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Abstract We implement the hierarchical decomposition introduced in [7], to con-

struct uniformly bounded solutions of the problem divU = F , where the two-

dimensional data is in the critical regularity space, F ∈ L2
#(T

2). Criticality in this

context, manifests itself by the lack of linear mapping, F ∈ L2
#(T

2) 7→U ∈ L∞(T2),
[1]. Thus, the intriguing aspect here is that although the problem is linear, the con-

struction of its uniformly bounded solutions is not.

1 Introduction

We are concerned with the construction of uniformly bounded solutions, U ∈
L∞(T2,R2) of the equation

divU = F, F ∈ L2
#(T

2), (1)

where L2
#(T

2) is the space of L2 integrable functions over the 2-dimensional torus

T
2 with zero mean.

The existence of uniformly bounded solutions of (1) follows from the closed

range theorem together with Gagliardo-Nirenberg inequality, [1]. Moreover, Bour-

gain and Brezis [1] proved that any mapping, F ∈ L2
# 7→U ∈ L∞(T2), must be non-

linear: thus, the intriguing aspect here is that although (1) is linear, the construction

of its uniformly bounded solutions for L2
#-data is not.
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It follows, in particular, that the classical Helmholtz solution of (1), UHel =
∇∆−1F, cannot be a uniformly bounded solution for all F ∈ L2

#. Indeed, F ∈ L2
# im-

plies that UHel ∈H1(T2), but since H1 is not a subset of L∞, Helmholtz solution need

not be uniformly bounded. The following concrete counterexample due to L. Niren-

berg, [1, Remark 7], demonstrates this type of unboundedness: fix θ ∈ (0,1/2), let

ζ (r) be a smooth cut-off function supported near the origin, and set

F = ∆v, v(x,y) := x| logr|θ ζ (r), r =
√

x2 + y2. (2)

In this case, F ∈ L2
#(T

2), but the Helmholtz solution, UHel = ∇∆−1F = ∇v, has a

fractional logarithmic growth at the origin.

Inspired by the hierarchical decompositions which were introduced in [8, 9] in

the context of image processing, Tadmor [7] utilized such decompositions as a con-

structive procedure to solve (1): the solution is given in terms of hierarchical de-

composition, UBdd = ∑u j, where the {u j}’s can be computed recursively as the

following minimizers,

u j+1 = arg min
u

{

‖u‖L∞ +λ12 j‖F−div(
j

∑
k=1

uk)−divu‖2
L2

}

, j = 0,1, · · · . (3)

Here, λ1 is any sufficiently large parameter, λ1 > 1/(2‖F‖BV ), which guarantees

that the hierarchical decomposition starts with a non-trivial solution of (3), consult

(20) below.

In this paper, we propose a numerical approach to solve the minimization prob-

lem (3), which in turn generates the uniformly bounded hierarchical solution of

problem (1).

We begin, in section 2, by quoting the hierarchical construction proposed in [7].

In section 3 we analyze the minimization problem (3) in terms of its corresponding

dual problem. This dual problem amounts to a nonlinear PDE which governs the

residual r := f −divu, where f stands for F−div(∑uk). As a final step, we intro-

duce a procedure to recover the desired minimizer u from its residual r. In section 4

we discuss the numerical solution of the governing PDE: it is solved by an iterative

procedure which avoids significantly large errors in the recovering stage. In section

5, we report on our computations which compare the bounded hierarchical solution,

UBdd, vs. the unbounded Helmholtz solution, UHel. Finally, in section 6, we intro-

duce a new construction of bounded solutions for (1), based on two-step solution of

the form,

U2step = u1 +∇∆−1r1, [u1, r1] = arg min
divu+r=F

{

‖u‖L∞ +λ1‖r‖
2
L2

}

. (4)

This two-step solution consists of one hierarchical decomposition step, u1 followed

by one Helmholtz step, which are shown to yield a uniformly bounded solution of

(1).
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2 Hierarchical solution of divU = F ∈ L2
#(T

