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Abstract

We prove the first stability estimates for the ENO reconstruc-
tion procedure. They take the form of a sign property: we show
that the jump in the reconstructed pointvalues at each cell inter-
face has the same sign as the jump in underlying cell averages
(cell centered values) across the interface. Moreover their ratio
is upper bounded. These estimates hold for arbitrary orders of
accuracy of the reconstruction as well as for non-uniform meshes.
We then combine the ENO reconstruction together with entropy
conservative fluxes to construct new entropy stable ENO schemes
of arbitrary order.

1 Introduction

The Essentially Non-Oscillatory (ENO) method was designed by Harten
et al. in [8] for approximating solutions of nonlinear hyperbolic con-
servation laws. Let {xi+1/2}i∈Z be a given mesh, and define the cells
Ii := [xi−1/2, xi+1/2) and their sizes hi = xi+1/2−xi−1/2 and h = maxi hi.
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The starting point is the collection {vi}i∈Z of cell averages of a given
function v(x),

vi :=
1
hi

∫
Ii

v(x)dx, (1.1)

from which we get the piecewise constant approximation

Av(x) =
∑
i∈Z

vi1Ii
(x)

of v, which, when v is piecewise continuous, is accurate to first order.
The role of the ENO reconstruction method is to construct a p-th (p ∈ N)
order accurate approximation

RAv(x) =
∑
i∈Z

fi(x)1Ii
(x)

of v, where fi ∈ Πp−1 is a polynomial recovered from neighboring cell
averages. Each interpolant fi is p-th order accurate in the sense that

fi(x) = v(x) +O(hp) for x ∈ Ii. (Accuracy)

The function fi is an interpolant in the sense that it preserves cell aver-
ages,

1
hi

∫
Ii

fi(x)dx = vi, (Conservation)

that is, ARA = A. To ensure the conservation property, we consider
the primitive of v,

V (x) :=
∫ x

−∞
v(s)ds.

Letting Vj+1/2 = V (xj+1/2), it follows from (1.1) that

Vj+1/2 :=
∫ xj+1/2

−∞
v(s)ds =

j∑
i=−∞

∫ xi+1/2

xi−1/2

v(s)ds =
j∑

i=−∞
hivi. (1.2)

Therefore, given the cell averages {vi}i, point values of the primitive V
at the cell interfaces xi+1/2 can be explicitly evaluated, up to an additive
constant. Now, let V(x) be the unique p-th order polynomial inter-
polating the p + 1 point values Vi−r−1/2, . . . , Vi−r+p+1/2. We define the
(p− 1)-th order polynomial f(x) = V′(x). It is a simple consequence of
(1.2) that f satisfies (Accuracy) and (Conservation). Hence, a recon-
struction from cell averages requires an interpolation of the primitive.

Both the accuracy and conservation requirements can be met by in-
terpolating the primitive V on any of the p stencils

Sr
i = {xi−r−1/2, . . . , xi−r+p+1/2},



Entropy stable ENO scheme 3

where r ∈ {0, . . . , p − 1} is the stencil offset. As we are interested in
approximating piecewise smooth functions, this stencil has to be selected
carefully to avoid spurious oscillations in the reconstructed function. The
principal idea of the ENO procedure is to choose the stencil offset in an
iterative manner, based on divided differences. The ENO algorithm is
defined as follows.

Algorithm 1.1 (ENO stencil selection procedure). Let point values of
the primitive Vi−p−1/2, . . . , Vi+p+1/2 be given.

• Let r1 = 0.
• For each j = 1, . . . , p− 1: If∣∣V [xi−rj−3/2, . . . , xi−rj+j−1/2

]∣∣ < ∣∣V [xi−rj−1/2, . . . , xi−rj+j+1/2

]∣∣
then let rj+1 = rj + 1; otherwise, let rj+1 = rj.

• Let r = rp and interpolate V over the stencil Sr
i .

