on classical Tartar–Murat compensated compactness
theory [33, Theorem 11], [20, Theorem 3.2]. Let V denote the set

V :=
{
(λ, ξ) ∈ R

4 × R
3−{0}

∣∣ s.t. λ1ξ1 + λ2ξ2 = 0;

λ3ξ1 + λ4ξ2 = 0; λ1ξ0 = 0; λ3ξ0 = 0
}
.

Arguing along the lines of Theorem 3.1, our assumptions imply the H1
loc(R

2
x, Rt)-

compactness of the four terms,

∂x1F11(uε) + ∂x2F12(uε), ∂x1F12(uε) + ∂x2F22(uε), ∂tF11 and ∂tF22.
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It follows that Q(Fij(uε)) is weakly continuous for any quadratic Q(F11, F12, F12,
F22) which vanishes on the projection, Λ = {λ ∈ R

4
∣∣ s.t. (λ, ξ) ∈ V}. A straight-

forward computation shows that the latter is given by the cone λ1λ4 − λ2λ3 = 0,
i.e. (3.7) or equivalently, (3.8) hold. Expressed in terms of the Young measures
νx,t(·) associated with {uε}, (3.8) recast into the form

〈νx,t(λ), (F11(λ) − F11) · (F22(λ) − F22) − (F12(λ) − F12)2〉 = 0.

One concludes with the proof of Theorem 3.1.

3.2. 2D examples

Example 3.5 (Vanishing viscosity). The bound (3.14) can be viewed as a con-
sistency condition for general residual terms, which enable us to convert entropy
production bound into a compactness statement. As an example we consider the
possibly nonlinear vanishing viscosity approximation

∂tu
ε + ∂x1f1(uε) + ∂x2f2(uε) = ε∇x · c(uε,∇xuε), εc(uε,∇xuε) ⇀ 0. (3.16)

It follows that if ε‖c(uε,∇xuε)‖L2
loc(R

2
x,Rt) → 0 and ε‖c(uε,∇xuε) ·

∇xuε‖L1
loc(Rt,M(R2

x)) ≤ Const. then (3.14) holds. The special case, c(u,p) = b(u)p
with 0 ≤ b(·) ∈ L∞ corresponds to vanishing viscosity with the H−1-entropy bound
ε‖b(uε)|∇xuε|2‖L1

loc(Rt,M(R2
x)) ≤ Const. L1 contraction and translation invariance in

time implies that {A3} holds for regular initial data (3.2) and Theorem 3.1 implies
that uε converges strongly to a weak solution, uε → ū.

Example 3.6 (Kinetic BGK approximation). Let χw(c) denote the indicator
function χw(c) :=

{
sgn(w), if(w−c)c≥0,
0 otherwise

}
. We consider the BGK kinetic approximation

of (3.12), e.g. [24],

∂tn
ε + f1

′(c)∂x1n
ε + f2

′(c)∂x2n
ε =

1
ε
(χuε − nε), (3.17)

where nε is a microscopic distribution function depending on the additional kinetic
variable c with macroscopic average uε :=

∫
nε(x, t, c)dc, so that integration over

phase space yields

∂tu
ε + ∂x1

∫
c

f1
′(c)nεdc + ∂x2

∫
c

f2
′(c)nεdc = 0.

We rewrite this as

∂tu
ε + ∂x1f1(uε) + ∂x2f2(uε) = rε, rε = ∇x · F ,

where F ≡ (F1,F2) =
∫

c
(f1

′(c), f2
′(c))(χuε(c) − nε)dc. If we prevent initial layers

by preparing consistent initial data so that ‖nε(·, 0) − χuε
0(·)‖M(R2

x;Rc) → 0, then
‖nε(·, t)−χuε(·,t)‖M(R2

x;Rc) → 0, hence ‖F‖L2
loc(R

2
x,Rt) → 0 and H−1-compactness of

rε follows. We note that the last argument, due to [24, Theorem 3.7], depends on
the translation invariance in time of (3.17) which is responsible for the M bound,
‖∂tn