2)

Our starting point for the construction of a uniformly bounded solution of (1), U ∈
L∞(T2,R2), is a decomposition of F ,

F = divu1 + r1, F ∈ L2
#(T

2) :=
{

g ∈ L2(T2)
∣

∣

∫

T2
g(x)dx = 0

}

, (5a)

where [u1, r1] is a minimizing pair of the functional,

[u1, r1] = arg min
divu+r=F

{

‖u‖L∞ +λ1‖r‖
2
L2

}

. (5b)

Here, λ1 is a fixed parameter at our disposal where we distinguish between two

cases, consult (20) below. If λ1 ≤
1

2‖F‖BV
, then the minimizer of (5b) is the trivial

one, u1 ≡ 0, r1 = F ; otherwise, by choosing λ1 large enough, λ1 >
1

2‖F‖BV
, then

(5b) admits a non-trivial minimizer, [u1, r1], which is characterized by a residual sat-

isfying ‖r1‖BV =
1

2λ1

. By Gagliardo-Nirenberg isoperimetric inequality, e.g., [11,

§2.7], there exists β > 0 such that

‖g‖L2 ≤ β‖g‖BV ,

∫

T2
g(x)dx = 0. (6)

It follows that r1 is L2-bounded:

‖r1‖L2 ≤ β‖r1‖BV =
β

2λ1
. (7)

Moreover, since F has a zero mean so does the residual r1. We conclude that the

residual r1 ∈ L2
#(T

2), and we can therefore implement the same variational decom-

position of F in (5), and use it to decompose r1. To this end, we use the same

variational statement,
{

‖u‖L∞ +λ2‖r‖
2
L2

}

, with a new parameter, λ = λ2 > λ1,

r1 = divu2 + r2, [u2, r2] = arg min
divu+r=r1

{

‖u‖L∞ +λ2‖r‖
2
L2

}

. (8)

Borrowing the terminology from our earlier work on image processing [8, 9], the

decomposition (8) has the effect of “zooming” on the residual r1, and it is here that

we use the refined scale λ2 > λ1. Combining (8) with (5a) we obtain F = divU2 +
r2 with U2 := u1 + u2, which is viewed as an improved approximate solution of

(1). Indeed, the “zooming” effect λ2 > λ1 implies that U2 has a smaller residual

‖r2‖BV = 1/(2λ2) compared with ‖r1‖BV = 1/(2λ1) in (7). In particular,

‖r2‖L2 ≤ β‖r2‖BV =
β

2λ2

.
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This process can be repeated: if r j ∈ L2
#(T

2) is the residual at step j, then we de-

compose it

r j = divu j+1 + r j+1, (9a)

where [u j+1, r j+1] is a minimizing pair of

[u j+1, r j+1] = arg min
divu+r=r j

{

‖u‖L∞ +λ j+1‖r‖
2
L2

}

, j = 0,1, . . .. (9b)

For j = 0, the decomposition (9) is interpreted as (5a) by setting r0 := F. Note

that the recursive decomposition (9a) depends on the invariance that the residuals

r j ∈ L2
#(T

2): indeed, if r j has a zero mean then so does r j+1, and since by (20)

the minimizer r j+1 has a bounded variation, r j+1 ∈ L2
#(T

2). The iterative process

depends on a sequence of increasing scales, λ1 < λ2 < . . .λ j+1, which are yet to be

determined.

The telescoping sum of the first k steps in (9a) yields an improved approximate

solution, Uk := ∑k
j=1 u j:

F = divUk + rk, ‖rk‖L2 ≤ β‖rk‖BV =
β

2λk

↓ 0, k = 1,2, . . .. (10)

The key question is whether the Uk’s remain uniformly bounded, and it is here that

we use the freedom in choosing the scaling parameters λk: comparing the minimiz-

ing pair [u j+1, r j+1] of (9b) with the trivial pair [u≡ 0, r j], we find

‖u j+1‖L∞ +λ j+1‖r j+1‖
2
L2 ≤ ‖0‖L∞ +λ j+1‖r j‖

2
L2 ,

r j = divu j+1 + r j+1 = div(0)+ r j.