As the j-th order divided difference of a function is a good measure of
its j-th derivative, we obtain an interpolating polynomial with the small-
est possible derivatives. Thus, the ENO procedure involves a nonlinear
data dependent selection of the stencil in the direction of smoothness of
the underlying piecewise smooth function.

Given the reconstructed function RAv =
∑

i fi1Ii
, we obtain at each

cell interface p-th order accurate approximations

v−i = fi(xj−1/2), v+
i = fi(xi+1/2) (1.3)

such that

v−i = v(xi−1/2) +O(hp), v+
i = v(xi+1/2) +O(hp). (1.4)

These values are the inputs to high-order accurate finite volume schemes
to approximate nonlinear conservation laws (see Shu [17]), and the rela-
tion between these values and the cell averages will be the main point of
study in this paper.

Despite of the existence of the ENO reconstruction procedure for the
last 25 years, no global (mesh independent) stability results are available.
Given this background, we present the following stability theorem.

Theorem 1.1. [the sign property of ENO reconstruction [5]] Let p ∈ N,
and let v+

i , v
−
i+1 be left and right values at a cell interface xi+1/2, obtained

through a p-th order ENO reconstruction of cell averages {vi}i. Then

sgn
(
v−i+1 − v+

i

)
= sgn

(
vi+1 − vi

)
(i ∈ Z). (1.5)

Moreover, there is a constant Cp, depending only on p and on the ratios
of neighboring grid cells, hj+1

hj
, such that

0 ≤
v−i+1 − v+

i

vi+1 − vi
≤ Cp (i ∈ Z). (1.6)
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The sign property says that at each cell interface, the jump in re-
constructed values has the same sign as the jump in the underlying cell
averages.

We remark that the above theorem is valid for any order of recon-
struction and for any mesh size. It is valid for non-uniform meshes and
makes no assumptions on the function v, other than that the cell averages
vi must be well-defined, which is guaranteed if e.g. v ∈ L1

loc(R).
The sign property is illustrated in Figure 1.1, where we show a third-

, fourth- and fifth-order ENO reconstruction of randomly chosen cell
averages. Even though the reconstructed polynomial can have large
variations within a cell, its jumps at cell interfaces always have the same
sign as the jumps of the cell averages.
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Figure 1.1: ENO reconstruction of randomly chosen cell averages.

The ENO procedure for reconstructing piecewise polynomials, given
the point values of a piecewise smooth function vi = v(xi) can be defined
analogously, see [17]. This procedure is also stable in the following sense,

Theorem 1.2. [5] Let p ∈ N, and let v+
i , v

−
i+1 be left and right values at

a cell interface xi+1/2, obtained through a p-th order ENO reconstruction
of point values {vi}i. Then

sgn
(
v−i+1 − v+

i

)
= sgn

(
vi+1 − vi

)
(i ∈ Z). (1.7)

Moreover, there is a constant Ĉp, depending only on p and on the ratios
of neighboring grid cells, hj+1

hj
, such that

0 ≤
v−i+1 − v+

i

vi+1 − vi
≤ Ĉp (i ∈ Z). (1.8)

This sign property for the ENO reconstruction from point values will
be used to construct arbitrarily high-order accurate entropy stable ENO
schemes for systems of conservation laws in section 2 below.

Our stability results should be compared with that of existing local
stability results for the ENO procedure like the stability result of [7] that
for a given function v, there is an upper mesh size h0 > 0 and a function
z(x), both dependent on v, such that

f(x) = z(x) +O(hp)
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and
TV(z) ≤ TV(v)

whenever the mesh size h is less than h0. What is more, z is monotone
inside cells where v has a discontinuity. For ENO-based finite volume or
finite difference schemes, this result is of limited utility, as the approxi-
mate solution v depends on h.

There are some rigorous results about the global accuracy of the ENO
procedure. In [1], the authors were able to show that the ENO method is
globally second-order accurate when approximating a continuous func-
tion in one space dimension. This result should be contrasted with the
global first-order accuracy of linear interpolation methods for continu-
ous functions. Multi-dimensional global accuracy results were obtained
in [2].

