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ABSTRACT 

The behavior and structure of entropy solutions of scalar convex conser- 

vation laws are studied. It  is well kn0a.n that such entropy solutioris consist 

of at most countable number of C1-smooth regions. We obtain new upper. 

bounds on the higher order derivatives of the entropy solution in any one of 

its C1-smoothness regions. These bounds enable us to measure the hzgh order 

piecewise smoothness of the entropy solution. To this end we introduce an 

appropriate new Cn-semi norm - localized to the smooth part of the entropy 

solution. and we show that the entropy solution is stable with respect to this 

norm. \Ye also address the question regarding the number of C1-smoothness 

pieces, we show that if the initial speed has a finite number of decreasing 

inflection points then it bounds the number of future shock discontinuities. 

Loosely speaking this says that in the case of such generic initial data the 

entropy solution consists of a finite number of smooth pieces, each of which is 

as smooth as the data permits. It is this type of pzecewise smoothness which is 

assumed - sometime implicitly - in many finite-dimensional computations 

for such discontinuous problems. 

Copyright @ 1993 by Marcel Dekker, Inc. 
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1 .  INTRODUCTION 

TADMOR A N D  TASSA 

We study here the  behavior and structure of entropy solutions of the single 

hyperbolic conservation law 

subject t o  t h e  smooth initial condition 

where the flux f is strictly convex 

The structure of such solutions has been determined by Oleinik [8,9,10] 

and Lax [6]; more refined information was obtained by Dafermos [2]. The  

entropy solutions are  continuous except on the  union of an at most countable 

set of Lipschitz continuous shock curves. T h e  complement of the shock set is 

open, [2], and from each point (x .  t )  in this open set one can trace a straight 

characteristic backward in t ime to t = 0, where t h e  initial condition is given. 

Since the  slope of this characteristic equals a ( u ( z ,  t ) )  = f l ( u ( z ,  i)), t h e  entropy 

solution is given by t h e  implicit relation 

The  Implicit Function Theorem implies tha t  if a ,  uo E C", Ar 2 1, then 

u E C" in its region of continuity, since in tha t  region 

consult [2, Theorem 5-11. 

In this paper we quantify the regularity of t h e  entropy solution using 

sharp upper bounds for i ts  high order spatial derivatives in its region of C1- 

smoothness, and we determine the size of the  complement set of that  region, 

namely - the  set of shock discontinuities. 

In 52 we examine t h e  behavior of idlul r (dnt i /8xnl ,  2 5 n 5 .V. The 
behavior of the  first derivative, u,. in the region where it  is non-negative, has 
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SCALAR CONSERVATION LAWS 1633 

been thoroughly studied and shown to be O(t - ' )  e.g., [1,4,8,12]. We derive 

sharp estimates for the higher order derivatives and show (Theorem 2.1) that 

their behavior depends on the sign of 71,: There exist constants. Const,, which 

depend solely on initial condition, uo, such that the following holds. 

Along characteristics where u, is positive we have 

and therefore - since u, decays like O ( t - ' )  along those curves, the higher 

order derivatives decay a t  a rate which increases with n: 

0 Along characteristics where u, is negative we have 

and therefore - since the solution breaks in a finite time, t,, along these 

characteristics. Idzul tends to infinity as t -+ t, at a rate which increases 

with n; 

Finally, along characteristics where u, = 0 we have Id,"uI 5 Const,tn-'. 

n > 1. 

These estimates on the spatial high order derivatives can be converted into 

an appropriate stability estimate on the piecewtse regularity of the entropy 

solution. This is carried out in $3 in terms of a suitable Cn semi-norm which 

is localized to the C1-smoothness part of the entropy solution. Theorem 3.1 

shows that the solution operator of the convex conservation law (1.1 1 is stable 

with respect to that semi-norm. In this context we refer to DeVore 8: Lucier, 

131. for a different type of high order regularity result which manifests itself in 

terms of an high-order spatial Besov stability estimate. 