It remains to upper-bound the energy norm of the r j’s: for j = 0 we have r0 = F ; for

j > 0, (10) implies that ‖r j‖L2 ≤ β/(2λ j). We end up with

‖u j+1‖L∞ +λ j+1‖r j+1‖
2
L2 ≤ λ j+1‖r j‖

2
L2 ≤















λ1‖F‖
2
L2 , j = 0,

β 2λ j+1

4λ 2
j

, j = 1,2, . . ..
(11)

We conclude that by choosing a sufficiently fast increasing λ j’s such that

∑ j λ j+1λ−2
j < ∞, then the approximate solutions Uk = ∑k

1 u j form a Cauchy se-

quence in L∞ whose limit, U = ∑∞
1 u j, satisfies the following.

Theorem 2.1 ([7]) Fix β such that (6) holds. Then, for any given F ∈ L2
#(T

2), there

exists a uniformly bounded solution of (1),

divU = F, ‖U‖L∞ ≤ 2β‖F‖L2 .
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The solutionU is given by U = ∑∞
j=ı u j, where the {u j}’s are constructed recursively

as minimizers of

[u j+1, r j+1] = arg min
divu+r=r j

{

‖u‖L∞ +λ12 j‖r‖2
L2

}

, r0 := F, λ1 =
β

‖F‖L2

. (12)

Proof. Set λ j = λ12 j−1, j = 1,2, . . ., then, ‖Uk−U`‖L∞ <
∼ 2−k, k > `� 1. Let U be

the limit of the Cauchy sequence {Uk} then ‖U j−U‖L∞ +‖divU j−F‖L2
<
∼ 2− j→ 0,

and since div has a closed graph on its domain D := {u ∈ L∞ : divu ∈ L2(T2)}, it

follows that divU = F . By (11) we have

‖U‖L∞ ≤
∞

∑
j=ı

‖u j‖L∞ ≤ λ1‖F‖
2
L2 +

β 2

4λ1

∞

∑
j=2

1

2 j−3
= λ1‖F‖

2
L2 +

β 2

λ1

.

Here λ1 >
1

2‖F‖BV

is a free parameter at our disposal: we choose λ1 := β/‖F‖L2

which by (6) is admissible, λ1 =
β

‖F‖L2

>
1

2‖F‖BV

, and the result follows.

Remark 2.1 [Energy decomposition] By squaring the refinement step (5a), r j =
r j+1 + divu j+1, and using the characterization of [u j+1, r j+1] as an extremal pair

(consult remark 3.2 below), we find

‖r j‖
2
L2−‖r j+1‖

2
L2 = 2(r j+1,divu j+1)+‖divu j+1‖

2
L2 =

1

λ j+1
‖u j+1‖L∞ +‖divu j+1‖

2
L2 .

A telescoping sum of the last equality yields the “energy decomposition”

∞

∑
j=1

1

λ j

‖u j‖L∞ +
∞

∑
j=1

‖divu j‖
2
L2(T2) = ‖F‖2

L2(T2) (13)

Remark 2.2 We note that the constructive proof of theorem 2.1 does not assume the

existence of bounded solution for (14): it is deduced from the Gagliardo-Nirenberg

inequality (6). The hierarchical construction of solutions for LU = F, in the gen-

eral setup of linear closed operators, L : B 7→ L
p
# , 1 < p < ∞, with boundedly

invertible duals L ∗, was proved in [7].