The ENO reconstruction procedure has been very successfully em-
ployed to approximate systems of hyperbolic conservation laws, [8, 15,
17]. Extensions of the ENO method like subcell resolution [9], ENO
with biasing [16] and Weighted ENO (WENO) schemes [15, 17] have
also been employed in computational fluid dynamics with considerable
success. See the excellent review article [17] of Shu for an overview.

However, there are no rigorous stability proofs for any of the above
ENO schemes. In the following, we will present a conservative finite
difference scheme that approximates systems of conservation laws to ar-
bitrarily high order of accuracy and is entropy stable.

2 Entropy stable ENO schemes

2.1 Continuous setting

In one space dimension, a system of conservation laws takes the form,

Ut + f(U)x = 0, ∀ (x, t) ∈ R× R+,

U(x, 0) = U0(x), ∀ x ∈ R.
(2.1)

Here, U : R × R+ 7→ Rm is the vector of unknowns and f is the (non-
linear) flux vector.

It is well known ([3]) that solutions of (2.1) contain discontinuities
in form of shock waves, even for smooth initial data. Hence, solutions of
(2.1) are sought in a weak sense. Weak solutions may not be unique and
need to be supplemented with extra admissibility criteria, termed as en-
tropy conditions, in order to single out a physically relevant solution [3].
Assume that there exists a convex function E : Rm 7→ R and functions
V, Q such that

V = ∂UE, ∂UQ = 〈V, ∂Uf〉. (2.2)
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Then, a straightforward calculation using (2.1) and (2.2) shows that
smooth solutions of (2.1) satisfy the entropy identity :

Et +Qx = 0. (2.3)

However, the solutions of (2.1) are not smooth in general and the entropy
has to be dissipated at shocks. Hence, we obtain an entropy inequality,

Et +Qx ≤ 0, (2.4)

that holds in the sense of distributions. We term Q and V in (2.2) as the
entropy flux function and the vector of entropy variables, respectively.
Integrating (2.4) over space results in the bound:

d

dt

∫
R
Edx ≤ 0 ⇒

∫
R
E (U(x, T )) dx ≤

∫
R
E(U0(x))dx, ∀T > 0.

(2.5)
As E is convex, the above entropy bound can be converted into an a
priori estimate on the solution of (2.1) in suitable Lp spaces [3].

2.2 Conservative finite difference schemes

For simplicity, we consider a uniform Cartesian mesh {(xi)} in R with
mesh size xi+1−xi = ∆x. The midpoint values are xi+1/2 = xi+xi+1

2 and
the domain is partitioned into intervals Ii = [xi−1/2, xi+1/2]. The conser-
vative finite difference (finite volume) method updates point values (cell
averages in Ii) of the solution U resulting in the semi-discrete scheme:

d

dt
Ui(t) = − 1

∆x
(
Fi+1/2(t)− Fi−1/2(t)

)
, (2.6)

with numerical flux Fi+1/2 = F(Ui(t),Ui+1(t)) computed from the (ap-
proximate) solution of the Riemann problem for (2.1) at the interface
xi+1/2, [13]. Second order spatial accuracy can be obtained with non-
oscillatory TVD [11] and even higher order of accuracy can be obtained
with ENO [8] and WENO [15] piecewise polynomial reconstructions.

However, these high-order schemes are not rigorously shown to be
stable. As mentioned before, we will construct stable arbitrarily high-
order conservative finite difference schemes. We do so in two stages.

