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Abstract We prove that the ENO reconstruction and ENO interpolation procedures
are stable in the sense that the jump of the reconstructed ENO pointvalues at each cell
interface has the same sign as the jump of the underlying cell averages across that in-
terface. Moreover, we prove that the size of these jumps after reconstruction relative
to the jump of the underlying cell averages is bounded. Similar sign properties and
the boundedness of the jumps hold for the ENO interpolation procedure. These esti-
mates, which are shown to hold for ENO reconstruction and interpolation of arbitrary
order of accuracy and on non-uniform meshes, indicate a remarkable rigidity of the
piecewise-polynomial ENO procedure.
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1 Introduction and statement of main results

The acronym ENO in the title of this paper stands for “Essentially Non-Oscillatory”,
and it refers to a reconstruction procedure, which generates a piecewise polynomial
approximation of a function from a given set of its cell averages. The essence of
the ENO procedure, which was introduced by Harten et. al. in [16], is its ability to
accurately recover discontinuous functions. The starting point is a collection of cell
averages {vi}i∈Z over consecutive intervals Ii = [xi−1/2,xi+1/2),

vi :=
1
|Ii|

∫
Ii

v(x)dx, (1.1)

from which one can form the piecewise constant approximation of the underlying
function v(x),

A v(x) := ∑
k

vk1Ik(x), 1Ik(x) =
{

1 if x ∈ Ik,
0 if x /∈ Ik.

But the averaging operator A v(x) is limited to first order accuracy, whether v is
smooth or not; for example, if v has bounded variation then ‖v−A v‖L1 = O(h)
where h := maxi |Ii|. The purpose of the ENO procedure (abbreviated by R) is to
reconstruct a higher order approximation of v(x) from its given cell averages,

ENO: A v(x) = ∑
k

vk1Ik(x) 7→ RA v(x) := ∑
k

fk(x)1Ik(x). (1.2)

Here, fk(x) are polynomials of degree p−1 such that the piecewise-polynomial ENO
reconstruction RA v(x) satisfies the following two essential properties:

Accuracy: First, it is an approximation of v(x) of order p in the sense that

RA v(x) = v(x)+O(hp), h = max
i
|Ii|. (1.3)

Typically, the requirement for accuracy is sought whenever v(·) is sufficiently smooth
in a neighborhood of x. Here, however, (1.3) is also sought at isolated points of jump
discontinuities. Thus, if we let v(xi+1/2+) and v(xi+1/2−) denote the point-values
of v(x) at the left and right of the interface at xi+1/2, then (1.3) requires that the
corresponding reconstructed point-values, v−i+1/2

:= RA v(xi+1/2−) = fi(xi+1/2) and
v+i+1/2

:= RA v(xi+1/2+) = fi+1(xi+1/2), satisfy

|v−i+1/2− v(xi+1/2−)|+ |v+i+1/2− v(xi+1/2+)|= O(hp).

To address this requirement of accuracy, the fi’s are constructed from neighboring
cell averages {vi+ j}k+p−1

j=k for some k ∈ {−p+ 1, . . . ,0}. The key point is to choose
an adaptive stencil,

i 7→ {vi+k, · · · ,vi, · · · ,vi+k+p−1},
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based on a data-dependent shift k = k(i). This enables the essential non-oscillatory
property (1.3), while making the ENO procedure essentially nonlinear.

Conservation: The second property sought in the ENO reconstruction is that the
piecewise-polynomial ENO approximation be conservative, in sense of conserving
the original cell averages,

1
|Ii|

∫
Ii
RA v(x)dx = vi. (1.4)

The conservative property enables us to recast the ENO procedure in an equivalent

formulation of nonlinear interpolation. To this end, let V (x) :=
∫ x

−∞

v(s)ds denote the

primitive of v(x). The given cell averages {vi} now give rise to a set of point-values
{Vj+1/2} j∈Z,

Vj+1/2 :=
∫ x j+1/2

−∞

v(s)ds =
j

∑
k=−∞

∫ xk+1/2

xk−1/2

v(s)ds =
j

∑
k=−∞

|Ik|vk. (1.5)

A second-order approximation of these point-values is given by the piecewise lin-
ear interpolant LV (x) := ∑k

1
|Ik|
(
Vk−1/2(xk+1/2− x)+Vk+1/2(x− xk−1/2)

)
1Ik(x). The

ENO approximation, ∑k Fk(x)1Ik(x), is a higher-order accurate piecewise-polynomial
interpolant,

ENO: LV (x) 7→ RLV (x) := ∑
k

Fk(x)1Ik(x). (1.6)

It interpolates the given data at the nodes, Fi(xi±1/2) = Vi±1/2, and it recovers V (x) to
high-order accuracy at the interior of the cells, RLV (x) = V (x)+O(hp+1). Now,
let Fi(x) be the unique p-th order polynomial interpolating the p + 1 pointvalues
Vi+r, . . . ,Vi+r+p for some shift r which is yet to be determined. Then, it is a simple
consequence of (1.5) that f satisfies (1.3) and (1.4) and that

Fi(x) =Vi−1/2 +
∫ x

xi−1/2

fi(s)ds.

In this manner, ENO reconstruction of cell averages is equivalent to ENO interpola-
tion of the pointvalues of its primitive. We shall travel back and forth between these
two ENO formulations.
Note that there are other approaches for ENO reconstruction of pointvalues, {v±i+1/2

},
from cell averages, {vi+k}, such that the above properties of accuracy and conserva-
tion hold, e.g., reconstruction via deconvolution [16].
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1.1 ENO reconstruction

When the underlying data is sufficiently smooth, the accuracy requirements can be
met by interpolating the primitive V on any set of p+1 point-values

{Vi+r, . . . ,Vi−1/2,Vi+1/2, . . . ,Vi+r+p}.