In [2], Bourgain and Brezis proved that (1) admits a bounded solution in the

smaller space, B = L∞ ∩H1. This requires a considerably more delicate argu-

ment, which could be justified by the refined dual estimate (compared with (6)),

‖g‖L2(T2)
<
∼ ‖∇g‖L1+H−1(T2). The proof of [2] is constructive: it is based on an in-

tricate Littlewood-Paley decomposition, which cannot be readily implemented in

actual computations.
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3 Construction of hierarchical minimizers

3.1 The minimization problem

We rewrite each minimization step of the hierarchical decompositions (3) in the

following form,

ū = arg min
u:T2→R2

{

‖u‖L∞ +λ‖ f −divu‖2
L2

}

, ‖u‖L∞ := ess sup
x,y

√

u2
1 +u2

2. (14)

Here, f is an L2 function with zero mean which stands for F − div(
j

∑
k=1

uk) in (3),

and λ stands for the dyadic scales, λ12 j, j = 0,1, · · ·.

3.2 The dual problem

To circumvent the difficulty of handling the L∞ norm in (14), we concentrate on

the dual problem associated with (14). We let N (u) = ‖u‖L∞ : V 7→ R̄, E (p) =
‖ f − p‖2

L2 : Y 7→ R̄, and Λ = div : V 7→ Y with V = L∞(T2) and Y = L2(T2). By

duality theorem, [4, §3,Remark 4.2], the variational problem (14),

(P) : inf
u∈V

[N (u)+E (Λu)]

is equivalent to its dual problem

(P∗) : sup
p∗∈Y ∗

[−N
∗(Λ∗p∗)−E

∗(−p∗)];

moreover, if ū and p̄∗ are solutions of (P) and (P∗) respectively, then Λ∗ p̄∗ ∈
∂N (ū), and −p̄∗ ∈ ∂E (Λ ū). Here, N ∗,E ∗ are conjugate functions of N ,E , ex-

pressed in terms of the usual L2 pairing 〈w1,w2〉 :=

∫

T2
w1 ·w2 dx,

N
∗(u∗) = sup

u
{〈u,u∗〉−‖u‖L∞}

= sup
u
{‖u‖L∞‖u∗‖L1−‖u‖L∞}= χ{‖u∗‖

L1≤1} =

{

0, if ‖u∗‖L1 ≤ 1

+∞, otherwise
;

E
∗(p∗) = sup

p
{〈p, p∗〉−λ‖ f − p‖2

L2}

= sup
p
{−λ 〈p, p〉+ 〈p∗+2λ f , p〉−λ 〈 f , f 〉}=

〈

f +
1

4λ
p∗, p∗

〉

,

and Λ∗ =−∇ is the dual operator of Λ .
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We end up with the dual (P∗) problem

inf
{p∗:‖∇p∗‖

L1≤1}

〈

1

4λ
p∗− f , p∗

〉

or

inf
p∗

sup
µ≥0

[〈

1

4λ
p∗− f , p∗

〉

+ µ(‖∇p∗‖L1−1)

]

. (15)

Moreover, −p̄∗ ∈ ∂E (Λ ū), meaning that p∗ = 2λ r, where r is the residual, r =
f −divu. So, we can express the dual problem (15) in terms of r,

r̄ = arg min
r

sup
µ≥0

L(r, µ), L(r, µ) := λ 〈r−2 f , r〉+ µ

(

‖∇r‖L1−
1

2λ

)

, (16)

where r̄ := f −div ū, is the residual corresponding to the optimal minimizer ū.

Since L(·, µ) is convex and L(r, ·) is concave and, for r ∈ BV continuous, we

can apply the minimax theorem, e.g., [4, §6], which allows us to interchange the

infimum and supremum in (16), yielding

sup
µ≥0

min
r

[

λ 〈r−2 f , r〉+ µ

(

‖∇r‖L1−
1

2λ

)]

. (17)

The dual problem, (17), can be solved in two steps. An inner minimization prob-

lem

rµ = arg min
r

[

λ 〈r−2 f , r〉+ µ

(

‖∇r‖L1−
1

2λ

)]

. (18a)

Here, for any given µ ≥ 0, there exists a unique r = rµ such that (µ, rµ) is a saddle

point of L. The optimal µ = µ∗ is determined by an outer maximization problem,

µ∗ = arg max
µ≥0

[P(µ)+ µQ(µ)] ,

P(µ) := λ
〈

rµ −2 f , rµ

〉

, Q(µ) := ‖∇rµ‖L1−
1

2λ
. (18b)

Once µ∗ is found, then r̄ = rµ∗ is the optimal residual which is sought as the solution

of (16) .