Finally, for the sake of completeness we discuss in $4 the cornplerfiixt of 

the C1-smoothness part of the entropy solution. that is, we determine the size 

of the set of shocks. Theorem 4.1 asserts that this set is equivalent to the 

set of negative minima of a(uo)'.  Thus Theorem 4.1 complements Schaeffer's 

regularity theorem [ I l l ,  by realizing the first category set of infinitely smooth 
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1634 TADMOR AND TASSA 

initial conditions , {uo), which evolve into entropy solutions with infinitely 

many shock discontinuities. 

In summary we conclude that  if a (uo)  has a finite number of decreasing 

inflection points, then only a finite number of shocks will occur. Hence: i f  

a ,  uo E C"' and a(uo) has a finite number of decreasing inflection points, then 

the corresponding entropy solution consists of finite number of pieces, each 

of which is CN-smooth; moreover, the reguiarity of these pieces is bounded 

by the initial regularity. It is this type of piecewise regularity of the entropy 

solution which is assumed - sometime implicitly - in many finite-dimensional 

computations. 

2. HIGH ORDER REGULARITY ESTIMATES 

We consider solutions of the single convex conservation law (1 .1)  where 

and 

The behavior of the solution's first spatial derivative has been thoroughly 

studied (see [1,4,8,12]): Whenever it is non-negative i t  decays like O ( t - ' ) ,  

while elsewhere it decreases unboundedly, and becomes infinite in a finite time 

on the shock curves. We examine here the behavior of the higher order spatial 

derivatives d:u = dnu/dxn,  2 5 n < A', the existence of which is guaranteed 

by (2.1-2) everywhere apart from the singular set of shock curves. 

Since the solution u  is smooth in the open complement of the set of shocks, 

we may multiply equation ( l . l a )  by a l ( u )  t o  find out tha t  u := a(u)  satisfies 

Burgers' equation in that region, 

(2.3) U t  + V U ,  = 0 

We now differentiate (2.3) n 5 AT times with respect to x t o  obtain the equation 

which governs the evolution of wn  := d,"v in the smooth region: 
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SCALAR CONSERVATION LAWS 

W: + a ; ( 2 4  = o 
Lei bni t z  rule gives 

Observe that  all the spatial derivatives of v are governed by a first order quasi- 

linear equation ( 2 . 4 )  with the  same principal par t  as the governing equation 

for 21 itself in (2 .3 )  . hence having the same characteristic geometry. However 

- unlike equation (2 .3 )  which tells us that  t. remains constant along character- 

istics, the non-vanishing right hand side of (2.4) implies that  wn changes along 

the  characteristics. Let the value of wn along a characteristic x ( t )  denoted by 

w n ( t )  = w n ( x ( t ) , t ) ,  then (2 .4 )  implies that  

We star t  by examining the  first derivative w1 = G, = a(u) ,  . Since i t  

proves to  play a significant role in our analysis we denote it ,  for convenience, 

by w. Equation (2 .5 )  reduces in that  case, n = 1; t o  the well known Riccati 

equation 

whose solution is: 

We see that  i f  w ( 0 )  > 0, w ( t )  remains positive and decays to  zero like O ( t - I ) ;  

i f  ~ ( 0 )  = 0 then ~ ( t )  = 0 for all t  > 0 while if w ( 0 )  < 0 , w ( t )  remains negative 

and decreases until i t  becomes infinite. 

We now use (2 .5 )  and (2.7) in order t o  est imate t cn ( t ) :  arriving a t  the 

following. 
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1636 TADMOR AND TASSA 

P r o p o s i t i o n  2.1.  For every 2 < n _< ,Ir and t 2 0 there holds 

Here the constants Cn and D, are given recursively by 

and Pn-z(t) is a polynomial of degree n - 2 which vanishes for t = 0 .  

Remarks. 
1. Throughout this section we shall use t h e  notations C, C,, D, etc ,  to  

denote constants which d o  not depend on t ,  and Pn t o  denote polynomials 

of degree n. Xote t h a t  these notations can s tand for different constants or 

polynomials in different occurrences. 