Here, r is the (left) offset of the interpolation stencil, which is indexed at half-integers,
to match the cell interfaces. To satisfy the conservation property (1.4), the stencil of
interpolation must include Vi−1/2 and Vi+1/2. There are p such stencils, ranging from
the leftmost stencil corresponding to an offset r = −p+ 1/2 to the rightmost stencil
corresponding to an offset of r = −1/2. Since we are interested in approximation of
piecewise smooth functions, we need to choose a carefully shifted stencil, in order to
avoid spurious oscillations. The main idea behind the ENO procedure is the use of a
stencil with a data-dependent offset, r = r(i), which is adapted to the smoothness of
the data. The choice of ENO stencil is accomplished in an iterative manner, based on
divided differences of the data.

Algorithm 1.1 (ENO reconstruction algorithm: selection of ENO stencil)
Let point values of the primitive Vi−p+1/2, . . . ,Vi+p−1/2 be given, e.g., (1.5).

• Set r1 =−1/2.
• For each j = 1, . . . , p−1, do:{

if
∣∣V [xi+r j−1, . . . ,xi+r j+ j

]∣∣< ∣∣V [xi+r j , . . . ,xi+r j+ j+1
]∣∣ 7→ set r j+1 = r j−1,

otherwise 7→ set r j+1 = r j.

• Set Fi(x) as the interpolant of V over the stencil {Vi+k}
rp+p
k=rp

.
• Compute fi(x) := F ′i (x).

The divided differences V [xk, . . . ,xk+ j] are a good measure of the jth order of smooth-
ness of V (x). Thus, the ENO procedure is based on data-dependent stencils which are
chosen in the direction of smoothness, in the sense of preferring the smallest divided
differences.

The ENO reconstruction procedure was introduced in 1987 by Harten et. al. [16]
in the context of accurate simulations for piecewise smooth solutions of nonlinear
conservation laws. Since then, the ENO procedure and its extensions, [23,10,21,11–
13], have been used with a considerable success in Computational Fluid Dynamics;
we refer to the review article of Shu [22] and the references therein. Moreover, ENO
and its various extensions, in particular, with subcell resolution scheme (ENO-SR),
[10], have been applied to problems in data compression and image processing in
[14,1,6,19,4,7,2,3] and references therein.

There are only a few rigorous results about the global accuracy of the ENO proce-
dure. In [2], the authors proved the second-order accuracy of ENO-SR reconstruction
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of piecewise-smooth C2 data. Multi-dimensional global accuracy results for the so-
called ENO-EA method were obtained in [3]. Despite the extensive literature on the
construction and implementation of ENO method and its variants for the last 25 years,
we are not aware of any global, mesh independent, stability properties. This brings
us to the main result of this paper, stating the stability of the ENO reconstruction
procedure in terms of the following sign property.

Theorem 1.1 (The sign property) Fix an integer p > 1. Given the cell averages
{vi}, let RA v(x) be the p-th order ENO reconstruction of these averages, as outlined
in Algorithm 1.1,

RA v(x) = ∑
k

fk(x)1Ik(x), deg fk(x)≤ p−1.

Let v+i+1/2
:= RA v(xi+1/2+) and v−i+1/2

:= RA v(xi+1/2−) denote left and right re-
constructed point-values at the cell interface xi+1/2. Then the following sign property
holds at all interfaces:{

if vi+1− vi ≥ 0 then v+i+1/2
− v−i+1/2

≥ 0;

if vi+1− vi ≤ 0 then v+i+1/2
− v−i+1/2

≤ 0.
(1.7)

In particular, if vi+1 = vi then the ENO reconstruction is continuous across the inter-
face, v+i+1/2

= v−i+1/2
. Moreover, there is a constant Cp, depending only on p and on the

mesh-ratio of neighboring grid cells, max| j−i|≤p
(
|I j+1|/|I j|

)
, such that

0≤
v+i+1/2

− v−i+1/2

vi+1− vi
≤ Cp. (1.8)

The sign property tells us that at each cell interface, the jump of the reconstructed
ENO pointvalues cannot have an opposite sign to the jump in the underlying cell
averages. The sign property is illustrated in Figure 1, which shows a third-, fourth-
and fifth-order ENO reconstruction of randomly chosen cell averages. Even though
the reconstructed polynomial may have large variations within each cell, its jumps at
cell interfaces always have the same sign as the jumps of the cell averages. Moreover,
the relative size of these jumps is uniformly bounded. We remark that the inequality
on the left-hand side of (1.8) is a direct consequence of the sign property (1.7).

Remark 1 We emphasize that the main Theorem 1.1 is valid for any order of ENO
reconstruction and for any mesh size. It is valid for non-uniform meshes and makes
no assumptions on the function v, other than that the cell averages vi must be well-
defined, which is guaranteed if e.g. v∈ L1

loc(R). This is a remarkable rigidity property
of the piecewise-polynomial interpolation.
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Fig. 1: ENO reconstruction of randomly chosen cell averages.

Remark 2 The stability asserted in Theorem 1.1 is realized in terms of the recon-
structed point-values at cell interfaces v±i+1/2

. These are precisely the input for the
construction of high-order accurate finite volume schemes for nonlinear conservation
laws (see Shu [22]), and the relation between these values and the cell averages will
be the main point of study in this paper. This approach was taken in [9], where we
use the sign property to construct arbitrarily high-order accurate entropy stable ENO
schemes for systems of conservation laws.