2.3 Entropy conservative schemes

First, we construct entropy conservative schemes i.e, finite difference
schemes of the form (2.6) which satisfy a discrete version of the entropy
identity (2.3). Introducing the notation,

[[a]]i+1/2 = ai+1 − ai, ai+1/2 =
1
2
(ai + ai+1),
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we follow the general procedure developed in [19] to define two-point
entropy conservative fluxes:

Theorem 2.1. (Tadmor, [19]:) Consider the one dimensional system
of conservation laws (2.1) with entropy function E, entropy variables V,
entropy flux Q and define the entropy potential ψ := 〈V, f〉 − Q. Let
the finite difference scheme (2.6) approximate (2.1) and the numerical
flux be given by Fi+1/2 = F ∗i+1/2

= F∗(Ui,Ui+1). We assume that it is
consistent with f i.e F∗(U,U) = f(U) and satisfies the following,

〈[[V]]i+1/2,F
∗
i+1/2〉 = [[ψ]]i+1/2, ∀i. (2.7)

Then the scheme (2.6) with numerical flux (2.7) satisfies the discrete
entropy identity,

d

dt
(E(Ui)(t)) = − 1

∆x
(Q̃i+1/2 − Q̃i−1/2),

Q̃i+1/2 =
〈

(Vi + Vi+1)
2

,F∗i+1/2

〉
− (ψi + ψi+1)

2
.

(2.8)

Summing over all i, we obtain entropy conservation:

d

dt

∑
i

Ei ≡ 0.

Furthermore, the scheme (2.6) with flux F∗ is second-order accurate.

We note that the condition (2.7) provides a single algebraic equation
for m unknowns. In general, it is not clear whether a solution of (2.7)
exists. Furthermore, the solutions of (2.7) will not be unique except in
the case of scalar equations i.e, m = 1. In [19], Tadmor showed the
existence of at least one solution of (2.7) for any system of conservation
laws. Explicit solutions were constructed in [20]. However, the entropy
conservative fluxes of [20] are computationally expensive, [4]. Instead,
we follow recent papers [4, 14] to obtain algebraically simple and com-
putational inexpensive solutions of (2.7). As an example, we consider
the Euler equations of gas dynamics i.e, (2.1) with

U = (ρ, ρu, E)> , f =
(
ρu, ρu2 + p, (E + p)u

)>
(2.9)

Here, ρ, u and p are the density, velocity and pressure of the fluid. The
total energy E is related to other variables by the equation of state:

E =
p

γ − 1
+

1
2
ρu2, (2.10)

with γ being the gas constant. Let s = log(p)− γ log(ρ) be the thermo-
dynamic entropy. An entropy-entropy flux pair for the Euler equations
is

E :=
−ρs
γ − 1

, Q :=
−ρus
γ − 1

. (2.11)
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The corresponding entropy variables and potential are

V =
{
γ − s

γ − 1
− ρu2

2p
,
ρu

p
, − ρ

p

}
, ψ = ρu. (2.12)

An explicit entropy conservative flux for the Euler equations (see [14])
is given by

F∗i+1/2 = {F1,∗
i+1/2

,F2,∗
i+1/2

,F3,∗
i+1/2

}, F1,∗
i+1/2

= z2,i+1/2(z3)lni+1/2,

F2,∗
i+1/2

=
z3,i+1/2

z1,i+1/2
+
z2,i+1/2

z1,i+1/2
F1,∗

i+1/2
, F3,∗

i+1/2
=

1
2
z2,i+1/2

z1,i+1/2

(
γ + 1
γ − 1

(z3)lni+1/2

(z1)lni+1/2

+ F2,∗
i+1/2

)
(2.13)

Here, the parameter vectors are defined as

z = (z1, z2, z3) =
{√

ρ

p
,

√
ρ

p
u,
√
ρp

}
, (2.14)

and aln is the logarithmic mean defined as

(a)lni+1/2 :=
[[a]]i+1/2

[[log(a)]]i+1/2

. (2.15)

Other examples of explicit two-point entropy conservative fluxes are de-
scribed in [6].

2.3.1 High-order entropy conservative fluxes

We follow the procedure of LeFloch, Mercier and Rohde [12] in order to
obtain arbitrary order accurate entropy conservative fluxes.