ε(·, t)‖M(R2
x;Rc) ≤ ‖∂tn

ε(·, 0)‖M(R2
x;Rc). The same argument implies the Lip-

bound in time, i.e. {A3} holds with q = ∞ and strong convergence follows under
the nonlinearity assumption (3.11).
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4. Kinetic Formulation — The Multidimensional Case

How does the Theorem 3.1 compare with the compactness statement derived by
the kinetic formulation arguments in [16]? We extend our discussion to the multi-
dimensional conservation laws

∂tu
ε + ∇x · f(u) = rε, f(u) =

(
f1(u), f2(u), . . . , fd(u)

)
. (4.1)

The Krushkov entropy condition associated with approximate solutions of (4.1)
reads

∂t

[
η(uε; c) − η(0; c)

]
+

d∑
j=1

∂xj

[
qj(uε; c) − qj(0; c)

]
= η′(uε; c)rε =: −2mε.

(4.2)

Here, η(u; c) is the family of Krushkov entropies, η(u; c) = |u − c|, where c is an
arbitrary fixed contact at our disposal, qj are the corresponding entropy fluxes,
qj(u; c) = sgn(u − c)(fj(u) − fj(c)) and mε = mε(x, t; c) measures the correspond-
ing entropy production (more precisely, mε

+ and respectively mε
− measure the

corresponding entropy production and entropy dissipation).
Differentiation of (4.2) with respect to c then yields the kinetic transport

equation [16]

∂tχ
ε +

d∑
j=1

fj
′(c)∂xj χ

ε = ∂cm
ε, χε(x, t; c) ≡ χuε(x,t)(c). (4.3)

In the present context we rewrite this as a multidimensional spatial kinetic
formulation

d∑
j=1

fj
′(c)∂xj χ

ε = ∂cm
ε − ∂tχ

ε. (4.4)

We seek the compactness of the averages, χε :=
∫

χε
uε(c)dc = uε. To apply the

averaging lemma along the lines of [16], we introduce the notion of nonlinearity in
the sense that the (linearized) symbol of the left-hand side is

meas{v
∣∣|s(ξ, v)| = 0} = 0, ∀|ξ| = 1, s(ξ, v) :=

d∑
j=1

ξjf
′
j(v). (4.5)

This is the multidimensional generalization of the notion of 2D nonlinearity encoun-
tered earlier in (3.15), a slightly strengthened version of (3.11). Next, we ask the sec-
ond term on the right of (4.4) to be a bounded measure, χε

t ∈ M(Rd
x, Rt; Rc). If the

approximate method (4.3) is L1-contractive and translation invariant in time, then

‖χε
t (·, t; c)‖M(Rd

x;Rc) ≤ ‖χε
t (·, 0; c)‖M(Rd

x;Rc),

and the required bound follows for regular enough initial data. An example is
provided by the BGK approximation 3.6, which prevents possible initial bound-
ary layer if the initial data u0 ∈ BV so that ∇χε(·, 0; c) ∈ M(Rd

x; Rc) and
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χε
t ∈ M(Rd

x, Rt; Rc), consult [24, Sec. 3, Remark 2]. Using the averaging lemma
we conclude along the lines [16].

Theorem 4.1. Consider the multidimensional scalar conservation law (4.1), and
assume it is nonlinear in the sense that (4.5) holds. Let uε ∈ L∞

loc(R
2
x, Rt) be a

family of uniformly bounded approximate solutions of (4.1),

∂tu
ε +

d∑
j=1

∂xj fj(uε) = rε, rε ⇀ 0, (4.6)

with a negative entropy production so that η′(uε)rε ≤ 0 for all convex η’s. Finally,
assume the time regularity bound corresponding to {A3} holds, ∂tχuε(x,t)(c) ∈
Lq

loc(Rt;M(Rd
x; Rc)) with q > 1. Then, ∃s lim uε = ū which is the unique entropy

solution of (4.1).