Remark 3 The proof of both the sign property and the related upper-bound (1.8) de-
pends on the judicious choice of ENO stencils in Algorithm 1.1, and it may fail for
other choices of ENO-based algorithms. In particular, the popular WENO methods,
which are based on upwind or central weighted ENO stencils, [17,18,20], fail to
satisfy the sign property, as can be easily confirmed numerically.

1.2 ENO interpolation

The ENO algorithm can be formulated as a nonlinear interpolation procedure. The
starting point is a given collection of point-values, {vi = v(xi)}i∈Z at the grid-points
{xi}i∈Z. The purpose of the ENO procedure in this context (abbreviated by I ) is to
recover a highly accurate approximation of v(x) from its point-values vi = v(xi),

ENO: {vi}i 7→ I v(x) := ∑
k

fk(x)1Ik(x), xk±1/2 :=
xk + xk±1

2
.

Here, fk(x) are polynomials of degree p−1 which interpolate the given data,

I v(xi) = fi(xi) = vi.

Moreover, the ENO interpolant I v(x) is essentially non-oscillatory in the sense of
recovering v(x) to order O(hp). In particular, since v(x) may experience jump dis-
continuities, we wish to recover the point-values, v−i+1/2

:= fi(xi+1/2) and v+i+1/2
:=

fi+1(xi+1/2), with high-order accuracy,∣∣∣v−i+1/2− v(xi+1/2−)
∣∣∣+ ∣∣∣v+i+1/2− v(xi+1/2+)

∣∣∣= O(hp).
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This version of the ENO procedure was used for finite difference approximation of
nonlinear conservation laws in [23]. The ENO interpolant I v(x) is based on the
usual divided differences {v[xi, . . . ,xi+ j]}i, starting with the grid-values v[xi] = vi and
defined recursively for j > 0.

Let {` j}p
j=1 be the offsets of the ENO stencil associated with grid point xi. In

this case of ENO interpolation, these offsets are non-positive integers, correspond-
ing to the integer indices of the prescribed gridpoints x j. These offsets are selected
according to the following ENO selection procedure.

Algorithm 1.2 (ENO interpolation: selection of ENO stencil)
Let point values vi−p+1, . . . ,vi+p−1 be given.

• Set `1 = 0.
• For each j = 1, . . . , p−1, do:{

if |v[xi+` j−1, . . . ,xi+` j+ j−1]|< |v[xi+` j , . . . ,xi+` j+ j]| 7→ set ` j+1 = ` j−1,
otherwise 7→ set ` j+1 = ` j.

• Set fi(x) as the interpolant of v over the stencil {vi+k}
`p+p−1
k=`p

:

fi(x) =
p−1

∑
j=0

v[xi+` j , . . . ,xi+` j+ j]
j−1

∏
m=0

(
x− xi+` j−1+m

)
.

In the following theorem we state the main stability result for this version of the
ENO interpolation procedure, analogous to the sign property of the ENO reconstruc-
tion procedure from cell averages.

Theorem 1.2 (The sign property revisited – ENO interpolation) Fix an integer
p > 1. Given the point-values {vi}, let I v(x) be the p-th order ENO interpolant of
these point-values, outlined in Algorithm 1.2,

I v(x) = ∑
k

fk(x)1Ik(x), deg fk(x)≤ p−1.

Let v−i+1/2
:= I v(xi+1/2−) and v+i+1/2

:= I v(xi+1/2+) denote left and right recon-
structed point-values at the cell interfaces xi+1/2. Then the following sign property
holds at all interfaces:{

if vi+1− vi ≥ 0 then v+i+1/2
− v−i+1/2

≥ 0;

if vi+1− vi ≤ 0 then v+i+1/2
− v−i+1/2

≤ 0.
(1.9)

In particular, if the point-values vi+1 = vi then the ENO interpolation is continuous
across their mid-points, v+i+1/2

= v−i+1/2
. Moreover, there is a constant cp, depending

only on p and on the mesh-ratio |x j+1− x j|/|x j− x j−1| of neighboring grid cells,
such that

0≤
v+i+1/2

− v−i+1/2

vi+1− vi
≤ cp. (1.10)
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The rest of this paper is devoted to proving the stability properties of the ENO
procedure. We begin with the ENO reconstruction procedure in Theorem 1.1. In Sec-
tion 2 we prove the sign property (1.7) and in Section 3 we prove the upper bound
(1.8). Similar stability properties hold for the ENO interpolation procedure, dealing
with point-values instead of cell averages. In Section 4 we prove the sign property for
the ENO interpolation stated in the main theorem 1.2.
These results were announced earlier in [8].

2 The sign property for ENO reconstruction

The aim of this section is to prove the sign property (1.7). To this end we derive
a novel expression of the interface jump, v+i+1/2

− v−i+1/2
, as a sum of terms which

involve (p+1)-th divided differences of V , and we show that each summand in this
expression has the same sign as vi+1− vi.

We recall that at each cell Ii, the ENO reconstruction is based on a particular
stencil of p+1 consecutive gridpoints, {xi+r, . . . ,xi+r+p}, where r = r(i) is the offset
of such stencil.

Notation. We will reserve the indices r and s to denote offsets of ENO reconstruction
stencils. We recall that these offsets measure the shifts to the left of each stencil, and
are indexed at negative half-integers,−p+ 1/2≤ r,s≤−1/2, to match the indexing of
cell interfaces at half-integers.