2. Equality (2 .7)  allows us to  rewrite (2.8a-b) as 

where the  constants 6, and D, : 

depend solely on the  initial condition. 

P r o o f .  Equation (2.5) may be written for n > 2 as follows: 
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SCALAR CONSERVATION LAWS 

Vsirg (2.7). the solution of (2.12a) is 

\Ve prove (2.8) by induction. The  case n = 2 is immediate since q z  = 0 

and therefore, by (2.13), 

Hence (2.S) is proved for n = 2 with C2 = DZ = /w2(0)(  (in agreement with 

(2.9)) and Po(t)  r 0. 

We turn now to the proof of (2.8) for 2 < n 5 N ,  assuming i t  holds for 

all 2 5 k < n. The proof is separated for three cases according to the sign of 

zu(0). 

If w(0) > 0 then by (2.12b) and induction we get that  

Therefore, by (2.13) and (2.15) 

Evaluating the integral in (2.16) proves (2.8a) and (2.9a). 

Similarly, if  w(0) < 0 then 

n- i  

k=2 
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TADMOR AND TASSA 

Hence, by (2.13) and (2.17), 

and (2.Sb), (2.9b) follow by evaluating the integral in (2.18) 

Finally, if w(0) = 0: (2.13) implies that  

(2. 19a) wn( t )  = wn(0) + jtqn(r)dr . 
0 

But, by (2.12b) and the induction assumption 

Therefore, J,' ~,(r)dr is a polynomial of degree n - 2 which vanishes for t = 0. 

hence ( 2 . 8 ~ )  is proved, and that concludes the proof. 

Example. The estimates offered by Proposition 2.1 are sharp, as demon- 

strated by Burgers' equation, ut $ uu, = 0, subject to initial condition 

- 1 < x < 1  
u(5,  0) = uo(2) = 

elsewhere 

Its solution along characteristics x(t) for which -1 < x(0) < 1 is given by 

where 



D
ow

nl
oa

de
d 

B
y:

 [M
at

he
m

at
is

ch
es

 F
or

sc
hu

ng
in

st
.] 

A
t: 

18
:5

4 
31

 J
ul

y 
20

07
 

SCALAR CONSERVATION LAWS 

Let z ( t )  be the  characteristic which s tar ts  a t  zo E ( - 1 :  1) .  Its speed is u O ( z O )  = 

$ ( x i  - 1 )  and therefore 

(2.21) x ( t )  = Xo + - t ( x ~  - 1)t . 
2  

For that characteristic w ( 0 )  = uh(r0)  = rco and therefore : by (2.21) 

Using (2.22)  in (2.20)  gives : 

If $0 > 0  then w ( 0 )  > 0  and therefore, for t >> ~ ( 0 ) - ' ,  

If zo < 0  then w ( 0 )  < 0 and the characteristic will not exist beyond the critical 

time t ,  = l / l w ( O ) ( .  Therefore, by (2.23);  when t  -+ t ,  

If ro = 0  then w ( 0 )  = 0  and therefore w n ( t )  = ( - l ) "Cntn-2  . Since w 2 ( 0 )  = 

1 and w n ( 0 )  = 0 for n > 2, ( 2 . 8 ~ )  is met  with Po(t) r 0 and Pn-2(t) = 

( -1 )nCntn-2  for n > 2. 0 

After establishing estimates for w n  = a,"a(u) we are ready t o  translate 

them into analogous estimates for @ u .  For tha t  mat te r  we observe t h a t  wn 
has the form (successive chain rule) 

where I(, are positive integer coefficients and 

m, 

(2.24b) m , > 2  ; l < r ; < n + l - m ,  ; x r l = n  
)=I  

\\Je denote 
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1640 TADMOR AND TASSA 

(2.25)  M := max ~ l a ( " ) ( u ) l l ~ ~  = max, / l a ( n ) ( u o ) i l ~ ,  . Z5nqK 2<n<A' 

With (2.24) and (2.25) we get, using (1.2);  that for n 5 IV 

Note that for Burgers' equation a = 1 and M = 0 and (2.26) holds with an 

equality. 