Theorem 2.2. Consider the system (2.1), equipped with the entropy
function E. Assume that there exists the two-point entropy conservative
flux, F∗i+1/2

= F∗(Ui,Ui+1) satisfying (2.7). For any integer p ≥ 1,
define the numerical flux,

F2p,∗
i+1/2

=
∑

{0≤r,s≤p}

αrsF∗(Ui−r,Ui+s). (2.16)

The co-efficients αrs satisfy the consistency condition:
∑
r,s
αrs = 1, and

are computed using a Taylor expansion as in [12]. Then, the finite dif-
ference scheme (2.6) with numerical flux (2.16) satisfies the following
properties:

(i.) The scheme is 2p-th order accurate i.e, the truncation error of the
scheme (2.6) satisfies,

Ti(t) = O(∆x2p), ∀, ∀t > 0,

provided that the solutions of (2.1) are sufficiently smooth.
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Figure 2.1: Comparing ENO (blue circles) and ECENO (red circles)
with the reference solution (black line) for the Sod shock tube. Density
at T = 1.3 on a mesh of 100 points is plotted.

(ii.) The scheme (2.6) with numerical flux (2.16) is entropy conserva-
tive as it satisfies the discrete entropy identity:

d

dt
(E(Ui)(t)) = − 1

∆x
(Q̃p

i+1/2
− Q̃p

i−1/2),

Q̃p
i+1/2

=
1
2

∑
r,s

αrs (〈(Vi−r + Vi+s),F∗(Ui−r,Ui+s)〉 − (ψi−r + ψi+s)) .

(2.17)

Some explicit examples of (2.16) are described in [6]. We remark that
the arbitrarily high-order entropy conservative fluxes are linear combi-
nations of the two point entropy conservative flux (2.7). Hence, compu-
tationally inexpensive forms of (2.7) like (2.13) are absolutely essential
to design a computationally tractable high-order entropy conservative
scheme.

2.4 ENO based numerical diffusion operators

Entropy is only conserved if the solutions (2.1) are smooth. However,
the solutions of (2.1) develop discontinuities and entropy is dissipated at
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shocks resulting in the entropy inequality (2.4). Hence, entropy conserva-
tive schemes described in the previous section will lead to high-frequency
oscillations near shocks (see [4] for numerical examples). Consequently,
we need to add some dissipative mechanism to ensure that entropy is
dissipated near shocks. This is achieved by designing suitable entropy
stable numerical diffusion operators.

The resulting scheme (2.6) will have the numerical flux,

Fk
i+1/2 = F 2p,∗

i+1/2
− 1

2
Di+1/2〈V〉i+1/2. (2.18)

Here, k ≥ 1 and p = k/2 if k is even or p = (k + 1)/2 if k is odd. The
flux F2p,∗ is the high order entropy conservative flux given by (2.16).
The matrix D is any symmetric positive definite matrix. We perform
a suitable reconstruction of the entropy variables V and obtain some
piecewise polynomial function Vi(x) of degree k−1 for x ∈ Ii. Denoting

V−
i = Vi(xi−1/2), V+

i = Vi(xi+1/2), and 〈V〉i+1/2 = V−
i+1 −V+

i ,
(2.19)

completes the description of the numerical flux (2.18). We need to mod-
ify the reconstruction procedure in order to ensure entropy stability. If
B = diag(b1, . . . , bn) is a diagonal matrix and s ∈ R, then we write

B ≤ s

provided bj ≤ s for all j, and similarly for B ≥ s.
We present sufficient conditions for the reconstruction to be entropy

stable below.

Lemma 2.1. Consider the one dimensional system (2.1) with entropy
variables V. Let {r̂l

i+1/2}
m
l=1 be a basis of Rm for each i. Define the

matrix
R̂i+1/2 =

[
r̂1i+1/2|r̂

2
i+1/2| · · · |r̂

m
i+1/2

]
.