Since this choice of ENO offset depend on the data through the iterative Algo-
rithm 1.1, we need to trace the hierarchy of ENO stencils which ends with the final
offset r = r(i). To simplify notations, we focus our attention on a typical cell I0, with
an initial stencil which consists of the edges at x−1/2 and x1/2. The stencil is identi-
fied by its leftmost index, r1 = −1/2. Next, the stencil is extended, either to the left,
{x−3/2,x−1/2,x1/2} where r2 = −3/2, or to the right, {x−1/2,x1/2,x3/2} with r2 = −1/2.
In the next stage, there are three possible stencils, which are identified by the left-
most offset: r3 =−5/2 corresponding to {x−5/2, . . . ,x1/2}, r3 =−3/2 corresponding to
{x−3/2, . . . ,x3/2}, or r3 = −1/2 corresponding to {x−1/2, . . . ,x5/2}. Stage j of the ENO
Algorithm 1.1 involves the stencil of j+ 1 consecutive points, {xr j , . . . ,xr j+ j}. The
series of offsets of this hierarchy of stencils, r1,r2, . . . ,rp, forms the signature of the
ENO algorithm. Note that by our construction,

r1 =−1/2≥ r2 ≥ r3 ≥ ·· · ≥ rp ≥−p+ 1/2,

and whenever needed, we set r−1 = r0 = −1/2. The stability properties of ENO will
be proved by carefully studying such data-dependent signatures.

The Newton representation of the p-th degree interpolant F0(x), based on point-
values
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V (xrp),V (xrp+1), . . . ,V (xrp+p), is given by

F0(x) =
p

∑
j=0

V
[
xr j , . . . ,xr j+ j

] j−1

∏
m=0

(
x− xr j−1+m

)
, (2.1)

where V [xk, . . . ,xk+ j] are the j-th divided difference of V at the specified gridpoints.
Observe that in (2.1), we took the liberty of summing the contributions of stencils in
their “order of appearance’ rather than the usual sum of stencils from left to right.

Notation. For notational convenience, we denote the j-th divided difference of the
primitive V as

D[r,r+ j] :=V [xr, . . . ,xr+ j], D[r,r+ j]=
D[r+1,r+ j]−D[r,r+ j−1]

xr+ j− xr
, r = . . . ,−3/2,−1/2,1/2.

Thus, for example, by (1.5) we have D[−1/2,3/2] =V [x−1/2,x1/2,x3/2] = (v1−v0)/(x3/2−
x−1/2).

If D[−1/2,3/2] = 0, or in other words, if v0 = v1, then it is easy to see that the
ENO procedure will end up with identical stencils for I0 and I1, which in turn yields
v−1/2

= v+1/2
. We may therefore assume that D[−1/2,3/2] 6= 0, and the sign property will be

proved by showing that

Sign property:

{
if D[−1/2,3/2] > 0 then v+1/2

− v−1/2
≥ 0;

if D[−1/2,3/2] < 0 then v+1/2
− v−1/2

≤ 0.
(2.2)

To verify (2.2), we examine the ENO reconstruction at cell I0, given by f0(x) :=
F ′0(x). Differentiation of (2.1) yields

f0(x) =
p

∑
j=1

D[r j ,r j+ j]

j−1

∑
l=0

j−1

∏
m=0
m 6=l

(
x− xr j−1+m

)
.

The value of f0 at the cell interface x1/2 is then

v−1/2 = f0(x1/2)=
p

∑
j=1

D[r j ,r j+ j]

j−1

∑
l=0

j−1

∏
m=0
m 6=l

(
x1/2− xr j−1+m

)
=

p

∑
j=1

D[r j ,r j+ j]

j−1

∏
m=0

m6=−r j−1+1/2

(
x1/2− xr j−1+m

)
(2.3)

The last equality follows from the fact that all but the one term corresponding to
l =−r j−1+ 1/2 drop out.

Notation. To simplify notations, we use ��∏ to denote a product which skips any of its
zero factors, ��∏ j∈J α j := ∏ j∈J:α j 6=0 α j.
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For example, a simple shift of indices in (2.3) yields v−1/2 =
p

∑
j=1

D[r j ,r j+ j]

j−2

��∏
m=−1

(
x1/2− xr j−1+m+1

)
.

In an similar fashion, we handle the ENO reconstruction at cell I1. Let s1, . . . ,sp be
the signature of that cell. Note that r j ≤ s j +1, since the ENO reconstruction at stage
j in cell I1 cannot select a stencil further to the left than the one used in cell I0. If
r j = s j + 1, then the two interpolation stencils are the same, and so v+1/2

− v−1/2
= 0.

Hence, we only need to consider the case r j ≤ s j for all j. The reconstructed value of
f1(x) = F ′1(x) at x = x1/2 is given by

v+1/2 = f1(x1/2) =
p

∑
j=1

D[1+s j ,1+s j+ j]

j−1

��∏
m=0

(
x1/2− xs j−1+m+1

)
The jump in the values reconstructed at x = x1/2 is then given by

v+1/2−v−1/2 =
p

∑
j=1

(
D[1+s j ,1+s j+ j]

j−1

��∏
m=0

(
x1/2− xs j−1+m+1

)
−D[r j ,r j+ j]

j−2

��∏
m=−1

(
x1/2− xr j−1+m+1

))
.

(2.4)
The following lemma provides a much needed simplification for the rather intim-

idating expression (2.4), in terms of a key identity, which is interesting in its own
right.