Remark 4.2. The last result brings closer the convergence statements based
kinetic formulations and compensated compactness arguments. The kinetic formu-
lation requires a stronger consistency condition with the whole family of Krushkov
entropies (compared with the two entropies sought in (3.14)), and in return, it yields
a stronger result of strong convergence towards entropy solution.

Remark 4.3. In this context we note that one can relax the negative entropy pro-
duction assumption in Theorem 4.1, requiring that the analog of (3.14), η′(uε)rε ∈
Lp([0, T ]; X) with X ↪→ H−1

loc (Rd
x), holds for all C2 − η’s. The regularity of χuε(c)

implies the Lq(Rt; L1(Rd
x)) bound of ∂tu

ε and one concludes by the averaging lemma
as in [16, Theorem B].

Remark 4.4. A kinetic formulation argument yields, in particular, a regularizing
effect statement: quantifying the nonlinearity by requiring meas{v | |s(ξ, v)| ≤ δ} ≤
Const. δα, is translated into a gain of regularity of the solution operator, S : L∞ �→
Bs with order of regularity s depending on α (consult [16]). In the present context,
however, the requirement of time regularity requires BV initial data to begin with.
It would be desirable to utilize the present framework of compensated compactness
in order to derive an alternative argument for the regularizing effect, independent
of the averaging lemma.

5. Convergence of Multidimensional Finite Volume Schemes

We study the convergence of finite volume (FV) schemes for the approximate solu-
tion of the initial value problem associated with the nonlinear d-dimensional con-
servation law (3.12). The example of 2D convergence is brought up here as an
application to demonstrate the compensated compactness arguments outlined in
Sec. 3. In fact, the classes of FV schemes discussed below were shown to be entropic
with all entropies which make the kinetic arguments of Sec. 4 apply in the multidi-
mensional case. The question of convergence in the general multidimensional case
based on kinetic formulation was already addressed in [36].
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To begin, we let T be a finite volume mesh of R
d such that the common interface

between two cells of T is included in a hyperplane of R
d. We assume that there

exist h > 0 and α > 0 such that, for any control volume p ∈ T :

αhd ≤ |p|, |∂p| ≤ 1
α

hd−1, δ(p) ≤ h, (5.1)

where |p| denotes the d-dimensional Lebesgue measure of the cell p, |∂p| denotes
the (d− 1)-dimensional Hausdorff measure of its boundary and δ(p) denotes its
diameter. With these notations, the parameter h defines the size of the mesh and
α its regularity. We denote by N(p) the set of the neighbors of a control volume p,
and if q ∈ N(p) then σpq is the common interface between p and q and np,q stands
for the unit normal vector to σpq oriented from p to q.

Next, we consider a general family of locally Lipschitz numerical fluxes, g =
gpq(u, v) : R

d → R, satisfying the conservation property, gpq(u, v) = −gqp(v, u)
and the consistency property, gpq(u, u) = f(u) · np,q. We assume these fluxes are
monotone, in the sense

∂g

∂uj
≥ 0,

∂g

∂vj
≤ 0, ∀uj, v′js. (5.2)

A larger class is provided by the E-fluxes, satisfying

gpq(u, v) − f(u) · np,q

u − v
≥ 0. (5.3)

The Godunov and the Lax–Friedrichs are prototypes for monotone numerical fluxes.
The finite volume approximation based on the above family of numerical fluxes leads
to the following scheme

un+1
p = un

p − ∆t|∂p|
|p|

∑
q∈Np

gpq(un
p , un

q ). (5.4)

Here, the constant un
p should be considered as an approximation of the mean value

of u over the cell p at time tn := n∆t, un
p
∼=

∫
p u(x, tn)dx/|p| and gpq is an approx-

imation of the (averaged values of the) flux across the interface σpq . The initial
condition u0 provides us with

u0
p =

1
|p|

∫
p

u0(x)dx. (5.5)