Let Λ̂i+1/2 be any diagonal matrix with non-negative entries. Define the
numerical diffusion matrix:

D̂i+1/2 = R̂i+1/2Λ̂i+1/2R̂
−1
i+1/2

. (2.20)

Let Vi(x) be a polynomial reconstruction of the entropy variables
in the cell Ii. Assume that for each i, there exists a diagonal matrix
Bi+1/2 ≥ 0 such that the following holds:

〈V 〉i+1/2 = R̂i+1/2Bi+1/2R̂
>
i+1/2[[V]]i+1/2 (2.21)

Then the numerical scheme (2.6) with numerical flux,

Fk
i+1/2 = F 2p,∗

i+1/2
− 1

2
D̂i+1/2〈V〉i+1/2, (2.22)
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is entropy stable, i.e. it satisfies the entropy dissipation estimate:

d

dt
E(Ui) +

1
∆x

(
Q̂i+1/2 − Q̂i−1/2

)
≤ 0, (2.23)

where the numerical entropy flux function Q̂ is defined as

Q̂ı = Q̃2p
i+1/2

− 1
2

〈
Vi+1/2D̂i+1/2〈V〉i+1/2

〉
.

Here, Q̃2p is defined by replacing D by D̂ in (2.17).

The proof of this lemma is presented in [6]. We need to find a re-
construction procedure which satisfies the crucial requirement that the
matrix B in (2.21) is positive. Let Vi,Vi+1,V+

i ,V
−
i+1 be given. Define

the scaled entropy variables,

W±
i = R>i±1/2Vi, W̃±

i = R>i±1/2V
±
i .

Dropping the ± superscript for notational convenience, the condition
(2.21) reads as

〈W̃〉i+1/2 = Bi+1/2〈W〉i+1/2.

This is a component-wise condition; denoting the l-th component of Wi

and W̃i by wl
i and w̃l

i, respectively, the above condition is equivalent to

sgn〈w̃l〉i+1/2 = sgn〈wl〉i+1/2, ∀i, l. (2.24)

Note that the above condition amounts to the sign property in theorem
1.1. As the ENO reconstruction procedure satisfies the sign property, we
can use it to define an entropy stable arbitrarily high order numerical
diffusion operator. We obtain an arbitrarily high-order entropy stable
scheme by using the ENO reconstruction procedure to reconstruct wl for
each l. The properties of the scheme are summarized below:

Theorem 2.3. For any k ≥ 1, let 2p = k (if k is even) or 2p = k + 1
(if k is odd). Define the entropy conservative flux F2p,∗ by (2.16). Let
〈V〉 in (2.22) be defined by the k-th order accurate ENO reconstruction
procedure. Then the finite difference scheme (2.6) with numerical flux
(2.22) satisfies the following properties,

(i.) The scheme is k-th order accurate for smooth solutions of (2.1).

(ii.) The scheme satisfies the discrete entropy inequality (2.23). Hence,
it is entropy stable.

We term the arbitrarily high-order accurate entropy stable schemes as
ECENO schemes as they combine entropy conservative (EC) and ENO
schemes.
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Although any basis {rl}m
l=1 of Rm and any diagonal matrix Λ̂ will

suffice for constructing an entropy stable scheme, we choose the follow-
ing,

R̂ = R.

Here, R is the matrix of eigenvectors of the flux Jacobian, fU and Λ is
a positive diagonal matrix that depends on the eigenvalues of the flux
Jacobian. Two examples of the matrix Λ̂ are

(i.) Roe type diffusion operator:

Λ̂ = |Λ|. (2.25)

Here, Λ denotes the matrix of eigenvalues of fU.

(ii.) Rusanov type diffusion operator:

Λ̂ = |λmax
i+1/2|ID, (2.26)

with λmax denoting the largest eigenvalue of fU.

3 Numerical experiments

We test the following schemes:

ENOk: k-th order accurate standard ENO scheme in the MUSCL formu-
lation [8].