Lemma 1 The jump of the reconstructed point-values in (2.4) is given by

v+1/2− v−1/2 =
sp

∑
r=rp

D[r,r+p+1](xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)
. (2.5)

We postpone the proof of Lemma 1 to the end of this section, and we turn to use
it in order to conclude the proof of the sign property. To this end, we show that each
non-zero summand in (2.5) has the same sign as v1− v0. Since

sgn

(
(xr+p+1− xr)

p−1

��∏
m=0

(
x1/2− xr+m+1

))
= (−1)r+p−1/2, r =−p+ 1/2, . . . ,−1/2,

(2.6)
then in view of (2.2), it remains to prove the following essential lemma.

Lemma 2 Let {r j}p
j=1 and {s j}p

j=1 be the signatures of the ENO stencils associated
with cells I0 and, respectively, I1. Then the following holds:

if D[−1/2,3/2] > 0 then (−1)r+p−1/2D[r,r+p+1] ≥ 0, r = rp, . . . ,sp, (2.7a)

if D[−1/2,3/2] < 0 then (−1)r+p−1/2D[r,r+p+1] ≤ 0, r = rp, . . . ,sp. (2.7b)
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Since r runs over half-integers, (2.7) imply that each non-zero term in the sum (2.5)
has the same sign as D[−1/2,3/2], and Theorem 1.1 follows from the sign property, (2.2).

Proof We consider the case (2.7a) where D[−1/2,3/2] > 0; the case (2.7b) can be ar-
gued similarly. The result clearly holds for p = 1, where rp = sp = −1/2 (to clarify
matters, we also detail the case p = 2 at the end of this section). The general case
follows by induction on p. Assuming that (2.7) holds for some p ≥ 1, namely, that
(−1)r+p−1/2D[r,r+p+1] ≥ 0 for r = rp, . . . ,sp, we will verify that it holds for p+ 1.
Indeed,

(−1)r+p+1/2D[r,r+p+2] ≡ (−1)r+p+1/2
D[r+1,r+1+p+1]−D[r,r+p+1]

xr+p+2− xr
(2.8)

=
(−1)r+p+1/2D[r+1,r+p+2]+(−1)r+p−1/2D[r,r+p+1]

xr+p+2− xr
≥ 0

for r = rp, . . . ,sp−1, by the induction hypothesis. Thus, it remains to examine D[r,r+p+2]
when r = rp+1 < rp and r = sp+1 ≥ sp.

(a) The case rp+1 = rp is already included in (2.8), so the only other possibility is
when rp+1 = rp−1. According to the ENO selection principle, this choice of ex-
tending the stencil to the left occurs when |D[rp−1,rp+p]|< |D[rp,rp+p+1]|. Conse-
quently, since (−1)rp+1+p+1/2 =(−1)rp+p−1/2, and by assumption (−1)rp+p−1/2D[rp,rp+p+1]=
|D[rp,rp+p+1]|, we have

(−1)rp+1+p+1/2D[rp+1,rp+1+p+2] ≥
(−1)rp+p−1/2D[rp,rp+p+1]−|D[rp−1,rp+p]|

xrp+p+1− xrp−1
> 0,

and (2.7a) follows.
(b) The case sp+1 = sp − 1 is already covered in (2.8). The only other possibil-

ity is therefore sp+1 = sp. By the ENO selection procedure, this extension to
the right occurs when |D[sp+1,sp+p+2]| ≤ |D[sp,sp+p+1]|. But (−1)sp+1+p+1/2 =

−(−1)sp+p−1/2 and by assumption, (−1)sp+p−1/2D[sp,sp+p+1]= |D[sp,sp+p+1]|, hence

(−1)sp+1+p+1/2D[sp+1,sp+1+p+2]≥
−|D[sp+1,sp+p+2]|+(−1)sp+p−1/2D[sp,sp+p+1]

xsp+p+2− xsp

≥ 0,

and (2.7a) follows.

Remark 4 To further clarify lemma 2, we elaborate here on its proof in the particular
case p = 2. We assume that D[−1/2,3/2] > 0 and will prove that (2.7a) holds; the other
half of lemma 2 in (2.7b) can be proved in a similar manner.
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The selected stencil for I0 can be extended in one of two ways. One way is that
the ENO stencil associated with I0, which starts with [−1/2,1/2], is extended to the
left, [−3/2,1/2], with offset r2 =−3/2; this stencil is selected in case

|D[−3/2,1/2]| := |v0− v−1|< |v1− v0|=: |D[−1/2,3/2]|. (2.9a)

The sign property claimed in (2.7a) in this case of an extension to the left with p = 2
amounts to

(−1)r+p−1/2D[r,r+p+1] = (−1)r+3/2D[r,r+3] ≥ 0, r =−3/2, . . . ,s2; (2.9b)

here s = s2 is the shift to left of the stencil associated with cell I1. We verify this
claim below. The other way is when the ENO stencil associated with I0 is extended to
the right, [−1/2,3/2], with offset r2 =−1/2: this stencil is selected in case |v1− v0|<
|v0− v−1| and the proof in this case can be argued along the same lines of the left
extension outlined below.

Since the left edge of a stencil can be shifted at most one cell to the left, there are
only two possibilities of a left shift for the stencil associated with I1.