3.3 The outer maximization problem

We begin by characterizing the maximizer, µ = µ∗, of the outer problem (18b). Fix

µ: since rµ minimizes L(r, µ) we have

P(µ)+ µQ(µ) ≤ P(ν)+ µQ(ν).
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Similarly, P(ν) + νQ(ν) ≤ P(µ) + νQ(µ). Sum the last two inequalities to get,

(µ−ν)[Q(µ)−Q(ν)]≤ 0, which yields that Q(·) is non-increasing.

Let µ∗ be a maximizer of (18b). Then ∀µ ≥ 0,

P(µ)+ µQ(µ) ≤ P(µ∗)+ µ∗Q(µ∗) ≤ P(µ)+ µ∗Q(µ),

which implies (µ∗−µ)Q(µ) ≥ 0. We distinguish between two cases.

Case #1: µ∗ > 0. We have Q(µ)≤ 0 if µ > µ∗ and Q(µ)≥ 0 if 0≤ µ < µ∗. We

conclude that µ∗ is determined as a root of Q(·),

Q(µ∗) = 0, i.e. ‖∇rµ∗‖L1 =
1

2λ
. (19)

Case #2: µ∗ = 0. In this case, r0 minimizes 〈r−2 f , r〉, namely, r0 = f . This

corresponds to the trivial minimizer of (14), ū ≡ 0, which is the case we want to

avoid. Case #2 happens when Q(0)≤ 0, i.e.

µ∗ ↔ ‖∇r0‖L1 −
1

2λ
≤ 0 ↔ ‖∇ f ‖L1 ≤

1

2λ
.

So, to make sure that we pick a non-trivial minimizer, ū 6≡ 0, we must pick a suffi-

ciently large λ such that

λ >
1

2‖ f ‖BV

↔ ū≡/ 0, ‖r̄‖BV =
1

2λ
. (20)

This coincides with the same lower bound on λ ’s which yield non-trivial minimiz-

ers, asserted in [7, Lemma 5.3].

3.4 The inner minimization problem

We return to the inner minimization problem (18a). Fix µ = µ∗. The Euler-Lagrange

equations characterizing minimizers of (18a) are

2λ (rµ∗− f )−µ∗div

(

∇rµ∗

|∇rµ∗|

)

= 0. (21)

Take the L2-inner product of (21) with rµ∗ to get

2λ
〈

rµ∗− f , rµ∗
〉

−µ∗
〈

div

(

∇rµ∗

|∇rµ∗|

)

, rµ∗

〉

= 0.

Using (19) (and in the non-periodic case, the Neumann boundary condition ∇rµ∗ ·
n = 0), we find
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〈

div

(

∇rµ∗

|∇rµ∗|

)

, rµ∗

〉

=−

〈

∇rµ∗

|∇rµ∗|
,∇rµ∗

〉

= −

∫

T2
|∇rµ∗|dx =−

1

2λ
.

This yields, µ∗= 4λ 2
〈

f − rµ∗, rµ∗
〉

, and the governing equation (21) for the optimal

residual, r̄ = rµ∗, amounts to

(r̄− f )−2λ 〈 f − r̄, r̄〉div

(

∇r̄

|∇r̄|

)

= 0. (22)

Remark 3.1 This system has two solutions: one solution, r̄ = f , corresponds to the

trivial case, ū ≡ 0. The other is the target solution, i.e., the optimal residual r̄ for

(16). We will discuss numerical algorithms to solve system (22) in section 4.