If we now denote dEu( t )  := a I u ( x ( t ) ,  t ) ,  where s ( t )  is a characteristic curve, 

we may state the analogous of Proposition 2.1. 

Theorem 2.1. For every 1 5 n _< N and t 2 0 there holds 

Here C ,  and D, are constants which depend on the initial condition and P,-?(t) 

is a polynomial of degree n - 2 which vanishes for t = 0. 

Proof. Since u remains constant along its characteristics, (2.7) implies that 

Hence. (2.27) holds for n = 1 with C1 = Dl = (d,u(O)( and P - l ( t )  G 0 . (2.28) 

and (1.2) imply that d,u(t).  d,u(O) and w ( 0 )  have the same sign. 

As for n 2 2 ,  we proceed by induction. 

If d,u(t) > 0 .  (2.26) and (2.$a) ,  together with the induction assumption, 

imply that 

But, by (2.24b), 
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SCALAR CONSERVATION LAWS 

= C C,(1 + w(O)t)-" = C n ( l  + w(0)t)-* . 
1 

Hence (2.27a) follows from (2.29) and (2.30). 

Similarly, if d,u(t) < 0 then (2.26), (2.81) and induction imply that 

Using (2.24b) we get that  

But m, > 2 and therefore the first term on the right hand side of (2.31) is the 

dominant one as t tends to the critical time, t ,  = 1/1w(O)l , hence (2.27b) 

follows. 

As for the case d,u(t) = 0. since u remains constant along x ( t ) :  (2.24a) 

implies that 

wn( t )  - wn(0) = 

m, 

a l ( u ) ( u ( t )  - ( 0 ) )  + ( u )  8:;U(t) - n ~: :U(O)  
1 ]=I 

Using ( 2 . 8 ~ )  we therefore conclude that  

But since by induction the term in the brackets is a polynomial of degree n - 2 
and it vanishes at  t = 0 , ( 2 . 2 7 ~ )  is proved and we are done. 0 

Remarks. 

1. \\re call attention that (2.27a) is slightly different from (2.Sa). This 

difference in the exponent is the reason why (2.27a) holds for n 2 I while 

(2.Sa) holds only for n > 2. 
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1642 TADMOR AND TASSA 

2. Equality (2.28) allows us t o  rewrite (2.27a-b) in the form announced in 

the Introduction: 

with constants 

which depend solely on t h e  initial condition. 

3. T h e  large t ime behavior of the second spatial derivative in (planar)  

rarefaction waves has been studied before by Xin in [13]. Xin considered the  

scalar viscous conservation law 

211 + f (u), = EU,, 

subject to  the Cz-smooth and bounded initial condition, uo, satisfying 

and 

(2.35) lu:l 5 koub , 0 5 ko = Const . 

He showed that in  that  case there exists a positive constant h' such tha t  

This estimate can be  recovered for the inviscid hyperbolic conservation law 

(1.1) from our analysis. Let us denote 

(2.37) Lf m a x u X ( ~ :  t )  = max ub(x) 
z,t 

By (2.7) and (2.14) we get that 

Therefore, since by (2.34) and (1.2) ~ ( t )  = al(u)u, > 0, (2.38) implies that  

As w(0)  and u2(0)  are  given by (consult (2.24a)) 
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SCALAR CONSERVATION LAWS 1643 

we get from (2.39) tha t  

Using (1.2), (2.25), (2.35) and (2.37) we conclude that  

Thus, v = a ( u )  satisfies inequality (2.36) since, by definition, w( t )  = z , ( x ( t ) ,  t )  
and w2( t )  = v,,(x(t), t ) .  T h e  desired inequality for u easily follows from (1.2). 