The explicit finite volume scheme, (5.4) and (5.5), is augmented with a CFL
condition,

∆t sup
p∈T

|∂p|
|p| ‖f

′‖∞ ≤ 1, ‖f ′‖∞ = max
j

(
|f ′

j|L∞
)
. (5.6)

It follows, given (5.2) and (5.6), that the discrete solution operator, {un
p} �→

{un+1
p } is monotone and hence, by conservation, it is an L1 contraction. If in addi-

tion, the discrete solution operator is translation invariant is space then convergence
follows from BV compactness. This line of argument applies to uniform grids. In the
present context, however, the possibly unstructured grid lacks spatial translation
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invariance and convergence arguments based on BV bound break down. Instead, we
appeal to compensated compactness arguments in the 2D case and to the kinetic
arguments in the general multidimensional case.

The underlying approximation uh takes the piecewise-constant form

uh(x, t) =
∑
p∈T

un
p I

n(t)Ip(x), (5.7)

where I
n(t) and Ip(x) are respectively the characteristic function of [tn, tn+1) and p.

We revisit the three standard assumptions. Monotonicity implies uh is uniformly
bounded. Moreover, the so called “weak-BV” estimates [11, Theorem 4.1] imply that
the H−1-entropy production bound (3.14) (and even a stronger W−1(L∞)-bound)
holds; consult also [2, 3] for example. Finally, comparing the two discrete solutions
{un+1} and {un}, their L1 contraction implies the Lip-time bound (consult [11,
Lemma 3.2]),

‖∂tu
h(·, t)‖M(R2) =

∑
p∈T

|p|
|un+1

p − un
p |

∆t
≤

∑
p∈T

|p|
|u1

p − u0
p|

∆t

=
∑

p

|∂p|
∑

q∈Np

gpq(u0
p, u

0, q) ≤ Const., ∀n, (5.8)

so that {A3} with q = ∞ holds for smooth enough initial data, (3.2). Theorem 3.1
applies and we conclude

Theorem 5.1. Consider the 2D scalar conservation law (3.12) subject to BV-
bounded initial data and assume it is nonlinear in the sense that (3.11) holds.
Let uh =

∑
p∈T un

p I
n(t)Ip(x) be a family of consistent, conservative finite volume

approximation, (5.4), (5.5), with monotone numerical flux, (5.2). Then, ∃s lim uh =
ū which is a weak solution of (3.12).

The key for the convergence statement of Theorem 5.1 hinges on the H−1-
compactness of entropy production. Our compensated compactness arguments
require such entropic bounds for only two preferred entropies. In fact, in the present
context of FV schemes, such entropic bounds hold to all convex entropies, con-
sult [21, 22, 36] and hence the kinetic arguments apply in the general multidimen-
sional setup of E-fluxes (and in fact higher order cases [22]). We conclude by quoting

Theorem 5.2 ([36]). Consider the multidimensional scalar conservation law (4.1)
subject to BV-bounded initial data and assume it is nonlinear in the sense that (4.5)
holds. Let uh =

∑
p∈T un

p I
n(t)Ip(x) be a family of consistent, conservative finite

volume approximation, (5.4), (5.5), with E-numerical flux, (5.3). Then, ∃s lim uh =
ū which is the entropy solution of (4.1).

Appendix A

We use the time regularity assumption {A3}, in order to “raise” 2D spatial com-
pensated compactness arguments to handle the time dependent 2D conservation
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laws. To this end we prove the following “time-dependent” generalization of Murat
lemma [19].

Lemma A.1. Consider the family {φε} which admits the following bounds

‖φε‖L∞([0,T ],W−1(L∞(Ω))) + ‖φε‖Cλ([0,T ],W−1(L1(Ω))) ≤ Const., λ > 0, Ω bounded.