ECENOk: k-th order accurate entropy stable scheme (2.6) with numerical flux
(2.22),

for k = 3, 4 and 5 on a suite of numerical experiments. The ENO-
MUSCL and ECENO schemes are semi-discrete and are integrated in
time with a standard Runge-Kutta method.

We consider the Euler equations i.e, (2.1) with (2.9). The entropy
function and entropy variables are given in (2.11), (2.12). We define
the ECENO scheme with entropy conservative flux given by (2.13) and
diffusion matrix being of the Roe type (2.25). The eigenvalues and eigen-
vectors of the Jacobian are computed at the average of the left and right
states. The ENO-MUSCL schemes use the standard Roe numerical flux.

3.0.1 Sod shock tube

The Sod shock tube experiment considers the Euler equations with Rie-
mann initial data,

U(x, 0) =

{
UL if x < 0
UR otherwise,

(3.1)
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with ρL

uL

pL

 =

1
0
1

 ,
ρR

uR

pR

 =

0.125
0

0.1

 ,
in the computational domain [−5, 5]. The initial discontinuity breaks
into a left going rarefaction wave, a right going shock wave and a right
going contact discontinuity. The computed density with the ENO3,
ENO4, ECENO3 and ECENO4 schemes at time T = 1.3 on a mesh
of 100 points is shown in figure 2.1. The results show that the ENO
and ECENO schemes are quite good at resolving the waves. The ENO4
scheme is slightly oscillatory behind the contact whereas the ECENO3
and ECENO4 schemes resolve all the waves without any noticeable os-
cillations.

3.0.2 Shock-Entropy wave interaction

This numerical example was proposed by Shu and Osher in [15] and is
a good test of a scheme’s ability in resolving a complex solution with
both strong and weak shocks and highly oscillatory but smooth waves.
The Euler equations are considered in the computational domain [−5, 5]
with initial data,

U(x, 0) =

{
UL if x < −4
UR otherwise,

with ρL

uL

pL

 =

3.857143
2.629369
10.33333

 ,
ρR

uR

pR

 =

1 + ε sin(5x)
0
1

 .
We compute up to t = 1.8 using a 3rd order Runge-Kutta integration
method for the 3rd-order schemes, and a 4th order Runge-Kutta method
for the 4th and 5th order schemes. The CFL number is set to 0.5. As
a reference solution, we compute with the ENO3 scheme on a mesh of
1600 grid points. The approximate solutions are computed on a mesh
of 200 grid points, corresponding to about 7 grid points for each period
of the entropy waves. The solution computed by the ENO and ECENO
schemes are displayed in Figure 3.1. There are very minor differences
between the ENO and ECENO schemes of the same order. The test also
illustrates that the higher order schemes perform better than a low order
scheme.

4 Conclusion

We prove a global stability property for the ENO reconstruction pro-
cedure. This property termed as the sign property says that the jump
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Figure 3.1: Comparing ENO(blue circles) and ECENO (red circles) with
a reference solution (black line) on the Shu-Osher shock-entropy wave
interaction problem. The plotted quantity is the density at time T = 1.8
on a mesh of 200 points.
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in the reconstructed values at each interface has the same sign as the
jump in the underlying cell averages (cell centered values). We also ob-
tain an upper bound of the jump in the reconstructed values in terms of
the jump in the underlying values. The sign property is crucial in the
construction of arbitrarily high-order accurate entropy stable schemes
to approximate conservation laws. These schemes, termed as ECENO
schemes are based on combining entropy conservative fluxes with suit-
able numerical diffusion operators. The numerical diffusion operators
are constructed from a ENO reconstruction of scaled entropy variables.
The resulting schemes are shown to be efficient in computations with the
Euler equations. The paper presents results from recent articles [5, 6]
that provide the first arbitrarily high-order finite difference schemes that
are entropy stable for any system of conservation laws.
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