(2.25). (2.37) and (2.41): 

Kote tha t  (2.36) holds even i f  condition (2.34) is replaced by ub 2 0, since 

along characteristics where u, = 0, u,, remains constant (by ( 2 . 2 7 ~ ) )  which 

must be zero in view of restriction (2.35). 

Theorem 2.1 tells us t h e  behavior of the high order derivatives of the 

entropy solution along its characteristics, depending on t h e  sign of the  first 

derivative there: if t h e  first derivative is positive, then according t o  (2.27a) 

the higher derivatives decay in time; if it is negative - the higher derivatives 

tend, in absolute value, to  infinity as the characteristic approaches t,he shock 

curve. (2.27b): and along characteristics where the  first derivative is zero, 

the higher order derivatives experience a polynomial growth rate  indicated in 

( 2 . 2 7 ~ ) .  Furthermore, the rate  of decay or growth increases with the  order of 

the derivative. 

3. HIGH ORDER PIECEWISE STABILITY ESTIMATES 

The estimates obtained in $2, consult (2.10-11) and (2.32-33), show how 

the smoothness of the  entropy solution depends on the distance from t h e  set 

of shock discontinuities, where this distance is measured by t h e  size of &u( t ) .  

These estimates involve. apart  from &u( t ) ,  also the  value of t h e  first derivative 

of the initial condition, &u(O). 
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1 644 TADMOR AND TASSA 

Mie now turn to  upper bound the higher order derivatives in regularity 

regions solely in terms of the local value of t h e  first derivative. thus extending 

the  special case of a n  estimate for the  second spatial derivative of planar 

rarefaction waves in (2.36). Moreover, our bound will indicate the  dependence 

of the  high order regularity on the  distance from the  singular set of shocks. 

The  distance from the singular set is measured by a lower bound of the  first 

derivative. To quantify this dependence we define for every L < 0 the following 

semi-norm: 

This  is a localized version of the  regular Cn (or M,'"@) semi-norm which may 

be  obtained from 1 )  . / I cZ"  by letting L -+ -co. 

We show that  the solution operator of (1.1) is stable with respect t o  this 

semi-norm. .4s before, we deal first with the  "Burgerized" equation, (2.3), in 

t h e  unknown v = a(u ) .  

Proposition 3.1. For  every 2 < n 5 N and  L < 0 there holds 

where the coeficients of Pn-2 depend on { I l ~ ( . , O ) l l ~ ; ) 2 ~ k < ~  

Proof. We recall equation (2.12a) which governs the  evolution of wn(t)  along 

a characteristic (x ( t ) ,  t ) .  Let (x, t)  be located on a characteristic x = x(t)  and 

assume that  x ( t )  E D,,(.,o,L , i.e., 

Since by (2.7) w(t) can only decrease along a characteristic, (3.3) implies that  

or equivalently, 

T h e  solution of (2.12a) is 
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SCALAR CONSERVATION LAWS 

Therefore, by (3.4a) and (3.5) we get that in D u ( . , t ) , ~  

N e  start by dealing with n = 2 . Here q2 = 0 and (3.6) reads 

Iw2(t)l 5 e31L1'1w2(~)1 ! 

hence (3.2) follows with Po(lL1-') = 0. 

\I'e proceed by induction assuming (3.2) holds for all 2 < b < n. 

< e("l)lLlrll,(.. 0)IC; + , (3.7) 114.. t)llct - 

where the coefficients of &.2(1LI-') depend on {llu(n, O)llc,m)25m<k . Clearly, 

since for I; 2 2 we have t ha t  3 (k-  1)  2 k +  1, (3.7) may be rewritten as  follows 

where the coefficients of &2(lLl-') in (3.8) depend on {I lv( ' ,o ) l l~~}2<m<k 

Using (3.6), (2.12b) and  (3.8) we arrive at 

which depends on {JJv( . ,  O)JIC-)2<l;<n . Evaluating the  last integral we arrive 

at 

where 
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1 646 TADMOR AND TASSA 

Since L < 0 and n > 2, Pn,-2(1LI-') is positive and therefore by (3.9a) we 

conclude that  

(3.10) Iwn(t)/ 5 e-(ntl)Lt [1m"(0)1 + P ~ - ~ ( I L I - ' ) c ( - ~ " ~ ' ) ~ ' ]  = 

e(n+l)lLlt~w"(o)l + pn-2(~~(-1)e3(n-1)ILl '  

which proves (3.2). 