Case (i): s = −3/2, that is, the stencil associated with I1 was extended to the left
because |v1− v0|< |v2− v1|. Thus, case (i) holds if D[1/2,5/2] > 0;

Case (ii): s = −1/2, that is, the stencil associated with I1 was extended to the
right and its left “edge” did not move from its original position at x = 1/2, because
|v1− v0| ≥ |v2− v1|, namely

D[−1/2,5/2] ≤ 0 (2.9c)

We now turn to verify (2.9b). In case (i) we have r = s =−3/2,

(−1)r+3/2D[r,r+3] = D[−3/2,3/2] :=
D[−1/2,3/2]−D[−3/2,1/2]

x3/2− x−3/2
.

The expression on the right is indeed non-negative because D[−1/2,3/2] > 0 by the as-
sumption made in (2.7a), and it dominates D[−3/2,1/2] by (2.9a).
Next we verify (2.9b) in case (ii) where s =−1/2:

(−1)r+3/2D[r,r+3] ≥ 0, r =−3/2,−1/2. (2.9d)

Here there are two subcases, depending on the left shift r:
Case (iia): when r = −3/2, we need to verify the positivity claimed in (2.9d),

namely,

D[−3/2,3/2] :=
D[−1/2,3/2]−D[−3/2,1/2]

x3/2− x−3/2
≥ 0;

indeed, this follows by the same arguments as before (note that they are independent
of the sign of D[1/2,5/2]). Thus, the only remaining subcase is

Case (iib): verify (2.9d) with r =−1/2 (and recall s=−1/2), namely, that (−1)D[−1/2,5/2]≥
0, which clearly holds, since D[−1/2,5/2] in (2.9c) is non-positive. This concludes the
proof of lemma 2 for the case p = 2.
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We close this section with the promised proof of Lemma 1.

Proof We proceed in two steps. In the first step, we consider the special case when
the two stencils that are used by the ENO reconstruction in cells I0 and I1 are only
one grid cell apart. Such stencils must have the same offset, say rp = sp = r and in
this case, Lemma 1 claims that v+1/2

− v−1/2
equals

f1(x1/2)− f0(x1/2) = D[r,r+p+1] (xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)
. (2.10)

Indeed, the interpolant of V (xr+1), . . . ,V (xr+p),V (xr), assembled in the specified or-
der from left to right and then adding V (xr) at the end, is given by

F0(x) =
p−1

∑
j=0

D[r+1,r+1+ j]

j−1

∏
m=0

(x− xr+1+m)+D[r,r+p]

p−1

∏
m=0

(x− xr+1+m) .

Similarly, the interpolant of V (xr+1), . . . ,V (xr+p+1), assembled in the specified order
from left to right, is given by

F1(x) =
p−1

∑
j=0

D[r+1,r+ j+1]

j−1

∏
m=0

(x− xr+1+m)+D[r+1,r+p+1]

p−1

∏
m=0

(x− xr+1+m)

(cf. (2.1)). Thus, their difference amounts to

F1(x)−F0(x) =
(
D[r+1,r+p+1]−D[r,r+p]

) p−1

∏
m=0

(x− xr+1+m)

= D[r,r+p+1] (xr+p+1− xr)
p−1

∏
m=0

(x− xr+1+m) ,

which reflects the fact that F0 and F1 coincide at the p points xr+1, . . . ,xr+p. Differ-
entiation yields

f1(x)− f0(x) = D[r,r+p+1] (xr+p+1− xr)
p−1

∑
l=0

p−1

∏
m=0
m 6=l

(x− xr+1+m) .

At x = x1/2, all product terms on the right vanish except for l = −r− 1/2, since x1/2

belongs to both stencils. We end up with

f1(x1/2)− f0(x1/2) = D[r,r+p+1] (xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)
.

This shows that (2.10) holds, verifying Lemma 1 in the case that the stencils associ-
ated with I0 and I1 are separated by just one cell.
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In step two, we extend this result for arbitrary stencils, where I0 and I1 are as-
sociated with arbitrary offsets, rp ≤ sp. Denote by F{ j} the interpolant at points
x j, . . . ,x j+p, so that F0 = F{rp} and F1 = F{sp+1}. Using the representation from the
first step for the difference of one-cell shifted stencils,

(
f {r+1}− f {r}

)
(x1/2), we can

write the jump at the cell interface as a telescoping sum,

( f1− f0)(x1/2) =
(

f {sp+1}− f {rp}
)
(x1/2)

=
sp

∑
r=rp

(
f {r+1}− f {r}

)
(x1/2)

=
sp

∑
r=rp

D[r,r+p+1](xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)
,

and (2.5) follows.

3 The relative jumps in ENO reconstruction are bounded

In this section, we will prove (1.8), which establishes an upper bound on the size of
the jump in reconstructed values in terms of the jump in the underlying cell averages.
We need the following lemma.

Lemma 3 Let rp,sp be the (half-integer) offsets of the ENO stencils associated with
cell I0 and, respectively, I1. Then

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2 ≤Cr,p, r = rp, . . . ,sp, (3.1a)

where the constants Cr,p are defined recursively, starting with Cr,1 = 1, and

Cr,p+1 =
2

xr+p+2− xr
max(Cr,p,Cr+1,p) ∀ r. (3.1b)

The quantity on the left in (3.1a) was shown to be bounded from below by zero in
Lemma 2; here we prove an upper bound. The constants Cr,p only depend on the grid
sizes |I j|.

Proof The result clearly holds for p = 1. We prove the general induction step passing
from p 7→ p+1. Using the recursion relation

D[r,r+p+2] =
D[r+1,r+p+2]−D[r,r+p+1]

∆x
, ∆x := xr+p+2− xr,
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we have

0≤
D[r,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 =

1
∆x

(
D[r+1,(r+1)+p+1]

D[−1/2,3/2]
(−1)r+p+1/2 +

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2

)

≤
Cr+1,p +Cr,p

∆x
≤Cr,p+1, r = rp, . . . ,sp−1.