3.5 From r to u: recovering the uniformly bounded solution

So far, we identified the residual, r̄ = f − div ū, corresponding to the uniformly

bounded solution ū of (14). To recover ū itself, we substitute r̄− f = −div ū as the

first term of (22), and get

div

(

ū−2λ 〈r̄− f , r̄〉
∇r̄

|∇r̄|

)

= 0. (23)

Therefore, we can recover a solution ū of (14),

ū = 2λ 〈r̄− f , r̄〉
∇r̄

|∇r̄|
. (24)

Observe that this ū is indeed uniformly bounded:

‖ū‖L∞ = 2λ | 〈r̄− f , r̄〉 |< ∞. (25)

Remark 3.2 The explicit expression of ū in (24) shows that [ū, r̄] forms an extremal

pair, [5, Theorem 4],[9, Theorem 2.3],[7, Theorem 5.1], in the sense of achieving

an equality in the duality inequality of pairing div ū and r̄:

|〈div ū, r̄〉|= ‖ū‖L∞
1

2λ
= ‖ū‖L∞‖∇r̄‖L1 .

4 Numerical algorithms for the hierarchical solution

We solve problem (1) using its hierarchical decomposition. In each iteration, we

solve the minimization problem (14). Each iteration consists of three stages:
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Stage 1. Find the non-trivial solution, r j, of Euler-Lagrange equations (22) with

λ = λ j and f = f j;

Stage 2. Recover u j from r j using equation (24);

Stage 3. Update λ j+1← 2λ j, f j+1← r j.

Initially, we set λ1 sufficiently large so that λ1 > (2‖F‖BV )−1, and f1 := f . The

iterations terminate when ‖ f j‖L2 is sufficiently small. The final solution U for (1) is

given by the sum of all u j’s.

4.1 Numerical discretization for the PDE system

We begin with regularization: to avoid the singularity in (18a) when |∇r| = 0, a

standard approach is to regularize the problem using a small parameter ε > 0,

rµ ,ε = arg min
r

{

λ 〈r−2 f , r〉+ µ

(

∫

T2

√

ε2 + |∇r|2dxdy−
1

2λ

)}

. (26)

At stage 1 of each regularized iteration, we find the minimizer r = rµ∗,ε . The

corresponding Euler-Lagrange equations of the regularized problem read,

(r− f )−2λ 〈 f − r, r〉 · div

(

∇r
√

ε2 + |∇r|2

)

= 0. (27)

In the non-periodic case, these equations are augmented with Neumann boundary

condition, ∇r ·n = 0.

To solve (27), we cover T
2 with a computational grid with cell size h. Let

D+x,D−x and D0x be the usual forward, backward and centered divided difference

operator on x, namely, D±xri, j = ±(ri±1, j− ri, j)/h, D0xri, j = (ri+1, j− ri−1, j)/2h.

Similarly, we can define D±y and D0y. A straightforward discretization of (27)

yields,

ri, j = fi, j−K(r) ·D−x

[

1
√

ε2 +(D+xri, j)2 +(D0yri, j)2
D+xri, j

]

−K(r) ·D−y

[

1
√

ε2 +(D0xri, j)2 +(D+yri, j)2
D+yri, j

]

= fi, j−
K(r)

h2

[

ri+1, j− ri, j
√

ε2 +(D+xri, j)2 +(D0yri, j)2
−

ri, j− ri−1, j
√

ε2 +(D+xri−1, j)2 +(D0yri−1, j)2

]

(28)

−
K(r)

h2

[

ri, j+1− ri, j
√

ε2 +(D0xri, j)2 +(D+yri, j)2
−

ri, j− ri, j−1
√

ε2 +(D0xri, j−1)2 +(D+yri, j−1)2

]

.
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Here, K(r) := 2λ 〈r− f , r〉, which is approximated using any appropriate numerical

quadrature.