Remark. It  can b e  easily shown, in the  same manner ,  that  for L = 0 

Ilv(., t ) l l ~ ;  < IIv(.: O)IIC~ + Pn-2(t) 1 

where Pn-z(t) depends on {Ilv(., O)l(ct)2<l;<n . This result is not surprising in 

view of (2.8a) and  ( 2 . 8 ~ ) .  

Finally, we translate the estimates offered by Proposition 3.1 for v a ( u ) ,  

into analogous estimates for u itself. 

Theorem 3.1. (Piecewise Stability). For  every 2 5 n < n' and L < 0 there 

holds 

(3.11) IIu(+, t)llc; 5 e(ntl)i'/lu(., O)llcZ + ; 

where i = AIL/,  A = Ila '(~)11~, and the coeflcients of Pn-z depend on 

{Ilu('l 0)llCi ) 2 ~ k < n  . 

Proof. The  verification of (3.11) for n = 2 is left to  the reader and we 

proceed by induction. Let ( x , t )  be a point on  the characteristic n: = s ( t )  

where x ( t )  E Du(.,t),L . The definition of v = a ( u )  and (1.2) therefore imply 

tha t  

(3.12) 2 )  , , i = a l (u(x( t ) ,  t ) )L . 

Furthermore, by (2.7) and (2.28) we conclude tha t  

(3.13) "(7) E D U ( . , T ) , ~  n D,(.,,),i 0 5 r < t . 

This  together with (3.12) and (3.10) imply that I ! 
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SCALAR CONSERVATION LAWS 

where C depends on { I ~ ; u ( o ) ~ ) ~ < ~ < , ,  . Therefore. since n + 1 5 3(n - 1) we 

conclude from (3.14) and (3.15) tha t  

Recalling (2.24) and (2.25), t h e  inequality (3.16) implies 

< - e(n+')Qila;u(~)/  + pn-,( l i l - l )e3(n-l)~i~i  + c~ a lar;  . u ( t)l . 
i j=1 

By induction we may conclude, a s  we did in the proof of Proposition 3.1, tha t  

and taking the supremum over x( t )  E Du( . ,q ,~  in (3.17) we arrive at (3.11). 

Remarks. 
1. In the case of Burgers' equation A = 1 and therefore (3.11) reduces in 

that  case to  the stability est imate (3.2). 

2. T h e  analogous of (3.11) for L = 0 is 

where Pn-2(t) depends on {11~(. :  0)11ci)2<k<n . 

4. ON THE SIZE OF T H E  SET OF SHOCK DISCONTINUITIES 

\Ve show in this section t h a t  generically, the set of shocks is finite. and 

identify the initial conditions for which an infinite number of shock curves is - 
generated. 

T h e  first result concerning t h e  size of the  shock set was Oleinik's. She has 

shown (8.9.101 that  the shock set  is countable a t  the most. Her result, however. 

still allows a very complicated structure such as a n  everywhere dense shock 

set. 
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1648 TADMOR AND TASSA 

Two proceeding results have simplified the picture : Dafermos [2] has shown 

that  in case that  both the  (convex) flux and the  initial condition are  infinitely 

smooth t h e  solution is C" a.e. apart  from the shock set which must be closed. 

Thus, the  shock set cannot be everywhere dense but  shocks may still accumu- 

late. 