(3.2)

We turn to the remaining cases.

(a) As in Lemma 2, if rp+1 = rp then the induction step is already covered in (3.2),
so the only remaining case is r = rp+1 = rp−1, corresponding to Lemma 2(a). In
this case, |D[r,r+p+1]| ≤ |D[r+1,r+p+2]|, hence

D[r,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 =

1
∆x

D[r+1,r+p+2]−D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p+1/2

≤ 2
∆x

D[r+1,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 ≤

2Cr+1,p

∆x
≤Cr,p+1.

(b) If sp+1 = sp− 1 then the induction step is already covered in (3.2), so the only
remaining case is r = sp+1 = sp, corresponding to Lemma 2(b). In this case,
|D[r+1,r+p+2]| ≤ |D[r,r+p+1]|, hence

D[r,r+p+2]

D[−1/2,3/2]
(−1)r+p+1/2 =

1
∆x

D[r+1,r+p+2]−D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p+1/2

≤ 2
∆x

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2 ≤

2Cr,p

∆x
≤Cr,p+1.

Using the explicit form (2.5) of the jump v+1/2
− v−1/2

, we get the following explicit
expression of the upper-bound asserted in (1.8).

Theorem 3.1 Let v+1/2
and v−1/2

be the point-values reconstructed by the ENO algo-
rithm 1.1 at the cell interface x = x1/2+ and, respectively, x = x1/2−. Then

v+1/2
− v−1/2

v1− v0
≤ Cp :=

1
x3/2− x−1/2

−1/2

∑
r=−p+1/2

Cr,p

∣∣∣∣∣(xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)∣∣∣∣∣ .
Proof Let rp,sp be the offsets of the ENO stencils associated with cell I0 and, respec-
tively, I1. By Lemmas 1 and 3, we have

v+1/2
− v−1/2

v1− v0
=

1
x3/2− x−1/2

sp

∑
r=rp

D[r,r+p+1]

D[−1/2,3/2]
(−1)r+p−1/2

∣∣∣∣∣(xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)∣∣∣∣∣
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≤ 1
x3/2− x−1/2

sp

∑
r=rp

Cr,p

∣∣∣∣∣(xr+p+1− x)
p−1

��∏
m=0

(
x1/2− xr+m+1

)∣∣∣∣∣
≤ 1

x3/2− x−1/2

−1/2

∑
r=−p+1/2

Cr,p

∣∣∣∣∣(xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)∣∣∣∣∣ .
When the mesh is uniform, |Ii| ≡ h, the expression for the upper bound C can be

calculated explicitly. The recursion relation (3.1b) yields Cr,p =
2p

hp−1(p+1)!
, and

the coefficient of the (p+1)-th order divided differences in (2.5) is∣∣∣∣∣(xr+p+1− xr)
p−1

��∏
m=0

(
x1/2− xr+m+1

)∣∣∣∣∣= hp(p+1)(−r− 1/2)!(p+ r− 1/2)!.

Thus, we arrive at the following bound on the jump in reconstructed values.

Corollary 1 Let v+1/2
and v−1/2

be the pointvalues reconstructed at the cell interface
x = x1/2+ and, respectively, x = x1/2−, by the p-th order ENO Algorithm 1.1, based
on equi-spaced cell averages {vk}k. Then

v+1/2
− v−1/2

v1− v0
≤ Cp = 2p−1 1

p!

p−1

∑
k=0

k!(p− k−1)!. (3.3)

Table 1 shows the upper bound (3.3) on (v+1/2
− v−1/2

)/(v1− v0) for some values of p.
Returning to Figure 1, we see that although the jumps at the cell interfaces can get
large, they cannot exceed Cp times the size of the jump in cell averages, regardless
of the values in neighboring cell averages.

Table 1 Maximal ratio of jumps in ENO reconstruction of order p, relative to underlying jumps of averages
at cell interfaces

p Upper bound Cp
1 1
2 2
3 10/3 = 3.333 . . .
4 16/3 = 5.333 . . .
5 128/15 = 8.533 . . .
6 208/15 = 13.866 . . .

It can be shown that the bound Cp given in Theorem 3.1 is sharp. Indeed, the
worst-case scenarios for orders of accuracy p = 2,3,4,5 are shown in Figure 2. The
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Fig. 2: Worst case cell interface jumps for p = 2,3,4,5.

mesh in this figure is xi+1/2 = i, and the cell averages are chosen as

vi =


0 if i is odd
1 if i is even and i≤ 4
1−10−10 if i is even and i > 4.

The number 10−10 is chosen at random; any small perturbation will give the same
effect. This perturbation ensures that cells Ii for i≤ 4 interpolate over a stencil to the
left of the cell interface x = x4+1/2, and cells with i > 4 to the right of it. We see that
for each p, the jump at x = 4 is precisely the bound Cp as given in Table 1.