4.2 Computing the residuals r by implicit iterations

We use implicit iteration method to solve the nonlinear system (28),

r
(n+1)
i, j = fi, j (29)

−
K(r(n))

h2





r
(n+1)
i+1, j − r

(n+1)
i, j

√

ε2 +(D+xr
(n)
i, j )

2 +(D0yr
(n)
i, j )2

−
r
(n+1)
i, j − r

(n+1)
i−1, j

√

ε2 +(D+xr
(n)
i−1, j)

2 +(D0yr
(n)
i−1, j)

2





−
K(r(n))

h2





r
(n+1)
i, j+1 − r

(n+1)
i, j

√

ε2 +(D0xr
(n)
i, j )

2 +(D+yr
(n)
i, j )2

−
r
(n+1)
i, j − r

(n+1)
i, j−1

√

ε2 +(D0xr
(n)
i, j−1)

2 +(D+yr
(n)
i, j−1)

2



 ,

subject to initial condition which we set to be r(0) = f /2.

Remark 4.1 Recall that K(r) is continuous, and K(r̄) < 0 while K( f ) = 0. To avoid

the convergence of r(n) to the trivial solution, r̄ = f (mentioned in remark (3.1)), we

set r(0) small enough, K(r(0)) < K(r̄) < K( f ), so that r(n) is expected to reach the

non-trivial solution r̄, rather than f . As arg min
r

K(r) = f /2, a good choice of the

initial condition of the iteration is r(0) = f /2.

In the non-periodic case, we also need to apply Neumann boundary condition

∇r · n = 0. To this end, we mirror r at the boundary, meaning r0, j = r2, j, rN+1, j =
rN−1, j, etc, where the size of the grid is N×N . So we only need to add the weight

of the outer points to their corresponding inner points.

In summary, at the nth iteration amounts to an N×N linear system, A(r(n))r̃(n+1) =
f̃ , for the discretized nodes, {r(n+1)}. Here, A is a sparse matrix with at most 5 non-

zero entries every row or column, whose values depend on r(n).

4.3 Recovering u from r and control of errors

After we get a non-trivial solution r at stage 1, we move to stage 2 to recover u by

(24). Normally, we apply centered divided difference operator on r to compute the

discrete gradient, ∇r. However, this will cause a significant error of the solution u.

For example, consider u1
i, j = K ·

ri+1, j− ri−1, j

2h
√

ε2 + |∇ri, j|2
. Suppose the error for r in

stage 1 is e(r). Then, at points (x,y) such that |∇r(x,y)| ≈ 0, the error for u1 is of

order Ke(r)/(hε). Therefore, dividing by hε with ε ≈ 0, the error bound of u1 can
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be significantly amplified at stage 2 of recovering u, even if we obtain a sufficiently

small e(r) at stage 1. This amplification will get worse as we refine the mesh and h

becomes smaller.

In order to get a reliable solution for u, we cannot carry out stage 2 independent

of the discretization stencil of stage 1. To this end, let

u
1,(n+1)
i+1/2, j

=
K(n)

h
·

r
(n+1)
i+1, j − r

(n+1)
i, j

√

ε2 +(D+xr
(n)
i, j )2 +(D0yr

(n)
i, j )2

, (30a)

u
2,(n+1)
i, j+1/2

=
K(n)

h
·

r
(n+1)
i, j+1 − r

(n+1)
i, j

√

ε2 +(D0xr
(n)
i, j )

2 +(D+yr
(n)
i, j )2

. (30b)

We then have

ri, j = fi, j−
u1

i+1/2, j
−u1

i−1/2, j

h
−

u2
i, j+1/2

−u2
i, j−1/2

h
.

The last two terms represent a numerical discretization of divu. Therefore, we use

(30) to recover u from the residual r = f −divu calculated at (29).