Schaeffer [ll] has proved tha t ,  generically. the  shock set is finite when the  

initial condition is infinitely smooth. He has shown that  if f E C" satisfies 

(1.2). there exists a subset, R ,  of the  first category in Schwartz space. S(%), 
such that  if uo E S(%) \ R then u is Cm(8 x (0: co) \I?) where I' is a finite 

set of smooth shock curves. He furthermore gives an example of such an 

initial condition uo E R which evolves , according t o  the  Burgers' equation, 

to  an almost everywhere C" function with infinitely many shock curves in a 

bounded region. However, we are  left unable t o  check whether a given initial 

condition is in R or not.  

It  seems t o  be a part of the  folklore [5.7]  tha t  if uo has a finite number of 

inflection points. then t h e  corresponding entropy solution of Burgers' equation 

experiences a finite number of shock discontinuities. In the general case the 

function whose inflection points are  t o  be examined is a(u0). 

Theorem 4.1. Let u be the entropy solution of the convex hyperbolic conserua- 

tion law ( l a l a ) ,  (1.2)' subject to the bounded and piecewise C1 initial condztion, 

uo,  satisfying 

lim a(u0)' = 0 . 
I W - ~  

Then the number of disjoint shock curves equals to the number of negative 

minima of a(u0)'.  

Remarks. 
1. Since uo is assumed t o  be only piecewise C' it may be discontinuous 

and therefore will not have a classical derivative. Therefore, we refer by a(u0)' 

t o  the  generalized derivative of a(uo ) .  Hence! in  decreasing discontinuities of 

uo , a(u0)' has a negative (infinite) minimum. 

2. If a(uo)' has a continuum of negative minimal points , namely! a ( u o )  

linearly decreases along some interval, it is considered as one minimum. 

3. Shocks which occur as a consequence of a n  interaction of two (or more) 

other shocks, are not counted. We consider only "original" shocks. Obviously. 
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SCALAR CONSERVATION LAWS 1649 

the nunlber of original shocks dominates the number of simultaneous shocks 

in every t > 0. 

Corollary 4.1. If a(uo )  has n finite number of decreasing in.flection points, 

then fhe set of  shock discontinuities is finite. 

Theorem 4.1 implies that the set of functions uo E S ( % )  for which a(uo)' 

has infinitely many negative minima, is the set fl c S ( 8 )  of the first category 

that Schaeffer refers to in [ll]. 

Proof. Denote the set of disjoint (original) shock curves by S = {X ' ; ( t ) ) ; ,g  

and the set of points where a(u0)' has a negative minimum by M = { x ~ ) ~ ~ ~ .  

LVe will establish an equivalence between these two sets to prove our statement. 

For every X , ( t )  E S let tp denote its creation time (ty > 0) and t y  its 

termination time (tp < t$ 5 m). t$ is finite if X ; ( t )  collides with another 

shock. and infinite otherwise. 

According to Lax entropy condition 

(4.2)  a ( u ( X , ( t i ) - ,  t , ) )  > a ( u ( X i ( t , ) + , t i ) )  , ty < t i  < tp" 

!Ire choose one value of t ,  in that time interval, 

and denote by a.; and at+ the two initial points of the characteristics which 

impinge upon the shock X i ( t )  from both sides at t = t i  . (4.2) implies that 

A consequence of (4.1) is that a(uo)' must become negative somewhere along 

the interval [x;,x,f]. Let 2 ,  denote the point in that interval where a(u0)' 

achieves its minimal value. The shock's creation time is determined by this 

minimum . 

On the other hand 
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1650 TADMOR A N D  TASSA 

since otherwise . the characteristics which s tar t  a t  (z:,0) would not have 

lasted until t = t , .  (4.5) and (4.6) imply that  

and therefore xi is a negative local minimum of a(uo)', i.e., x, E 1W. 

We have thus  shown tha t  to  each Xi ( t )  E S corresponds a x, E Ail. This 

correspondence is one-to-one since if A";(t) and X;( t)  are two disjoint shocks 

then our choice of t; , (4.3), implies t h a t  

and therefore x; # z,. 