4 ENO interpolation

The stability proof of ENO interpolation stated in Theorem 1.2 can be argued along
the lines of those argued in Sections 2 and 3. We therefore only sketch the arguments
without details.
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4.1 The sign property for ENO interpolant

We focus on the jump across the interface at x = x1/2. Let {` j}p
j=1 and {n j}p

j=1 be
the ENO stencils associated with gridpoints x0 and, respectively, x1. Recall that in
this case of ENO interpolation, these offsets are non-positive integers, −p + 1 ≤
` j,n j ≤ 0. Our first key step is to compute the jump at the interface point x1/2 in
the case where the ENO procedure are separated by just one point, namely, `p =
np. We let d[ i,i+ j] abbreviate the divided differences v[xi, . . . ,xi+ j]. As before, we
denote the reconstructed values at the interface x = x1/2 by v−1/2

= I v(x1/2−) and
v+1/2

= I v(x1/2+).

Lemma 4 If `p = np = ` for some ` ∈ −N0, then

v+1/2− v−1/2 = d[`,`+p+1](x`+p+1− x`)
p−1

∏
m=1

(x1/2− x`+m).

By assembling a telescoping sum of several such stencils we obtain

Corollary 2 For general `p ≤ np, we have

v+i+1/2− v−i+1/2 =
np

∑
`=`p

d[`,`+p+1](x`+p+1− x`)
p−1

∏
m=1

(x1/2− x`+m). (4.1)

Since v1− v0 = (x1− x0)d[0,1], we wish to show that the jump in reconstructed
values at the cell interface has the same sign as d[0,1]. To this end we show that each
summand in (4.1) has the same sign as d[0,1]. Indeed, since

sgn

(
(x`+p− x`)

p−1

∏
m=1

(x1/2− x`+m)

)
= (−1)`+p+1, −p+1≤ `≤ 0,

it suffices to prove the following:

Lemma 5 If `p,np are selected according to the ENO stencil selection procedure,
then {

if d[0,1] ≥ 0 then (−1)`+p+1d[`,`+p+1] ≥ 0;
if d[0,1] ≤ 0 then (−1)`+p+1d[`,`+p+1] ≤ 0,

`= `p, . . . ,np.

4.2 Upper bounds on the relative jumps for ENO interpolant

Next, we show the corresponding upper bound on v+1/2
− v−1/2

for ENO reconstruction
with point values.
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Lemma 6 If `p,np are selected according to the ENO stencil selection procedure,
then

0≤
d[`,`+p+1]

d[0,1]
(−1)`+p+1 ≤ c`,p `= `p, . . . ,np,

where c`,p are defined recursively, starting with c`,1 = 1, and

c`,p+1 =
2

x`+p− x`
max(c`,p,c`+1,p).

Table 2 Maximal ratio of jumps in ENO interpolation of order p, relative to underlying jumps of point
values at midpoints

p Upper bound cp
1 1
2 2
3 3.5
4 6
5 10.375
6 18.25

For simplicity we assume that the mesh is uniform with mesh width x j+1−x j ≡ h.
It is straightforward to show that c`,p ≡ (2/h)p−1 1/p!. Moreover, the coefficient of
the (p+1)-th order divided differences in (4.1) is∣∣∣∣∣(x`+p− x`)

p−1

∏
m=1

(x1/2− x`+m)

∣∣∣∣∣= hp p

∣∣∣∣∣p−1

∏
m=1

(1/2− `−m)

∣∣∣∣∣ .
Thus, we arrive at the following bound on the jump in reconstructed values.

Theorem 4.1 Let `p,np be selected according to the ENO stencil selection proce-
dure, and assume that the mesh is uniform. Then

v+1/2
− v−1/2

v1− v0
≤ cp := 2p−1 1

(p−1)!

p−1

∑
`=0

∣∣∣∣∣p−1

∏
m=1

(1/2− `−m)

∣∣∣∣∣ .
Table 2 shows the upper bound on (v+1/2

− v−1/2
)/(v1− v0) for p ≤ 6. As for the

ENO reconstruction procedure in Section 3, it may be shown that these bounds are
sharp.
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5 Conclusions

We show that the ENO reconstruction procedure (from cell averages or point values)
is stable via the sign property, namely the jump in reconstructed values at each cell
interface have the same sign as the jump in the underlying cell averages (point val-
ues). Furthermore, we obtain an upper bound on the size of the jump of reconstructed
values in terms of the underlying cell averages (point values) at each interface. Both
results hold for any mesh {xi+1/2}i. In particular, the results hold for non-uniform
meshes. In addition, both results hold for any order of the reconstruction, i.e, any
degree for the polynomial interpolation. No extra regularity assumptions on the un-
derlying L1

loc function v are needed.
The proof of both the sign property and the upper jump bound depended heavily

on the formula (2.5), which gives the cell interface jump in terms of rp, sp and the
(p+ 1)-th divided differences of V . This formula is completely independent of the
ENO stencil selection procedure, and hence holds for all interpolation stencils. On
the other hand, Lemma 2 (and Lemma 3 for the upper bound) is a direct consequence
of the ENO stencil procedure. Therefore, we cannot expect that other reconstruction
methods satisfies a similar sign property. In particular, the WENO method, using the
stencil weights proposed in [17,20], will in general not satisfy such a property, a fact
that is easily confirmed numerically. This leaves open the question of the existence of
stencil weights that make the method satisfy the sign property. Of the second-order
TVD reconstruction methods (see [24]), only the minmod limiter satisfies the sign
property.

The stability estimates presented in this paper do not suffice to conclude that the
ENO reconstruction procedure is total variation bounded (TVB). In particular, the
jump in the interior of a cell can be large. However, the sign property enables us to
construct arbitrarily high-order entropy stable schemes for any system of conserva-
tion laws. Furthermore, the sign property together with the upper bound allow us to
prove that these entropy stable scheme converge for linear equations. Both results are
announced in [8] and presented in a forthcoming paper [9].
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