5 Hierarchical solution vs. Helmholtz solution

We apply our algorithm for the hierarchically constructed uniformly bounded solu-

tion for the example of F ∈ L2
# defined at (2) with

T
2 = [−1,1]× [−1,1], θ = 1/3, ζ (r)

{

= e
− 1

1−r2 , |r|< 1,
≡ 0, |r| ≥ 1.

(31)

We concentrate on the first component of the solution U , denoted by U1. Figure

1 shows Helmholtz solution, U1
Hel, which slowly diverges at the origin. Figure 2

provides the hierarchical solution U1
Bdd which remains uniformly bounded.

The computed hierarchical solution ‖U1,N
Bdd‖L∞/‖FN‖L2 remains uniformly bounded

when N increases (U
1,N
Bdd stands for the first component of hierarchical solution

with grid size N ×N .) In contrast, table 1 illustrates the (slow) growth of the ra-

tio ‖U1,N
Hel ‖L∞/‖FN‖L2 .

6 Hierarchical solution meets Helmholtz solution

The hierarchical solution is uniformly bounded. However, as observed in figure 2,

the hierarchical solution U1
Bdd is oscillatory outside the support of F . As each step
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Fig. 1 Helmholtz solutionU1
Hel of example (2),(31).

Fig. 2 Hierarchical solution U1
Bdd of (2),(31).

The N×N grid 50×50 100×100 200×200 400×400 800×800

‖U
1,N
Hel ‖L∞

‖FN‖L2

0.2295 0.2422 0.2540 0.2650 0.2752

‖U1,N
Bdd
‖L∞

‖FN‖L2

0.1454 0.1451 0.1455 0.1458 0.1451

Table 1 L∞ norm of numerical solutions for different grids: Helmholtz vs. hierarchical construc-

tion

of the hierarchical decomposition relies on the previous steps, these oscillations

will grow throughout the iterations. To limit their effect, we introduce a new, two-

step method to construct bounded solutions of (1). It consists of one hierarchical

decomposition step, whose residual is treated using Helmholtz decomposition:

Step 1. Solve minimization problem
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u1 := argminu{‖u‖L∞ +λ1‖F−divu‖2
L2}. (32a)

Step 2. Find the Helmholtz solution for divur = r1, i.e.

ur := ∇∆−1r1, r1 = F−divu1. (32b)

Clearly, the two-step solution, U2step = u1 +ur, satisfies divU = F . Furthermore,

it is uniformly bounded.

Proposition 6.1 The two-step solution,U2step = u1 +ur given in (32), is a uniformly

bounded solution of (1).

Proof. Clearly, u1, as the first iteration of the hierarchical solution, is uniformly

bounded. Next, ur = ∇∆−1r1 =

(

−
1

2π

x

|x|2

)

?r1. The Newtonian potential,

(

−
1

2π

x

|x|2

)

,

belongs to the Lorentz space L2,∞. The residual, r1 is BV-bounded and hence, [10, 3],

r1 ∈ BV ⊂ L2,1. By Hölder’s inequality for Lorentz spaces, [6, 10], ur and therefore

U2step, are uniformly bounded.

From Proposition 6.1, we know that U2step is also a solution of (1). As the min-

imization problem is solved only once, we expect fewer oscillations in U2step than

UBdd.

Figure 3 shows the two-step solution of the example in Section 5. From the con-

tour plot, we observe fewer oscillations than the hierarchical solution UBdd. Yet,

the solution is not as smooth as UBdd at the origin. Table 2 reports that the ra-

tio ‖U1,N
2step‖L∞/‖FN‖L2 is also stable when N is large. This verifies the uniformly

boundedness of the two-step solution.

Fig. 3 Two-step solution,U1
2step .
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The N×N grid 50×50 100×100 200×200 400×400 800×800

‖U1,N
2step‖L∞

‖FN‖L2

0.2096 0.2128 0.2144 0.2151 0.2154

Table 2 The two-step solution of (2),(31) for different grids.
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