Assume that φε can be expressed as φε = χε + ψε, where {χε} bounded in
Lp([0, T ],X ) with X ↪→ H−1(Ω) while {ψε} is bounded in L1([0, T ],M(Ω)). Then
(a subfamily of) {φε} is compact in L∞([0, T ], H−1(Ω)).

Proof. We start by noting that an Lp[0, T ]-bound of ‖wε(·, t)‖X implies — cf. [17,
Theorem 3], that there exists a denumerable dense set of points, T := {tk}, such
that ‖wε(·, tk)‖X is bounded. Thus, there exists such a denumerable dense set such
that the classical Murat lemma [19] applies to φε(·, tk) and diagonalization process
enables us to extract a subsequence such that {φε(·, t)} is compact in H−1(R2(Ω))
for all t ∈ {tk}. We want to show that in fact, {φε(·, t)} contains an H−1

loc -Cauchy
sequence uniformly for all t’s. To this end we estimate

‖φε(·, t) − φδ(·, t)‖H−1(Ω) ≤ ‖φε(·, t) − φε(·, tk)‖H−1(Ω)

+ ‖φε(·, tk) − φδ(·, tk)‖H−1(Ω)

+ ‖φδ(·, t) − φδ(·, tk)‖H−1(Ω). (A.1)

By our assumption of time regularity, the φ’s are in Cλ([0, T ], W−1(L1(Ω))). This,
together with the interpolation bound ‖w‖H−1 ≤ ‖w‖1/2

W−1(L1)‖w‖1/2
W−1(L∞) imply

‖φε(·, t) − φε(·, tk)‖H−1(Ω) ≤ Const.‖φε(·, t)‖1/2
W−1(L∞(Ω)) · |t − tk|λ/2.

A similar bound holds for φδ(·, t) − φδ(·, tk) and hence the first and third terms on
the right of (A.1) can be made arbitrarily small since {tk} is dense. The second
term is made arbitrarily small for proper (ε, δ) by the H−1-compactness of φε(·, tk)
and we are done.
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[18] F. Murat, Compacité per compensation, Ann. Scuola Norm. Sup. Pisa Sci. Math. 5
(1978) 489–507; II, in Proc. Int’l Meeting on Recent Methods on Nonlinear Analysis,
eds. E. De Giorgi, E. Magenes and U. Mosco (Pitagora, Bologna, 1979), III, Ann.
Scuola. Norm. Sup. Pisa Sci. Math. 8 (1981) 69–102.

[19] F. Murat, L’injection du cone positif de H1 dans W−1,q est compacte pour tout
q < 2, J. Math. Pure Appl. 60(9) (1981) 309–322.

[20] F. Murat, A survey on compensated compactness, in Contributions to Modern Cal-
culus of Variations, ed. L. Cesari, Pitman Research Notes in Mathematics, Vol. 148,
(Longman Harlow, 1987), pp. 145–183.

[21] S. Noelle, Convergence of higher order finite volume schemes on irregular grids, Adv.
Comput. Math. 3 (1995) 197–218.

[22] S. Noelle, A note on entropy inequality and error estimates for higher order accurate
finite volume schemes on irregular families of grids, Math. Comp. 65 (1996) 1155–
1163.

[23] E. Panov, Uniqueness of the solution of the Cauchy problem for a first-order quasilin-
ear equation with an admissible strictly convex entropy, Mat. Zametki 55(5) (1994)
116–129 (translation in Math. Notes 55(5–6) (1994) 517–525).



September 15, 2005 17:4 WSPC/JHDE 00059

712 E. Tadmor, M. Rascle & P. Bagnerini

[24] B. Perthame and E. Tadmor, A kinetic equation with kinetic entropy functions for
scalar conservation laws, Commun. Math. Phys. 136 (1991) 501–517.

[25] M. Rascle, Perturbations par viscosité de certains systèmes hyperboliques non
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