Now we show an one-to-one correspondence from M to S t o  conclude the  

equivalence of t h e  two sets.  Let X I ,  x2 E M and let ( b e  the  point where a(u0)' 

reaches its maximalvalue in the  interval [xl ,  x2]. Let x , ( t )  be the characteristic 

which s tar ts  a t  (x;,O), i = 1 , 2 ,  and ((t) be 

solution along xi(t) becomes d i scont inu~us  

the one which starts a t  (6,O). T h e  

a t  t ime 

Therefore, each of the points (xi( t i ) ,  t i ) ,  i = 1, 2, is on a shock. By Lagrange 

mean value theorem and since a(u0)' has local minima in x, we conclude that  

Since the left hand side of (4.9) indicates the t ime when x;(t) and ((t) were 

to  meet,  we conclude t h a t  xl(t1) < [ ( t l )  and xZ(t2) > ((t2). Therefore , the 

points (xi( i i ) , t i ) ,  i = 1!2, lay on two different shocks, the first is on the  left 

side of ( ( t )  and the  second is from its right side. 

Finally: we note tha t  if a(u0)' has a continuum of negative minimal points, 

i.e., i f  a(uo)  is linearly decreasing on some interval, [XI, xz] , this minimum 
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SCALAR CONSERVATION LAWS 1651 

creates only one shock since the characteristics from that  interval will all meet 

a t  

to s tar t  that shock. 

ACICNO WLBDGMEIVT 
Research was supported in  part by the Basic Research Foundation of the 

Israeli Academy of Sciences and Humanities. Additional support for t h e  first 

author was provided by O N R  Contract number N-00014-91-J-1096 and by SSF 
Grant number DMS91-03104. 

REFERENCES 

(11 Y. Brenier and S. Osher, The  discrete one-sided Lipschitz condition for 

convex scalar conservation l a w ,  SIKUM, z. 1988. 8-23. 

(21 C.M.  Dafermos, Generalized characteristics and the structure of solutions 

of hyperbolic conservation laws. Indiana Univ. Math. J.. 26, 1977, 1097-1119. 

[3] R. DeVore and B. Lucier, High order regularity for conservation laws, In- 

diana Univ. Math. J . ,  s, 1990, 413-430. 

(41 D. Hoff, The sharp form of Oleinik's entropy condition in several space 

dimensions, Trans. Amer. Math.  Soc.. 276, 1983, 527-536. 

[5] H.O. Kreiss, private communication. 

[6] P.D. Lax, Hyperbolic systems of conservation laws 11, Comm. Pure Appl. 

Math. .  10, 1957, 537-566. 

[7] B. Lucier. private communication. 

[8] O.A. Oleinik, Discontinuous solutions of non-linear differential equations. 

Amer. Math.  Soc. Transl., 26. Ser. 2. 1963, 95-172. 

[9] 0 . A  Oleinik, T h e  Cauchy problem for nonlinear equations in a class of 

discont i~~uous functions, Amer.  hilath. Soc. Transl., 42, Ser. 2, 1954, 7-12. 

[ lo]  O..4. Oleinik, The  Cauchy problem for nonlinear differential equations 

of the  first order with discontinuous initial conditions, Trudy Moskov. Mat .  

Obsc.. 5, 1956. 433-454. 



D
ow

nl
oa

de
d 

B
y:

 [M
at

he
m

at
is

ch
es

 F
or

sc
hu

ng
in

st
.] 

A
t: 

18
:5

4 
31

 J
ul

y 
20

07
 

1652 TADMOR AND TASSA 

[ l l ]  D.G. Schaeffer, .4 regularity theorem for conservation laws, Adv. in Math., 

11, 1973, 368-386. - 

[12] E. Tadmor, Local error estimates for discontinuous solutions of nonlinear 

hyperbolic equations, SIXUM, a, No. 4 ,  1991: 891-906. 

113) Z.  Xin. Asymptotic stability of planar rarefaction waves for viscous conser- 

vation laws in several dimensions, Trans. of AMS, 3& No. 2, 1991, 805-820. 

Received September 1992 




